1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 47 #define CMA_MAX_CM_RETRIES 15 48 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 49 #define CMA_IBOE_PACKET_LIFETIME 18 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 72 union ib_gid *mgid); 73 74 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 75 { 76 size_t index = event; 77 78 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 79 cma_events[index] : "unrecognized event"; 80 } 81 EXPORT_SYMBOL(rdma_event_msg); 82 83 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 84 int reason) 85 { 86 if (rdma_ib_or_roce(id->device, id->port_num)) 87 return ibcm_reject_msg(reason); 88 89 if (rdma_protocol_iwarp(id->device, id->port_num)) 90 return iwcm_reject_msg(reason); 91 92 WARN_ON_ONCE(1); 93 return "unrecognized transport"; 94 } 95 EXPORT_SYMBOL(rdma_reject_msg); 96 97 /** 98 * rdma_is_consumer_reject - return true if the consumer rejected the connect 99 * request. 100 * @id: Communication identifier that received the REJECT event. 101 * @reason: Value returned in the REJECT event status field. 102 */ 103 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 104 { 105 if (rdma_ib_or_roce(id->device, id->port_num)) 106 return reason == IB_CM_REJ_CONSUMER_DEFINED; 107 108 if (rdma_protocol_iwarp(id->device, id->port_num)) 109 return reason == -ECONNREFUSED; 110 111 WARN_ON_ONCE(1); 112 return false; 113 } 114 115 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 116 struct rdma_cm_event *ev, u8 *data_len) 117 { 118 const void *p; 119 120 if (rdma_is_consumer_reject(id, ev->status)) { 121 *data_len = ev->param.conn.private_data_len; 122 p = ev->param.conn.private_data; 123 } else { 124 *data_len = 0; 125 p = NULL; 126 } 127 return p; 128 } 129 EXPORT_SYMBOL(rdma_consumer_reject_data); 130 131 /** 132 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 133 * @id: Communication Identifier 134 */ 135 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 136 { 137 struct rdma_id_private *id_priv; 138 139 id_priv = container_of(id, struct rdma_id_private, id); 140 if (id->device->node_type == RDMA_NODE_RNIC) 141 return id_priv->cm_id.iw; 142 return NULL; 143 } 144 EXPORT_SYMBOL(rdma_iw_cm_id); 145 146 /** 147 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 148 * @res: rdma resource tracking entry pointer 149 */ 150 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 151 { 152 struct rdma_id_private *id_priv = 153 container_of(res, struct rdma_id_private, res); 154 155 return &id_priv->id; 156 } 157 EXPORT_SYMBOL(rdma_res_to_id); 158 159 static int cma_add_one(struct ib_device *device); 160 static void cma_remove_one(struct ib_device *device, void *client_data); 161 162 static struct ib_client cma_client = { 163 .name = "cma", 164 .add = cma_add_one, 165 .remove = cma_remove_one 166 }; 167 168 static struct ib_sa_client sa_client; 169 static LIST_HEAD(dev_list); 170 static LIST_HEAD(listen_any_list); 171 static DEFINE_MUTEX(lock); 172 static struct workqueue_struct *cma_wq; 173 static unsigned int cma_pernet_id; 174 175 struct cma_pernet { 176 struct xarray tcp_ps; 177 struct xarray udp_ps; 178 struct xarray ipoib_ps; 179 struct xarray ib_ps; 180 }; 181 182 static struct cma_pernet *cma_pernet(struct net *net) 183 { 184 return net_generic(net, cma_pernet_id); 185 } 186 187 static 188 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 189 { 190 struct cma_pernet *pernet = cma_pernet(net); 191 192 switch (ps) { 193 case RDMA_PS_TCP: 194 return &pernet->tcp_ps; 195 case RDMA_PS_UDP: 196 return &pernet->udp_ps; 197 case RDMA_PS_IPOIB: 198 return &pernet->ipoib_ps; 199 case RDMA_PS_IB: 200 return &pernet->ib_ps; 201 default: 202 return NULL; 203 } 204 } 205 206 struct cma_device { 207 struct list_head list; 208 struct ib_device *device; 209 struct completion comp; 210 refcount_t refcount; 211 struct list_head id_list; 212 enum ib_gid_type *default_gid_type; 213 u8 *default_roce_tos; 214 }; 215 216 struct rdma_bind_list { 217 enum rdma_ucm_port_space ps; 218 struct hlist_head owners; 219 unsigned short port; 220 }; 221 222 struct class_port_info_context { 223 struct ib_class_port_info *class_port_info; 224 struct ib_device *device; 225 struct completion done; 226 struct ib_sa_query *sa_query; 227 u8 port_num; 228 }; 229 230 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 231 struct rdma_bind_list *bind_list, int snum) 232 { 233 struct xarray *xa = cma_pernet_xa(net, ps); 234 235 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 236 } 237 238 static struct rdma_bind_list *cma_ps_find(struct net *net, 239 enum rdma_ucm_port_space ps, int snum) 240 { 241 struct xarray *xa = cma_pernet_xa(net, ps); 242 243 return xa_load(xa, snum); 244 } 245 246 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 247 int snum) 248 { 249 struct xarray *xa = cma_pernet_xa(net, ps); 250 251 xa_erase(xa, snum); 252 } 253 254 enum { 255 CMA_OPTION_AFONLY, 256 }; 257 258 void cma_dev_get(struct cma_device *cma_dev) 259 { 260 refcount_inc(&cma_dev->refcount); 261 } 262 263 void cma_dev_put(struct cma_device *cma_dev) 264 { 265 if (refcount_dec_and_test(&cma_dev->refcount)) 266 complete(&cma_dev->comp); 267 } 268 269 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 270 void *cookie) 271 { 272 struct cma_device *cma_dev; 273 struct cma_device *found_cma_dev = NULL; 274 275 mutex_lock(&lock); 276 277 list_for_each_entry(cma_dev, &dev_list, list) 278 if (filter(cma_dev->device, cookie)) { 279 found_cma_dev = cma_dev; 280 break; 281 } 282 283 if (found_cma_dev) 284 cma_dev_get(found_cma_dev); 285 mutex_unlock(&lock); 286 return found_cma_dev; 287 } 288 289 int cma_get_default_gid_type(struct cma_device *cma_dev, 290 unsigned int port) 291 { 292 if (!rdma_is_port_valid(cma_dev->device, port)) 293 return -EINVAL; 294 295 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 296 } 297 298 int cma_set_default_gid_type(struct cma_device *cma_dev, 299 unsigned int port, 300 enum ib_gid_type default_gid_type) 301 { 302 unsigned long supported_gids; 303 304 if (!rdma_is_port_valid(cma_dev->device, port)) 305 return -EINVAL; 306 307 if (default_gid_type == IB_GID_TYPE_IB && 308 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 309 default_gid_type = IB_GID_TYPE_ROCE; 310 311 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 312 313 if (!(supported_gids & 1 << default_gid_type)) 314 return -EINVAL; 315 316 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 317 default_gid_type; 318 319 return 0; 320 } 321 322 int cma_get_default_roce_tos(struct cma_device *cma_dev, unsigned int port) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 328 } 329 330 int cma_set_default_roce_tos(struct cma_device *cma_dev, unsigned int port, 331 u8 default_roce_tos) 332 { 333 if (!rdma_is_port_valid(cma_dev->device, port)) 334 return -EINVAL; 335 336 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 337 default_roce_tos; 338 339 return 0; 340 } 341 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 342 { 343 return cma_dev->device; 344 } 345 346 /* 347 * Device removal can occur at anytime, so we need extra handling to 348 * serialize notifying the user of device removal with other callbacks. 349 * We do this by disabling removal notification while a callback is in process, 350 * and reporting it after the callback completes. 351 */ 352 353 struct cma_multicast { 354 struct rdma_id_private *id_priv; 355 union { 356 struct ib_sa_multicast *sa_mc; 357 struct { 358 struct work_struct work; 359 struct rdma_cm_event event; 360 } iboe_join; 361 }; 362 struct list_head list; 363 void *context; 364 struct sockaddr_storage addr; 365 u8 join_state; 366 }; 367 368 struct cma_work { 369 struct work_struct work; 370 struct rdma_id_private *id; 371 enum rdma_cm_state old_state; 372 enum rdma_cm_state new_state; 373 struct rdma_cm_event event; 374 }; 375 376 union cma_ip_addr { 377 struct in6_addr ip6; 378 struct { 379 __be32 pad[3]; 380 __be32 addr; 381 } ip4; 382 }; 383 384 struct cma_hdr { 385 u8 cma_version; 386 u8 ip_version; /* IP version: 7:4 */ 387 __be16 port; 388 union cma_ip_addr src_addr; 389 union cma_ip_addr dst_addr; 390 }; 391 392 #define CMA_VERSION 0x00 393 394 struct cma_req_info { 395 struct sockaddr_storage listen_addr_storage; 396 struct sockaddr_storage src_addr_storage; 397 struct ib_device *device; 398 union ib_gid local_gid; 399 __be64 service_id; 400 int port; 401 bool has_gid; 402 u16 pkey; 403 }; 404 405 static int cma_comp_exch(struct rdma_id_private *id_priv, 406 enum rdma_cm_state comp, enum rdma_cm_state exch) 407 { 408 unsigned long flags; 409 int ret; 410 411 /* 412 * The FSM uses a funny double locking where state is protected by both 413 * the handler_mutex and the spinlock. State is not allowed to change 414 * to/from a handler_mutex protected value without also holding 415 * handler_mutex. 416 */ 417 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 418 lockdep_assert_held(&id_priv->handler_mutex); 419 420 spin_lock_irqsave(&id_priv->lock, flags); 421 if ((ret = (id_priv->state == comp))) 422 id_priv->state = exch; 423 spin_unlock_irqrestore(&id_priv->lock, flags); 424 return ret; 425 } 426 427 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 428 { 429 return hdr->ip_version >> 4; 430 } 431 432 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 433 { 434 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 435 } 436 437 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 438 { 439 struct in_device *in_dev = NULL; 440 441 if (ndev) { 442 rtnl_lock(); 443 in_dev = __in_dev_get_rtnl(ndev); 444 if (in_dev) { 445 if (join) 446 ip_mc_inc_group(in_dev, 447 *(__be32 *)(mgid->raw + 12)); 448 else 449 ip_mc_dec_group(in_dev, 450 *(__be32 *)(mgid->raw + 12)); 451 } 452 rtnl_unlock(); 453 } 454 return (in_dev) ? 0 : -ENODEV; 455 } 456 457 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 458 struct cma_device *cma_dev) 459 { 460 cma_dev_get(cma_dev); 461 id_priv->cma_dev = cma_dev; 462 id_priv->id.device = cma_dev->device; 463 id_priv->id.route.addr.dev_addr.transport = 464 rdma_node_get_transport(cma_dev->device->node_type); 465 list_add_tail(&id_priv->list, &cma_dev->id_list); 466 rdma_restrack_add(&id_priv->res); 467 468 trace_cm_id_attach(id_priv, cma_dev->device); 469 } 470 471 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 472 struct cma_device *cma_dev) 473 { 474 _cma_attach_to_dev(id_priv, cma_dev); 475 id_priv->gid_type = 476 cma_dev->default_gid_type[id_priv->id.port_num - 477 rdma_start_port(cma_dev->device)]; 478 } 479 480 static void cma_release_dev(struct rdma_id_private *id_priv) 481 { 482 mutex_lock(&lock); 483 list_del(&id_priv->list); 484 cma_dev_put(id_priv->cma_dev); 485 id_priv->cma_dev = NULL; 486 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 487 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 488 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 489 } 490 mutex_unlock(&lock); 491 } 492 493 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 494 { 495 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 496 } 497 498 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 499 { 500 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 501 } 502 503 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 504 { 505 return id_priv->id.route.addr.src_addr.ss_family; 506 } 507 508 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 509 { 510 struct ib_sa_mcmember_rec rec; 511 int ret = 0; 512 513 if (id_priv->qkey) { 514 if (qkey && id_priv->qkey != qkey) 515 return -EINVAL; 516 return 0; 517 } 518 519 if (qkey) { 520 id_priv->qkey = qkey; 521 return 0; 522 } 523 524 switch (id_priv->id.ps) { 525 case RDMA_PS_UDP: 526 case RDMA_PS_IB: 527 id_priv->qkey = RDMA_UDP_QKEY; 528 break; 529 case RDMA_PS_IPOIB: 530 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 531 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 532 id_priv->id.port_num, &rec.mgid, 533 &rec); 534 if (!ret) 535 id_priv->qkey = be32_to_cpu(rec.qkey); 536 break; 537 default: 538 break; 539 } 540 return ret; 541 } 542 543 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 544 { 545 dev_addr->dev_type = ARPHRD_INFINIBAND; 546 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 547 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 548 } 549 550 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 551 { 552 int ret; 553 554 if (addr->sa_family != AF_IB) { 555 ret = rdma_translate_ip(addr, dev_addr); 556 } else { 557 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 558 ret = 0; 559 } 560 561 return ret; 562 } 563 564 static const struct ib_gid_attr * 565 cma_validate_port(struct ib_device *device, u8 port, 566 enum ib_gid_type gid_type, 567 union ib_gid *gid, 568 struct rdma_id_private *id_priv) 569 { 570 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 571 int bound_if_index = dev_addr->bound_dev_if; 572 const struct ib_gid_attr *sgid_attr; 573 int dev_type = dev_addr->dev_type; 574 struct net_device *ndev = NULL; 575 576 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 577 return ERR_PTR(-ENODEV); 578 579 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 580 return ERR_PTR(-ENODEV); 581 582 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 583 return ERR_PTR(-ENODEV); 584 585 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 586 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 587 if (!ndev) 588 return ERR_PTR(-ENODEV); 589 } else { 590 gid_type = IB_GID_TYPE_IB; 591 } 592 593 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 594 if (ndev) 595 dev_put(ndev); 596 return sgid_attr; 597 } 598 599 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 600 const struct ib_gid_attr *sgid_attr) 601 { 602 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 603 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 604 } 605 606 /** 607 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 608 * based on source ip address. 609 * @id_priv: cm_id which should be bound to cma device 610 * 611 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 612 * based on source IP address. It returns 0 on success or error code otherwise. 613 * It is applicable to active and passive side cm_id. 614 */ 615 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 616 { 617 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 618 const struct ib_gid_attr *sgid_attr; 619 union ib_gid gid, iboe_gid, *gidp; 620 struct cma_device *cma_dev; 621 enum ib_gid_type gid_type; 622 int ret = -ENODEV; 623 unsigned int port; 624 625 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 626 id_priv->id.ps == RDMA_PS_IPOIB) 627 return -EINVAL; 628 629 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 630 &iboe_gid); 631 632 memcpy(&gid, dev_addr->src_dev_addr + 633 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 634 635 mutex_lock(&lock); 636 list_for_each_entry(cma_dev, &dev_list, list) { 637 rdma_for_each_port (cma_dev->device, port) { 638 gidp = rdma_protocol_roce(cma_dev->device, port) ? 639 &iboe_gid : &gid; 640 gid_type = cma_dev->default_gid_type[port - 1]; 641 sgid_attr = cma_validate_port(cma_dev->device, port, 642 gid_type, gidp, id_priv); 643 if (!IS_ERR(sgid_attr)) { 644 id_priv->id.port_num = port; 645 cma_bind_sgid_attr(id_priv, sgid_attr); 646 cma_attach_to_dev(id_priv, cma_dev); 647 ret = 0; 648 goto out; 649 } 650 } 651 } 652 out: 653 mutex_unlock(&lock); 654 return ret; 655 } 656 657 /** 658 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 659 * @id_priv: cm id to bind to cma device 660 * @listen_id_priv: listener cm id to match against 661 * @req: Pointer to req structure containaining incoming 662 * request information 663 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 664 * rdma device matches for listen_id and incoming request. It also verifies 665 * that a GID table entry is present for the source address. 666 * Returns 0 on success, or returns error code otherwise. 667 */ 668 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 669 const struct rdma_id_private *listen_id_priv, 670 struct cma_req_info *req) 671 { 672 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 673 const struct ib_gid_attr *sgid_attr; 674 enum ib_gid_type gid_type; 675 union ib_gid gid; 676 677 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 678 id_priv->id.ps == RDMA_PS_IPOIB) 679 return -EINVAL; 680 681 if (rdma_protocol_roce(req->device, req->port)) 682 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 683 &gid); 684 else 685 memcpy(&gid, dev_addr->src_dev_addr + 686 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 687 688 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 689 sgid_attr = cma_validate_port(req->device, req->port, 690 gid_type, &gid, id_priv); 691 if (IS_ERR(sgid_attr)) 692 return PTR_ERR(sgid_attr); 693 694 id_priv->id.port_num = req->port; 695 cma_bind_sgid_attr(id_priv, sgid_attr); 696 /* Need to acquire lock to protect against reader 697 * of cma_dev->id_list such as cma_netdev_callback() and 698 * cma_process_remove(). 699 */ 700 mutex_lock(&lock); 701 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 702 mutex_unlock(&lock); 703 return 0; 704 } 705 706 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 707 const struct rdma_id_private *listen_id_priv) 708 { 709 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 710 const struct ib_gid_attr *sgid_attr; 711 struct cma_device *cma_dev; 712 enum ib_gid_type gid_type; 713 int ret = -ENODEV; 714 unsigned int port; 715 union ib_gid gid; 716 717 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 718 id_priv->id.ps == RDMA_PS_IPOIB) 719 return -EINVAL; 720 721 memcpy(&gid, dev_addr->src_dev_addr + 722 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 723 724 mutex_lock(&lock); 725 726 cma_dev = listen_id_priv->cma_dev; 727 port = listen_id_priv->id.port_num; 728 gid_type = listen_id_priv->gid_type; 729 sgid_attr = cma_validate_port(cma_dev->device, port, 730 gid_type, &gid, id_priv); 731 if (!IS_ERR(sgid_attr)) { 732 id_priv->id.port_num = port; 733 cma_bind_sgid_attr(id_priv, sgid_attr); 734 ret = 0; 735 goto out; 736 } 737 738 list_for_each_entry(cma_dev, &dev_list, list) { 739 rdma_for_each_port (cma_dev->device, port) { 740 if (listen_id_priv->cma_dev == cma_dev && 741 listen_id_priv->id.port_num == port) 742 continue; 743 744 gid_type = cma_dev->default_gid_type[port - 1]; 745 sgid_attr = cma_validate_port(cma_dev->device, port, 746 gid_type, &gid, id_priv); 747 if (!IS_ERR(sgid_attr)) { 748 id_priv->id.port_num = port; 749 cma_bind_sgid_attr(id_priv, sgid_attr); 750 ret = 0; 751 goto out; 752 } 753 } 754 } 755 756 out: 757 if (!ret) 758 cma_attach_to_dev(id_priv, cma_dev); 759 760 mutex_unlock(&lock); 761 return ret; 762 } 763 764 /* 765 * Select the source IB device and address to reach the destination IB address. 