1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 71 union ib_gid *mgid); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->list, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del(&id_priv->list); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int i; 770 771 cma_dev = NULL; 772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 773 dgid = (union ib_gid *) &addr->sib_addr; 774 pkey = ntohs(addr->sib_pkey); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cur_dev, &dev_list, list) { 778 rdma_for_each_port (cur_dev->device, p) { 779 if (!rdma_cap_af_ib(cur_dev->device, p)) 780 continue; 781 782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 783 continue; 784 785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 786 continue; 787 for (i = 0; !rdma_query_gid(cur_dev->device, 788 p, i, &gid); 789 i++) { 790 if (!memcmp(&gid, dgid, sizeof(gid))) { 791 cma_dev = cur_dev; 792 sgid = gid; 793 id_priv->id.port_num = p; 794 goto found; 795 } 796 797 if (!cma_dev && (gid.global.subnet_prefix == 798 dgid->global.subnet_prefix) && 799 port_state == IB_PORT_ACTIVE) { 800 cma_dev = cur_dev; 801 sgid = gid; 802 id_priv->id.port_num = p; 803 goto found; 804 } 805 } 806 } 807 } 808 mutex_unlock(&lock); 809 return -ENODEV; 810 811 found: 812 cma_attach_to_dev(id_priv, cma_dev); 813 rdma_restrack_add(&id_priv->res); 814 mutex_unlock(&lock); 815 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 816 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 817 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 818 return 0; 819 } 820 821 static void cma_id_get(struct rdma_id_private *id_priv) 822 { 823 refcount_inc(&id_priv->refcount); 824 } 825 826 static void cma_id_put(struct rdma_id_private *id_priv) 827 { 828 if (refcount_dec_and_test(&id_priv->refcount)) 829 complete(&id_priv->comp); 830 } 831 832 static struct rdma_id_private * 833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 834 void *context, enum rdma_ucm_port_space ps, 835 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 836 { 837 struct rdma_id_private *id_priv; 838 839 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 840 if (!id_priv) 841 return ERR_PTR(-ENOMEM); 842 843 id_priv->state = RDMA_CM_IDLE; 844 id_priv->id.context = context; 845 id_priv->id.event_handler = event_handler; 846 id_priv->id.ps = ps; 847 id_priv->id.qp_type = qp_type; 848 id_priv->tos_set = false; 849 id_priv->timeout_set = false; 850 id_priv->min_rnr_timer_set = false; 851 id_priv->gid_type = IB_GID_TYPE_IB; 852 spin_lock_init(&id_priv->lock); 853 mutex_init(&id_priv->qp_mutex); 854 init_completion(&id_priv->comp); 855 refcount_set(&id_priv->refcount, 1); 856 mutex_init(&id_priv->handler_mutex); 857 INIT_LIST_HEAD(&id_priv->listen_list); 858 INIT_LIST_HEAD(&id_priv->mc_list); 859 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 860 id_priv->id.route.addr.dev_addr.net = get_net(net); 861 id_priv->seq_num &= 0x00ffffff; 862 863 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 864 if (parent) 865 rdma_restrack_parent_name(&id_priv->res, &parent->res); 866 867 return id_priv; 868 } 869 870 struct rdma_cm_id * 871 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 872 void *context, enum rdma_ucm_port_space ps, 873 enum ib_qp_type qp_type, const char *caller) 874 { 875 struct rdma_id_private *ret; 876 877 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 878 if (IS_ERR(ret)) 879 return ERR_CAST(ret); 880 881 rdma_restrack_set_name(&ret->res, caller); 882 return &ret->id; 883 } 884 EXPORT_SYMBOL(__rdma_create_kernel_id); 885 886 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 887 void *context, 888 enum rdma_ucm_port_space ps, 889 enum ib_qp_type qp_type) 890 { 891 struct rdma_id_private *ret; 892 893 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 894 ps, qp_type, NULL); 895 if (IS_ERR(ret)) 896 return ERR_CAST(ret); 897 898 rdma_restrack_set_name(&ret->res, NULL); 899 return &ret->id; 900 } 901 EXPORT_SYMBOL(rdma_create_user_id); 902 903 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 904 { 905 struct ib_qp_attr qp_attr; 906 int qp_attr_mask, ret; 907 908 qp_attr.qp_state = IB_QPS_INIT; 909 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 910 if (ret) 911 return ret; 912 913 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 914 if (ret) 915 return ret; 916 917 qp_attr.qp_state = IB_QPS_RTR; 918 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 919 if (ret) 920 return ret; 921 922 qp_attr.qp_state = IB_QPS_RTS; 923 qp_attr.sq_psn = 0; 924 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 925 926 return ret; 927 } 928 929 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 930 { 931 struct ib_qp_attr qp_attr; 932 int qp_attr_mask, ret; 933 934 qp_attr.qp_state = IB_QPS_INIT; 935 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 936 if (ret) 937 return ret; 938 939 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 940 } 941 942 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 943 struct ib_qp_init_attr *qp_init_attr) 944 { 945 struct rdma_id_private *id_priv; 946 struct ib_qp *qp; 947 int ret; 948 949 id_priv = container_of(id, struct rdma_id_private, id); 950 if (id->device != pd->device) { 951 ret = -EINVAL; 952 goto out_err; 953 } 954 955 qp_init_attr->port_num = id->port_num; 956 qp = ib_create_qp(pd, qp_init_attr); 957 if (IS_ERR(qp)) { 958 ret = PTR_ERR(qp); 959 goto out_err; 960 } 961 962 if (id->qp_type == IB_QPT_UD) 963 ret = cma_init_ud_qp(id_priv, qp); 964 else 965 ret = cma_init_conn_qp(id_priv, qp); 966 if (ret) 967 goto out_destroy; 968 969 id->qp = qp; 970 id_priv->qp_num = qp->qp_num; 971 id_priv->srq = (qp->srq != NULL); 972 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 973 return 0; 974 out_destroy: 975 ib_destroy_qp(qp); 976 out_err: 977 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 978 return ret; 979 } 980 EXPORT_SYMBOL(rdma_create_qp); 981 982 void rdma_destroy_qp(struct rdma_cm_id *id) 983 { 984 struct rdma_id_private *id_priv; 985 986 id_priv = container_of(id, struct rdma_id_private, id); 987 trace_cm_qp_destroy(id_priv); 988 mutex_lock(&id_priv->qp_mutex); 989 ib_destroy_qp(id_priv->id.qp); 990 id_priv->id.qp = NULL; 991 mutex_unlock(&id_priv->qp_mutex); 992 } 993 EXPORT_SYMBOL(rdma_destroy_qp); 994 995 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 996 struct rdma_conn_param *conn_param) 997 { 998 struct ib_qp_attr qp_attr; 999 int qp_attr_mask, ret; 1000 1001 mutex_lock(&id_priv->qp_mutex); 1002 if (!id_priv->id.qp) { 1003 ret = 0; 1004 goto out; 1005 } 1006 1007 /* Need to update QP attributes from default values. */ 1008 qp_attr.qp_state = IB_QPS_INIT; 1009 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1010 if (ret) 1011 goto out; 1012 1013 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1014 if (ret) 1015 goto out; 1016 1017 qp_attr.qp_state = IB_QPS_RTR; 1018 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1019 if (ret) 1020 goto out; 1021 1022 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1023 1024 if (conn_param) 1025 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1026 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1027 out: 1028 mutex_unlock(&id_priv->qp_mutex); 1029 return ret; 1030 } 1031 1032 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1033 struct rdma_conn_param *conn_param) 1034 { 1035 struct ib_qp_attr qp_attr; 1036 int qp_attr_mask, ret; 1037 1038 mutex_lock(&id_priv->qp_mutex); 1039 if (!id_priv->id.qp) { 1040 ret = 0; 1041 goto out; 1042 } 1043 1044 qp_attr.qp_state = IB_QPS_RTS; 1045 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1046 if (ret) 1047 goto out; 1048 1049 if (conn_param) 1050 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1051 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1052 out: 1053 mutex_unlock(&id_priv->qp_mutex); 1054 return ret; 1055 } 1056 1057 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1058 { 1059 struct ib_qp_attr qp_attr; 1060 int ret; 1061 1062 mutex_lock(&id_priv->qp_mutex); 1063 if (!id_priv->id.qp) { 1064 ret = 0; 1065 goto out; 1066 } 1067 1068 qp_attr.qp_state = IB_QPS_ERR; 1069 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1070 out: 1071 mutex_unlock(&id_priv->qp_mutex); 1072 return ret; 1073 } 1074 1075 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1076 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1077 { 1078 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1079 int ret; 1080 u16 pkey; 1081 1082 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1083 pkey = 0xffff; 1084 else 1085 pkey = ib_addr_get_pkey(dev_addr); 1086 1087 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1088 pkey, &qp_attr->pkey_index); 1089 if (ret) 1090 return ret; 1091 1092 qp_attr->port_num = id_priv->id.port_num; 1093 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1094 1095 if (id_priv->id.qp_type == IB_QPT_UD) { 1096 ret = cma_set_qkey(id_priv, 0); 1097 if (ret) 1098 return ret; 1099 1100 qp_attr->qkey = id_priv->qkey; 1101 *qp_attr_mask |= IB_QP_QKEY; 1102 } else { 1103 qp_attr->qp_access_flags = 0; 1104 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1105 } 1106 return 0; 1107 } 1108 1109 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1110 int *qp_attr_mask) 1111 { 1112 struct rdma_id_private *id_priv; 1113 int ret = 0; 1114 1115 id_priv = container_of(id, struct rdma_id_private, id); 1116 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1117 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1118 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1119 else 1120 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1121 qp_attr_mask); 1122 1123 if (qp_attr->qp_state == IB_QPS_RTR) 1124 qp_attr->rq_psn = id_priv->seq_num; 1125 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1126 if (!id_priv->cm_id.iw) { 1127 qp_attr->qp_access_flags = 0; 1128 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1129 } else 1130 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1131 qp_attr_mask); 1132 qp_attr->port_num = id_priv->id.port_num; 1133 *qp_attr_mask |= IB_QP_PORT; 1134 } else { 1135 ret = -ENOSYS; 1136 } 1137 1138 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1139 qp_attr->timeout = id_priv->timeout; 1140 1141 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1142 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(rdma_init_qp_attr); 1147 1148 static inline bool cma_zero_addr(const struct sockaddr *addr) 1149 { 1150 switch (addr->sa_family) { 1151 case AF_INET: 1152 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1153 case AF_INET6: 1154 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1155 case AF_IB: 1156 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1157 default: 1158 return false; 1159 } 1160 } 1161 1162 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1163 { 1164 switch (addr->sa_family) { 1165 case AF_INET: 1166 return ipv4_is_loopback( 1167 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1168 case AF_INET6: 1169 return ipv6_addr_loopback( 1170 &((struct sockaddr_in6 *)addr)->sin6_addr); 1171 case AF_IB: 1172 return ib_addr_loopback( 1173 &((struct sockaddr_ib *)addr)->sib_addr); 1174 default: 1175 return false; 1176 } 1177 } 1178 1179 static inline bool cma_any_addr(const struct sockaddr *addr) 1180 { 1181 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1182 } 1183 1184 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1185 { 1186 if (src->sa_family != dst->sa_family) 1187 return -1; 1188 1189 switch (src->sa_family) { 1190 case AF_INET: 1191 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1192 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1193 case AF_INET6: { 1194 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1195 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1196 bool link_local; 1197 1198 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1199 &dst_addr6->sin6_addr)) 1200 return 1; 1201 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1202 IPV6_ADDR_LINKLOCAL; 1203 /* Link local must match their scope_ids */ 1204 return link_local ? (src_addr6->sin6_scope_id != 1205 dst_addr6->sin6_scope_id) : 1206 0; 1207 } 1208 1209 default: 1210 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1211 &((struct sockaddr_ib *) dst)->sib_addr); 1212 } 1213 } 1214 1215 static __be16 cma_port(const struct sockaddr *addr) 1216 { 1217 struct sockaddr_ib *sib; 1218 1219 switch (addr->sa_family) { 1220 case AF_INET: 1221 return ((struct sockaddr_in *) addr)->sin_port; 1222 case AF_INET6: 1223 return ((struct sockaddr_in6 *) addr)->sin6_port; 1224 case AF_IB: 1225 sib = (struct sockaddr_ib *) addr; 1226 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1227 be64_to_cpu(sib->sib_sid_mask))); 1228 default: 1229 return 0; 1230 } 1231 } 1232 1233 static inline int cma_any_port(const struct sockaddr *addr) 1234 { 1235 return !cma_port(addr); 1236 } 1237 1238 static void cma_save_ib_info(struct sockaddr *src_addr, 1239 struct sockaddr *dst_addr, 1240 const struct rdma_cm_id *listen_id, 1241 const struct sa_path_rec *path) 1242 { 1243 struct sockaddr_ib *listen_ib, *ib; 1244 1245 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1246 if (src_addr) { 1247 ib = (struct sockaddr_ib *)src_addr; 1248 ib->sib_family = AF_IB; 1249 if (path) { 1250 ib->sib_pkey = path->pkey; 1251 ib->sib_flowinfo = path->flow_label; 1252 memcpy(&ib->sib_addr, &path->sgid, 16); 1253 ib->sib_sid = path->service_id; 1254 ib->sib_scope_id = 0; 1255 } else { 1256 ib->sib_pkey = listen_ib->sib_pkey; 1257 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1258 ib->sib_addr = listen_ib->sib_addr; 1259 ib->sib_sid = listen_ib->sib_sid; 1260 ib->sib_scope_id = listen_ib->sib_scope_id; 1261 } 1262 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1263 } 1264 if (dst_addr) { 1265 ib = (struct sockaddr_ib *)dst_addr; 1266 ib->sib_family = AF_IB; 1267 if (path) { 1268 ib->sib_pkey = path->pkey; 1269 ib->sib_flowinfo = path->flow_label; 1270 memcpy(&ib->sib_addr, &path->dgid, 16); 1271 } 1272 } 1273 } 1274 1275 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1276 struct sockaddr_in *dst_addr, 1277 struct cma_hdr *hdr, 1278 __be16 local_port) 1279 { 1280 if (src_addr) { 1281 *src_addr = (struct sockaddr_in) { 1282 .sin_family = AF_INET, 1283 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1284 .sin_port = local_port, 1285 }; 1286 } 1287 1288 if (dst_addr) { 1289 *dst_addr = (struct sockaddr_in) { 1290 .sin_family = AF_INET, 1291 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1292 .sin_port = hdr->port, 1293 }; 1294 } 1295 } 1296 1297 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1298 struct sockaddr_in6 *dst_addr, 1299 struct cma_hdr *hdr, 1300 __be16 local_port) 1301 { 1302 if (src_addr) { 1303 *src_addr = (struct sockaddr_in6) { 1304 .sin6_family = AF_INET6, 1305 .sin6_addr = hdr->dst_addr.ip6, 1306 .sin6_port = local_port, 1307 }; 1308 } 1309 1310 if (dst_addr) { 1311 *dst_addr = (struct sockaddr_in6) { 1312 .sin6_family = AF_INET6, 1313 .sin6_addr = hdr->src_addr.ip6, 1314 .sin6_port = hdr->port, 1315 }; 1316 } 1317 } 1318 1319 static u16 cma_port_from_service_id(__be64 service_id) 1320 { 1321 return (u16)be64_to_cpu(service_id); 1322 } 1323 1324 static int cma_save_ip_info(struct sockaddr *src_addr, 1325 struct sockaddr *dst_addr, 1326 const struct ib_cm_event *ib_event, 1327 __be64 service_id) 1328 { 1329 struct cma_hdr *hdr; 1330 __be16 port; 1331 1332 hdr = ib_event->private_data; 1333 if (hdr->cma_version != CMA_VERSION) 1334 return -EINVAL; 1335 1336 port = htons(cma_port_from_service_id(service_id)); 1337 1338 switch (cma_get_ip_ver(hdr)) { 1339 case 4: 1340 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1341 (struct sockaddr_in *)dst_addr, hdr, port); 1342 break; 1343 case 6: 1344 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1345 (struct sockaddr_in6 *)dst_addr, hdr, port); 1346 break; 1347 default: 1348 return -EAFNOSUPPORT; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int cma_save_net_info(struct sockaddr *src_addr, 1355 struct sockaddr *dst_addr, 1356 const struct rdma_cm_id *listen_id, 1357 const struct ib_cm_event *ib_event, 1358 sa_family_t sa_family, __be64 service_id) 1359 { 1360 if (sa_family == AF_IB) { 1361 if (ib_event->event == IB_CM_REQ_RECEIVED) 1362 cma_save_ib_info(src_addr, dst_addr, listen_id, 1363 ib_event->param.req_rcvd.primary_path); 1364 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1365 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1366 return 0; 1367 } 1368 1369 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1370 } 1371 1372 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1373 struct cma_req_info *req) 1374 { 1375 const struct ib_cm_req_event_param *req_param = 1376 &ib_event->param.req_rcvd; 1377 const struct ib_cm_sidr_req_event_param *sidr_param = 1378 &ib_event->param.sidr_req_rcvd; 1379 1380 switch (ib_event->event) { 1381 case IB_CM_REQ_RECEIVED: 1382 req->device = req_param->listen_id->device; 1383 req->port = req_param->port; 1384 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1385 sizeof(req->local_gid)); 1386 req->has_gid = true; 1387 req->service_id = req_param->primary_path->service_id; 1388 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1389 if (req->pkey != req_param->bth_pkey) 1390 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1391 "RDMA CMA: in the future this may cause the request to be dropped\n", 1392 req_param->bth_pkey, req->pkey); 1393 break; 1394 case IB_CM_SIDR_REQ_RECEIVED: 1395 req->device = sidr_param->listen_id->device; 1396 req->port = sidr_param->port; 1397 req->has_gid = false; 1398 req->service_id = sidr_param->service_id; 1399 req->pkey = sidr_param->pkey; 1400 if (req->pkey != sidr_param->bth_pkey) 1401 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1402 "RDMA CMA: in the future this may cause the request to be dropped\n", 1403 sidr_param->bth_pkey, req->pkey); 1404 break; 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1413 const struct sockaddr_in *dst_addr, 1414 const struct sockaddr_in *src_addr) 1415 { 1416 __be32 daddr = dst_addr->sin_addr.s_addr, 1417 saddr = src_addr->sin_addr.s_addr; 1418 struct fib_result res; 1419 struct flowi4 fl4; 1420 int err; 1421 bool ret; 1422 1423 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1424 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1425 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1426 ipv4_is_loopback(saddr)) 1427 return false; 1428 1429 memset(&fl4, 0, sizeof(fl4)); 1430 fl4.flowi4_iif = net_dev->ifindex; 1431 fl4.daddr = daddr; 1432 fl4.saddr = saddr; 1433 1434 rcu_read_lock(); 1435 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1436 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1437 rcu_read_unlock(); 1438 1439 return ret; 1440 } 1441 1442 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1443 const struct sockaddr_in6 *dst_addr, 1444 const struct sockaddr_in6 *src_addr) 1445 { 1446 #if IS_ENABLED(CONFIG_IPV6) 1447 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1448 IPV6_ADDR_LINKLOCAL; 1449 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1450 &src_addr->sin6_addr, net_dev->ifindex, 1451 NULL, strict); 1452 bool ret; 1453 1454 if (!rt) 1455 return false; 1456 1457 ret = rt->rt6i_idev->dev == net_dev; 1458 ip6_rt_put(rt); 1459 1460 return ret; 1461 #else 1462 return false; 1463 #endif 1464 } 1465 1466 static bool validate_net_dev(struct net_device *net_dev, 1467 const struct sockaddr *daddr, 1468 const struct sockaddr *saddr) 1469 { 1470 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1471 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1472 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1473 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1474 1475 switch (daddr->sa_family) { 1476 case AF_INET: 1477 return saddr->sa_family == AF_INET && 1478 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1479 1480 case AF_INET6: 1481 return saddr->sa_family == AF_INET6 && 1482 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1483 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 static struct net_device * 1490 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1491 { 1492 const struct ib_gid_attr *sgid_attr = NULL; 1493 struct net_device *ndev; 1494 1495 if (ib_event->event == IB_CM_REQ_RECEIVED) 1496 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1497 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1498 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1499 1500 if (!sgid_attr) 1501 return NULL; 1502 1503 rcu_read_lock(); 1504 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1505 if (IS_ERR(ndev)) 1506 ndev = NULL; 1507 else 1508 dev_hold(ndev); 1509 rcu_read_unlock(); 1510 return ndev; 1511 } 1512 1513 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1514 struct cma_req_info *req) 1515 { 1516 struct sockaddr *listen_addr = 1517 (struct sockaddr *)&req->listen_addr_storage; 1518 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1519 struct net_device *net_dev; 1520 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1521 int err; 1522 1523 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1524 req->service_id); 1525 if (err) 1526 return ERR_PTR(err); 1527 1528 if (rdma_protocol_roce(req->device, req->port)) 1529 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1530 else 1531 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1532 req->pkey, 1533 gid, listen_addr); 1534 if (!net_dev) 1535 return ERR_PTR(-ENODEV); 1536 1537 return net_dev; 1538 } 1539 1540 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1541 { 1542 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1543 } 1544 1545 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1546 const struct cma_hdr *hdr) 1547 { 1548 struct sockaddr *addr = cma_src_addr(id_priv); 1549 __be32 ip4_addr; 1550 struct in6_addr ip6_addr; 1551 1552 if (cma_any_addr(addr) && !id_priv->afonly) 1553 return true; 1554 1555 switch (addr->sa_family) { 1556 case AF_INET: 1557 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1558 if (cma_get_ip_ver(hdr) != 4) 1559 return false; 1560 if (!cma_any_addr(addr) && 1561 hdr->dst_addr.ip4.addr != ip4_addr) 1562 return false; 1563 break; 1564 case AF_INET6: 1565 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1566 if (cma_get_ip_ver(hdr) != 6) 1567 return false; 1568 if (!cma_any_addr(addr) && 1569 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1570 return false; 1571 break; 1572 case AF_IB: 1573 return true; 1574 default: 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1582 { 1583 struct ib_device *device = id->device; 1584 const u32 port_num = id->port_num ?: rdma_start_port(device); 1585 1586 return rdma_protocol_roce(device, port_num); 1587 } 1588 1589 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1590 { 1591 const struct sockaddr *daddr = 1592 (const struct sockaddr *)&req->listen_addr_storage; 1593 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1594 1595 /* Returns true if the req is for IPv6 link local */ 1596 return (daddr->sa_family == AF_INET6 && 1597 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1598 } 1599 1600 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1601 const struct net_device *net_dev, 1602 const struct cma_req_info *req) 1603 { 1604 const struct rdma_addr *addr = &id->route.addr; 1605 1606 if (!net_dev) 1607 /* This request is an AF_IB request */ 1608 return (!id->port_num || id->port_num == req->port) && 1609 (addr->src_addr.ss_family == AF_IB); 1610 1611 /* 1612 * If the request is not for IPv6 link local, allow matching 1613 * request to any netdevice of the one or multiport rdma device. 