766 */ 767 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 768 { 769 struct cma_device *cma_dev, *cur_dev; 770 struct sockaddr_ib *addr; 771 union ib_gid gid, sgid, *dgid; 772 unsigned int p; 773 u16 pkey, index; 774 enum ib_port_state port_state; 775 int i; 776 777 cma_dev = NULL; 778 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 779 dgid = (union ib_gid *) &addr->sib_addr; 780 pkey = ntohs(addr->sib_pkey); 781 782 mutex_lock(&lock); 783 list_for_each_entry(cur_dev, &dev_list, list) { 784 rdma_for_each_port (cur_dev->device, p) { 785 if (!rdma_cap_af_ib(cur_dev->device, p)) 786 continue; 787 788 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 789 continue; 790 791 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 792 continue; 793 for (i = 0; !rdma_query_gid(cur_dev->device, 794 p, i, &gid); 795 i++) { 796 if (!memcmp(&gid, dgid, sizeof(gid))) { 797 cma_dev = cur_dev; 798 sgid = gid; 799 id_priv->id.port_num = p; 800 goto found; 801 } 802 803 if (!cma_dev && (gid.global.subnet_prefix == 804 dgid->global.subnet_prefix) && 805 port_state == IB_PORT_ACTIVE) { 806 cma_dev = cur_dev; 807 sgid = gid; 808 id_priv->id.port_num = p; 809 goto found; 810 } 811 } 812 } 813 } 814 mutex_unlock(&lock); 815 return -ENODEV; 816 817 found: 818 cma_attach_to_dev(id_priv, cma_dev); 819 mutex_unlock(&lock); 820 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 821 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 822 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 823 return 0; 824 } 825 826 static void cma_id_get(struct rdma_id_private *id_priv) 827 { 828 refcount_inc(&id_priv->refcount); 829 } 830 831 static void cma_id_put(struct rdma_id_private *id_priv) 832 { 833 if (refcount_dec_and_test(&id_priv->refcount)) 834 complete(&id_priv->comp); 835 } 836 837 static struct rdma_id_private * 838 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 839 void *context, enum rdma_ucm_port_space ps, 840 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 841 { 842 struct rdma_id_private *id_priv; 843 844 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 845 if (!id_priv) 846 return ERR_PTR(-ENOMEM); 847 848 id_priv->state = RDMA_CM_IDLE; 849 id_priv->id.context = context; 850 id_priv->id.event_handler = event_handler; 851 id_priv->id.ps = ps; 852 id_priv->id.qp_type = qp_type; 853 id_priv->tos_set = false; 854 id_priv->timeout_set = false; 855 id_priv->gid_type = IB_GID_TYPE_IB; 856 spin_lock_init(&id_priv->lock); 857 mutex_init(&id_priv->qp_mutex); 858 init_completion(&id_priv->comp); 859 refcount_set(&id_priv->refcount, 1); 860 mutex_init(&id_priv->handler_mutex); 861 INIT_LIST_HEAD(&id_priv->listen_list); 862 INIT_LIST_HEAD(&id_priv->mc_list); 863 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 864 id_priv->id.route.addr.dev_addr.net = get_net(net); 865 id_priv->seq_num &= 0x00ffffff; 866 867 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 868 if (parent) 869 rdma_restrack_parent_name(&id_priv->res, &parent->res); 870 871 return id_priv; 872 } 873 874 struct rdma_cm_id * 875 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 876 void *context, enum rdma_ucm_port_space ps, 877 enum ib_qp_type qp_type, const char *caller) 878 { 879 struct rdma_id_private *ret; 880 881 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 882 if (IS_ERR(ret)) 883 return ERR_CAST(ret); 884 885 rdma_restrack_set_name(&ret->res, caller); 886 return &ret->id; 887 } 888 EXPORT_SYMBOL(__rdma_create_kernel_id); 889 890 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 891 void *context, 892 enum rdma_ucm_port_space ps, 893 enum ib_qp_type qp_type) 894 { 895 struct rdma_id_private *ret; 896 897 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 898 ps, qp_type, NULL); 899 if (IS_ERR(ret)) 900 return ERR_CAST(ret); 901 902 rdma_restrack_set_name(&ret->res, NULL); 903 return &ret->id; 904 } 905 EXPORT_SYMBOL(rdma_create_user_id); 906 907 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 908 { 909 struct ib_qp_attr qp_attr; 910 int qp_attr_mask, ret; 911 912 qp_attr.qp_state = IB_QPS_INIT; 913 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 914 if (ret) 915 return ret; 916 917 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 918 if (ret) 919 return ret; 920 921 qp_attr.qp_state = IB_QPS_RTR; 922 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 923 if (ret) 924 return ret; 925 926 qp_attr.qp_state = IB_QPS_RTS; 927 qp_attr.sq_psn = 0; 928 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 929 930 return ret; 931 } 932 933 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 934 { 935 struct ib_qp_attr qp_attr; 936 int qp_attr_mask, ret; 937 938 qp_attr.qp_state = IB_QPS_INIT; 939 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 940 if (ret) 941 return ret; 942 943 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 944 } 945 946 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 947 struct ib_qp_init_attr *qp_init_attr) 948 { 949 struct rdma_id_private *id_priv; 950 struct ib_qp *qp; 951 int ret; 952 953 id_priv = container_of(id, struct rdma_id_private, id); 954 if (id->device != pd->device) { 955 ret = -EINVAL; 956 goto out_err; 957 } 958 959 qp_init_attr->port_num = id->port_num; 960 qp = ib_create_qp(pd, qp_init_attr); 961 if (IS_ERR(qp)) { 962 ret = PTR_ERR(qp); 963 goto out_err; 964 } 965 966 if (id->qp_type == IB_QPT_UD) 967 ret = cma_init_ud_qp(id_priv, qp); 968 else 969 ret = cma_init_conn_qp(id_priv, qp); 970 if (ret) 971 goto out_destroy; 972 973 id->qp = qp; 974 id_priv->qp_num = qp->qp_num; 975 id_priv->srq = (qp->srq != NULL); 976 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 977 return 0; 978 out_destroy: 979 ib_destroy_qp(qp); 980 out_err: 981 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 982 return ret; 983 } 984 EXPORT_SYMBOL(rdma_create_qp); 985 986 void rdma_destroy_qp(struct rdma_cm_id *id) 987 { 988 struct rdma_id_private *id_priv; 989 990 id_priv = container_of(id, struct rdma_id_private, id); 991 trace_cm_qp_destroy(id_priv); 992 mutex_lock(&id_priv->qp_mutex); 993 ib_destroy_qp(id_priv->id.qp); 994 id_priv->id.qp = NULL; 995 mutex_unlock(&id_priv->qp_mutex); 996 } 997 EXPORT_SYMBOL(rdma_destroy_qp); 998 999 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1000 struct rdma_conn_param *conn_param) 1001 { 1002 struct ib_qp_attr qp_attr; 1003 int qp_attr_mask, ret; 1004 1005 mutex_lock(&id_priv->qp_mutex); 1006 if (!id_priv->id.qp) { 1007 ret = 0; 1008 goto out; 1009 } 1010 1011 /* Need to update QP attributes from default values. */ 1012 qp_attr.qp_state = IB_QPS_INIT; 1013 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1014 if (ret) 1015 goto out; 1016 1017 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1018 if (ret) 1019 goto out; 1020 1021 qp_attr.qp_state = IB_QPS_RTR; 1022 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1027 1028 if (conn_param) 1029 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1030 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1031 out: 1032 mutex_unlock(&id_priv->qp_mutex); 1033 return ret; 1034 } 1035 1036 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1037 struct rdma_conn_param *conn_param) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 int qp_attr_mask, ret; 1041 1042 mutex_lock(&id_priv->qp_mutex); 1043 if (!id_priv->id.qp) { 1044 ret = 0; 1045 goto out; 1046 } 1047 1048 qp_attr.qp_state = IB_QPS_RTS; 1049 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1050 if (ret) 1051 goto out; 1052 1053 if (conn_param) 1054 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1055 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1056 out: 1057 mutex_unlock(&id_priv->qp_mutex); 1058 return ret; 1059 } 1060 1061 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1062 { 1063 struct ib_qp_attr qp_attr; 1064 int ret; 1065 1066 mutex_lock(&id_priv->qp_mutex); 1067 if (!id_priv->id.qp) { 1068 ret = 0; 1069 goto out; 1070 } 1071 1072 qp_attr.qp_state = IB_QPS_ERR; 1073 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1074 out: 1075 mutex_unlock(&id_priv->qp_mutex); 1076 return ret; 1077 } 1078 1079 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1080 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1081 { 1082 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1083 int ret; 1084 u16 pkey; 1085 1086 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1087 pkey = 0xffff; 1088 else 1089 pkey = ib_addr_get_pkey(dev_addr); 1090 1091 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1092 pkey, &qp_attr->pkey_index); 1093 if (ret) 1094 return ret; 1095 1096 qp_attr->port_num = id_priv->id.port_num; 1097 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1098 1099 if (id_priv->id.qp_type == IB_QPT_UD) { 1100 ret = cma_set_qkey(id_priv, 0); 1101 if (ret) 1102 return ret; 1103 1104 qp_attr->qkey = id_priv->qkey; 1105 *qp_attr_mask |= IB_QP_QKEY; 1106 } else { 1107 qp_attr->qp_access_flags = 0; 1108 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1109 } 1110 return 0; 1111 } 1112 1113 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1114 int *qp_attr_mask) 1115 { 1116 struct rdma_id_private *id_priv; 1117 int ret = 0; 1118 1119 id_priv = container_of(id, struct rdma_id_private, id); 1120 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1121 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1122 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1123 else 1124 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1125 qp_attr_mask); 1126 1127 if (qp_attr->qp_state == IB_QPS_RTR) 1128 qp_attr->rq_psn = id_priv->seq_num; 1129 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1130 if (!id_priv->cm_id.iw) { 1131 qp_attr->qp_access_flags = 0; 1132 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1133 } else 1134 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1135 qp_attr_mask); 1136 qp_attr->port_num = id_priv->id.port_num; 1137 *qp_attr_mask |= IB_QP_PORT; 1138 } else 1139 ret = -ENOSYS; 1140 1141 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1142 qp_attr->timeout = id_priv->timeout; 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(rdma_init_qp_attr); 1147 1148 static inline bool cma_zero_addr(const struct sockaddr *addr) 1149 { 1150 switch (addr->sa_family) { 1151 case AF_INET: 1152 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1153 case AF_INET6: 1154 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1155 case AF_IB: 1156 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1157 default: 1158 return false; 1159 } 1160 } 1161 1162 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1163 { 1164 switch (addr->sa_family) { 1165 case AF_INET: 1166 return ipv4_is_loopback( 1167 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1168 case AF_INET6: 1169 return ipv6_addr_loopback( 1170 &((struct sockaddr_in6 *)addr)->sin6_addr); 1171 case AF_IB: 1172 return ib_addr_loopback( 1173 &((struct sockaddr_ib *)addr)->sib_addr); 1174 default: 1175 return false; 1176 } 1177 } 1178 1179 static inline bool cma_any_addr(const struct sockaddr *addr) 1180 { 1181 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1182 } 1183 1184 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1185 { 1186 if (src->sa_family != dst->sa_family) 1187 return -1; 1188 1189 switch (src->sa_family) { 1190 case AF_INET: 1191 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1192 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1193 case AF_INET6: { 1194 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1195 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1196 bool link_local; 1197 1198 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1199 &dst_addr6->sin6_addr)) 1200 return 1; 1201 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1202 IPV6_ADDR_LINKLOCAL; 1203 /* Link local must match their scope_ids */ 1204 return link_local ? (src_addr6->sin6_scope_id != 1205 dst_addr6->sin6_scope_id) : 1206 0; 1207 } 1208 1209 default: 1210 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1211 &((struct sockaddr_ib *) dst)->sib_addr); 1212 } 1213 } 1214 1215 static __be16 cma_port(const struct sockaddr *addr) 1216 { 1217 struct sockaddr_ib *sib; 1218 1219 switch (addr->sa_family) { 1220 case AF_INET: 1221 return ((struct sockaddr_in *) addr)->sin_port; 1222 case AF_INET6: 1223 return ((struct sockaddr_in6 *) addr)->sin6_port; 1224 case AF_IB: 1225 sib = (struct sockaddr_ib *) addr; 1226 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1227 be64_to_cpu(sib->sib_sid_mask))); 1228 default: 1229 return 0; 1230 } 1231 } 1232 1233 static inline int cma_any_port(const struct sockaddr *addr) 1234 { 1235 return !cma_port(addr); 1236 } 1237 1238 static void cma_save_ib_info(struct sockaddr *src_addr, 1239 struct sockaddr *dst_addr, 1240 const struct rdma_cm_id *listen_id, 1241 const struct sa_path_rec *path) 1242 { 1243 struct sockaddr_ib *listen_ib, *ib; 1244 1245 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1246 if (src_addr) { 1247 ib = (struct sockaddr_ib *)src_addr; 1248 ib->sib_family = AF_IB; 1249 if (path) { 1250 ib->sib_pkey = path->pkey; 1251 ib->sib_flowinfo = path->flow_label; 1252 memcpy(&ib->sib_addr, &path->sgid, 16); 1253 ib->sib_sid = path->service_id; 1254 ib->sib_scope_id = 0; 1255 } else { 1256 ib->sib_pkey = listen_ib->sib_pkey; 1257 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1258 ib->sib_addr = listen_ib->sib_addr; 1259 ib->sib_sid = listen_ib->sib_sid; 1260 ib->sib_scope_id = listen_ib->sib_scope_id; 1261 } 1262 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1263 } 1264 if (dst_addr) { 1265 ib = (struct sockaddr_ib *)dst_addr; 1266 ib->sib_family = AF_IB; 1267 if (path) { 1268 ib->sib_pkey = path->pkey; 1269 ib->sib_flowinfo = path->flow_label; 1270 memcpy(&ib->sib_addr, &path->dgid, 16); 1271 } 1272 } 1273 } 1274 1275 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1276 struct sockaddr_in *dst_addr, 1277 struct cma_hdr *hdr, 1278 __be16 local_port) 1279 { 1280 if (src_addr) { 1281 *src_addr = (struct sockaddr_in) { 1282 .sin_family = AF_INET, 1283 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1284 .sin_port = local_port, 1285 }; 1286 } 1287 1288 if (dst_addr) { 1289 *dst_addr = (struct sockaddr_in) { 1290 .sin_family = AF_INET, 1291 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1292 .sin_port = hdr->port, 1293 }; 1294 } 1295 } 1296 1297 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1298 struct sockaddr_in6 *dst_addr, 1299 struct cma_hdr *hdr, 1300 __be16 local_port) 1301 { 1302 if (src_addr) { 1303 *src_addr = (struct sockaddr_in6) { 1304 .sin6_family = AF_INET6, 1305 .sin6_addr = hdr->dst_addr.ip6, 1306 .sin6_port = local_port, 1307 }; 1308 } 1309 1310 if (dst_addr) { 1311 *dst_addr = (struct sockaddr_in6) { 1312 .sin6_family = AF_INET6, 1313 .sin6_addr = hdr->src_addr.ip6, 1314 .sin6_port = hdr->port, 1315 }; 1316 } 1317 } 1318 1319 static u16 cma_port_from_service_id(__be64 service_id) 1320 { 1321 return (u16)be64_to_cpu(service_id); 1322 } 1323 1324 static int cma_save_ip_info(struct sockaddr *src_addr, 1325 struct sockaddr *dst_addr, 1326 const struct ib_cm_event *ib_event, 1327 __be64 service_id) 1328 { 1329 struct cma_hdr *hdr; 1330 __be16 port; 1331 1332 hdr = ib_event->private_data; 1333 if (hdr->cma_version != CMA_VERSION) 1334 return -EINVAL; 1335 1336 port = htons(cma_port_from_service_id(service_id)); 1337 1338 switch (cma_get_ip_ver(hdr)) { 1339 case 4: 1340 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1341 (struct sockaddr_in *)dst_addr, hdr, port); 1342 break; 1343 case 6: 1344 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1345 (struct sockaddr_in6 *)dst_addr, hdr, port); 1346 break; 1347 default: 1348 return -EAFNOSUPPORT; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int cma_save_net_info(struct sockaddr *src_addr, 1355 struct sockaddr *dst_addr, 1356 const struct rdma_cm_id *listen_id, 1357 const struct ib_cm_event *ib_event, 1358 sa_family_t sa_family, __be64 service_id) 1359 { 1360 if (sa_family == AF_IB) { 1361 if (ib_event->event == IB_CM_REQ_RECEIVED) 1362 cma_save_ib_info(src_addr, dst_addr, listen_id, 1363 ib_event->param.req_rcvd.primary_path); 1364 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1365 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1366 return 0; 1367 } 1368 1369 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1370 } 1371 1372 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1373 struct cma_req_info *req) 1374 { 1375 const struct ib_cm_req_event_param *req_param = 1376 &ib_event->param.req_rcvd; 1377 const struct ib_cm_sidr_req_event_param *sidr_param = 1378 &ib_event->param.sidr_req_rcvd; 1379 1380 switch (ib_event->event) { 1381 case IB_CM_REQ_RECEIVED: 1382 req->device = req_param->listen_id->device; 1383 req->port = req_param->port; 1384 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1385 sizeof(req->local_gid)); 1386 req->has_gid = true; 1387 req->service_id = req_param->primary_path->service_id; 1388 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1389 if (req->pkey != req_param->bth_pkey) 1390 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1391 "RDMA CMA: in the future this may cause the request to be dropped\n", 1392 req_param->bth_pkey, req->pkey); 1393 break; 1394 case IB_CM_SIDR_REQ_RECEIVED: 1395 req->device = sidr_param->listen_id->device; 1396 req->port = sidr_param->port; 1397 req->has_gid = false; 1398 req->service_id = sidr_param->service_id; 1399 req->pkey = sidr_param->pkey; 1400 if (req->pkey != sidr_param->bth_pkey) 1401 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1402 "RDMA CMA: in the future this may cause the request to be dropped\n", 1403 sidr_param->bth_pkey, req->pkey); 1404 break; 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1413 const struct sockaddr_in *dst_addr, 1414 const struct sockaddr_in *src_addr) 1415 { 1416 __be32 daddr = dst_addr->sin_addr.s_addr, 1417 saddr = src_addr->sin_addr.s_addr; 1418 struct fib_result res; 1419 struct flowi4 fl4; 1420 int err; 1421 bool ret; 1422 1423 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1424 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1425 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1426 ipv4_is_loopback(saddr)) 1427 return false; 1428 1429 memset(&fl4, 0, sizeof(fl4)); 1430 fl4.flowi4_iif = net_dev->ifindex; 1431 fl4.daddr = daddr; 1432 fl4.saddr = saddr; 1433 1434 rcu_read_lock(); 1435 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1436 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1437 rcu_read_unlock(); 1438 1439 return ret; 1440 } 1441 1442 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1443 const struct sockaddr_in6 *dst_addr, 1444 const struct sockaddr_in6 *src_addr) 1445 { 1446 #if IS_ENABLED(CONFIG_IPV6) 1447 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1448 IPV6_ADDR_LINKLOCAL; 1449 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1450 &src_addr->sin6_addr, net_dev->ifindex, 1451 NULL, strict); 1452 bool ret; 1453 1454 if (!rt) 1455 return false; 1456 1457 ret = rt->rt6i_idev->dev == net_dev; 1458 ip6_rt_put(rt); 1459 1460 return ret; 1461 #else 1462 return false; 1463 #endif 1464 } 1465 1466 static bool validate_net_dev(struct net_device *net_dev, 1467 const struct sockaddr *daddr, 1468 const struct sockaddr *saddr) 1469 { 1470 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1471 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1472 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1473 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1474 1475 switch (daddr->sa_family) { 1476 case AF_INET: 1477 return saddr->sa_family == AF_INET && 1478 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1479 1480 case AF_INET6: 1481 return saddr->sa_family == AF_INET6 && 1482 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1483 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 static struct net_device * 1490 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1491 { 1492 const struct ib_gid_attr *sgid_attr = NULL; 1493 struct net_device *ndev; 1494 1495 if (ib_event->event == IB_CM_REQ_RECEIVED) 1496 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1497 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1498 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1499 1500 if (!sgid_attr) 1501 return NULL; 1502 1503 rcu_read_lock(); 1504 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1505 if (IS_ERR(ndev)) 1506 ndev = NULL; 1507 else 1508 dev_hold(ndev); 1509 rcu_read_unlock(); 1510 return ndev; 1511 } 1512 1513 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1514 struct cma_req_info *req) 1515 { 1516 struct sockaddr *listen_addr = 1517 (struct sockaddr *)&req->listen_addr_storage; 1518 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1519 struct net_device *net_dev; 1520 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1521 int err; 1522 1523 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1524 req->service_id); 1525 if (err) 1526 return ERR_PTR(err); 1527 1528 if (rdma_protocol_roce(req->device, req->port)) 1529 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1530 else 1531 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1532 req->pkey, 1533 gid, listen_addr); 1534 if (!net_dev) 1535 return ERR_PTR(-ENODEV); 1536 1537 return net_dev; 1538 } 1539 1540 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1541 { 1542 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1543 } 1544 1545 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1546 const struct cma_hdr *hdr) 1547 { 1548 struct sockaddr *addr = cma_src_addr(id_priv); 1549 __be32 ip4_addr; 1550 struct in6_addr ip6_addr; 1551 1552 if (cma_any_addr(addr) && !id_priv->afonly) 1553 return true; 1554 1555 switch (addr->sa_family) { 1556 case AF_INET: 1557 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1558 if (cma_get_ip_ver(hdr) != 4) 1559 return false; 1560 if (!cma_any_addr(addr) && 1561 hdr->dst_addr.ip4.addr != ip4_addr) 1562 return false; 1563 break; 1564 case AF_INET6: 1565 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1566 if (cma_get_ip_ver(hdr) != 6) 1567 return false; 1568 if (!cma_any_addr(addr) && 1569 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1570 return false; 1571 break; 1572 case AF_IB: 1573 return true; 1574 default: 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1582 { 1583 struct ib_device *device = id->device; 1584 const int port_num = id->port_num ?: rdma_start_port(device); 1585 1586 return rdma_protocol_roce(device, port_num); 1587 } 1588 1589 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1590 { 1591 const struct sockaddr *daddr = 1592 (const struct sockaddr *)&req->listen_addr_storage; 1593 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1594 1595 /* Returns true if the req is for IPv6 link local */ 1596 return (daddr->sa_family == AF_INET6 && 1597 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1598 } 1599 1600 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1601 const struct net_device *net_dev, 1602 const struct cma_req_info *req) 1603 { 1604 const struct rdma_addr *addr = &id->route.addr; 1605 1606 if (!net_dev) 1607 /* This request is an AF_IB request */ 1608 return (!id->port_num || id->port_num == req->port) && 1609 (addr->src_addr.ss_family == AF_IB); 1610 1611 /* 1612 * If the request is not for IPv6 link local, allow matching 1613 * request to any netdevice of the one or multiport rdma device. 1614 */ 1615 if (!cma_is_req_ipv6_ll(req)) 1616 return true; 1617 /* 1618 * Net namespaces must match, and if the listner is listening 1619 * on a specific netdevice than netdevice must match as well. 1620 */ 1621 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1622 (!!addr->dev_addr.bound_dev_if == 1623 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1624 return true; 1625 else 1626 return false; 1627 } 1628 1629 static struct rdma_id_private *cma_find_listener( 1630 const struct rdma_bind_list *bind_list, 1631 const struct ib_cm_id *cm_id, 1632 const struct ib_cm_event *ib_event, 1633 const struct cma_req_info *req, 1634 const struct net_device *net_dev) 1635 { 1636 struct rdma_id_private *id_priv, *id_priv_dev; 1637 1638 lockdep_assert_held(&lock); 1639 1640 if (!bind_list) 1641 return ERR_PTR(-EINVAL); 1642 1643 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1644 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1645 if (id_priv->id.device == cm_id->device && 1646 cma_match_net_dev(&id_priv->id, net_dev, req)) 1647 return id_priv; 1648 list_for_each_entry(id_priv_dev, 1649 &id_priv->listen_list, 1650 listen_list) { 1651 if (id_priv_dev->id.device == cm_id->device && 1652 cma_match_net_dev(&id_priv_dev->id, 1653 net_dev, req)) 1654 return id_priv_dev; 1655 } 1656 } 1657 } 1658 1659 return ERR_PTR(-EINVAL); 1660 } 1661 1662 static struct rdma_id_private * 1663 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1664 const struct ib_cm_event *ib_event, 1665 struct cma_req_info *req, 1666 struct net_device **net_dev) 1667 { 1668 struct rdma_bind_list *bind_list; 1669 struct rdma_id_private *id_priv; 1670 int err; 1671 1672 err = cma_save_req_info(ib_event, req); 1673 if (err) 1674 return ERR_PTR(err); 1675 1676 *net_dev = cma_get_net_dev(ib_event, req); 1677 if (IS_ERR(*net_dev)) { 1678 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1679 /* Assuming the protocol is AF_IB */ 1680 *net_dev = NULL; 1681 } else { 1682 return ERR_CAST(*net_dev); 1683 } 1684 } 1685 1686 mutex_lock(&lock); 1687 /* 1688 * Net namespace might be getting deleted while route lookup, 1689 * cm_id lookup is in progress. Therefore, perform netdevice 1690 * validation, cm_id lookup under rcu lock. 1691 * RCU lock along with netdevice state check, synchronizes with 1692 * netdevice migrating to different net namespace and also avoids 1693 * case where net namespace doesn't get deleted while lookup is in 1694 * progress. 1695 * If the device state is not IFF_UP, its properties such as ifindex 1696 * and nd_net cannot be trusted to remain valid without rcu lock. 1697 * net/core/dev.c change_net_namespace() ensures to synchronize with 1698 * ongoing operations on net device after device is closed using 1699 * synchronize_net(). 1700 */ 1701 rcu_read_lock(); 1702 if (*net_dev) { 1703 /* 1704 * If netdevice is down, it is likely that it is administratively 1705 * down or it might be migrating to different namespace. 1706 * In that case avoid further processing, as the net namespace 1707 * or ifindex may change. 1708 */ 1709 if (((*net_dev)->flags & IFF_UP) == 0) { 1710 id_priv = ERR_PTR(-EHOSTUNREACH); 1711 goto err; 1712 } 1713 1714 if (!validate_net_dev(*net_dev, 1715 (struct sockaddr *)&req->listen_addr_storage, 1716 (struct sockaddr *)&req->src_addr_storage)) { 1717 id_priv = ERR_PTR(-EHOSTUNREACH); 1718 goto err; 1719 } 1720 } 1721 1722 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1723 rdma_ps_from_service_id(req->service_id), 1724 cma_port_from_service_id(req->service_id)); 1725 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1726 err: 1727 rcu_read_unlock(); 1728 mutex_unlock(&lock); 1729 if (IS_ERR(id_priv) && *net_dev) { 1730 dev_put(*net_dev); 1731 *net_dev = NULL; 1732 } 1733 return id_priv; 1734 } 1735 1736 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1737 { 1738 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1739 } 1740 1741 static void cma_cancel_route(struct rdma_id_private *id_priv) 1742 { 1743 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1744 if (id_priv->query) 1745 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1746 } 1747 } 1748 1749 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1750 { 1751 struct rdma_id_private *dev_id_priv; 1752 1753 /* 1754 * Remove from listen_any_list to prevent added devices from spawning 1755 * additional listen requests. 1756 */ 1757 mutex_lock(&lock); 1758 list_del(&id_priv->list); 1759 1760 while (!list_empty(&id_priv->listen_list)) { 1761 dev_id_priv = list_entry(id_priv->listen_list.next, 1762 struct rdma_id_private, listen_list); 1763 /* sync with device removal to avoid duplicate destruction */ 1764 list_del_init(&dev_id_priv->list); 1765 list_del(&dev_id_priv->listen_list); 1766 mutex_unlock(&lock); 1767 1768 rdma_destroy_id(&dev_id_priv->id); 1769 mutex_lock(&lock); 1770 } 1771 mutex_unlock(&lock); 1772 } 1773 1774 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1775 enum rdma_cm_state state) 1776 { 1777 switch (state) { 1778 case RDMA_CM_ADDR_QUERY: 1779 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1780 break; 1781 case RDMA_CM_ROUTE_QUERY: 1782 cma_cancel_route(id_priv); 1783 break; 1784 case RDMA_CM_LISTEN: 1785 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1786 cma_cancel_listens(id_priv); 1787 break; 1788 default: 1789 break; 1790 } 1791 } 1792 1793 static void cma_release_port(struct rdma_id_private *id_priv) 1794 { 1795 struct rdma_bind_list *bind_list = id_priv->bind_list; 1796 struct net *net = id_priv->id.route.addr.dev_addr.net; 1797 1798 if (!bind_list) 1799 return; 1800 1801 mutex_lock(&lock); 1802 hlist_del(&id_priv->node); 1803 if (hlist_empty(&bind_list->owners)) { 1804 cma_ps_remove(net, bind_list->ps, bind_list->port); 1805 kfree(bind_list); 1806 } 1807 mutex_unlock(&lock); 1808 } 1809 1810 static void destroy_mc(struct rdma_id_private *id_priv, 1811 struct cma_multicast *mc) 1812 { 1813 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1814 ib_sa_free_multicast(mc->sa_mc); 1815 1816 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1817 struct rdma_dev_addr *dev_addr = 1818 &id_priv->id.route.addr.dev_addr; 1819 struct net_device *ndev = NULL; 1820 1821 if (dev_addr->bound_dev_if) 1822 ndev = dev_get_by_index(dev_addr->net, 1823 dev_addr->bound_dev_if); 1824 if (ndev) { 1825 union ib_gid mgid; 1826 1827 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1828 &mgid); 1829 cma_igmp_send(ndev, &mgid, false); 1830 dev_put(ndev); 1831 } 1832 1833 cancel_work_sync(&mc->iboe_join.work); 1834 } 1835 kfree(mc); 1836 } 1837 1838 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1839 { 1840 struct cma_multicast *mc; 1841 1842 while (!list_empty(&id_priv->mc_list)) { 1843 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1844 list); 1845 list_del(&mc->list); 1846 destroy_mc(id_priv, mc); 1847 } 1848 } 1849 1850 static void _destroy_id(struct rdma_id_private *id_priv, 1851 enum rdma_cm_state state) 1852 { 1853 cma_cancel_operation(id_priv, state); 1854 1855 if (id_priv->cma_dev) { 1856 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1857 if (id_priv->cm_id.ib) 1858 ib_destroy_cm_id(id_priv->cm_id.ib); 1859 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1860 if (id_priv->cm_id.iw) 1861 iw_destroy_cm_id(id_priv->cm_id.iw); 1862 } 1863 cma_leave_mc_groups(id_priv); 1864 cma_release_dev(id_priv); 1865 } 1866 1867 cma_release_port(id_priv); 1868 cma_id_put(id_priv); 1869 wait_for_completion(&id_priv->comp); 1870 1871 if (id_priv->internal_id) 1872 cma_id_put(id_priv->id.context); 1873 1874 kfree(id_priv->id.route.path_rec); 1875 1876 put_net(id_priv->id.route.addr.dev_addr.net); 1877 rdma_restrack_del(&id_priv->res); 1878 kfree(id_priv); 1879 } 1880 1881 /* 1882 * destroy an ID from within the handler_mutex. This ensures that no other 1883 * handlers can start running concurrently. 1884 */ 1885 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1886 __releases(&idprv->handler_mutex) 1887 { 1888 enum rdma_cm_state state; 1889 unsigned long flags; 1890 1891 trace_cm_id_destroy(id_priv); 1892 1893 /* 1894 * Setting the state to destroyed under the handler mutex provides a 1895 * fence against calling handler callbacks. If this is invoked due to 1896 * the failure of a handler callback then it guarentees that no future 1897 * handlers will be called. 1898 */ 1899 lockdep_assert_held(&id_priv->handler_mutex); 1900 spin_lock_irqsave(&id_priv->lock, flags); 1901 state = id_priv->state; 1902 id_priv->state = RDMA_CM_DESTROYING; 1903 spin_unlock_irqrestore(&id_priv->lock, flags); 1904 mutex_unlock(&id_priv->handler_mutex); 1905 _destroy_id(id_priv, state); 1906 } 1907 1908 void rdma_destroy_id(struct rdma_cm_id *id) 1909 { 1910 struct rdma_id_private *id_priv = 1911 container_of(id, struct rdma_id_private, id); 1912 1913 mutex_lock(&id_priv->handler_mutex); 1914 destroy_id_handler_unlock(id_priv); 1915 } 1916 EXPORT_SYMBOL(rdma_destroy_id); 1917 1918 static int cma_rep_recv(struct rdma_id_private *id_priv) 1919 { 1920 int ret; 1921 1922 ret = cma_modify_qp_rtr(id_priv, NULL); 1923 if (ret) 1924 goto reject; 1925 1926 ret = cma_modify_qp_rts(id_priv, NULL); 1927 if (ret) 1928 goto reject; 1929 1930 trace_cm_send_rtu(id_priv); 1931 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1932 if (ret) 1933 goto reject; 1934 1935 return 0; 1936 reject: 1937 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1938 cma_modify_qp_err(id_priv); 1939 trace_cm_send_rej(id_priv); 1940 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1941 NULL, 0, NULL, 0); 1942 return ret; 1943 } 1944 1945 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1946 const struct ib_cm_rep_event_param *rep_data, 1947 void *private_data) 1948 { 1949 event->param.conn.private_data = private_data; 1950 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1951 event->param.conn.responder_resources = rep_data->responder_resources; 1952 event->param.conn.initiator_depth = rep_data->initiator_depth; 1953 event->param.conn.flow_control = rep_data->flow_control; 1954 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1955 event->param.conn.srq = rep_data->srq; 1956 event->param.conn.qp_num = rep_data->remote_qpn; 1957 1958 event->ece.vendor_id = rep_data->ece.vendor_id; 1959 event->ece.attr_mod = rep_data->ece.attr_mod; 1960 } 1961 1962 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1963 struct rdma_cm_event *event) 1964 { 1965 int ret; 1966 1967 lockdep_assert_held(&id_priv->handler_mutex); 1968 1969 trace_cm_event_handler(id_priv, event); 1970 ret = id_priv->id.event_handler(&id_priv->id, event); 1971 trace_cm_event_done(id_priv, event, ret); 1972 return ret; 1973 } 1974 1975 static int cma_ib_handler(struct ib_cm_id *cm_id, 1976 const struct ib_cm_event *ib_event) 1977 { 1978 struct rdma_id_private *id_priv = cm_id->context; 1979 struct rdma_cm_event event = {}; 1980 enum rdma_cm_state state; 1981 int ret; 1982 1983 mutex_lock(&id_priv->handler_mutex); 1984 state = READ_ONCE(id_priv->state); 1985 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1986 state != RDMA_CM_CONNECT) || 1987 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1988 state != RDMA_CM_DISCONNECT)) 1989 goto out; 1990 1991 switch (ib_event->event) { 1992 case IB_CM_REQ_ERROR: 1993 case IB_CM_REP_ERROR: 1994 event.event = RDMA_CM_EVENT_UNREACHABLE; 1995 event.status = -ETIMEDOUT; 1996 break; 1997 case IB_CM_REP_RECEIVED: 1998 if (state == RDMA_CM_CONNECT && 1999 (id_priv->id.qp_type != IB_QPT_UD)) { 2000 trace_cm_send_mra(id_priv); 2001 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2002 } 2003 if (id_priv->id.qp) { 2004 event.status = cma_rep_recv(id_priv); 