1614 */ 1615 if (!cma_is_req_ipv6_ll(req)) 1616 return true; 1617 /* 1618 * Net namespaces must match, and if the listner is listening 1619 * on a specific netdevice than netdevice must match as well. 1620 */ 1621 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1622 (!!addr->dev_addr.bound_dev_if == 1623 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1624 return true; 1625 else 1626 return false; 1627 } 1628 1629 static struct rdma_id_private *cma_find_listener( 1630 const struct rdma_bind_list *bind_list, 1631 const struct ib_cm_id *cm_id, 1632 const struct ib_cm_event *ib_event, 1633 const struct cma_req_info *req, 1634 const struct net_device *net_dev) 1635 { 1636 struct rdma_id_private *id_priv, *id_priv_dev; 1637 1638 lockdep_assert_held(&lock); 1639 1640 if (!bind_list) 1641 return ERR_PTR(-EINVAL); 1642 1643 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1644 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1645 if (id_priv->id.device == cm_id->device && 1646 cma_match_net_dev(&id_priv->id, net_dev, req)) 1647 return id_priv; 1648 list_for_each_entry(id_priv_dev, 1649 &id_priv->listen_list, 1650 listen_list) { 1651 if (id_priv_dev->id.device == cm_id->device && 1652 cma_match_net_dev(&id_priv_dev->id, 1653 net_dev, req)) 1654 return id_priv_dev; 1655 } 1656 } 1657 } 1658 1659 return ERR_PTR(-EINVAL); 1660 } 1661 1662 static struct rdma_id_private * 1663 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1664 const struct ib_cm_event *ib_event, 1665 struct cma_req_info *req, 1666 struct net_device **net_dev) 1667 { 1668 struct rdma_bind_list *bind_list; 1669 struct rdma_id_private *id_priv; 1670 int err; 1671 1672 err = cma_save_req_info(ib_event, req); 1673 if (err) 1674 return ERR_PTR(err); 1675 1676 *net_dev = cma_get_net_dev(ib_event, req); 1677 if (IS_ERR(*net_dev)) { 1678 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1679 /* Assuming the protocol is AF_IB */ 1680 *net_dev = NULL; 1681 } else { 1682 return ERR_CAST(*net_dev); 1683 } 1684 } 1685 1686 mutex_lock(&lock); 1687 /* 1688 * Net namespace might be getting deleted while route lookup, 1689 * cm_id lookup is in progress. Therefore, perform netdevice 1690 * validation, cm_id lookup under rcu lock. 1691 * RCU lock along with netdevice state check, synchronizes with 1692 * netdevice migrating to different net namespace and also avoids 1693 * case where net namespace doesn't get deleted while lookup is in 1694 * progress. 1695 * If the device state is not IFF_UP, its properties such as ifindex 1696 * and nd_net cannot be trusted to remain valid without rcu lock. 1697 * net/core/dev.c change_net_namespace() ensures to synchronize with 1698 * ongoing operations on net device after device is closed using 1699 * synchronize_net(). 1700 */ 1701 rcu_read_lock(); 1702 if (*net_dev) { 1703 /* 1704 * If netdevice is down, it is likely that it is administratively 1705 * down or it might be migrating to different namespace. 1706 * In that case avoid further processing, as the net namespace 1707 * or ifindex may change. 1708 */ 1709 if (((*net_dev)->flags & IFF_UP) == 0) { 1710 id_priv = ERR_PTR(-EHOSTUNREACH); 1711 goto err; 1712 } 1713 1714 if (!validate_net_dev(*net_dev, 1715 (struct sockaddr *)&req->listen_addr_storage, 1716 (struct sockaddr *)&req->src_addr_storage)) { 1717 id_priv = ERR_PTR(-EHOSTUNREACH); 1718 goto err; 1719 } 1720 } 1721 1722 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1723 rdma_ps_from_service_id(req->service_id), 1724 cma_port_from_service_id(req->service_id)); 1725 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1726 err: 1727 rcu_read_unlock(); 1728 mutex_unlock(&lock); 1729 if (IS_ERR(id_priv) && *net_dev) { 1730 dev_put(*net_dev); 1731 *net_dev = NULL; 1732 } 1733 return id_priv; 1734 } 1735 1736 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1737 { 1738 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1739 } 1740 1741 static void cma_cancel_route(struct rdma_id_private *id_priv) 1742 { 1743 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1744 if (id_priv->query) 1745 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1746 } 1747 } 1748 1749 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1750 { 1751 struct rdma_id_private *dev_id_priv; 1752 1753 /* 1754 * Remove from listen_any_list to prevent added devices from spawning 1755 * additional listen requests. 1756 */ 1757 mutex_lock(&lock); 1758 list_del(&id_priv->list); 1759 1760 while (!list_empty(&id_priv->listen_list)) { 1761 dev_id_priv = list_entry(id_priv->listen_list.next, 1762 struct rdma_id_private, listen_list); 1763 /* sync with device removal to avoid duplicate destruction */ 1764 list_del_init(&dev_id_priv->list); 1765 list_del(&dev_id_priv->listen_list); 1766 mutex_unlock(&lock); 1767 1768 rdma_destroy_id(&dev_id_priv->id); 1769 mutex_lock(&lock); 1770 } 1771 mutex_unlock(&lock); 1772 } 1773 1774 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1775 enum rdma_cm_state state) 1776 { 1777 switch (state) { 1778 case RDMA_CM_ADDR_QUERY: 1779 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1780 break; 1781 case RDMA_CM_ROUTE_QUERY: 1782 cma_cancel_route(id_priv); 1783 break; 1784 case RDMA_CM_LISTEN: 1785 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1786 cma_cancel_listens(id_priv); 1787 break; 1788 default: 1789 break; 1790 } 1791 } 1792 1793 static void cma_release_port(struct rdma_id_private *id_priv) 1794 { 1795 struct rdma_bind_list *bind_list = id_priv->bind_list; 1796 struct net *net = id_priv->id.route.addr.dev_addr.net; 1797 1798 if (!bind_list) 1799 return; 1800 1801 mutex_lock(&lock); 1802 hlist_del(&id_priv->node); 1803 if (hlist_empty(&bind_list->owners)) { 1804 cma_ps_remove(net, bind_list->ps, bind_list->port); 1805 kfree(bind_list); 1806 } 1807 mutex_unlock(&lock); 1808 } 1809 1810 static void destroy_mc(struct rdma_id_private *id_priv, 1811 struct cma_multicast *mc) 1812 { 1813 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1814 ib_sa_free_multicast(mc->sa_mc); 1815 1816 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1817 struct rdma_dev_addr *dev_addr = 1818 &id_priv->id.route.addr.dev_addr; 1819 struct net_device *ndev = NULL; 1820 1821 if (dev_addr->bound_dev_if) 1822 ndev = dev_get_by_index(dev_addr->net, 1823 dev_addr->bound_dev_if); 1824 if (ndev) { 1825 union ib_gid mgid; 1826 1827 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1828 &mgid); 1829 cma_igmp_send(ndev, &mgid, false); 1830 dev_put(ndev); 1831 } 1832 1833 cancel_work_sync(&mc->iboe_join.work); 1834 } 1835 kfree(mc); 1836 } 1837 1838 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1839 { 1840 struct cma_multicast *mc; 1841 1842 while (!list_empty(&id_priv->mc_list)) { 1843 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1844 list); 1845 list_del(&mc->list); 1846 destroy_mc(id_priv, mc); 1847 } 1848 } 1849 1850 static void _destroy_id(struct rdma_id_private *id_priv, 1851 enum rdma_cm_state state) 1852 { 1853 cma_cancel_operation(id_priv, state); 1854 1855 rdma_restrack_del(&id_priv->res); 1856 if (id_priv->cma_dev) { 1857 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1858 if (id_priv->cm_id.ib) 1859 ib_destroy_cm_id(id_priv->cm_id.ib); 1860 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1861 if (id_priv->cm_id.iw) 1862 iw_destroy_cm_id(id_priv->cm_id.iw); 1863 } 1864 cma_leave_mc_groups(id_priv); 1865 cma_release_dev(id_priv); 1866 } 1867 1868 cma_release_port(id_priv); 1869 cma_id_put(id_priv); 1870 wait_for_completion(&id_priv->comp); 1871 1872 if (id_priv->internal_id) 1873 cma_id_put(id_priv->id.context); 1874 1875 kfree(id_priv->id.route.path_rec); 1876 1877 put_net(id_priv->id.route.addr.dev_addr.net); 1878 kfree(id_priv); 1879 } 1880 1881 /* 1882 * destroy an ID from within the handler_mutex. This ensures that no other 1883 * handlers can start running concurrently. 1884 */ 1885 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1886 __releases(&idprv->handler_mutex) 1887 { 1888 enum rdma_cm_state state; 1889 unsigned long flags; 1890 1891 trace_cm_id_destroy(id_priv); 1892 1893 /* 1894 * Setting the state to destroyed under the handler mutex provides a 1895 * fence against calling handler callbacks. If this is invoked due to 1896 * the failure of a handler callback then it guarentees that no future 1897 * handlers will be called. 1898 */ 1899 lockdep_assert_held(&id_priv->handler_mutex); 1900 spin_lock_irqsave(&id_priv->lock, flags); 1901 state = id_priv->state; 1902 id_priv->state = RDMA_CM_DESTROYING; 1903 spin_unlock_irqrestore(&id_priv->lock, flags); 1904 mutex_unlock(&id_priv->handler_mutex); 1905 _destroy_id(id_priv, state); 1906 } 1907 1908 void rdma_destroy_id(struct rdma_cm_id *id) 1909 { 1910 struct rdma_id_private *id_priv = 1911 container_of(id, struct rdma_id_private, id); 1912 1913 mutex_lock(&id_priv->handler_mutex); 1914 destroy_id_handler_unlock(id_priv); 1915 } 1916 EXPORT_SYMBOL(rdma_destroy_id); 1917 1918 static int cma_rep_recv(struct rdma_id_private *id_priv) 1919 { 1920 int ret; 1921 1922 ret = cma_modify_qp_rtr(id_priv, NULL); 1923 if (ret) 1924 goto reject; 1925 1926 ret = cma_modify_qp_rts(id_priv, NULL); 1927 if (ret) 1928 goto reject; 1929 1930 trace_cm_send_rtu(id_priv); 1931 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1932 if (ret) 1933 goto reject; 1934 1935 return 0; 1936 reject: 1937 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1938 cma_modify_qp_err(id_priv); 1939 trace_cm_send_rej(id_priv); 1940 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1941 NULL, 0, NULL, 0); 1942 return ret; 1943 } 1944 1945 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1946 const struct ib_cm_rep_event_param *rep_data, 1947 void *private_data) 1948 { 1949 event->param.conn.private_data = private_data; 1950 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1951 event->param.conn.responder_resources = rep_data->responder_resources; 1952 event->param.conn.initiator_depth = rep_data->initiator_depth; 1953 event->param.conn.flow_control = rep_data->flow_control; 1954 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1955 event->param.conn.srq = rep_data->srq; 1956 event->param.conn.qp_num = rep_data->remote_qpn; 1957 1958 event->ece.vendor_id = rep_data->ece.vendor_id; 1959 event->ece.attr_mod = rep_data->ece.attr_mod; 1960 } 1961 1962 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1963 struct rdma_cm_event *event) 1964 { 1965 int ret; 1966 1967 lockdep_assert_held(&id_priv->handler_mutex); 1968 1969 trace_cm_event_handler(id_priv, event); 1970 ret = id_priv->id.event_handler(&id_priv->id, event); 1971 trace_cm_event_done(id_priv, event, ret); 1972 return ret; 1973 } 1974 1975 static int cma_ib_handler(struct ib_cm_id *cm_id, 1976 const struct ib_cm_event *ib_event) 1977 { 1978 struct rdma_id_private *id_priv = cm_id->context; 1979 struct rdma_cm_event event = {}; 1980 enum rdma_cm_state state; 1981 int ret; 1982 1983 mutex_lock(&id_priv->handler_mutex); 1984 state = READ_ONCE(id_priv->state); 1985 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1986 state != RDMA_CM_CONNECT) || 1987 