2005 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2006 RDMA_CM_EVENT_ESTABLISHED; 2007 } else { 2008 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2009 } 2010 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2011 ib_event->private_data); 2012 break; 2013 case IB_CM_RTU_RECEIVED: 2014 case IB_CM_USER_ESTABLISHED: 2015 event.event = RDMA_CM_EVENT_ESTABLISHED; 2016 break; 2017 case IB_CM_DREQ_ERROR: 2018 event.status = -ETIMEDOUT; 2019 fallthrough; 2020 case IB_CM_DREQ_RECEIVED: 2021 case IB_CM_DREP_RECEIVED: 2022 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2023 RDMA_CM_DISCONNECT)) 2024 goto out; 2025 event.event = RDMA_CM_EVENT_DISCONNECTED; 2026 break; 2027 case IB_CM_TIMEWAIT_EXIT: 2028 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2029 break; 2030 case IB_CM_MRA_RECEIVED: 2031 /* ignore event */ 2032 goto out; 2033 case IB_CM_REJ_RECEIVED: 2034 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2035 ib_event->param.rej_rcvd.reason)); 2036 cma_modify_qp_err(id_priv); 2037 event.status = ib_event->param.rej_rcvd.reason; 2038 event.event = RDMA_CM_EVENT_REJECTED; 2039 event.param.conn.private_data = ib_event->private_data; 2040 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2041 break; 2042 default: 2043 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2044 ib_event->event); 2045 goto out; 2046 } 2047 2048 ret = cma_cm_event_handler(id_priv, &event); 2049 if (ret) { 2050 /* Destroy the CM ID by returning a non-zero value. */ 2051 id_priv->cm_id.ib = NULL; 2052 destroy_id_handler_unlock(id_priv); 2053 return ret; 2054 } 2055 out: 2056 mutex_unlock(&id_priv->handler_mutex); 2057 return 0; 2058 } 2059 2060 static struct rdma_id_private * 2061 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2062 const struct ib_cm_event *ib_event, 2063 struct net_device *net_dev) 2064 { 2065 struct rdma_id_private *listen_id_priv; 2066 struct rdma_id_private *id_priv; 2067 struct rdma_cm_id *id; 2068 struct rdma_route *rt; 2069 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2070 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2071 const __be64 service_id = 2072 ib_event->param.req_rcvd.primary_path->service_id; 2073 int ret; 2074 2075 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2076 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2077 listen_id->event_handler, listen_id->context, 2078 listen_id->ps, 2079 ib_event->param.req_rcvd.qp_type, 2080 listen_id_priv); 2081 if (IS_ERR(id_priv)) 2082 return NULL; 2083 2084 id = &id_priv->id; 2085 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2086 (struct sockaddr *)&id->route.addr.dst_addr, 2087 listen_id, ib_event, ss_family, service_id)) 2088 goto err; 2089 2090 rt = &id->route; 2091 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2092 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2093 GFP_KERNEL); 2094 if (!rt->path_rec) 2095 goto err; 2096 2097 rt->path_rec[0] = *path; 2098 if (rt->num_paths == 2) 2099 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2100 2101 if (net_dev) { 2102 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2103 } else { 2104 if (!cma_protocol_roce(listen_id) && 2105 cma_any_addr(cma_src_addr(id_priv))) { 2106 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2107 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2108 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2109 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2110 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2111 if (ret) 2112 goto err; 2113 } 2114 } 2115 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2116 2117 id_priv->state = RDMA_CM_CONNECT; 2118 return id_priv; 2119 2120 err: 2121 rdma_destroy_id(id); 2122 return NULL; 2123 } 2124 2125 static struct rdma_id_private * 2126 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2127 const struct ib_cm_event *ib_event, 2128 struct net_device *net_dev) 2129 { 2130 const struct rdma_id_private *listen_id_priv; 2131 struct rdma_id_private *id_priv; 2132 struct rdma_cm_id *id; 2133 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2134 struct net *net = listen_id->route.addr.dev_addr.net; 2135 int ret; 2136 2137 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2138 id_priv = __rdma_create_id(net, listen_id->event_handler, 2139 listen_id->context, listen_id->ps, IB_QPT_UD, 2140 listen_id_priv); 2141 if (IS_ERR(id_priv)) 2142 return NULL; 2143 2144 id = &id_priv->id; 2145 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2146 (struct sockaddr *)&id->route.addr.dst_addr, 2147 listen_id, ib_event, ss_family, 2148 ib_event->param.sidr_req_rcvd.service_id)) 2149 goto err; 2150 2151 if (net_dev) { 2152 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2153 } else { 2154 if (!cma_any_addr(cma_src_addr(id_priv))) { 2155 ret = cma_translate_addr(cma_src_addr(id_priv), 2156 &id->route.addr.dev_addr); 2157 if (ret) 2158 goto err; 2159 } 2160 } 2161 2162 id_priv->state = RDMA_CM_CONNECT; 2163 return id_priv; 2164 err: 2165 rdma_destroy_id(id); 2166 return NULL; 2167 } 2168 2169 static void cma_set_req_event_data(struct rdma_cm_event *event, 2170 const struct ib_cm_req_event_param *req_data, 2171 void *private_data, int offset) 2172 { 2173 event->param.conn.private_data = private_data + offset; 2174 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2175 event->param.conn.responder_resources = req_data->responder_resources; 2176 event->param.conn.initiator_depth = req_data->initiator_depth; 2177 event->param.conn.flow_control = req_data->flow_control; 2178 event->param.conn.retry_count = req_data->retry_count; 2179 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2180 event->param.conn.srq = req_data->srq; 2181 event->param.conn.qp_num = req_data->remote_qpn; 2182 2183 event->ece.vendor_id = req_data->ece.vendor_id; 2184 event->ece.attr_mod = req_data->ece.attr_mod; 2185 } 2186 2187 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2188 const struct ib_cm_event *ib_event) 2189 { 2190 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2191 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2192 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2193 (id->qp_type == IB_QPT_UD)) || 2194 (!id->qp_type)); 2195 } 2196 2197 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2198 const struct ib_cm_event *ib_event) 2199 { 2200 struct rdma_id_private *listen_id, *conn_id = NULL; 2201 struct rdma_cm_event event = {}; 2202 struct cma_req_info req = {}; 2203 struct net_device *net_dev; 2204 u8 offset; 2205 int ret; 2206 2207 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2208 if (IS_ERR(listen_id)) 2209 return PTR_ERR(listen_id); 2210 2211 trace_cm_req_handler(listen_id, ib_event->event); 2212 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2213 ret = -EINVAL; 2214 goto net_dev_put; 2215 } 2216 2217 mutex_lock(&listen_id->handler_mutex); 2218 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2219 ret = -ECONNABORTED; 2220 goto err_unlock; 2221 } 2222 2223 offset = cma_user_data_offset(listen_id); 2224 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2225 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2226 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2227 event.param.ud.private_data = ib_event->private_data + offset; 2228 event.param.ud.private_data_len = 2229 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2230 } else { 2231 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2232 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2233 ib_event->private_data, offset); 2234 } 2235 if (!conn_id) { 2236 ret = -ENOMEM; 2237 goto err_unlock; 2238 } 2239 2240 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2241 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2242 if (ret) { 2243 destroy_id_handler_unlock(conn_id); 2244 goto err_unlock; 2245 } 2246 2247 conn_id->cm_id.ib = cm_id; 2248 cm_id->context = conn_id; 2249 cm_id->cm_handler = cma_ib_handler; 2250 2251 ret = cma_cm_event_handler(conn_id, &event); 2252 if (ret) { 2253 /* Destroy the CM ID by returning a non-zero value. */ 2254 conn_id->cm_id.ib = NULL; 2255 mutex_unlock(&listen_id->handler_mutex); 2256 destroy_id_handler_unlock(conn_id); 2257 goto net_dev_put; 2258 } 2259 2260 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2261 conn_id->id.qp_type != IB_QPT_UD) { 2262 trace_cm_send_mra(cm_id->context); 2263 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2264 } 2265 mutex_unlock(&conn_id->handler_mutex); 2266 2267 err_unlock: 2268 mutex_unlock(&listen_id->handler_mutex); 2269 2270 net_dev_put: 2271 if (net_dev) 2272 dev_put(net_dev); 2273 2274 return ret; 2275 } 2276 2277 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2278 { 2279 if (addr->sa_family == AF_IB) 2280 return ((struct sockaddr_ib *) addr)->sib_sid; 2281 2282 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2283 } 2284 EXPORT_SYMBOL(rdma_get_service_id); 2285 2286 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2287 union ib_gid *dgid) 2288 { 2289 struct rdma_addr *addr = &cm_id->route.addr; 2290 2291 if (!cm_id->device) { 2292 if (sgid) 2293 memset(sgid, 0, sizeof(*sgid)); 2294 if (dgid) 2295 memset(dgid, 0, sizeof(*dgid)); 2296 return; 2297 } 2298 2299 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2300 if (sgid) 2301 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2302 if (dgid) 2303 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2304 } else { 2305 if (sgid) 2306 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2307 if (dgid) 2308 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2309 } 2310 } 2311 EXPORT_SYMBOL(rdma_read_gids); 2312 2313 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2314 { 2315 struct rdma_id_private *id_priv = iw_id->context; 2316 struct rdma_cm_event event = {}; 2317 int ret = 0; 2318 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2319 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2320 2321 mutex_lock(&id_priv->handler_mutex); 2322 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2323 goto out; 2324 2325 switch (iw_event->event) { 2326 case IW_CM_EVENT_CLOSE: 2327 event.event = RDMA_CM_EVENT_DISCONNECTED; 2328 break; 2329 case IW_CM_EVENT_CONNECT_REPLY: 2330 memcpy(cma_src_addr(id_priv), laddr, 2331 rdma_addr_size(laddr)); 2332 memcpy(cma_dst_addr(id_priv), raddr, 2333 rdma_addr_size(raddr)); 2334 switch (iw_event->status) { 2335 case 0: 2336 event.event = RDMA_CM_EVENT_ESTABLISHED; 2337 event.param.conn.initiator_depth = iw_event->ird; 2338 event.param.conn.responder_resources = iw_event->ord; 2339 break; 2340 case -ECONNRESET: 2341 case -ECONNREFUSED: 2342 event.event = RDMA_CM_EVENT_REJECTED; 2343 break; 2344 case -ETIMEDOUT: 2345 event.event = RDMA_CM_EVENT_UNREACHABLE; 2346 break; 2347 default: 2348 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2349 break; 2350 } 2351 break; 2352 case IW_CM_EVENT_ESTABLISHED: 2353 event.event = RDMA_CM_EVENT_ESTABLISHED; 2354 event.param.conn.initiator_depth = iw_event->ird; 2355 event.param.conn.responder_resources = iw_event->ord; 2356 break; 2357 default: 2358 goto out; 2359 } 2360 2361 event.status = iw_event->status; 2362 event.param.conn.private_data = iw_event->private_data; 2363 event.param.conn.private_data_len = iw_event->private_data_len; 2364 ret = cma_cm_event_handler(id_priv, &event); 2365 if (ret) { 2366 /* Destroy the CM ID by returning a non-zero value. */ 2367 id_priv->cm_id.iw = NULL; 2368 destroy_id_handler_unlock(id_priv); 2369 return ret; 2370 } 2371 2372 out: 2373 mutex_unlock(&id_priv->handler_mutex); 2374 return ret; 2375 } 2376 2377 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2378 struct iw_cm_event *iw_event) 2379 { 2380 struct rdma_id_private *listen_id, *conn_id; 2381 struct rdma_cm_event event = {}; 2382 int ret = -ECONNABORTED; 2383 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2384 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2385 2386 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2387 event.param.conn.private_data = iw_event->private_data; 2388 event.param.conn.private_data_len = iw_event->private_data_len; 2389 event.param.conn.initiator_depth = iw_event->ird; 2390 event.param.conn.responder_resources = iw_event->ord; 2391 2392 listen_id = cm_id->context; 2393 2394 mutex_lock(&listen_id->handler_mutex); 2395 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2396 goto out; 2397 2398 /* Create a new RDMA id for the new IW CM ID */ 2399 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2400 listen_id->id.event_handler, 2401 listen_id->id.context, RDMA_PS_TCP, 2402 IB_QPT_RC, listen_id); 2403 if (IS_ERR(conn_id)) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2408 conn_id->state = RDMA_CM_CONNECT; 2409 2410 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2411 if (ret) { 2412 mutex_unlock(&listen_id->handler_mutex); 2413 destroy_id_handler_unlock(conn_id); 2414 return ret; 2415 } 2416 2417 ret = cma_iw_acquire_dev(conn_id, listen_id); 2418 if (ret) { 2419 mutex_unlock(&listen_id->handler_mutex); 2420 destroy_id_handler_unlock(conn_id); 2421 return ret; 2422 } 2423 2424 conn_id->cm_id.iw = cm_id; 2425 cm_id->context = conn_id; 2426 cm_id->cm_handler = cma_iw_handler; 2427 2428 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2429 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2430 2431 ret = cma_cm_event_handler(conn_id, &event); 2432 if (ret) { 2433 /* User wants to destroy the CM ID */ 2434 conn_id->cm_id.iw = NULL; 2435 mutex_unlock(&listen_id->handler_mutex); 2436 destroy_id_handler_unlock(conn_id); 2437 return ret; 2438 } 2439 2440 mutex_unlock(&conn_id->handler_mutex); 2441 2442 out: 2443 mutex_unlock(&listen_id->handler_mutex); 2444 return ret; 2445 } 2446 2447 static int cma_ib_listen(struct rdma_id_private *id_priv) 2448 { 2449 struct sockaddr *addr; 2450 struct ib_cm_id *id; 2451 __be64 svc_id; 2452 2453 addr = cma_src_addr(id_priv); 2454 svc_id = rdma_get_service_id(&id_priv->id, addr); 2455 id = ib_cm_insert_listen(id_priv->id.device, 2456 cma_ib_req_handler, svc_id); 2457 if (IS_ERR(id)) 2458 return PTR_ERR(id); 2459 id_priv->cm_id.ib = id; 2460 2461 return 0; 2462 } 2463 2464 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2465 { 2466 int ret; 2467 struct iw_cm_id *id; 2468 2469 id = iw_create_cm_id(id_priv->id.device, 2470 iw_conn_req_handler, 2471 id_priv); 2472 if (IS_ERR(id)) 2473 return PTR_ERR(id); 2474 2475 id->tos = id_priv->tos; 2476 id->tos_set = id_priv->tos_set; 2477 id_priv->cm_id.iw = id; 2478 2479 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2480 rdma_addr_size(cma_src_addr(id_priv))); 2481 2482 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2483 2484 if (ret) { 2485 iw_destroy_cm_id(id_priv->cm_id.iw); 2486 id_priv->cm_id.iw = NULL; 2487 } 2488 2489 return ret; 2490 } 2491 2492 static int cma_listen_handler(struct rdma_cm_id *id, 2493 struct rdma_cm_event *event) 2494 { 2495 struct rdma_id_private *id_priv = id->context; 2496 2497 /* Listening IDs are always destroyed on removal */ 2498 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2499 return -1; 2500 2501 id->context = id_priv->id.context; 2502 id->event_handler = id_priv->id.event_handler; 2503 trace_cm_event_handler(id_priv, event); 2504 return id_priv->id.event_handler(id, event); 2505 } 2506 2507 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2508 struct cma_device *cma_dev, 2509 struct rdma_id_private **to_destroy) 2510 { 2511 struct rdma_id_private *dev_id_priv; 2512 struct net *net = id_priv->id.route.addr.dev_addr.net; 2513 int ret; 2514 2515 lockdep_assert_held(&lock); 2516 2517 *to_destroy = NULL; 2518 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2519 return 0; 2520 2521 dev_id_priv = 2522 __rdma_create_id(net, cma_listen_handler, id_priv, 2523 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2524 if (IS_ERR(dev_id_priv)) 2525 return PTR_ERR(dev_id_priv); 2526 2527 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2528 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2529 rdma_addr_size(cma_src_addr(id_priv))); 2530 2531 _cma_attach_to_dev(dev_id_priv, cma_dev); 2532 cma_id_get(id_priv); 2533 dev_id_priv->internal_id = 1; 2534 dev_id_priv->afonly = id_priv->afonly; 2535 dev_id_priv->tos_set = id_priv->tos_set; 2536 dev_id_priv->tos = id_priv->tos; 2537 2538 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2539 if (ret) 2540 goto err_listen; 2541 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2542 return 0; 2543 err_listen: 2544 /* Caller must destroy this after releasing lock */ 2545 *to_destroy = dev_id_priv; 2546 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2547 return ret; 2548 } 2549 2550 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2551 { 2552 struct rdma_id_private *to_destroy; 2553 struct cma_device *cma_dev; 2554 int ret; 2555 2556 mutex_lock(&lock); 2557 list_add_tail(&id_priv->list, &listen_any_list); 2558 list_for_each_entry(cma_dev, &dev_list, list) { 2559 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2560 if (ret) { 2561 /* Prevent racing with cma_process_remove() */ 2562 if (to_destroy) 2563 list_del_init(&to_destroy->list); 2564 goto err_listen; 2565 } 2566 } 2567 mutex_unlock(&lock); 2568 return 0; 2569 2570 err_listen: 2571 list_del(&id_priv->list); 2572 mutex_unlock(&lock); 2573 if (to_destroy) 2574 rdma_destroy_id(&to_destroy->id); 2575 return ret; 2576 } 2577 2578 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2579 { 2580 struct rdma_id_private *id_priv; 2581 2582 id_priv = container_of(id, struct rdma_id_private, id); 2583 id_priv->tos = (u8) tos; 2584 id_priv->tos_set = true; 2585 } 2586 EXPORT_SYMBOL(rdma_set_service_type); 2587 2588 /** 2589 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2590 * with a connection identifier. 