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1988 state != RDMA_CM_DISCONNECT)) 1989 goto out; 1990 1991 switch (ib_event->event) { 1992 case IB_CM_REQ_ERROR: 1993 case IB_CM_REP_ERROR: 1994 event.event = RDMA_CM_EVENT_UNREACHABLE; 1995 event.status = -ETIMEDOUT; 1996 break; 1997 case IB_CM_REP_RECEIVED: 1998 if (state == RDMA_CM_CONNECT && 1999 (id_priv->id.qp_type != IB_QPT_UD)) { 2000 trace_cm_send_mra(id_priv); 2001 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2002 } 2003 if (id_priv->id.qp) { 2004 event.status = cma_rep_recv(id_priv); 2005 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2006 RDMA_CM_EVENT_ESTABLISHED; 2007 } else { 2008 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2009 } 2010 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2011 ib_event->private_data); 2012 break; 2013 case IB_CM_RTU_RECEIVED: 2014 case IB_CM_USER_ESTABLISHED: 2015 event.event = RDMA_CM_EVENT_ESTABLISHED; 2016 break; 2017 case IB_CM_DREQ_ERROR: 2018 event.status = -ETIMEDOUT; 2019 fallthrough; 2020 case IB_CM_DREQ_RECEIVED: 2021 case IB_CM_DREP_RECEIVED: 2022 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2023 RDMA_CM_DISCONNECT)) 2024 goto out; 2025 event.event = RDMA_CM_EVENT_DISCONNECTED; 2026 break; 2027 case IB_CM_TIMEWAIT_EXIT: 2028 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2029 break; 2030 case IB_CM_MRA_RECEIVED: 2031 /* ignore event */ 2032 goto out; 2033 case IB_CM_REJ_RECEIVED: 2034 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2035 ib_event->param.rej_rcvd.reason)); 2036 cma_modify_qp_err(id_priv); 2037 event.status = ib_event->param.rej_rcvd.reason; 2038 event.event = RDMA_CM_EVENT_REJECTED; 2039 event.param.conn.private_data = ib_event->private_data; 2040 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2041 break; 2042 default: 2043 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2044 ib_event->event); 2045 goto out; 2046 } 2047 2048 ret = cma_cm_event_handler(id_priv, &event); 2049 if (ret) { 2050 /* Destroy the CM ID by returning a non-zero value. */ 2051 id_priv->cm_id.ib = NULL; 2052 destroy_id_handler_unlock(id_priv); 2053 return ret; 2054 } 2055 out: 2056 mutex_unlock(&id_priv->handler_mutex); 2057 return 0; 2058 } 2059 2060 static struct rdma_id_private * 2061 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2062 const struct ib_cm_event *ib_event, 2063 struct net_device *net_dev) 2064 { 2065 struct rdma_id_private *listen_id_priv; 2066 struct rdma_id_private *id_priv; 2067 struct rdma_cm_id *id; 2068 struct rdma_route *rt; 2069 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2070 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2071 const __be64 service_id = 2072 ib_event->param.req_rcvd.primary_path->service_id; 2073 int ret; 2074 2075 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2076 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2077 listen_id->event_handler, listen_id->context, 2078 listen_id->ps, 2079 ib_event->param.req_rcvd.qp_type, 2080 listen_id_priv); 2081 if (IS_ERR(id_priv)) 2082 return NULL; 2083 2084 id = &id_priv->id; 2085 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2086 (struct sockaddr *)&id->route.addr.dst_addr, 2087 listen_id, ib_event, ss_family, service_id)) 2088 goto err; 2089 2090 rt = &id->route; 2091 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2092 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2093 GFP_KERNEL); 2094 if (!rt->path_rec) 2095 goto err; 2096 2097 rt->path_rec[0] = *path; 2098 if (rt->num_paths == 2) 2099 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2100 2101 if (net_dev) { 2102 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2103 } else { 2104 if (!cma_protocol_roce(listen_id) && 2105 cma_any_addr(cma_src_addr(id_priv))) { 2106 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2107 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2108 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2109 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2110 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2111 if (ret) 2112 goto err; 2113 } 2114 } 2115 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2116 2117 id_priv->state = RDMA_CM_CONNECT; 2118 return id_priv; 2119 2120 err: 2121 rdma_destroy_id(id); 2122 return NULL; 2123 } 2124 2125 static struct rdma_id_private * 2126 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2127 const struct ib_cm_event *ib_event, 2128 struct net_device *net_dev) 2129 { 2130 const struct rdma_id_private *listen_id_priv; 2131 struct rdma_id_private *id_priv; 2132 struct rdma_cm_id *id; 2133 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2134 struct net *net = listen_id->route.addr.dev_addr.net; 2135 int ret; 2136 2137 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2138 id_priv = __rdma_create_id(net, listen_id->event_handler, 2139 listen_id->context, listen_id->ps, IB_QPT_UD, 2140 listen_id_priv); 2141 if (IS_ERR(id_priv)) 2142 return NULL; 2143 2144 id = &id_priv->id; 2145 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2146 (struct sockaddr *)&id->route.addr.dst_addr, 2147 listen_id, ib_event, ss_family, 2148 ib_event->param.sidr_req_rcvd.service_id)) 2149 goto err; 2150 2151 if (net_dev) { 2152 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2153 } else { 2154 if (!cma_any_addr(cma_src_addr(id_priv))) { 2155 ret = cma_translate_addr(cma_src_addr(id_priv), 2156 &id->route.addr.dev_addr); 2157 if (ret) 2158 goto err; 2159 } 2160 } 2161 2162 id_priv->state = RDMA_CM_CONNECT; 2163 return id_priv; 2164 err: 2165 rdma_destroy_id(id); 2166 return NULL; 2167 } 2168 2169 static void cma_set_req_event_data(struct rdma_cm_event *event, 2170 const struct ib_cm_req_event_param *req_data, 2171 void *private_data, int offset) 2172 { 2173 event->param.conn.private_data = private_data + offset; 2174 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2175 event->param.conn.responder_resources = req_data->responder_resources; 2176 event->param.conn.initiator_depth = req_data->initiator_depth; 2177 event->param.conn.flow_control = req_data->flow_control; 2178 event->param.conn.retry_count = req_data->retry_count; 2179 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2180 event->param.conn.srq = req_data->srq; 2181 event->param.conn.qp_num = req_data->remote_qpn; 2182 2183 event->ece.vendor_id = req_data->ece.vendor_id; 2184 event->ece.attr_mod = req_data->ece.attr_mod; 2185 } 2186 2187 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2188 const struct ib_cm_event *ib_event) 2189 { 2190 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2191 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2192 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2193 (id->qp_type == IB_QPT_UD)) || 2194 (!id->qp_type)); 2195 } 2196 2197 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2198 const struct ib_cm_event *ib_event) 2199 { 2200 struct rdma_id_private *listen_id, *conn_id = NULL; 2201 struct rdma_cm_event event = {}; 2202 struct cma_req_info req = {}; 2203 struct net_device *net_dev; 2204 u8 offset; 2205 int ret; 2206 2207 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2208 if (IS_ERR(listen_id)) 2209 return PTR_ERR(listen_id); 2210 2211 trace_cm_req_handler(listen_id, ib_event->event); 2212 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2213 ret = -EINVAL; 2214 goto net_dev_put; 2215 } 2216 2217 mutex_lock(&listen_id->handler_mutex); 2218 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2219 ret = -ECONNABORTED; 2220 goto err_unlock; 2221 } 2222 2223 offset = cma_user_data_offset(listen_id); 2224 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2225 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2226 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2227 event.param.ud.private_data = ib_event->private_data + offset; 2228 event.param.ud.private_data_len = 2229 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2230 } else { 2231 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2232 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2233 ib_event->private_data, offset); 2234 } 2235 if (!conn_id) { 2236 ret = -ENOMEM; 2237 goto err_unlock; 2238 } 2239 2240 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2241 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2242 if (ret) { 2243 destroy_id_handler_unlock(conn_id); 2244 goto err_unlock; 2245 } 2246 2247 conn_id->cm_id.ib = cm_id; 2248 cm_id->context = conn_id; 2249 cm_id->cm_handler = cma_ib_handler; 2250 2251 ret = cma_cm_event_handler(conn_id, &event); 2252 if (ret) { 2253 /* Destroy the CM ID by returning a non-zero value. */ 2254 conn_id->cm_id.ib = NULL; 2255 mutex_unlock(&listen_id->handler_mutex); 2256 destroy_id_handler_unlock(conn_id); 2257 goto net_dev_put; 2258 } 2259 2260 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2261 conn_id->id.qp_type != IB_QPT_UD) { 2262 trace_cm_send_mra(cm_id->context); 2263 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2264 } 2265 mutex_unlock(&conn_id->handler_mutex); 2266 2267 err_unlock: 2268 mutex_unlock(&listen_id->handler_mutex); 2269 2270 net_dev_put: 2271 if (net_dev) 2272 dev_put(net_dev); 2273 2274 return ret; 2275 } 2276 2277 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2278 { 2279 if (addr->sa_family == AF_IB) 2280 return ((struct sockaddr_ib *) addr)->sib_sid; 2281 2282 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2283 } 2284 EXPORT_SYMBOL(rdma_get_service_id); 2285 2286 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2287 union ib_gid *dgid) 2288 { 2289 struct rdma_addr *addr = &cm_id->route.addr; 2290 2291 if (!cm_id->device) { 2292 if (sgid) 2293 memset(sgid, 0, sizeof(*sgid)); 2294 if (dgid) 2295 memset(dgid, 0, sizeof(*dgid)); 2296 return; 2297 } 2298 2299 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2300 if (sgid) 2301 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2302 if (dgid) 2303 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2304 } else { 2305 if (sgid) 2306 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2307 if (dgid) 2308 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2309 } 2310 } 2311 EXPORT_SYMBOL(rdma_read_gids); 2312 2313 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2314 { 2315 struct rdma_id_private *id_priv = iw_id->context; 2316 struct rdma_cm_event event = {}; 2317 int ret = 0; 2318 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2319 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2320 2321 mutex_lock(&id_priv->handler_mutex); 2322 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2323 goto out; 2324 2325 switch (iw_event->event) { 2326 case IW_CM_EVENT_CLOSE: 2327 event.event = RDMA_CM_EVENT_DISCONNECTED; 2328 break; 2329 case IW_CM_EVENT_CONNECT_REPLY: 2330 memcpy(cma_src_addr(id_priv), laddr, 2331 rdma_addr_size(laddr)); 2332 memcpy(cma_dst_addr(id_priv), raddr, 2333 rdma_addr_size(raddr)); 2334 switch (iw_event->status) { 2335 case 0: 2336 event.event = RDMA_CM_EVENT_ESTABLISHED; 2337 event.param.conn.initiator_depth = iw_event->ird; 2338 event.param.conn.responder_resources = iw_event->ord; 2339 break; 2340 case -ECONNRESET: 2341 case -ECONNREFUSED: 2342 event.event = RDMA_CM_EVENT_REJECTED; 2343 break; 2344 case -ETIMEDOUT: 2345 event.event = RDMA_CM_EVENT_UNREACHABLE; 2346 break; 2347 default: 2348 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2349 break; 2350 } 2351 break; 2352 case IW_CM_EVENT_ESTABLISHED: 2353 event.event = RDMA_CM_EVENT_ESTABLISHED; 2354 event.param.conn.initiator_depth = iw_event->ird; 2355 event.param.conn.responder_resources = iw_event->ord; 2356 break; 2357 default: 2358 goto out; 2359 } 2360 2361 event.status = iw_event->status; 2362 event.param.conn.private_data = iw_event->private_data; 2363 event.param.conn.private_data_len = iw_event->private_data_len; 2364 ret = cma_cm_event_handler(id_priv, &event); 2365 if (ret) { 2366 /* Destroy the CM ID by returning a non-zero value. */ 2367 id_priv->cm_id.iw = NULL; 2368 destroy_id_handler_unlock(id_priv); 2369 return ret; 2370 } 2371 2372 out: 2373 mutex_unlock(&id_priv->handler_mutex); 2374 return ret; 2375 } 2376 2377 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2378 struct iw_cm_event *iw_event) 2379 { 2380 struct rdma_id_private *listen_id, *conn_id; 2381 struct rdma_cm_event event = {}; 2382 int ret = -ECONNABORTED; 2383 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2384 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2385 2386 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2387 event.param.conn.private_data = iw_event->private_data; 2388 event.param.conn.private_data_len = iw_event->private_data_len; 2389 event.param.conn.initiator_depth = iw_event->ird; 2390 event.param.conn.responder_resources = iw_event->ord; 2391 2392 listen_id = cm_id->context; 2393 2394 mutex_lock(&listen_id->handler_mutex); 2395 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2396 goto out; 2397 2398 /* Create a new RDMA id for the new IW CM ID */ 2399 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2400 listen_id->id.event_handler, 2401 listen_id->id.context, RDMA_PS_TCP, 2402 IB_QPT_RC, listen_id); 2403 if (IS_ERR(conn_id)) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2408 conn_id->state = RDMA_CM_CONNECT; 2409 2410 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2411 if (ret) { 2412 mutex_unlock(&listen_id->handler_mutex); 2413 destroy_id_handler_unlock(conn_id); 2414 return ret; 2415 } 2416 2417 ret = cma_iw_acquire_dev(conn_id, listen_id); 2418 if (ret) { 2419 mutex_unlock(&listen_id->handler_mutex); 2420 destroy_id_handler_unlock(conn_id); 2421 return ret; 2422 } 2423 2424 conn_id->cm_id.iw = cm_id; 2425 cm_id->context = conn_id; 2426 cm_id->cm_handler = cma_iw_handler; 2427 2428 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2429 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2430 2431 ret = cma_cm_event_handler(conn_id, &event); 2432 if (ret) { 2433 /* User wants to destroy the CM ID */ 2434 conn_id->cm_id.iw = NULL; 2435 mutex_unlock(&listen_id->handler_mutex); 2436 destroy_id_handler_unlock(conn_id); 2437 return ret; 2438 } 2439 2440 mutex_unlock(&conn_id->handler_mutex); 2441 2442 out: 2443 mutex_unlock(&listen_id->handler_mutex); 2444 return ret; 2445 } 2446 2447 static int cma_ib_listen(struct rdma_id_private *id_priv) 2448 { 2449 struct sockaddr *addr; 2450 struct ib_cm_id *id; 2451 __be64 svc_id; 2452 2453 addr = cma_src_addr(id_priv); 2454 svc_id = rdma_get_service_id(&id_priv->id, addr); 2455 id = ib_cm_insert_listen(id_priv->id.device, 2456 cma_ib_req_handler, svc_id); 2457 if (IS_ERR(id)) 2458 return PTR_ERR(id); 2459 id_priv->cm_id.ib = id; 2460 2461 return 0; 2462 } 2463 2464 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2465 { 2466 int ret; 2467 struct iw_cm_id *id; 2468 2469 id = iw_create_cm_id(id_priv->id.device, 2470 iw_conn_req_handler, 2471 id_priv); 2472 if (IS_ERR(id)) 2473 return PTR_ERR(id); 2474 2475 mutex_lock(&id_priv->qp_mutex); 2476 id->tos = id_priv->tos; 2477 id->tos_set = id_priv->tos_set; 2478 mutex_unlock(&id_priv->qp_mutex); 2479 id->afonly = id_priv->afonly; 2480 id_priv->cm_id.iw = id; 2481 2482 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2483 rdma_addr_size(cma_src_addr(id_priv))); 2484 2485 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2486 2487 if (ret) { 2488 iw_destroy_cm_id(id_priv->cm_id.iw); 2489 id_priv->cm_id.iw = NULL; 2490 } 2491 2492 return ret; 2493 } 2494 2495 static int cma_listen_handler(struct rdma_cm_id *id, 2496 struct rdma_cm_event *event) 2497 { 2498 struct rdma_id_private *id_priv = id->context; 2499 2500 /* Listening IDs are always destroyed on removal */ 2501 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2502 return -1; 2503 2504 id->context = id_priv->id.context; 2505 id->event_handler = id_priv->id.event_handler; 2506 trace_cm_event_handler(id_priv, event); 2507 return id_priv->id.event_handler(id, event); 2508 } 2509 2510 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2511 struct cma_device *cma_dev, 2512 struct rdma_id_private **to_destroy) 2513 { 2514 struct rdma_id_private *dev_id_priv; 2515 struct net *net = id_priv->id.route.addr.dev_addr.net; 2516 int ret; 2517 2518 lockdep_assert_held(&lock); 2519 2520 *to_destroy = NULL; 2521 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2522 return 0; 2523 2524 dev_id_priv = 2525 __rdma_create_id(net, cma_listen_handler, id_priv, 2526 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2527 if (IS_ERR(dev_id_priv)) 2528 return PTR_ERR(dev_id_priv); 2529 2530 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2531 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2532 rdma_addr_size(cma_src_addr(id_priv))); 2533 2534 _cma_attach_to_dev(dev_id_priv, cma_dev); 2535 rdma_restrack_add(&dev_id_priv->res); 2536 cma_id_get(id_priv); 2537 dev_id_priv->internal_id = 1; 2538 dev_id_priv->afonly = id_priv->afonly; 2539 mutex_lock(&id_priv->qp_mutex); 2540 dev_id_priv->tos_set = id_priv->tos_set; 2541 dev_id_priv->tos = id_priv->tos; 2542 mutex_unlock(&id_priv->qp_mutex); 2543 2544 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2545 if (ret) 2546 goto err_listen; 2547 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2548 return 0; 2549 err_listen: 2550 /* Caller must destroy this after releasing lock */ 2551 *to_destroy = dev_id_priv; 2552 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2553 return ret; 2554 } 2555 2556 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2557 { 2558 struct rdma_id_private *to_destroy; 2559 struct cma_device *cma_dev; 2560 int ret; 2561 2562 mutex_lock(&lock); 2563 list_add_tail(&id_priv->list, &listen_any_list); 2564 list_for_each_entry(cma_dev, &dev_list, list) { 2565 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2566 if (ret) { 2567 /* Prevent racing with cma_process_remove() */ 2568 if (to_destroy) 2569 list_del_init(&to_destroy->list); 2570 goto err_listen; 2571 } 2572 } 2573 mutex_unlock(&lock); 2574 return 0; 2575 2576 err_listen: 2577 list_del(&id_priv->list); 2578 mutex_unlock(&lock); 2579 if (to_destroy) 2580 rdma_destroy_id(&to_destroy->id); 2581 return ret; 2582 } 2583 2584 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2585 { 2586 struct rdma_id_private *id_priv; 2587 2588 id_priv = container_of(id, struct rdma_id_private, id); 2589 mutex_lock(&id_priv->qp_mutex); 2590 id_priv->tos = (u8) tos; 2591 id_priv->tos_set = true; 2592 mutex_unlock(&id_priv->qp_mutex); 2593 } 2594 EXPORT_SYMBOL(rdma_set_service_type); 2595 2596 /** 2597 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2598 * with a connection identifier. 2599 * @id: Communication identifier to associated with service type. 2600 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2601 * 2602 * This function should be called before rdma_connect() on active side, 2603 * and on passive side before rdma_accept(). It is applicable to primary 2604 * path only. The timeout will affect the local side of the QP, it is not 2605 * negotiated with remote side and zero disables the timer. In case it is 2606 * set before rdma_resolve_route, the value will also be used to determine 2607 * PacketLifeTime for RoCE. 2608 * 2609 * Return: 0 for success 2610 */ 2611 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2612 { 2613 struct rdma_id_private *id_priv; 2614 2615 if (id->qp_type != IB_QPT_RC) 2616 return -EINVAL; 2617 2618 id_priv = container_of(id, struct rdma_id_private, id); 2619 mutex_lock(&id_priv->qp_mutex); 2620 id_priv->timeout = timeout; 2621 id_priv->timeout_set = true; 2622 mutex_unlock(&id_priv->qp_mutex); 2623 2624 return 0; 2625 } 2626 EXPORT_SYMBOL(rdma_set_ack_timeout); 2627 2628 /** 2629 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2630 * QP associated with a connection identifier. 2631 * @id: Communication identifier to associated with service type. 2632 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2633 * Timer Field" in the IBTA specification. 2634 * 2635 * This function should be called before rdma_connect() on active 2636 * side, and on passive side before rdma_accept(). The timer value 2637 * will be associated with the local QP. When it receives a send it is 2638 * not read to handle, typically if the receive queue is empty, an RNR 2639 * Retry NAK is returned to the requester with the min_rnr_timer 2640 * encoded. The requester will then wait at least the time specified 2641 * in the NAK before retrying. The default is zero, which translates 2642 * to a minimum RNR Timer value of 655 ms. 2643 * 2644 * Return: 0 for success 2645 */ 2646 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2647 { 2648 struct rdma_id_private *id_priv; 2649 2650 /* It is a five-bit value */ 2651 if (min_rnr_timer & 0xe0) 2652 return -EINVAL; 2653 2654 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2655 return -EINVAL; 2656 2657 id_priv = container_of(id, struct rdma_id_private, id); 2658 mutex_lock(&id_priv->qp_mutex); 2659 id_priv->min_rnr_timer = min_rnr_timer; 2660 id_priv->min_rnr_timer_set = true; 2661 mutex_unlock(&id_priv->qp_mutex); 2662 2663 return 0; 2664 } 2665 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2666 2667 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2668 void *context) 2669 { 2670 struct cma_work *work = context; 2671 struct rdma_route *route; 2672 2673 route = &work->id->id.route; 2674 2675 if (!status) { 2676 route->num_paths = 1; 2677 *route->path_rec = *path_rec; 2678 } else { 2679 work->old_state = RDMA_CM_ROUTE_QUERY; 2680 work->new_state = RDMA_CM_ADDR_RESOLVED; 2681 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2682 work->event.status = status; 2683 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2684 status); 2685 } 2686 2687 queue_work(cma_wq, &work->work); 2688 } 2689 2690 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2691 unsigned long timeout_ms, struct cma_work *work) 2692 { 2693 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2694 struct sa_path_rec path_rec; 2695 ib_sa_comp_mask comp_mask; 2696 struct sockaddr_in6 *sin6; 2697 struct sockaddr_ib *sib; 2698 2699 memset(&path_rec, 0, sizeof path_rec); 2700 2701 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2702 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2703 else 2704 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2705 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2706 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2707 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2708 path_rec.numb_path = 1; 2709 path_rec.reversible = 1; 2710 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2711 cma_dst_addr(id_priv)); 2712 2713 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2714 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2715 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2716 2717 switch (cma_family(id_priv)) { 2718 case AF_INET: 2719 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2720 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2721 break; 2722 case AF_INET6: 2723 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2724 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2725 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2726 break; 2727 case AF_IB: 2728 