2591 * @id: Communication identifier to associated with service type. 2592 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2593 * 2594 * This function should be called before rdma_connect() on active side, 2595 * and on passive side before rdma_accept(). It is applicable to primary 2596 * path only. The timeout will affect the local side of the QP, it is not 2597 * negotiated with remote side and zero disables the timer. In case it is 2598 * set before rdma_resolve_route, the value will also be used to determine 2599 * PacketLifeTime for RoCE. 2600 * 2601 * Return: 0 for success 2602 */ 2603 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2604 { 2605 struct rdma_id_private *id_priv; 2606 2607 if (id->qp_type != IB_QPT_RC) 2608 return -EINVAL; 2609 2610 id_priv = container_of(id, struct rdma_id_private, id); 2611 id_priv->timeout = timeout; 2612 id_priv->timeout_set = true; 2613 2614 return 0; 2615 } 2616 EXPORT_SYMBOL(rdma_set_ack_timeout); 2617 2618 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2619 void *context) 2620 { 2621 struct cma_work *work = context; 2622 struct rdma_route *route; 2623 2624 route = &work->id->id.route; 2625 2626 if (!status) { 2627 route->num_paths = 1; 2628 *route->path_rec = *path_rec; 2629 } else { 2630 work->old_state = RDMA_CM_ROUTE_QUERY; 2631 work->new_state = RDMA_CM_ADDR_RESOLVED; 2632 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2633 work->event.status = status; 2634 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2635 status); 2636 } 2637 2638 queue_work(cma_wq, &work->work); 2639 } 2640 2641 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2642 unsigned long timeout_ms, struct cma_work *work) 2643 { 2644 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2645 struct sa_path_rec path_rec; 2646 ib_sa_comp_mask comp_mask; 2647 struct sockaddr_in6 *sin6; 2648 struct sockaddr_ib *sib; 2649 2650 memset(&path_rec, 0, sizeof path_rec); 2651 2652 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2653 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2654 else 2655 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2656 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2657 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2658 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2659 path_rec.numb_path = 1; 2660 path_rec.reversible = 1; 2661 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2662 cma_dst_addr(id_priv)); 2663 2664 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2665 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2666 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2667 2668 switch (cma_family(id_priv)) { 2669 case AF_INET: 2670 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2671 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2672 break; 2673 case AF_INET6: 2674 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2675 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2676 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2677 break; 2678 case AF_IB: 2679 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2680 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2681 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2682 break; 2683 } 2684 2685 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2686 id_priv->id.port_num, &path_rec, 2687 comp_mask, timeout_ms, 2688 GFP_KERNEL, cma_query_handler, 2689 work, &id_priv->query); 2690 2691 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2692 } 2693 2694 static void cma_iboe_join_work_handler(struct work_struct *work) 2695 { 2696 struct cma_multicast *mc = 2697 container_of(work, struct cma_multicast, iboe_join.work); 2698 struct rdma_cm_event *event = &mc->iboe_join.event; 2699 struct rdma_id_private *id_priv = mc->id_priv; 2700 int ret; 2701 2702 mutex_lock(&id_priv->handler_mutex); 2703 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2704 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2705 goto out_unlock; 2706 2707 ret = cma_cm_event_handler(id_priv, event); 2708 WARN_ON(ret); 2709 2710 out_unlock: 2711 mutex_unlock(&id_priv->handler_mutex); 2712 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2713 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2714 } 2715 2716 static void cma_work_handler(struct work_struct *_work) 2717 { 2718 struct cma_work *work = container_of(_work, struct cma_work, work); 2719 struct rdma_id_private *id_priv = work->id; 2720 2721 mutex_lock(&id_priv->handler_mutex); 2722 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2723 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2724 goto out_unlock; 2725 if (work->old_state != 0 || work->new_state != 0) { 2726 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2727 goto out_unlock; 2728 } 2729 2730 if (cma_cm_event_handler(id_priv, &work->event)) { 2731 cma_id_put(id_priv); 2732 destroy_id_handler_unlock(id_priv); 2733 goto out_free; 2734 } 2735 2736 out_unlock: 2737 mutex_unlock(&id_priv->handler_mutex); 2738 cma_id_put(id_priv); 2739 out_free: 2740 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2741 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2742 kfree(work); 2743 } 2744 2745 static void cma_init_resolve_route_work(struct cma_work *work, 2746 struct rdma_id_private *id_priv) 2747 { 2748 work->id = id_priv; 2749 INIT_WORK(&work->work, cma_work_handler); 2750 work->old_state = RDMA_CM_ROUTE_QUERY; 2751 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2752 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2753 } 2754 2755 static void enqueue_resolve_addr_work(struct cma_work *work, 2756 struct rdma_id_private *id_priv) 2757 { 2758 /* Balances with cma_id_put() in cma_work_handler */ 2759 cma_id_get(id_priv); 2760 2761 work->id = id_priv; 2762 INIT_WORK(&work->work, cma_work_handler); 2763 work->old_state = RDMA_CM_ADDR_QUERY; 2764 work->new_state = RDMA_CM_ADDR_RESOLVED; 2765 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2766 2767 queue_work(cma_wq, &work->work); 2768 } 2769 2770 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2771 unsigned long timeout_ms) 2772 { 2773 struct rdma_route *route = &id_priv->id.route; 2774 struct cma_work *work; 2775 int ret; 2776 2777 work = kzalloc(sizeof *work, GFP_KERNEL); 2778 if (!work) 2779 return -ENOMEM; 2780 2781 cma_init_resolve_route_work(work, id_priv); 2782 2783 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2784 if (!route->path_rec) { 2785 ret = -ENOMEM; 2786 goto err1; 2787 } 2788 2789 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2790 if (ret) 2791 goto err2; 2792 2793 return 0; 2794 err2: 2795 kfree(route->path_rec); 2796 route->path_rec = NULL; 2797 err1: 2798 kfree(work); 2799 return ret; 2800 } 2801 2802 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2803 unsigned long supported_gids, 2804 enum ib_gid_type default_gid) 2805 { 2806 if ((network_type == RDMA_NETWORK_IPV4 || 2807 network_type == RDMA_NETWORK_IPV6) && 2808 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2809 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2810 2811 return default_gid; 2812 } 2813 2814 /* 2815 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2816 * path record type based on GID type. 2817 * It also sets up other L2 fields which includes destination mac address 2818 * netdev ifindex, of the path record. 2819 * It returns the netdev of the bound interface for this path record entry. 2820 */ 2821 static struct net_device * 2822 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2823 { 2824 struct rdma_route *route = &id_priv->id.route; 2825 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2826 struct rdma_addr *addr = &route->addr; 2827 unsigned long supported_gids; 2828 struct net_device *ndev; 2829 2830 if (!addr->dev_addr.bound_dev_if) 2831 return NULL; 2832 2833 ndev = dev_get_by_index(addr->dev_addr.net, 2834 addr->dev_addr.bound_dev_if); 2835 if (!ndev) 2836 return NULL; 2837 2838 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2839 id_priv->id.port_num); 2840 gid_type = cma_route_gid_type(addr->dev_addr.network, 2841 supported_gids, 2842 id_priv->gid_type); 2843 /* Use the hint from IP Stack to select GID Type */ 2844 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2845 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2846 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2847 2848 route->path_rec->roce.route_resolved = true; 2849 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2850 return ndev; 2851 } 2852 2853 int rdma_set_ib_path(struct rdma_cm_id *id, 2854 struct sa_path_rec *path_rec) 2855 { 2856 struct rdma_id_private *id_priv; 2857 struct net_device *ndev; 2858 int ret; 2859 2860 id_priv = container_of(id, struct rdma_id_private, id); 2861 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2862 RDMA_CM_ROUTE_RESOLVED)) 2863 return -EINVAL; 2864 2865 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2866 GFP_KERNEL); 2867 if (!id->route.path_rec) { 2868 ret = -ENOMEM; 2869 goto err; 2870 } 2871 2872 if (rdma_protocol_roce(id->device, id->port_num)) { 2873 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2874 if (!ndev) { 2875 ret = -ENODEV; 2876 goto err_free; 2877 } 2878 dev_put(ndev); 2879 } 2880 2881 id->route.num_paths = 1; 2882 return 0; 2883 2884 err_free: 2885 kfree(id->route.path_rec); 2886 id->route.path_rec = NULL; 2887 err: 2888 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2889 return ret; 2890 } 2891 EXPORT_SYMBOL(rdma_set_ib_path); 2892 2893 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2894 { 2895 struct cma_work *work; 2896 2897 work = kzalloc(sizeof *work, GFP_KERNEL); 2898 if (!work) 2899 return -ENOMEM; 2900 2901 cma_init_resolve_route_work(work, id_priv); 2902 queue_work(cma_wq, &work->work); 2903 return 0; 2904 } 2905 2906 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2907 { 2908 struct net_device *dev; 2909 2910 dev = vlan_dev_real_dev(vlan_ndev); 2911 if (dev->num_tc) 2912 return netdev_get_prio_tc_map(dev, prio); 2913 2914 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2915 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2916 } 2917 2918 struct iboe_prio_tc_map { 2919 int input_prio; 2920 int output_tc; 2921 bool found; 2922 }; 2923 2924 static int get_lower_vlan_dev_tc(struct net_device *dev, 2925 struct netdev_nested_priv *priv) 2926 { 2927 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2928 2929 if (is_vlan_dev(dev)) 2930 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2931 else if (dev->num_tc) 2932 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2933 else 2934 map->output_tc = 0; 2935 /* We are interested only in first level VLAN device, so always 2936 * return 1 to stop iterating over next level devices. 2937 */ 2938 map->found = true; 2939 return 1; 2940 } 2941 2942 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2943 { 2944 struct iboe_prio_tc_map prio_tc_map = {}; 2945 int prio = rt_tos2priority(tos); 2946 struct netdev_nested_priv priv; 2947 2948 /* If VLAN device, get it directly from the VLAN netdev */ 2949 if (is_vlan_dev(ndev)) 2950 return get_vlan_ndev_tc(ndev, prio); 2951 2952 prio_tc_map.input_prio = prio; 2953 priv.data = (void *)&prio_tc_map; 2954 rcu_read_lock(); 2955 netdev_walk_all_lower_dev_rcu(ndev, 2956 get_lower_vlan_dev_tc, 2957 &priv); 2958 rcu_read_unlock(); 2959 /* If map is found from lower device, use it; Otherwise 2960 * continue with the current netdevice to get priority to tc map. 2961 */ 2962 if (prio_tc_map.found) 2963 return prio_tc_map.output_tc; 2964 else if (ndev->num_tc) 2965 return netdev_get_prio_tc_map(ndev, prio); 2966 else 2967 return 0; 2968 } 2969 2970 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 2971 { 2972 struct sockaddr_in6 *addr6; 2973 u16 dport, sport; 2974 u32 hash, fl; 2975 2976 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 2977 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 2978 if ((cma_family(id_priv) != AF_INET6) || !fl) { 2979 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 2980 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 2981 hash = (u32)sport * 31 + dport; 2982 fl = hash & IB_GRH_FLOWLABEL_MASK; 2983 } 2984 2985 return cpu_to_be32(fl); 2986 } 2987 2988 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 2989 { 2990 struct rdma_route *route = &id_priv->id.route; 2991 struct rdma_addr *addr = &route->addr; 2992 struct cma_work *work; 2993 int ret; 2994 struct net_device *ndev; 2995 2996 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 2997 rdma_start_port(id_priv->cma_dev->device)]; 2998 u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 2999 3000 3001 work = kzalloc(sizeof *work, GFP_KERNEL); 3002 if (!work) 3003 return -ENOMEM; 3004 3005 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3006 if (!route->path_rec) { 3007 ret = -ENOMEM; 3008 goto err1; 3009 } 3010 3011 route->num_paths = 1; 3012 3013 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3014 if (!ndev) { 3015 ret = -ENODEV; 3016 goto err2; 3017 } 3018 3019 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3020 &route->path_rec->sgid); 3021 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3022 &route->path_rec->dgid); 3023 3024 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3025 /* TODO: get the hoplimit from the inet/inet6 device */ 3026 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3027 else 3028 route->path_rec->hop_limit = 1; 3029 route->path_rec->reversible = 1; 3030 route->path_rec->pkey = cpu_to_be16(0xffff); 3031 route->path_rec->mtu_selector = IB_SA_EQ; 3032 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3033 route->path_rec->traffic_class = tos; 3034 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3035 route->path_rec->rate_selector = IB_SA_EQ; 3036 route->path_rec->rate = iboe_get_rate(ndev); 3037 dev_put(ndev); 3038 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3039 /* In case ACK timeout is set, use this value to calculate 3040 * PacketLifeTime. As per IBTA 12.7.34, 3041 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3042 * Assuming a negligible local ACK delay, we can use 3043 * PacketLifeTime = local ACK timeout/2 3044 * as a reasonable approximation for RoCE networks. 3045 */ 3046 route->path_rec->packet_life_time = id_priv->timeout_set ? 3047 id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME; 3048 3049 if (!route->path_rec->mtu) { 3050 ret = -EINVAL; 3051 goto err2; 3052 } 3053 3054 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3055 id_priv->id.port_num)) 3056 route->path_rec->flow_label = 3057 cma_get_roce_udp_flow_label(id_priv); 3058 3059 cma_init_resolve_route_work(work, id_priv); 3060 queue_work(cma_wq, &work->work); 3061 3062 return 0; 3063 3064 err2: 3065 kfree(route->path_rec); 3066 route->path_rec = NULL; 3067 route->num_paths = 0; 3068 err1: 3069 kfree(work); 3070 return ret; 3071 } 3072 3073 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3074 { 3075 struct rdma_id_private *id_priv; 3076 int ret; 3077 3078 id_priv = container_of(id, struct rdma_id_private, id); 3079 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3080 return -EINVAL; 3081 3082 cma_id_get(id_priv); 3083 if (rdma_cap_ib_sa(id->device, id->port_num)) 3084 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3085 else if (rdma_protocol_roce(id->device, id->port_num)) 3086 ret = cma_resolve_iboe_route(id_priv); 3087 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3088 ret = cma_resolve_iw_route(id_priv); 3089 else 3090 ret = -ENOSYS; 3091 3092 if (ret) 3093 goto err; 3094 3095 return 0; 3096 err: 3097 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3098 cma_id_put(id_priv); 3099 return ret; 3100 } 3101 EXPORT_SYMBOL(rdma_resolve_route); 3102 3103 static void cma_set_loopback(struct sockaddr *addr) 3104 { 3105 switch (addr->sa_family) { 3106 case AF_INET: 3107 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3108 break; 3109 case AF_INET6: 3110 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3111 0, 0, 0, htonl(1)); 3112 break; 3113 default: 3114 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3115 0, 0, 0, htonl(1)); 3116 break; 3117 } 3118 } 3119 3120 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3121 { 3122 struct cma_device *cma_dev, *cur_dev; 3123 union ib_gid gid; 3124 enum ib_port_state port_state; 3125 unsigned int p; 3126 u16 pkey; 3127 int ret; 3128 3129 cma_dev = NULL; 3130 mutex_lock(&lock); 3131 list_for_each_entry(cur_dev, &dev_list, list) { 3132 if (cma_family(id_priv) == AF_IB && 3133 !rdma_cap_ib_cm(cur_dev->device, 1)) 3134 continue; 3135 3136 if (!cma_dev) 3137 cma_dev = cur_dev; 3138 3139 rdma_for_each_port (cur_dev->device, p) { 3140 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3141 port_state == IB_PORT_ACTIVE) { 3142 cma_dev = cur_dev; 3143 goto port_found; 3144 } 3145 } 3146 } 3147 3148 if (!cma_dev) { 3149 ret = -ENODEV; 3150 goto out; 3151 } 3152 3153 p = 1; 3154 3155 port_found: 3156 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3157 if (ret) 3158 goto out; 3159 3160 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3161 if (ret) 3162 goto out; 3163 3164 id_priv->id.route.addr.dev_addr.dev_type = 3165 (rdma_protocol_ib(cma_dev->device, p)) ? 3166 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3167 3168 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3169 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3170 id_priv->id.port_num = p; 3171 cma_attach_to_dev(id_priv, cma_dev); 3172 cma_set_loopback(cma_src_addr(id_priv)); 3173 out: 3174 mutex_unlock(&lock); 3175 return ret; 3176 } 3177 3178 static void addr_handler(int status, struct sockaddr *src_addr, 3179 struct rdma_dev_addr *dev_addr, void *context) 3180 { 3181 struct rdma_id_private *id_priv = context; 3182 struct rdma_cm_event event = {}; 3183 struct sockaddr *addr; 3184 struct sockaddr_storage old_addr; 3185 3186 mutex_lock(&id_priv->handler_mutex); 3187 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3188 RDMA_CM_ADDR_RESOLVED)) 3189 goto out; 3190 3191 /* 3192 * Store the previous src address, so that if we fail to acquire 3193 * matching rdma device, old address can be restored back, which helps 3194 * to cancel the cma listen operation correctly. 