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2729 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2730 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2731 break; 2732 } 2733 2734 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2735 id_priv->id.port_num, &path_rec, 2736 comp_mask, timeout_ms, 2737 GFP_KERNEL, cma_query_handler, 2738 work, &id_priv->query); 2739 2740 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2741 } 2742 2743 static void cma_iboe_join_work_handler(struct work_struct *work) 2744 { 2745 struct cma_multicast *mc = 2746 container_of(work, struct cma_multicast, iboe_join.work); 2747 struct rdma_cm_event *event = &mc->iboe_join.event; 2748 struct rdma_id_private *id_priv = mc->id_priv; 2749 int ret; 2750 2751 mutex_lock(&id_priv->handler_mutex); 2752 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2753 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2754 goto out_unlock; 2755 2756 ret = cma_cm_event_handler(id_priv, event); 2757 WARN_ON(ret); 2758 2759 out_unlock: 2760 mutex_unlock(&id_priv->handler_mutex); 2761 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2762 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2763 } 2764 2765 static void cma_work_handler(struct work_struct *_work) 2766 { 2767 struct cma_work *work = container_of(_work, struct cma_work, work); 2768 struct rdma_id_private *id_priv = work->id; 2769 2770 mutex_lock(&id_priv->handler_mutex); 2771 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2772 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2773 goto out_unlock; 2774 if (work->old_state != 0 || work->new_state != 0) { 2775 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2776 goto out_unlock; 2777 } 2778 2779 if (cma_cm_event_handler(id_priv, &work->event)) { 2780 cma_id_put(id_priv); 2781 destroy_id_handler_unlock(id_priv); 2782 goto out_free; 2783 } 2784 2785 out_unlock: 2786 mutex_unlock(&id_priv->handler_mutex); 2787 cma_id_put(id_priv); 2788 out_free: 2789 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2790 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2791 kfree(work); 2792 } 2793 2794 static void cma_init_resolve_route_work(struct cma_work *work, 2795 struct rdma_id_private *id_priv) 2796 { 2797 work->id = id_priv; 2798 INIT_WORK(&work->work, cma_work_handler); 2799 work->old_state = RDMA_CM_ROUTE_QUERY; 2800 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2801 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2802 } 2803 2804 static void enqueue_resolve_addr_work(struct cma_work *work, 2805 struct rdma_id_private *id_priv) 2806 { 2807 /* Balances with cma_id_put() in cma_work_handler */ 2808 cma_id_get(id_priv); 2809 2810 work->id = id_priv; 2811 INIT_WORK(&work->work, cma_work_handler); 2812 work->old_state = RDMA_CM_ADDR_QUERY; 2813 work->new_state = RDMA_CM_ADDR_RESOLVED; 2814 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2815 2816 queue_work(cma_wq, &work->work); 2817 } 2818 2819 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2820 unsigned long timeout_ms) 2821 { 2822 struct rdma_route *route = &id_priv->id.route; 2823 struct cma_work *work; 2824 int ret; 2825 2826 work = kzalloc(sizeof *work, GFP_KERNEL); 2827 if (!work) 2828 return -ENOMEM; 2829 2830 cma_init_resolve_route_work(work, id_priv); 2831 2832 if (!route->path_rec) 2833 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2834 if (!route->path_rec) { 2835 ret = -ENOMEM; 2836 goto err1; 2837 } 2838 2839 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2840 if (ret) 2841 goto err2; 2842 2843 return 0; 2844 err2: 2845 kfree(route->path_rec); 2846 route->path_rec = NULL; 2847 err1: 2848 kfree(work); 2849 return ret; 2850 } 2851 2852 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2853 unsigned long supported_gids, 2854 enum ib_gid_type default_gid) 2855 { 2856 if ((network_type == RDMA_NETWORK_IPV4 || 2857 network_type == RDMA_NETWORK_IPV6) && 2858 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2859 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2860 2861 return default_gid; 2862 } 2863 2864 /* 2865 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2866 * path record type based on GID type. 2867 * It also sets up other L2 fields which includes destination mac address 2868 * netdev ifindex, of the path record. 2869 * It returns the netdev of the bound interface for this path record entry. 2870 */ 2871 static struct net_device * 2872 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2873 { 2874 struct rdma_route *route = &id_priv->id.route; 2875 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2876 struct rdma_addr *addr = &route->addr; 2877 unsigned long supported_gids; 2878 struct net_device *ndev; 2879 2880 if (!addr->dev_addr.bound_dev_if) 2881 return NULL; 2882 2883 ndev = dev_get_by_index(addr->dev_addr.net, 2884 addr->dev_addr.bound_dev_if); 2885 if (!ndev) 2886 return NULL; 2887 2888 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2889 id_priv->id.port_num); 2890 gid_type = cma_route_gid_type(addr->dev_addr.network, 2891 supported_gids, 2892 id_priv->gid_type); 2893 /* Use the hint from IP Stack to select GID Type */ 2894 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2895 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2896 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2897 2898 route->path_rec->roce.route_resolved = true; 2899 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2900 return ndev; 2901 } 2902 2903 int rdma_set_ib_path(struct rdma_cm_id *id, 2904 struct sa_path_rec *path_rec) 2905 { 2906 struct rdma_id_private *id_priv; 2907 struct net_device *ndev; 2908 int ret; 2909 2910 id_priv = container_of(id, struct rdma_id_private, id); 2911 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2912 RDMA_CM_ROUTE_RESOLVED)) 2913 return -EINVAL; 2914 2915 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2916 GFP_KERNEL); 2917 if (!id->route.path_rec) { 2918 ret = -ENOMEM; 2919 goto err; 2920 } 2921 2922 if (rdma_protocol_roce(id->device, id->port_num)) { 2923 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2924 if (!ndev) { 2925 ret = -ENODEV; 2926 goto err_free; 2927 } 2928 dev_put(ndev); 2929 } 2930 2931 id->route.num_paths = 1; 2932 return 0; 2933 2934 err_free: 2935 kfree(id->route.path_rec); 2936 id->route.path_rec = NULL; 2937 err: 2938 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2939 return ret; 2940 } 2941 EXPORT_SYMBOL(rdma_set_ib_path); 2942 2943 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2944 { 2945 struct cma_work *work; 2946 2947 work = kzalloc(sizeof *work, GFP_KERNEL); 2948 if (!work) 2949 return -ENOMEM; 2950 2951 cma_init_resolve_route_work(work, id_priv); 2952 queue_work(cma_wq, &work->work); 2953 return 0; 2954 } 2955 2956 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2957 { 2958 struct net_device *dev; 2959 2960 dev = vlan_dev_real_dev(vlan_ndev); 2961 if (dev->num_tc) 2962 return netdev_get_prio_tc_map(dev, prio); 2963 2964 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2965 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2966 } 2967 2968 struct iboe_prio_tc_map { 2969 int input_prio; 2970 int output_tc; 2971 bool found; 2972 }; 2973 2974 static int get_lower_vlan_dev_tc(struct net_device *dev, 2975 struct netdev_nested_priv *priv) 2976 { 2977 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2978 2979 if (is_vlan_dev(dev)) 2980 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2981 else if (dev->num_tc) 2982 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2983 else 2984 map->output_tc = 0; 2985 /* We are interested only in first level VLAN device, so always 2986 * return 1 to stop iterating over next level devices. 2987 */ 2988 map->found = true; 2989 return 1; 2990 } 2991 2992 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2993 { 2994 struct iboe_prio_tc_map prio_tc_map = {}; 2995 int prio = rt_tos2priority(tos); 2996 struct netdev_nested_priv priv; 2997 2998 /* If VLAN device, get it directly from the VLAN netdev */ 2999 if (is_vlan_dev(ndev)) 3000 return get_vlan_ndev_tc(ndev, prio); 3001 3002 prio_tc_map.input_prio = prio; 3003 priv.data = (void *)&prio_tc_map; 3004 rcu_read_lock(); 3005 netdev_walk_all_lower_dev_rcu(ndev, 3006 get_lower_vlan_dev_tc, 3007 &priv); 3008 rcu_read_unlock(); 3009 /* If map is found from lower device, use it; Otherwise 3010 * continue with the current netdevice to get priority to tc map. 3011 */ 3012 if (prio_tc_map.found) 3013 return prio_tc_map.output_tc; 3014 else if (ndev->num_tc) 3015 return netdev_get_prio_tc_map(ndev, prio); 3016 else 3017 return 0; 3018 } 3019 3020 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3021 { 3022 struct sockaddr_in6 *addr6; 3023 u16 dport, sport; 3024 u32 hash, fl; 3025 3026 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3027 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3028 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3029 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3030 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3031 hash = (u32)sport * 31 + dport; 3032 fl = hash & IB_GRH_FLOWLABEL_MASK; 3033 } 3034 3035 return cpu_to_be32(fl); 3036 } 3037 3038 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3039 { 3040 struct rdma_route *route = &id_priv->id.route; 3041 struct rdma_addr *addr = &route->addr; 3042 struct cma_work *work; 3043 int ret; 3044 struct net_device *ndev; 3045 3046 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3047 rdma_start_port(id_priv->cma_dev->device)]; 3048 u8 tos; 3049 3050 mutex_lock(&id_priv->qp_mutex); 3051 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3052 mutex_unlock(&id_priv->qp_mutex); 3053 3054 work = kzalloc(sizeof *work, GFP_KERNEL); 3055 if (!work) 3056 return -ENOMEM; 3057 3058 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3059 if (!route->path_rec) { 3060 ret = -ENOMEM; 3061 goto err1; 3062 } 3063 3064 route->num_paths = 1; 3065 3066 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3067 if (!ndev) { 3068 ret = -ENODEV; 3069 goto err2; 3070 } 3071 3072 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3073 &route->path_rec->sgid); 3074 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3075 &route->path_rec->dgid); 3076 3077 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3078 /* TODO: get the hoplimit from the inet/inet6 device */ 3079 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3080 else 3081 route->path_rec->hop_limit = 1; 3082 route->path_rec->reversible = 1; 3083 route->path_rec->pkey = cpu_to_be16(0xffff); 3084 route->path_rec->mtu_selector = IB_SA_EQ; 3085 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3086 route->path_rec->traffic_class = tos; 3087 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3088 route->path_rec->rate_selector = IB_SA_EQ; 3089 route->path_rec->rate = iboe_get_rate(ndev); 3090 dev_put(ndev); 3091 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3092 /* In case ACK timeout is set, use this value to calculate 3093 * PacketLifeTime. As per IBTA 12.7.34, 3094 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3095 * Assuming a negligible local ACK delay, we can use 3096 * PacketLifeTime = local ACK timeout/2 3097 * as a reasonable approximation for RoCE networks. 