3195 */ 3196 addr = cma_src_addr(id_priv); 3197 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3198 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3199 if (!status && !id_priv->cma_dev) { 3200 status = cma_acquire_dev_by_src_ip(id_priv); 3201 if (status) 3202 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3203 status); 3204 } else if (status) { 3205 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3206 } 3207 3208 if (status) { 3209 memcpy(addr, &old_addr, 3210 rdma_addr_size((struct sockaddr *)&old_addr)); 3211 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3212 RDMA_CM_ADDR_BOUND)) 3213 goto out; 3214 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3215 event.status = status; 3216 } else 3217 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3218 3219 if (cma_cm_event_handler(id_priv, &event)) { 3220 destroy_id_handler_unlock(id_priv); 3221 return; 3222 } 3223 out: 3224 mutex_unlock(&id_priv->handler_mutex); 3225 } 3226 3227 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3228 { 3229 struct cma_work *work; 3230 union ib_gid gid; 3231 int ret; 3232 3233 work = kzalloc(sizeof *work, GFP_KERNEL); 3234 if (!work) 3235 return -ENOMEM; 3236 3237 if (!id_priv->cma_dev) { 3238 ret = cma_bind_loopback(id_priv); 3239 if (ret) 3240 goto err; 3241 } 3242 3243 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3244 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3245 3246 enqueue_resolve_addr_work(work, id_priv); 3247 return 0; 3248 err: 3249 kfree(work); 3250 return ret; 3251 } 3252 3253 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3254 { 3255 struct cma_work *work; 3256 int ret; 3257 3258 work = kzalloc(sizeof *work, GFP_KERNEL); 3259 if (!work) 3260 return -ENOMEM; 3261 3262 if (!id_priv->cma_dev) { 3263 ret = cma_resolve_ib_dev(id_priv); 3264 if (ret) 3265 goto err; 3266 } 3267 3268 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3269 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3270 3271 enqueue_resolve_addr_work(work, id_priv); 3272 return 0; 3273 err: 3274 kfree(work); 3275 return ret; 3276 } 3277 3278 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3279 const struct sockaddr *dst_addr) 3280 { 3281 if (!src_addr || !src_addr->sa_family) { 3282 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3283 src_addr->sa_family = dst_addr->sa_family; 3284 if (IS_ENABLED(CONFIG_IPV6) && 3285 dst_addr->sa_family == AF_INET6) { 3286 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3287 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3288 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3289 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3290 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3291 } else if (dst_addr->sa_family == AF_IB) { 3292 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3293 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3294 } 3295 } 3296 return rdma_bind_addr(id, src_addr); 3297 } 3298 3299 /* 3300 * If required, resolve the source address for bind and leave the id_priv in 3301 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3302 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3303 * ignored. 3304 */ 3305 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3306 struct sockaddr *src_addr, 3307 const struct sockaddr *dst_addr) 3308 { 3309 int ret; 3310 3311 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3312 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3313 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3314 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3315 if (ret) 3316 goto err_dst; 3317 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3318 RDMA_CM_ADDR_QUERY))) { 3319 ret = -EINVAL; 3320 goto err_dst; 3321 } 3322 } 3323 3324 if (cma_family(id_priv) != dst_addr->sa_family) { 3325 ret = -EINVAL; 3326 goto err_state; 3327 } 3328 return 0; 3329 3330 err_state: 3331 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3332 err_dst: 3333 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3334 return ret; 3335 } 3336 3337 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3338 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3339 { 3340 struct rdma_id_private *id_priv = 3341 container_of(id, struct rdma_id_private, id); 3342 int ret; 3343 3344 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3345 if (ret) 3346 return ret; 3347 3348 if (cma_any_addr(dst_addr)) { 3349 ret = cma_resolve_loopback(id_priv); 3350 } else { 3351 if (dst_addr->sa_family == AF_IB) { 3352 ret = cma_resolve_ib_addr(id_priv); 3353 } else { 3354 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3355 &id->route.addr.dev_addr, 3356 timeout_ms, addr_handler, 3357 false, id_priv); 3358 } 3359 } 3360 if (ret) 3361 goto err; 3362 3363 return 0; 3364 err: 3365 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3366 return ret; 3367 } 3368 EXPORT_SYMBOL(rdma_resolve_addr); 3369 3370 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3371 { 3372 struct rdma_id_private *id_priv; 3373 unsigned long flags; 3374 int ret; 3375 3376 id_priv = container_of(id, struct rdma_id_private, id); 3377 spin_lock_irqsave(&id_priv->lock, flags); 3378 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3379 id_priv->state == RDMA_CM_IDLE) { 3380 id_priv->reuseaddr = reuse; 3381 ret = 0; 3382 } else { 3383 ret = -EINVAL; 3384 } 3385 spin_unlock_irqrestore(&id_priv->lock, flags); 3386 return ret; 3387 } 3388 EXPORT_SYMBOL(rdma_set_reuseaddr); 3389 3390 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3391 { 3392 struct rdma_id_private *id_priv; 3393 unsigned long flags; 3394 int ret; 3395 3396 id_priv = container_of(id, struct rdma_id_private, id); 3397 spin_lock_irqsave(&id_priv->lock, flags); 3398 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3399 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3400 id_priv->afonly = afonly; 3401 ret = 0; 3402 } else { 3403 ret = -EINVAL; 3404 } 3405 spin_unlock_irqrestore(&id_priv->lock, flags); 3406 return ret; 3407 } 3408 EXPORT_SYMBOL(rdma_set_afonly); 3409 3410 static void cma_bind_port(struct rdma_bind_list *bind_list, 3411 struct rdma_id_private *id_priv) 3412 { 3413 struct sockaddr *addr; 3414 struct sockaddr_ib *sib; 3415 u64 sid, mask; 3416 __be16 port; 3417 3418 lockdep_assert_held(&lock); 3419 3420 addr = cma_src_addr(id_priv); 3421 port = htons(bind_list->port); 3422 3423 switch (addr->sa_family) { 3424 case AF_INET: 3425 ((struct sockaddr_in *) addr)->sin_port = port; 3426 break; 3427 case AF_INET6: 3428 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3429 break; 3430 case AF_IB: 3431 sib = (struct sockaddr_ib *) addr; 3432 sid = be64_to_cpu(sib->sib_sid); 3433 mask = be64_to_cpu(sib->sib_sid_mask); 3434 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3435 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3436 break; 3437 } 3438 id_priv->bind_list = bind_list; 3439 hlist_add_head(&id_priv->node, &bind_list->owners); 3440 } 3441 3442 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3443 struct rdma_id_private *id_priv, unsigned short snum) 3444 { 3445 struct rdma_bind_list *bind_list; 3446 int ret; 3447 3448 lockdep_assert_held(&lock); 3449 3450 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3451 if (!bind_list) 3452 return -ENOMEM; 3453 3454 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3455 snum); 3456 if (ret < 0) 3457 goto err; 3458 3459 bind_list->ps = ps; 3460 bind_list->port = snum; 3461 cma_bind_port(bind_list, id_priv); 3462 return 0; 3463 err: 3464 kfree(bind_list); 3465 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3466 } 3467 3468 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3469 struct rdma_id_private *id_priv) 3470 { 3471 struct rdma_id_private *cur_id; 3472 struct sockaddr *daddr = cma_dst_addr(id_priv); 3473 struct sockaddr *saddr = cma_src_addr(id_priv); 3474 __be16 dport = cma_port(daddr); 3475 3476 lockdep_assert_held(&lock); 3477 3478 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3479 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3480 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3481 __be16 cur_dport = cma_port(cur_daddr); 3482 3483 if (id_priv == cur_id) 3484 continue; 3485 3486 /* different dest port -> unique */ 3487 if (!cma_any_port(daddr) && 3488 !cma_any_port(cur_daddr) && 3489 (dport != cur_dport)) 3490 continue; 3491 3492 /* different src address -> unique */ 3493 if (!cma_any_addr(saddr) && 3494 !cma_any_addr(cur_saddr) && 3495 cma_addr_cmp(saddr, cur_saddr)) 3496 continue; 3497 3498 /* different dst address -> unique */ 3499 if (!cma_any_addr(daddr) && 3500 !cma_any_addr(cur_daddr) && 3501 cma_addr_cmp(daddr, cur_daddr)) 3502 continue; 3503 3504 return -EADDRNOTAVAIL; 3505 } 3506 return 0; 3507 } 3508 3509 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3510 struct rdma_id_private *id_priv) 3511 { 3512 static unsigned int last_used_port; 3513 int low, high, remaining; 3514 unsigned int rover; 3515 struct net *net = id_priv->id.route.addr.dev_addr.net; 3516 3517 lockdep_assert_held(&lock); 3518 3519 inet_get_local_port_range(net, &low, &high); 3520 remaining = (high - low) + 1; 3521 rover = prandom_u32() % remaining + low; 3522 retry: 3523 if (last_used_port != rover) { 3524 struct rdma_bind_list *bind_list; 3525 int ret; 3526 3527 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3528 3529 if (!bind_list) { 3530 ret = cma_alloc_port(ps, id_priv, rover); 3531 } else { 3532 ret = cma_port_is_unique(bind_list, id_priv); 3533 if (!ret) 3534 cma_bind_port(bind_list, id_priv); 3535 } 3536 /* 3537 * Remember previously used port number in order to avoid 3538 * re-using same port immediately after it is closed. 3539 */ 3540 if (!ret) 3541 last_used_port = rover; 3542 if (ret != -EADDRNOTAVAIL) 3543 return ret; 3544 } 3545 if (--remaining) { 3546 rover++; 3547 if ((rover < low) || (rover > high)) 3548 rover = low; 3549 goto retry; 3550 } 3551 return -EADDRNOTAVAIL; 3552 } 3553 3554 /* 3555 * Check that the requested port is available. This is called when trying to 3556 * bind to a specific port, or when trying to listen on a bound port. In 3557 * the latter case, the provided id_priv may already be on the bind_list, but 3558 * we still need to check that it's okay to start listening. 3559 */ 3560 static int cma_check_port(struct rdma_bind_list *bind_list, 3561 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3562 { 3563 struct rdma_id_private *cur_id; 3564 struct sockaddr *addr, *cur_addr; 3565 3566 lockdep_assert_held(&lock); 3567 3568 addr = cma_src_addr(id_priv); 3569 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3570 if (id_priv == cur_id) 3571 continue; 3572 3573 if (reuseaddr && cur_id->reuseaddr) 3574 continue; 3575 3576 cur_addr = cma_src_addr(cur_id); 3577 if (id_priv->afonly && cur_id->afonly && 3578 (addr->sa_family != cur_addr->sa_family)) 3579 continue; 3580 3581 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3582 return -EADDRNOTAVAIL; 3583 3584 if (!cma_addr_cmp(addr, cur_addr)) 3585 return -EADDRINUSE; 3586 } 3587 return 0; 3588 } 3589 3590 static int cma_use_port(enum rdma_ucm_port_space ps, 3591 struct rdma_id_private *id_priv) 3592 { 3593 struct rdma_bind_list *bind_list; 3594 unsigned short snum; 3595 int ret; 3596 3597 lockdep_assert_held(&lock); 3598 3599 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3600 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3601 return -EACCES; 3602 3603 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3604 if (!bind_list) { 3605 ret = cma_alloc_port(ps, id_priv, snum); 3606 } else { 3607 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3608 if (!ret) 3609 cma_bind_port(bind_list, id_priv); 3610 } 3611 return ret; 3612 } 3613 3614 static enum rdma_ucm_port_space 3615 cma_select_inet_ps(struct rdma_id_private *id_priv) 3616 { 3617 switch (id_priv->id.ps) { 3618 case RDMA_PS_TCP: 3619 case RDMA_PS_UDP: 3620 case RDMA_PS_IPOIB: 3621 case RDMA_PS_IB: 3622 return id_priv->id.ps; 3623 default: 3624 3625 return 0; 3626 } 3627 } 3628 3629 static enum rdma_ucm_port_space 3630 cma_select_ib_ps(struct rdma_id_private *id_priv) 3631 { 3632 enum rdma_ucm_port_space ps = 0; 3633 struct sockaddr_ib *sib; 3634 u64 sid_ps, mask, sid; 3635 3636 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3637 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3638 sid = be64_to_cpu(sib->sib_sid) & mask; 3639 3640 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3641 sid_ps = RDMA_IB_IP_PS_IB; 3642 ps = RDMA_PS_IB; 3643 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3644 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3645 sid_ps = RDMA_IB_IP_PS_TCP; 3646 ps = RDMA_PS_TCP; 3647 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3648 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3649 sid_ps = RDMA_IB_IP_PS_UDP; 3650 ps = RDMA_PS_UDP; 3651 } 3652 3653 if (ps) { 3654 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3655 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3656 be64_to_cpu(sib->sib_sid_mask)); 3657 } 3658 return ps; 3659 } 3660 3661 static int cma_get_port(struct rdma_id_private *id_priv) 3662 { 3663 enum rdma_ucm_port_space ps; 3664 int ret; 3665 3666 if (cma_family(id_priv) != AF_IB) 3667 ps = cma_select_inet_ps(id_priv); 3668 else 3669 ps = cma_select_ib_ps(id_priv); 3670 if (!ps) 3671 return -EPROTONOSUPPORT; 3672 3673 mutex_lock(&lock); 3674 if (cma_any_port(cma_src_addr(id_priv))) 3675 ret = cma_alloc_any_port(ps, id_priv); 3676 else 3677 ret = cma_use_port(ps, id_priv); 3678 mutex_unlock(&lock); 3679 3680 return ret; 3681 } 3682 3683 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3684 struct sockaddr *addr) 3685 { 3686 #if IS_ENABLED(CONFIG_IPV6) 3687 struct sockaddr_in6 *sin6; 3688 3689 if (addr->sa_family != AF_INET6) 3690 return 0; 3691 3692 sin6 = (struct sockaddr_in6 *) addr; 3693 3694 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3695 return 0; 3696 3697 if (!sin6->sin6_scope_id) 3698 return -EINVAL; 3699 3700 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3701 #endif 3702 return 0; 3703 } 3704 3705 int rdma_listen(struct rdma_cm_id *id, int backlog) 3706 { 3707 struct rdma_id_private *id_priv = 3708 container_of(id, struct rdma_id_private, id); 3709 int ret; 3710 3711 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3712 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3713 id->route.addr.src_addr.ss_family = AF_INET; 3714 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3715 if (ret) 3716 return ret; 3717 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3718 RDMA_CM_LISTEN))) 3719 return -EINVAL; 3720 } 3721 3722 /* 3723 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3724 * any more, and has to be unique in the bind list. 3725 */ 3726 if (id_priv->reuseaddr) { 3727 mutex_lock(&lock); 3728 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3729 if (!ret) 3730 id_priv->reuseaddr = 0; 3731 mutex_unlock(&lock); 3732 if (ret) 3733 goto err; 3734 } 3735 3736 id_priv->backlog = backlog; 3737 if (id->device) { 3738 if (rdma_cap_ib_cm(id->device, 1)) { 3739 ret = cma_ib_listen(id_priv); 3740 if (ret) 3741 goto err; 3742 } else if (rdma_cap_iw_cm(id->device, 1)) { 3743 ret = cma_iw_listen(id_priv, backlog); 3744 if (ret) 3745 goto err; 3746 } else { 3747 ret = -ENOSYS; 3748 goto err; 3749 } 3750 } else { 3751 ret = cma_listen_on_all(id_priv); 3752 if (ret) 3753 goto err; 3754 } 3755 3756 return 0; 3757 err: 3758 id_priv->backlog = 0; 3759 /* 3760 * All the failure paths that lead here will not allow the req_handler's 3761 * to have run. 3762 */ 3763 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3764 return ret; 3765 } 3766 EXPORT_SYMBOL(rdma_listen); 3767 3768 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3769 { 3770 struct rdma_id_private *id_priv; 3771 int ret; 3772 struct sockaddr *daddr; 3773 3774 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3775 addr->sa_family != AF_IB) 3776 return -EAFNOSUPPORT; 3777 3778 id_priv = container_of(id, struct rdma_id_private, id); 3779 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3780 return -EINVAL; 3781 3782 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3783 if (ret) 3784 goto err1; 3785 3786 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3787 if (!cma_any_addr(addr)) { 3788 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3789 if (ret) 3790 goto err1; 3791 3792 ret = cma_acquire_dev_by_src_ip(id_priv); 3793 if (ret) 3794 goto err1; 3795 } 3796 3797 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3798 if (addr->sa_family == AF_INET) 3799 id_priv->afonly = 1; 3800 #if IS_ENABLED(CONFIG_IPV6) 3801 else if (addr->sa_family == AF_INET6) { 3802 struct net *net = id_priv->id.route.addr.dev_addr.net; 3803 3804 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3805 } 3806 #endif 3807 } 3808 daddr = cma_dst_addr(id_priv); 3809 daddr->sa_family = addr->sa_family; 3810 3811 ret = cma_get_port(id_priv); 3812 if (ret) 3813 goto err2; 3814 3815 return 0; 3816 err2: 3817 if (id_priv->cma_dev) 3818 cma_release_dev(id_priv); 3819 err1: 3820 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3821 return ret; 3822 } 3823 EXPORT_SYMBOL(rdma_bind_addr); 3824 3825 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3826 { 3827 struct cma_hdr *cma_hdr; 3828 3829 cma_hdr = hdr; 3830 cma_hdr->cma_version = CMA_VERSION; 3831 if (cma_family(id_priv) == AF_INET) { 3832 struct sockaddr_in *src4, *dst4; 3833 3834 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3835 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3836 3837 cma_set_ip_ver(cma_hdr, 4); 3838 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3839 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3840 cma_hdr->port = src4->sin_port; 3841 } else if (cma_family(id_priv) == AF_INET6) { 3842 struct sockaddr_in6 *src6, *dst6; 3843 3844 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3845 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3846 