3098 */ 3099 mutex_lock(&id_priv->qp_mutex); 3100 if (id_priv->timeout_set && id_priv->timeout) 3101 route->path_rec->packet_life_time = id_priv->timeout - 1; 3102 else 3103 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3104 mutex_unlock(&id_priv->qp_mutex); 3105 3106 if (!route->path_rec->mtu) { 3107 ret = -EINVAL; 3108 goto err2; 3109 } 3110 3111 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3112 id_priv->id.port_num)) 3113 route->path_rec->flow_label = 3114 cma_get_roce_udp_flow_label(id_priv); 3115 3116 cma_init_resolve_route_work(work, id_priv); 3117 queue_work(cma_wq, &work->work); 3118 3119 return 0; 3120 3121 err2: 3122 kfree(route->path_rec); 3123 route->path_rec = NULL; 3124 route->num_paths = 0; 3125 err1: 3126 kfree(work); 3127 return ret; 3128 } 3129 3130 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3131 { 3132 struct rdma_id_private *id_priv; 3133 int ret; 3134 3135 id_priv = container_of(id, struct rdma_id_private, id); 3136 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3137 return -EINVAL; 3138 3139 cma_id_get(id_priv); 3140 if (rdma_cap_ib_sa(id->device, id->port_num)) 3141 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3142 else if (rdma_protocol_roce(id->device, id->port_num)) 3143 ret = cma_resolve_iboe_route(id_priv); 3144 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3145 ret = cma_resolve_iw_route(id_priv); 3146 else 3147 ret = -ENOSYS; 3148 3149 if (ret) 3150 goto err; 3151 3152 return 0; 3153 err: 3154 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3155 cma_id_put(id_priv); 3156 return ret; 3157 } 3158 EXPORT_SYMBOL(rdma_resolve_route); 3159 3160 static void cma_set_loopback(struct sockaddr *addr) 3161 { 3162 switch (addr->sa_family) { 3163 case AF_INET: 3164 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3165 break; 3166 case AF_INET6: 3167 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3168 0, 0, 0, htonl(1)); 3169 break; 3170 default: 3171 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3172 0, 0, 0, htonl(1)); 3173 break; 3174 } 3175 } 3176 3177 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3178 { 3179 struct cma_device *cma_dev, *cur_dev; 3180 union ib_gid gid; 3181 enum ib_port_state port_state; 3182 unsigned int p; 3183 u16 pkey; 3184 int ret; 3185 3186 cma_dev = NULL; 3187 mutex_lock(&lock); 3188 list_for_each_entry(cur_dev, &dev_list, list) { 3189 if (cma_family(id_priv) == AF_IB && 3190 !rdma_cap_ib_cm(cur_dev->device, 1)) 3191 continue; 3192 3193 if (!cma_dev) 3194 cma_dev = cur_dev; 3195 3196 rdma_for_each_port (cur_dev->device, p) { 3197 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3198 port_state == IB_PORT_ACTIVE) { 3199 cma_dev = cur_dev; 3200 goto port_found; 3201 } 3202 } 3203 } 3204 3205 if (!cma_dev) { 3206 ret = -ENODEV; 3207 goto out; 3208 } 3209 3210 p = 1; 3211 3212 port_found: 3213 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3214 if (ret) 3215 goto out; 3216 3217 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3218 if (ret) 3219 goto out; 3220 3221 id_priv->id.route.addr.dev_addr.dev_type = 3222 (rdma_protocol_ib(cma_dev->device, p)) ? 3223 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3224 3225 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3226 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3227 id_priv->id.port_num = p; 3228 cma_attach_to_dev(id_priv, cma_dev); 3229 rdma_restrack_add(&id_priv->res); 3230 cma_set_loopback(cma_src_addr(id_priv)); 3231 out: 3232 mutex_unlock(&lock); 3233 return ret; 3234 } 3235 3236 static void addr_handler(int status, struct sockaddr *src_addr, 3237 struct rdma_dev_addr *dev_addr, void *context) 3238 { 3239 struct rdma_id_private *id_priv = context; 3240 struct rdma_cm_event event = {}; 3241 struct sockaddr *addr; 3242 struct sockaddr_storage old_addr; 3243 3244 mutex_lock(&id_priv->handler_mutex); 3245 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3246 RDMA_CM_ADDR_RESOLVED)) 3247 goto out; 3248 3249 /* 3250 * Store the previous src address, so that if we fail to acquire 3251 * matching rdma device, old address can be restored back, which helps 3252 * to cancel the cma listen operation correctly. 3253 */ 3254 addr = cma_src_addr(id_priv); 3255 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3256 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3257 if (!status && !id_priv->cma_dev) { 3258 status = cma_acquire_dev_by_src_ip(id_priv); 3259 if (status) 3260 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3261 status); 3262 rdma_restrack_add(&id_priv->res); 3263 } else if (status) { 3264 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3265 } 3266 3267 if (status) { 3268 memcpy(addr, &old_addr, 3269 rdma_addr_size((struct sockaddr *)&old_addr)); 3270 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3271 RDMA_CM_ADDR_BOUND)) 3272 goto out; 3273 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3274 event.status = status; 3275 } else 3276 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3277 3278 if (cma_cm_event_handler(id_priv, &event)) { 3279 destroy_id_handler_unlock(id_priv); 3280 return; 3281 } 3282 out: 3283 mutex_unlock(&id_priv->handler_mutex); 3284 } 3285 3286 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3287 { 3288 struct cma_work *work; 3289 union ib_gid gid; 3290 int ret; 3291 3292 work = kzalloc(sizeof *work, GFP_KERNEL); 3293 if (!work) 3294 return -ENOMEM; 3295 3296 if (!id_priv->cma_dev) { 3297 ret = cma_bind_loopback(id_priv); 3298 if (ret) 3299 goto err; 3300 } 3301 3302 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3303 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3304 3305 enqueue_resolve_addr_work(work, id_priv); 3306 return 0; 3307 err: 3308 kfree(work); 3309 return ret; 3310 } 3311 3312 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3313 { 3314 struct cma_work *work; 3315 int ret; 3316 3317 work = kzalloc(sizeof *work, GFP_KERNEL); 3318 if (!work) 3319 return -ENOMEM; 3320 3321 if (!id_priv->cma_dev) { 3322 ret = cma_resolve_ib_dev(id_priv); 3323 if (ret) 3324 goto err; 3325 } 3326 3327 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3328 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3329 3330 enqueue_resolve_addr_work(work, id_priv); 3331 return 0; 3332 err: 3333 kfree(work); 3334 return ret; 3335 } 3336 3337 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3338 const struct sockaddr *dst_addr) 3339 { 3340 if (!src_addr || !src_addr->sa_family) { 3341 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3342 src_addr->sa_family = dst_addr->sa_family; 3343 if (IS_ENABLED(CONFIG_IPV6) && 3344 dst_addr->sa_family == AF_INET6) { 3345 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3346 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3347 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3348 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3349 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3350 } else if (dst_addr->sa_family == AF_IB) { 3351 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3352 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3353 } 3354 } 3355 return rdma_bind_addr(id, src_addr); 3356 } 3357 3358 /* 3359 * If required, resolve the source address for bind and leave the id_priv in 3360 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3361 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3362 * ignored. 3363 */ 3364 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3365 struct sockaddr *src_addr, 3366 const struct sockaddr *dst_addr) 3367 { 3368 int ret; 3369 3370 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3371 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3372 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3373 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3374 if (ret) 3375 goto err_dst; 3376 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3377 RDMA_CM_ADDR_QUERY))) { 3378 ret = -EINVAL; 3379 goto err_dst; 3380 } 3381 } 3382 3383 if (cma_family(id_priv) != dst_addr->sa_family) { 3384 ret = -EINVAL; 3385 goto err_state; 3386 } 3387 return 0; 3388 3389 err_state: 3390 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3391 err_dst: 3392 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3393 return ret; 3394 } 3395 3396 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3397 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3398 { 3399 struct rdma_id_private *id_priv = 3400 container_of(id, struct rdma_id_private, id); 3401 int ret; 3402 3403 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3404 if (ret) 3405 return ret; 3406 3407 if (cma_any_addr(dst_addr)) { 3408 ret = cma_resolve_loopback(id_priv); 3409 } else { 3410 if (dst_addr->sa_family == AF_IB) { 3411 ret = cma_resolve_ib_addr(id_priv); 3412 } else { 3413 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3414 &id->route.addr.dev_addr, 3415 timeout_ms, addr_handler, 3416 false, id_priv); 3417 } 3418 } 3419 if (ret) 3420 goto err; 3421 3422 return 0; 3423 err: 3424 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3425 return ret; 3426 } 3427 EXPORT_SYMBOL(rdma_resolve_addr); 3428 3429 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3430 { 3431 struct rdma_id_private *id_priv; 3432 unsigned long flags; 3433 int ret; 3434 3435 id_priv = container_of(id, struct rdma_id_private, id); 3436 spin_lock_irqsave(&id_priv->lock, flags); 3437 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3438 id_priv->state == RDMA_CM_IDLE) { 3439 id_priv->reuseaddr = reuse; 3440 ret = 0; 3441 } else { 3442 ret = -EINVAL; 3443 } 3444 spin_unlock_irqrestore(&id_priv->lock, flags); 3445 return ret; 3446 } 3447 EXPORT_SYMBOL(rdma_set_reuseaddr); 3448 3449 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3450 { 3451 struct rdma_id_private *id_priv; 3452 unsigned long flags; 3453 int ret; 3454 3455 id_priv = container_of(id, struct rdma_id_private, id); 3456 spin_lock_irqsave(&id_priv->lock, flags); 3457 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3458 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3459 id_priv->afonly = afonly; 3460 ret = 0; 3461 } else { 3462 ret = -EINVAL; 3463 } 3464 spin_unlock_irqrestore(&id_priv->lock, flags); 3465 return ret; 3466 } 3467 EXPORT_SYMBOL(rdma_set_afonly); 3468 3469 static void cma_bind_port(struct rdma_bind_list *bind_list, 3470 struct rdma_id_private *id_priv) 3471 { 3472 struct sockaddr *addr; 3473 struct sockaddr_ib *sib; 3474 u64 sid, mask; 3475 __be16 port; 3476 3477 lockdep_assert_held(&lock); 3478 3479 addr = cma_src_addr(id_priv); 3480 port = htons(bind_list->port); 3481 3482 switch (addr->sa_family) { 3483 case AF_INET: 3484 ((struct sockaddr_in *) addr)->sin_port = port; 3485 break; 3486 case AF_INET6: 3487 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3488 break; 3489 case AF_IB: 3490 sib = (struct sockaddr_ib *) addr; 3491 sid = be64_to_cpu(sib->sib_sid); 3492 mask = be64_to_cpu(sib->sib_sid_mask); 3493 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3494 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3495 break; 3496 } 3497 id_priv->bind_list = bind_list; 3498 hlist_add_head(&id_priv->node, &bind_list->owners); 3499 } 3500 3501 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3502 struct rdma_id_private *id_priv, unsigned short snum) 3503 { 3504 struct rdma_bind_list *bind_list; 3505 int ret; 3506 3507 lockdep_assert_held(&lock); 3508 3509 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3510 if (!bind_list) 3511 return -ENOMEM; 3512 3513 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3514 snum); 3515 if (ret < 0) 3516 goto err; 3517 3518 bind_list->ps = ps; 3519 bind_list->port = snum; 3520 cma_bind_port(bind_list, id_priv); 3521 return 0; 3522 err: 3523 kfree(bind_list); 3524 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3525 } 3526 3527 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3528 struct rdma_id_private *id_priv) 3529 { 3530 struct rdma_id_private *cur_id; 3531 struct