3847 cma_set_ip_ver(cma_hdr, 6); 3848 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3849 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3850 cma_hdr->port = src6->sin6_port; 3851 } 3852 return 0; 3853 } 3854 3855 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3856 const struct ib_cm_event *ib_event) 3857 { 3858 struct rdma_id_private *id_priv = cm_id->context; 3859 struct rdma_cm_event event = {}; 3860 const struct ib_cm_sidr_rep_event_param *rep = 3861 &ib_event->param.sidr_rep_rcvd; 3862 int ret; 3863 3864 mutex_lock(&id_priv->handler_mutex); 3865 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3866 goto out; 3867 3868 switch (ib_event->event) { 3869 case IB_CM_SIDR_REQ_ERROR: 3870 event.event = RDMA_CM_EVENT_UNREACHABLE; 3871 event.status = -ETIMEDOUT; 3872 break; 3873 case IB_CM_SIDR_REP_RECEIVED: 3874 event.param.ud.private_data = ib_event->private_data; 3875 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3876 if (rep->status != IB_SIDR_SUCCESS) { 3877 event.event = RDMA_CM_EVENT_UNREACHABLE; 3878 event.status = ib_event->param.sidr_rep_rcvd.status; 3879 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3880 event.status); 3881 break; 3882 } 3883 ret = cma_set_qkey(id_priv, rep->qkey); 3884 if (ret) { 3885 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3886 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3887 event.status = ret; 3888 break; 3889 } 3890 ib_init_ah_attr_from_path(id_priv->id.device, 3891 id_priv->id.port_num, 3892 id_priv->id.route.path_rec, 3893 &event.param.ud.ah_attr, 3894 rep->sgid_attr); 3895 event.param.ud.qp_num = rep->qpn; 3896 event.param.ud.qkey = rep->qkey; 3897 event.event = RDMA_CM_EVENT_ESTABLISHED; 3898 event.status = 0; 3899 break; 3900 default: 3901 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3902 ib_event->event); 3903 goto out; 3904 } 3905 3906 ret = cma_cm_event_handler(id_priv, &event); 3907 3908 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3909 if (ret) { 3910 /* Destroy the CM ID by returning a non-zero value. */ 3911 id_priv->cm_id.ib = NULL; 3912 destroy_id_handler_unlock(id_priv); 3913 return ret; 3914 } 3915 out: 3916 mutex_unlock(&id_priv->handler_mutex); 3917 return 0; 3918 } 3919 3920 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3921 struct rdma_conn_param *conn_param) 3922 { 3923 struct ib_cm_sidr_req_param req; 3924 struct ib_cm_id *id; 3925 void *private_data; 3926 u8 offset; 3927 int ret; 3928 3929 memset(&req, 0, sizeof req); 3930 offset = cma_user_data_offset(id_priv); 3931 req.private_data_len = offset + conn_param->private_data_len; 3932 if (req.private_data_len < conn_param->private_data_len) 3933 return -EINVAL; 3934 3935 if (req.private_data_len) { 3936 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3937 if (!private_data) 3938 return -ENOMEM; 3939 } else { 3940 private_data = NULL; 3941 } 3942 3943 if (conn_param->private_data && conn_param->private_data_len) 3944 memcpy(private_data + offset, conn_param->private_data, 3945 conn_param->private_data_len); 3946 3947 if (private_data) { 3948 ret = cma_format_hdr(private_data, id_priv); 3949 if (ret) 3950 goto out; 3951 req.private_data = private_data; 3952 } 3953 3954 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 3955 id_priv); 3956 if (IS_ERR(id)) { 3957 ret = PTR_ERR(id); 3958 goto out; 3959 } 3960 id_priv->cm_id.ib = id; 3961 3962 req.path = id_priv->id.route.path_rec; 3963 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3964 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3965 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 3966 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3967 3968 trace_cm_send_sidr_req(id_priv); 3969 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 3970 if (ret) { 3971 ib_destroy_cm_id(id_priv->cm_id.ib); 3972 id_priv->cm_id.ib = NULL; 3973 } 3974 out: 3975 kfree(private_data); 3976 return ret; 3977 } 3978 3979 static int cma_connect_ib(struct rdma_id_private *id_priv, 3980 struct rdma_conn_param *conn_param) 3981 { 3982 struct ib_cm_req_param req; 3983 struct rdma_route *route; 3984 void *private_data; 3985 struct ib_cm_id *id; 3986 u8 offset; 3987 int ret; 3988 3989 memset(&req, 0, sizeof req); 3990 offset = cma_user_data_offset(id_priv); 3991 req.private_data_len = offset + conn_param->private_data_len; 3992 if (req.private_data_len < conn_param->private_data_len) 3993 return -EINVAL; 3994 3995 if (req.private_data_len) { 3996 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3997 if (!private_data) 3998 return -ENOMEM; 3999 } else { 4000 private_data = NULL; 4001 } 4002 4003 if (conn_param->private_data && conn_param->private_data_len) 4004 memcpy(private_data + offset, conn_param->private_data, 4005 conn_param->private_data_len); 4006 4007 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4008 if (IS_ERR(id)) { 4009 ret = PTR_ERR(id); 4010 goto out; 4011 } 4012 id_priv->cm_id.ib = id; 4013 4014 route = &id_priv->id.route; 4015 if (private_data) { 4016 ret = cma_format_hdr(private_data, id_priv); 4017 if (ret) 4018 goto out; 4019 req.private_data = private_data; 4020 } 4021 4022 req.primary_path = &route->path_rec[0]; 4023 if (route->num_paths == 2) 4024 req.alternate_path = &route->path_rec[1]; 4025 4026 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4027 /* Alternate path SGID attribute currently unsupported */ 4028 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4029 req.qp_num = id_priv->qp_num; 4030 req.qp_type = id_priv->id.qp_type; 4031 req.starting_psn = id_priv->seq_num; 4032 req.responder_resources = conn_param->responder_resources; 4033 req.initiator_depth = conn_param->initiator_depth; 4034 req.flow_control = conn_param->flow_control; 4035 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4036 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4037 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4038 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4039 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4040 req.srq = id_priv->srq ? 1 : 0; 4041 req.ece.vendor_id = id_priv->ece.vendor_id; 4042 req.ece.attr_mod = id_priv->ece.attr_mod; 4043 4044 trace_cm_send_req(id_priv); 4045 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4046 out: 4047 if (ret && !IS_ERR(id)) { 4048 ib_destroy_cm_id(id); 4049 id_priv->cm_id.ib = NULL; 4050 } 4051 4052 kfree(private_data); 4053 return ret; 4054 } 4055 4056 static int cma_connect_iw(struct rdma_id_private *id_priv, 4057 struct rdma_conn_param *conn_param) 4058 { 4059 struct iw_cm_id *cm_id; 4060 int ret; 4061 struct iw_cm_conn_param iw_param; 4062 4063 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4064 if (IS_ERR(cm_id)) 4065 return PTR_ERR(cm_id); 4066 4067 cm_id->tos = id_priv->tos; 4068 cm_id->tos_set = id_priv->tos_set; 4069 id_priv->cm_id.iw = cm_id; 4070 4071 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4072 rdma_addr_size(cma_src_addr(id_priv))); 4073 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4074 rdma_addr_size(cma_dst_addr(id_priv))); 4075 4076 ret = cma_modify_qp_rtr(id_priv, conn_param); 4077 if (ret) 4078 goto out; 4079 4080 if (conn_param) { 4081 iw_param.ord = conn_param->initiator_depth; 4082 iw_param.ird = conn_param->responder_resources; 4083 iw_param.private_data = conn_param->private_data; 4084 iw_param.private_data_len = conn_param->private_data_len; 4085 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4086 } else { 4087 memset(&iw_param, 0, sizeof iw_param); 4088 iw_param.qpn = id_priv->qp_num; 4089 } 4090 ret = iw_cm_connect(cm_id, &iw_param); 4091 out: 4092 if (ret) { 4093 iw_destroy_cm_id(cm_id); 4094 id_priv->cm_id.iw = NULL; 4095 } 4096 return ret; 4097 } 4098 4099 /** 4100 * rdma_connect_locked - Initiate an active connection request. 4101 * @id: Connection identifier to connect. 4102 * @conn_param: Connection information used for connected QPs. 4103 * 4104 * Same as rdma_connect() but can only be called from the 4105 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4106 */ 4107 int rdma_connect_locked(struct rdma_cm_id *id, 4108 struct rdma_conn_param *conn_param) 4109 { 4110 struct rdma_id_private *id_priv = 4111 container_of(id, struct rdma_id_private, id); 4112 int ret; 4113 4114 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4115 return -EINVAL; 4116 4117 if (!id->qp) { 4118 id_priv->qp_num = conn_param->qp_num; 4119 id_priv->srq = conn_param->srq; 4120 } 4121 4122 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4123 if (id->qp_type == IB_QPT_UD) 4124 ret = cma_resolve_ib_udp(id_priv, conn_param); 4125 else 4126 ret = cma_connect_ib(id_priv, conn_param); 4127 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4128 ret = cma_connect_iw(id_priv, conn_param); 4129 else 4130 ret = -ENOSYS; 4131 if (ret) 4132 goto err_state; 4133 return 0; 4134 err_state: 4135 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4136 return ret; 4137 } 4138 EXPORT_SYMBOL(rdma_connect_locked); 4139 4140 /** 4141 * rdma_connect - Initiate an active connection request. 4142 * @id: Connection identifier to connect. 4143 * @conn_param: Connection information used for connected QPs. 4144 * 4145 * Users must have resolved a route for the rdma_cm_id to connect with by having 4146 * called rdma_resolve_route before calling this routine. 4147 * 4148 * This call will either connect to a remote QP or obtain remote QP information 4149 * for unconnected rdma_cm_id's. The actual operation is based on the 4150 * rdma_cm_id's port space. 4151 */ 4152 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4153 { 4154 struct rdma_id_private *id_priv = 4155 container_of(id, struct rdma_id_private, id); 4156 int ret; 4157 4158 mutex_lock(&id_priv->handler_mutex); 4159 ret = rdma_connect_locked(id, conn_param); 4160 mutex_unlock(&id_priv->handler_mutex); 4161 return ret; 4162 } 4163 EXPORT_SYMBOL(rdma_connect); 4164 4165 /** 4166 * rdma_connect_ece - Initiate an active connection request with ECE data. 4167 * @id: Connection identifier to connect. 4168 * @conn_param: Connection information used for connected QPs. 4169 * @ece: ECE parameters 4170 * 4171 * See rdma_connect() explanation. 4172 */ 4173 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4174 struct rdma_ucm_ece *ece) 4175 { 4176 struct rdma_id_private *id_priv = 4177 container_of(id, struct rdma_id_private, id); 4178 4179 id_priv->ece.vendor_id = ece->vendor_id; 4180 id_priv->ece.attr_mod = ece->attr_mod; 4181 4182 return rdma_connect(id, conn_param); 4183 } 4184 EXPORT_SYMBOL(rdma_connect_ece); 4185 4186 static int cma_accept_ib(struct rdma_id_private *id_priv, 4187 struct rdma_conn_param *conn_param) 4188 { 4189 struct ib_cm_rep_param rep; 4190 int ret; 4191 4192 ret = cma_modify_qp_rtr(id_priv, conn_param); 4193 if (ret) 4194 goto out; 4195 4196 ret = cma_modify_qp_rts(id_priv, conn_param); 4197 if (ret) 4198 goto out; 4199 4200 memset(&rep, 0, sizeof rep); 4201 rep.qp_num = id_priv->qp_num; 4202 rep.starting_psn = id_priv->seq_num; 4203 rep.private_data = conn_param->private_data; 4204 rep.private_data_len = conn_param->private_data_len; 4205 rep.responder_resources = conn_param->responder_resources; 4206 rep.initiator_depth = conn_param->initiator_depth; 4207 rep.failover_accepted = 0; 4208 rep.flow_control = conn_param->flow_control; 4209 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4210 rep.srq = id_priv->srq ? 1 : 0; 4211 rep.ece.vendor_id = id_priv->ece.vendor_id; 4212 rep.ece.attr_mod = id_priv->ece.attr_mod; 4213 4214 trace_cm_send_rep(id_priv); 4215 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4216 out: 4217 return ret; 4218 } 4219 4220 static int cma_accept_iw(struct rdma_id_private *id_priv, 4221 struct rdma_conn_param *conn_param) 4222 { 4223 struct iw_cm_conn_param iw_param; 4224 int ret; 4225 4226 if (!conn_param) 4227 return -EINVAL; 4228 4229 ret = cma_modify_qp_rtr(id_priv, conn_param); 4230 if (ret) 4231 return ret; 4232 4233 iw_param.ord = conn_param->initiator_depth; 4234 iw_param.ird = conn_param->responder_resources; 4235 iw_param.private_data = conn_param->private_data; 4236 iw_param.private_data_len = conn_param->private_data_len; 4237 if (id_priv->id.qp) { 4238 iw_param.qpn = id_priv->qp_num; 4239 } else 4240 iw_param.qpn = conn_param->qp_num; 4241 4242 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4243 } 4244 4245 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4246 enum ib_cm_sidr_status status, u32 qkey, 4247 const void *private_data, int private_data_len) 4248 { 4249 struct ib_cm_sidr_rep_param rep; 4250 int ret; 4251 4252 memset(&rep, 0, sizeof rep); 4253 rep.status = status; 4254 if (status == IB_SIDR_SUCCESS) { 4255 ret = cma_set_qkey(id_priv, qkey); 4256 if (ret) 4257 return ret; 4258 rep.qp_num = id_priv->qp_num; 4259 rep.qkey = id_priv->qkey; 4260 4261 rep.ece.vendor_id = id_priv->ece.vendor_id; 4262 rep.ece.attr_mod = id_priv->ece.attr_mod; 4263 } 4264 4265 rep.private_data = private_data; 4266 rep.private_data_len = private_data_len; 4267 4268 trace_cm_send_sidr_rep(id_priv); 4269 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4270 } 4271 4272 /** 4273 * rdma_accept - Called to accept a connection request or response. 4274 * @id: Connection identifier associated with the request. 4275 * @conn_param: Information needed to establish the connection. This must be 4276 * provided if accepting a connection request. If accepting a connection 4277 * response, this parameter must be NULL. 4278 * 4279 * Typically, this routine is only called by the listener to accept a connection 4280 * request. It must also be called on the active side of a connection if the 4281 * user is performing their own QP transitions. 4282 * 4283 * In the case of error, a reject message is sent to the remote side and the 4284 * state of the qp associated with the id is modified to error, such that any 4285 * previously posted receive buffers would be flushed. 4286 * 4287 * This function is for use by kernel ULPs and must be called from under the 4288 * handler callback. 4289 */ 4290 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4291 { 4292 struct rdma_id_private *id_priv = 4293 container_of(id, struct rdma_id_private, id); 4294 int ret; 4295 4296 lockdep_assert_held(&id_priv->handler_mutex); 4297 4298 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4299 return -EINVAL; 4300 4301 if (!id->qp && conn_param) { 4302 id_priv->qp_num = conn_param->qp_num; 4303 id_priv->srq = conn_param->srq; 4304 } 4305 4306 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4307 if (id->qp_type == IB_QPT_UD) { 4308 if (conn_param) 4309 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4310 conn_param->qkey, 4311 conn_param->private_data, 4312 conn_param->private_data_len); 4313 else 4314 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4315 0, NULL, 0); 4316 } else { 4317 if (conn_param) 4318 ret = cma_accept_ib(id_priv, conn_param); 4319 else 4320 ret = cma_rep_recv(id_priv); 4321 } 4322 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4323 ret = cma_accept_iw(id_priv, conn_param); 4324 else 4325 ret = -ENOSYS; 4326 4327 if (ret) 4328 goto reject; 4329 4330 return 0; 4331 reject: 4332 cma_modify_qp_err(id_priv); 4333 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4334 return ret; 4335 } 4336 EXPORT_SYMBOL(rdma_accept); 4337 4338 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4339 struct rdma_ucm_ece *ece) 4340 { 4341 struct rdma_id_private *id_priv = 4342 container_of(id, struct rdma_id_private, id); 4343 4344 id_priv->ece.vendor_id = ece->vendor_id; 4345 id_priv->ece.attr_mod = ece->attr_mod; 4346 4347 return rdma_accept(id, conn_param); 4348 } 4349 EXPORT_SYMBOL(rdma_accept_ece); 4350 4351 void rdma_lock_handler(struct rdma_cm_id *id) 4352 { 4353 struct rdma_id_private *id_priv = 4354 container_of(id, struct rdma_id_private, id); 4355 4356 mutex_lock(&id_priv->handler_mutex); 4357 } 4358 EXPORT_SYMBOL(rdma_lock_handler); 4359 4360 void rdma_unlock_handler(struct rdma_cm_id *id) 4361 { 4362 struct rdma_id_private *id_priv = 4363 container_of(id, struct rdma_id_private, id); 4364 4365 mutex_unlock(&id_priv->handler_mutex); 4366 } 4367 EXPORT_SYMBOL(rdma_unlock_handler); 4368 4369 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4370 { 4371 struct rdma_id_private *id_priv; 4372 int ret; 4373 4374 id_priv = container_of(id, struct rdma_id_private, id); 4375 if (!id_priv->cm_id.ib) 4376 return -EINVAL; 4377 4378 switch (id->device->node_type) { 4379 case RDMA_NODE_IB_CA: 4380 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4381 break; 4382 default: 4383 ret = 0; 4384 break; 4385 } 4386 return ret; 4387 } 4388 EXPORT_SYMBOL(rdma_notify); 4389 4390 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4391 u8 private_data_len, u8 reason) 4392 { 4393 struct rdma_id_private *id_priv; 4394 int ret; 4395 4396 id_priv = container_of(id, struct rdma_id_private, id); 4397 if (!id_priv->cm_id.ib) 4398 return -EINVAL; 4399 4400 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4401 if (id->qp_type == IB_QPT_UD) { 4402 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4403 private_data, private_data_len); 4404 } else { 4405 trace_cm_send_rej(id_priv); 4406 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4407 private_data, private_data_len); 4408 } 4409 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4410 ret = iw_cm_reject(id_priv->cm_id.iw, 4411 private_data, private_data_len); 4412 } else 4413 ret = -ENOSYS; 4414 4415 return ret; 4416 } 4417 EXPORT_SYMBOL(rdma_reject); 4418 4419 int rdma_disconnect(struct rdma_cm_id *id) 4420 { 4421 struct rdma_id_private *id_priv; 4422 int ret; 4423 4424 id_priv = container_of(id, struct rdma_id_private, id); 4425 if (!id_priv->cm_id.ib) 4426 return -EINVAL; 4427 4428 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4429 ret = cma_modify_qp_err(id_priv); 4430 if (ret) 4431 goto out; 4432 /* Initiate or respond to a disconnect. */ 4433 trace_cm_disconnect(id_priv); 4434 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4435 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4436 trace_cm_sent_drep(id_priv); 4437 } else { 4438 trace_cm_sent_dreq(id_priv); 4439 } 4440 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4441 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4442 } else 4443 ret = -EINVAL; 4444 4445 out: 4446 return ret; 4447 } 4448 EXPORT_SYMBOL(rdma_disconnect); 4449 4450 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4451 struct ib_sa_multicast *multicast, 4452 struct rdma_cm_event *event, 4453 struct cma_multicast *mc) 4454 { 4455 struct rdma_dev_addr *dev_addr; 4456 enum ib_gid_type gid_type; 4457 struct net_device *ndev; 4458 4459 if (!status) 4460 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4461 else 4462 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4463 status); 4464 4465 event->status = status; 4466 event->param.ud.private_data = mc->context; 4467 if (status) { 4468 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4469 return; 4470 } 4471 4472 dev_addr = &id_priv->id.route.addr.dev_addr; 4473 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4474 gid_type = 4475 id_priv->cma_dev 4476 ->default_gid_type[id_priv->id.port_num - 4477 rdma_start_port( 4478 id_priv->cma_dev->device)]; 4479 4480 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4481 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4482 &multicast->rec, ndev, gid_type, 4483 &event->param.ud.ah_attr)) { 4484 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4485 goto out; 4486 } 4487 4488 event->param.ud.qp_num = 0xFFFFFF; 4489 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4490 4491 out: 4492 if (ndev) 4493 dev_put(ndev); 4494 } 4495 4496 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4497 { 4498 struct cma_multicast *mc = multicast->context; 4499 struct rdma_id_private *id_priv = mc->id_priv; 4500 struct rdma_cm_event event = {}; 4501 int ret = 0; 4502 4503 mutex_lock(&id_priv->handler_mutex); 4504 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4505 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4506 goto out; 4507 4508 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4509 ret = cma_cm_event_handler(id_priv, &event); 4510 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4511 WARN_ON(ret); 4512 4513 out: 4514 mutex_unlock(&id_priv->handler_mutex); 4515 return 0; 4516 } 4517 4518 static void cma_set_mgid(struct rdma_id_private *id_priv, 4519 struct sockaddr *addr, union ib_gid *mgid) 4520 { 4521 unsigned char mc_map[MAX_ADDR_LEN]; 4522 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4523 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4524 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4525 4526 if (cma_any_addr(addr)) { 4527 memset(mgid, 0, sizeof *mgid); 4528 } else if ((addr->sa_family == AF_INET6) && 4529 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4530 0xFF10A01B)) { 4531 /* IPv6 address is an SA assigned MGID. */ 4532 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4533 } else if (addr->sa_family == AF_IB) { 4534 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4535 } else if (addr->sa_family == AF_INET6) { 4536 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4537 if (id_priv->id.ps == RDMA_PS_UDP) 4538 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4539 *mgid = *(union ib_gid *) (mc_map + 4); 4540 } else { 4541 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4542 if (id_priv->id.ps == RDMA_PS_UDP) 4543 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4544 *mgid = *(union ib_gid *) (mc_map + 4); 4545 } 4546 } 4547 4548 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4549 struct cma_multicast *mc) 4550 { 4551 struct ib_sa_mcmember_rec rec; 4552 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4553 ib_sa_comp_mask comp_mask; 4554 int ret; 4555 4556 ib_addr_get_mgid(dev_addr, &rec.mgid); 4557 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4558 &rec.mgid, &rec); 4559 if (ret) 4560 return ret; 4561 4562 ret = cma_set_qkey(id_priv, 0); 4563 if (ret) 4564 return ret; 4565 4566 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4567 rec.qkey = cpu_to_be32(id_priv->qkey); 4568 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4569 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4570 rec.join_state = mc->join_state; 4571 4572 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4573 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4574 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4575 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4576 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4577 4578 if (id_priv->id.ps == RDMA_PS_IPOIB) 4579 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4580 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4581 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4582 IB_SA_MCMEMBER_REC_MTU | 4583 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4584 4585 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4586 id_priv->id.port_num, &rec, comp_mask, 4587 GFP_KERNEL, cma_ib_mc_handler, mc); 4588 return PTR_ERR_OR_ZERO(mc->sa_mc); 4589 } 4590 4591 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4592 enum ib_gid_type gid_type) 4593 { 4594 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4595 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4596 4597 if (cma_any_addr(addr)) { 4598 memset(mgid, 0, sizeof *mgid); 4599 } else if (addr->sa_family == AF_INET6) { 4600 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4601 } else { 4602 mgid->raw[0] = 4603 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4604 mgid->raw[1] = 4605 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4606 mgid->raw[2] = 0; 4607 mgid->raw[3] = 0; 4608 mgid->raw[4] = 0; 4609 mgid->raw[5] = 0; 4610 mgid->raw[6] = 0; 4611 mgid->raw[7] = 0; 4612 mgid->raw[8] = 0; 4613 mgid->raw[9] = 0; 4614 mgid->raw[10] = 0xff; 4615 mgid->raw[11] = 0xff; 4616 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4617 } 4618 } 4619 4620 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4621 struct cma_multicast *mc) 4622 { 4623 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4624 int err = 0; 4625 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4626 struct net_device *ndev = NULL; 4627 struct ib_sa_multicast ib; 4628 enum ib_gid_type gid_type; 4629 bool send_only; 4630 4631 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4632 4633 if (cma_zero_addr(addr)) 4634 return -EINVAL; 4635 4636 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4637 rdma_start_port(id_priv->cma_dev->device)]; 4638 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4639 4640 ib.rec.pkey = cpu_to_be16(0xffff); 4641 if (id_priv->id.ps == RDMA_PS_UDP) 4642 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4643 4644 if (dev_addr->bound_dev_if) 4645 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4646 if (!ndev) 4647 return -ENODEV; 4648 4649 ib.rec.rate = iboe_get_rate(ndev); 4650 ib.rec.hop_limit = 1; 4651 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4652 4653 if (addr->sa_family == AF_INET) { 4654 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4655 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4656 if (!send_only) { 4657 err = cma_igmp_send(ndev, &ib.rec.mgid, 4658 true); 4659 } 4660 } 4661 } else { 4662 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4663 err = -ENOTSUPP; 4664 } 4665 dev_put(ndev); 4666 if (err || !ib.rec.mtu) 4667 return err ?: -EINVAL; 4668 4669 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4670 &ib.rec.port_gid); 4671 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4672 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4673 queue_work(cma_wq, &mc->iboe_join.work); 4674 return 0; 4675 } 4676 4677 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4678 u8 join_state, void *context) 4679 { 4680 struct rdma_id_private *id_priv = 4681 container_of(id, struct rdma_id_private, id); 4682 struct cma_multicast *mc; 4683 int ret; 4684 4685 /* Not supported for kernel QPs */ 4686 if (WARN_ON(id->qp)) 4687 return -EINVAL; 4688 4689 /* ULP is calling this wrong. */ 4690 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4691 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4692 return -EINVAL; 4693 4694 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4695 if (!mc) 4696 return -ENOMEM; 4697 4698 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4699 mc->context = context; 4700 mc->id_priv = id_priv; 4701 mc->join_state = join_state; 4702 4703 if (rdma_protocol_roce(id->device, id->port_num)) { 4704 ret = cma_iboe_join_multicast(id_priv, mc); 4705 if (ret) 4706 goto out_err; 4707 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4708 ret = cma_join_ib_multicast(id_priv, mc); 4709 if (ret) 4710 goto out_err; 4711 } else { 4712 ret = -ENOSYS; 4713 goto out_err; 4714 } 4715 4716 spin_lock(&id_priv->lock); 4717 list_add(&mc->list, &id_priv->mc_list); 4718 spin_unlock(&id_priv->lock); 4719 4720 return 0; 4721 out_err: 4722 kfree(mc); 4723 return ret; 4724 } 4725 EXPORT_SYMBOL(rdma_join_multicast); 4726 4727 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4728 { 4729 struct rdma_id_private *id_priv; 4730 struct cma_multicast *mc; 4731 4732 id_priv = container_of(id, struct rdma_id_private, id); 4733 spin_lock_irq(&id_priv->lock); 4734 list_for_each_entry(mc, &id_priv->mc_list, list) { 4735 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4736 continue; 4737 list_del(&mc->list); 4738 spin_unlock_irq(&id_priv->lock); 4739 4740 WARN_ON(id_priv->cma_dev->device != id->device); 4741 destroy_mc(id_priv, mc); 4742 return; 4743 } 4744 spin_unlock_irq(&id_priv->lock); 4745 } 4746 EXPORT_SYMBOL(rdma_leave_multicast); 4747 4748 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4749 { 4750 struct rdma_dev_addr *dev_addr; 4751 struct cma_work *work; 4752 4753 dev_addr = &id_priv->id.route.addr.dev_addr; 4754 4755 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4756 (net_eq(dev_net(ndev), dev_addr->net)) && 4757 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4758 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4759 ndev->name, &id_priv->id); 4760 work = kzalloc(sizeof *work, GFP_KERNEL); 4761 if (!work) 4762 return -ENOMEM; 4763 4764 INIT_WORK(&work->work, cma_work_handler); 4765 work->id = id_priv; 4766 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4767 cma_id_get(id_priv); 4768 queue_work(cma_wq, &work->work); 4769 } 4770 4771 return 0; 4772 } 4773 4774 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4775 void *ptr) 4776 { 4777 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4778 struct cma_device *cma_dev; 4779 struct rdma_id_private *id_priv; 4780 int ret = NOTIFY_DONE; 4781 4782 if (event != NETDEV_BONDING_FAILOVER) 4783 return NOTIFY_DONE; 4784 4785 if (!netif_is_bond_master(ndev)) 4786 return NOTIFY_DONE; 4787 4788 mutex_lock(&lock); 4789 list_for_each_entry(cma_dev, &dev_list, list) 4790 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4791 ret = cma_netdev_change(ndev, id_priv); 4792 if (ret) 4793 goto out; 4794 } 4795 4796 out: 4797 mutex_unlock(&lock); 4798 return ret; 4799 } 4800 4801 static struct notifier_block cma_nb = { 4802 .notifier_call = cma_netdev_callback 4803 }; 4804 4805 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4806 { 4807 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4808 enum rdma_cm_state state; 4809 unsigned long flags; 4810 4811 mutex_lock(&id_priv->handler_mutex); 4812 /* Record that we want to remove the device */ 4813 spin_lock_irqsave(&id_priv->lock, flags); 4814 state = id_priv->state; 4815 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4816 spin_unlock_irqrestore(&id_priv->lock, flags); 4817 mutex_unlock(&id_priv->handler_mutex); 4818 cma_id_put(id_priv); 4819 return; 4820 } 4821 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4822 spin_unlock_irqrestore(&id_priv->lock, flags); 4823 4824 if (cma_cm_event_handler(id_priv, &event)) { 4825 /* 4826 * At this point the ULP promises it won't call 4827 * rdma_destroy_id() concurrently 4828 */ 4829 cma_id_put(id_priv); 4830 mutex_unlock(&id_priv->handler_mutex); 4831 trace_cm_id_destroy(id_priv); 4832 _destroy_id(id_priv, state); 4833 return; 4834 } 4835 mutex_unlock(&id_priv->handler_mutex); 4836 4837 /* 4838 * If this races with destroy then the thread that first assigns state 4839 * to a destroying does the cancel. 4840 */ 4841 cma_cancel_operation(id_priv, state); 4842 cma_id_put(id_priv); 4843 } 4844 4845 static void cma_process_remove(struct cma_device *cma_dev) 4846 { 4847 mutex_lock(&lock); 4848 while (!list_empty(&cma_dev->id_list)) { 4849 struct rdma_id_private *id_priv = list_first_entry( 4850 &cma_dev->id_list, struct rdma_id_private, list); 4851 4852 list_del(&id_priv->listen_list); 4853 list_del_init(&id_priv->list); 4854 cma_id_get(id_priv); 4855 mutex_unlock(&lock); 4856 4857 cma_send_device_removal_put(id_priv); 4858 4859 mutex_lock(&lock); 4860 } 4861 mutex_unlock(&lock); 4862 4863 cma_dev_put(cma_dev); 4864 wait_for_completion(&cma_dev->comp); 4865 } 4866 4867 static int cma_add_one(struct ib_device *device) 4868 { 4869 struct rdma_id_private *to_destroy; 4870 struct cma_device *cma_dev; 4871 struct rdma_id_private *id_priv; 4872 unsigned int i; 4873 unsigned long supported_gids = 0; 4874 int ret; 4875 4876 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 4877 if (!cma_dev) 4878 return -ENOMEM; 4879 4880 cma_dev->device = device; 4881 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4882 sizeof(*cma_dev->default_gid_type), 4883 GFP_KERNEL); 4884 if (!cma_dev->default_gid_type) { 4885 ret = -ENOMEM; 4886 goto free_cma_dev; 4887 } 4888 4889 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4890 sizeof(*cma_dev->default_roce_tos), 4891 GFP_KERNEL); 4892 if (!cma_dev->default_roce_tos) { 4893 ret = -ENOMEM; 4894 goto free_gid_type; 4895 } 4896 4897 rdma_for_each_port (device, i) { 4898 supported_gids = roce_gid_type_mask_support(device, i); 4899 WARN_ON(!supported_gids); 4900 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4901 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4902 CMA_PREFERRED_ROCE_GID_TYPE; 4903 else 4904 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4905 find_first_bit(&supported_gids, BITS_PER_LONG); 4906 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4907 } 4908 4909 init_completion(&cma_dev->comp); 4910 refcount_set(&cma_dev->refcount, 1); 4911 INIT_LIST_HEAD(&cma_dev->id_list); 4912 ib_set_client_data(device, &cma_client, cma_dev); 4913 4914 mutex_lock(&lock); 4915 list_add_tail(&cma_dev->list, &dev_list); 4916 list_for_each_entry(id_priv, &listen_any_list, list) { 4917 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 4918 if (ret) 4919 goto free_listen; 4920 } 4921 mutex_unlock(&lock); 4922 4923 trace_cm_add_one(device); 4924 return 0; 4925 4926 free_listen: 4927 list_del(&cma_dev->list); 4928 mutex_unlock(&lock); 4929 4930 /* cma_process_remove() will delete to_destroy */ 4931 cma_process_remove(cma_dev); 4932 kfree(cma_dev->default_roce_tos); 4933 free_gid_type: 4934 kfree(cma_dev->default_gid_type); 4935 4936 free_cma_dev: 4937 kfree(cma_dev); 4938 return ret; 4939 } 4940 4941 static void cma_remove_one(struct ib_device *device, void *client_data) 4942 { 4943 struct cma_device *cma_dev = client_data; 4944 4945 trace_cm_remove_one(device); 4946 4947 mutex_lock(&lock); 4948 list_del(&cma_dev->list); 4949 mutex_unlock(&lock); 4950 4951 cma_process_remove(cma_dev); 4952 kfree(cma_dev->default_roce_tos); 4953 kfree(cma_dev->default_gid_type); 4954 kfree(cma_dev); 4955 } 4956 4957 static int cma_init_net(struct net *net) 4958 { 4959 struct cma_pernet *pernet = cma_pernet(net); 4960 4961 xa_init(&pernet->tcp_ps); 4962 xa_init(&pernet->udp_ps); 4963 xa_init(&pernet->ipoib_ps); 4964 xa_init(&pernet->ib_ps); 4965 4966 return 0; 4967 } 4968 4969 static void cma_exit_net(struct net *net) 4970 { 4971 struct cma_pernet *pernet = cma_pernet(net); 4972 4973 WARN_ON(!xa_empty(&pernet->tcp_ps)); 4974 WARN_ON(!xa_empty(&pernet->udp_ps)); 4975 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 4976 WARN_ON(!xa_empty(&pernet->ib_ps)); 4977 } 4978 4979 static struct pernet_operations cma_pernet_operations = { 4980 .init = cma_init_net, 4981 .exit = cma_exit_net, 4982 .id = &cma_pernet_id, 4983 .size = sizeof(struct cma_pernet), 4984 }; 4985 4986 static int __init cma_init(void) 4987 { 4988 int ret; 4989 4990 /* 4991 * There is a rare lock ordering dependency in cma_netdev_callback() 4992 * that only happens when bonding is enabled. Teach lockdep that rtnl 4993 * must never be nested under lock so it can find these without having 4994 * to test with bonding. 4995 */ 4996 if (IS_ENABLED(CONFIG_LOCKDEP)) { 4997 rtnl_lock(); 4998 mutex_lock(&lock); 4999 mutex_unlock(&lock); 5000 rtnl_unlock(); 5001 } 5002 5003 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5004 if (!cma_wq) 5005 return -ENOMEM; 5006 5007 ret = register_pernet_subsys(&cma_pernet_operations); 5008 if (ret) 5009 goto err_wq; 5010 5011 ib_sa_register_client(&sa_client); 5012 register_netdevice_notifier(&cma_nb); 5013 5014 ret = ib_register_client(&cma_client); 5015 if (ret) 5016 goto err; 5017 5018 ret = cma_configfs_init(); 5019 if (ret) 5020 goto err_ib; 5021 5022 return 0; 5023 5024 err_ib: 5025 ib_unregister_client(&cma_client); 5026 err: 5027 unregister_netdevice_notifier(&cma_nb); 5028 ib_sa_unregister_client(&sa_client); 5029 unregister_pernet_subsys(&cma_pernet_operations); 5030 err_wq: 5031 destroy_workqueue(cma_wq); 5032 return ret; 5033 } 5034 5035 static void __exit cma_cleanup(void) 5036 { 5037 cma_configfs_exit(); 5038 ib_unregister_client(&cma_client); 5039 unregister_netdevice_notifier(&cma_nb); 5040 ib_sa_unregister_client(&sa_client); 5041 unregister_pernet_subsys(&cma_pernet_operations); 5042 destroy_workqueue(cma_wq); 5043 } 5044 5045 module_init(cma_init); 5046 module_exit(cma_cleanup); 5047