sockaddr *daddr = cma_dst_addr(id_priv); 3532 struct sockaddr *saddr = cma_src_addr(id_priv); 3533 __be16 dport = cma_port(daddr); 3534 3535 lockdep_assert_held(&lock); 3536 3537 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3538 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3539 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3540 __be16 cur_dport = cma_port(cur_daddr); 3541 3542 if (id_priv == cur_id) 3543 continue; 3544 3545 /* different dest port -> unique */ 3546 if (!cma_any_port(daddr) && 3547 !cma_any_port(cur_daddr) && 3548 (dport != cur_dport)) 3549 continue; 3550 3551 /* different src address -> unique */ 3552 if (!cma_any_addr(saddr) && 3553 !cma_any_addr(cur_saddr) && 3554 cma_addr_cmp(saddr, cur_saddr)) 3555 continue; 3556 3557 /* different dst address -> unique */ 3558 if (!cma_any_addr(daddr) && 3559 !cma_any_addr(cur_daddr) && 3560 cma_addr_cmp(daddr, cur_daddr)) 3561 continue; 3562 3563 return -EADDRNOTAVAIL; 3564 } 3565 return 0; 3566 } 3567 3568 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3569 struct rdma_id_private *id_priv) 3570 { 3571 static unsigned int last_used_port; 3572 int low, high, remaining; 3573 unsigned int rover; 3574 struct net *net = id_priv->id.route.addr.dev_addr.net; 3575 3576 lockdep_assert_held(&lock); 3577 3578 inet_get_local_port_range(net, &low, &high); 3579 remaining = (high - low) + 1; 3580 rover = prandom_u32() % remaining + low; 3581 retry: 3582 if (last_used_port != rover) { 3583 struct rdma_bind_list *bind_list; 3584 int ret; 3585 3586 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3587 3588 if (!bind_list) { 3589 ret = cma_alloc_port(ps, id_priv, rover); 3590 } else { 3591 ret = cma_port_is_unique(bind_list, id_priv); 3592 if (!ret) 3593 cma_bind_port(bind_list, id_priv); 3594 } 3595 /* 3596 * Remember previously used port number in order to avoid 3597 * re-using same port immediately after it is closed. 3598 */ 3599 if (!ret) 3600 last_used_port = rover; 3601 if (ret != -EADDRNOTAVAIL) 3602 return ret; 3603 } 3604 if (--remaining) { 3605 rover++; 3606 if ((rover < low) || (rover > high)) 3607 rover = low; 3608 goto retry; 3609 } 3610 return -EADDRNOTAVAIL; 3611 } 3612 3613 /* 3614 * Check that the requested port is available. This is called when trying to 3615 * bind to a specific port, or when trying to listen on a bound port. In 3616 * the latter case, the provided id_priv may already be on the bind_list, but 3617 * we still need to check that it's okay to start listening. 3618 */ 3619 static int cma_check_port(struct rdma_bind_list *bind_list, 3620 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3621 { 3622 struct rdma_id_private *cur_id; 3623 struct sockaddr *addr, *cur_addr; 3624 3625 lockdep_assert_held(&lock); 3626 3627 addr = cma_src_addr(id_priv); 3628 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3629 if (id_priv == cur_id) 3630 continue; 3631 3632 if (reuseaddr && cur_id->reuseaddr) 3633 continue; 3634 3635 cur_addr = cma_src_addr(cur_id); 3636 if (id_priv->afonly && cur_id->afonly && 3637 (addr->sa_family != cur_addr->sa_family)) 3638 continue; 3639 3640 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3641 return -EADDRNOTAVAIL; 3642 3643 if (!cma_addr_cmp(addr, cur_addr)) 3644 return -EADDRINUSE; 3645 } 3646 return 0; 3647 } 3648 3649 static int cma_use_port(enum rdma_ucm_port_space ps, 3650 struct rdma_id_private *id_priv) 3651 { 3652 struct rdma_bind_list *bind_list; 3653 unsigned short snum; 3654 int ret; 3655 3656 lockdep_assert_held(&lock); 3657 3658 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3659 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3660 return -EACCES; 3661 3662 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3663 if (!bind_list) { 3664 ret = cma_alloc_port(ps, id_priv, snum); 3665 } else { 3666 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3667 if (!ret) 3668 cma_bind_port(bind_list, id_priv); 3669 } 3670 return ret; 3671 } 3672 3673 static enum rdma_ucm_port_space 3674 cma_select_inet_ps(struct rdma_id_private *id_priv) 3675 { 3676 switch (id_priv->id.ps) { 3677 case RDMA_PS_TCP: 3678 case RDMA_PS_UDP: 3679 case RDMA_PS_IPOIB: 3680 case RDMA_PS_IB: 3681 return id_priv->id.ps; 3682 default: 3683 3684 return 0; 3685 } 3686 } 3687 3688 static enum rdma_ucm_port_space 3689 cma_select_ib_ps(struct rdma_id_private *id_priv) 3690 { 3691 enum rdma_ucm_port_space ps = 0; 3692 struct sockaddr_ib *sib; 3693 u64 sid_ps, mask, sid; 3694 3695 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3696 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3697 sid = be64_to_cpu(sib->sib_sid) & mask; 3698 3699 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3700 sid_ps = RDMA_IB_IP_PS_IB; 3701 ps = RDMA_PS_IB; 3702 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3703 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3704 sid_ps = RDMA_IB_IP_PS_TCP; 3705 ps = RDMA_PS_TCP; 3706 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3707 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3708 sid_ps = RDMA_IB_IP_PS_UDP; 3709 ps = RDMA_PS_UDP; 3710 } 3711 3712 if (ps) { 3713 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3714 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3715 be64_to_cpu(sib->sib_sid_mask)); 3716 } 3717 return ps; 3718 } 3719 3720 static int cma_get_port(struct rdma_id_private *id_priv) 3721 { 3722 enum rdma_ucm_port_space ps; 3723 int ret; 3724 3725 if (cma_family(id_priv) != AF_IB) 3726 ps = cma_select_inet_ps(id_priv); 3727 else 3728 ps = cma_select_ib_ps(id_priv); 3729 if (!ps) 3730 return -EPROTONOSUPPORT; 3731 3732 mutex_lock(&lock); 3733 if (cma_any_port(cma_src_addr(id_priv))) 3734 ret = cma_alloc_any_port(ps, id_priv); 3735 else 3736 ret = cma_use_port(ps, id_priv); 3737 mutex_unlock(&lock); 3738 3739 return ret; 3740 } 3741 3742 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3743 struct sockaddr *addr) 3744 { 3745 #if IS_ENABLED(CONFIG_IPV6) 3746 struct sockaddr_in6 *sin6; 3747 3748 if (addr->sa_family != AF_INET6) 3749 return 0; 3750 3751 sin6 = (struct sockaddr_in6 *) addr; 3752 3753 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3754 return 0; 3755 3756 if (!sin6->sin6_scope_id) 3757 return -EINVAL; 3758 3759 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3760 #endif 3761 return 0; 3762 } 3763 3764 int rdma_listen(struct rdma_cm_id *id, int backlog) 3765 { 3766 struct rdma_id_private *id_priv = 3767 container_of(id, struct rdma_id_private, id); 3768 int ret; 3769 3770 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3771 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3772 id->route.addr.src_addr.ss_family = AF_INET; 3773 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3774 if (ret) 3775 return ret; 3776 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3777 RDMA_CM_LISTEN))) 3778 return -EINVAL; 3779 } 3780 3781 /* 3782 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3783 * any more, and has to be unique in the bind list. 3784 */ 3785 if (id_priv->reuseaddr) { 3786 mutex_lock(&lock); 3787 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3788 if (!ret) 3789 id_priv->reuseaddr = 0; 3790 mutex_unlock(&lock); 3791 if (ret) 3792 goto err; 3793 } 3794 3795 id_priv->backlog = backlog; 3796 if (id_priv->cma_dev) { 3797 if (rdma_cap_ib_cm(id->device, 1)) { 3798 ret = cma_ib_listen(id_priv); 3799 if (ret) 3800 goto err; 3801 } else if (rdma_cap_iw_cm(id->device, 1)) { 3802 ret = cma_iw_listen(id_priv, backlog); 3803 if (ret) 3804 goto err; 3805 } else { 3806 ret = -ENOSYS; 3807 goto err; 3808 } 3809 } else { 3810 ret = cma_listen_on_all(id_priv); 3811 if (ret) 3812 goto err; 3813 } 3814 3815 return 0; 3816 err: 3817 id_priv->backlog = 0; 3818 /* 3819 * All the failure paths that lead here will not allow the req_handler's 3820 * to have run. 3821 */ 3822 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3823 return ret; 3824 } 3825 EXPORT_SYMBOL(rdma_listen); 3826 3827 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3828 { 3829 struct rdma_id_private *id_priv; 3830 int ret; 3831 struct sockaddr *daddr; 3832 3833 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3834 addr->sa_family != AF_IB) 3835 return -EAFNOSUPPORT; 3836 3837 id_priv = container_of(id, struct rdma_id_private, id); 3838 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3839 return -EINVAL; 3840 3841 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3842 if (ret) 3843 goto err1; 3844 3845 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3846 if (!cma_any_addr(addr)) { 3847 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3848 if (ret) 3849 goto err1; 3850 3851 ret = cma_acquire_dev_by_src_ip(id_priv); 3852 if (ret) 3853 goto err1; 3854 } 3855 3856 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3857 if (addr->sa_family == AF_INET) 3858 id_priv->afonly = 1; 3859 #if IS_ENABLED(CONFIG_IPV6) 3860 else if (addr->sa_family == AF_INET6) { 3861 struct net *net = id_priv->id.route.addr.dev_addr.net; 3862 3863 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3864 } 3865 #endif 3866 } 3867 daddr = cma_dst_addr(id_priv); 3868 daddr->sa_family = addr->sa_family; 3869 3870 ret = cma_get_port(id_priv); 3871 if (ret) 3872 goto err2; 3873 3874 if (!cma_any_addr(addr)) 3875 rdma_restrack_add(&id_priv->res); 3876 return 0; 3877 err2: 3878 if (id_priv->cma_dev) 3879 cma_release_dev(id_priv); 3880 err1: 3881 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3882 return ret; 3883 } 3884 EXPORT_SYMBOL(rdma_bind_addr); 3885 3886 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3887 { 3888 struct cma_hdr *cma_hdr; 3889 3890 cma_hdr = hdr; 3891 cma_hdr->cma_version = CMA_VERSION; 3892 if (cma_family(id_priv) == AF_INET) { 3893 struct sockaddr_in *src4, *dst4; 3894 3895 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3896 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3897 3898 cma_set_ip_ver(cma_hdr, 4); 3899 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3900 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3901 cma_hdr->port = src4->sin_port; 3902 } else if (cma_family(id_priv) == AF_INET6) { 3903 struct sockaddr_in6 *src6, *dst6; 3904 3905 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3906 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3907 3908 cma_set_ip_ver(cma_hdr, 6); 3909 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3910 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3911 cma_hdr->port = src6->sin6_port; 3912 } 3913 return 0; 3914 } 3915 3916 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3917 const struct ib_cm_event *ib_event) 3918 { 3919 struct rdma_id_private *id_priv = cm_id->context; 3920 struct rdma_cm_event event = {}; 3921 const struct ib_cm_sidr_rep_event_param *rep = 3922 &ib_event->param.sidr_rep_rcvd; 3923 int ret; 3924 3925 mutex_lock(&id_priv->handler_mutex); 3926 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3927 goto out; 3928 3929 switch (ib_event->event) { 3930 case IB_CM_SIDR_REQ_ERROR: 3931 event.event = RDMA_CM_EVENT_UNREACHABLE; 3932 event.status = -ETIMEDOUT; 3933 break; 3934 case IB_CM_SIDR_REP_RECEIVED: 3935 event.param.ud.private_data = ib_event->private_data; 3936 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3937 if (rep->status != IB_SIDR_SUCCESS) { 3938 event.event = RDMA_CM_EVENT_UNREACHABLE; 3939 event.status = ib_event->param.sidr_rep_rcvd.status; 3940 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3941 event.status); 3942 break; 3943 } 3944 ret = cma_set_qkey(id_priv, rep->qkey); 3945 if (ret) { 3946 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3947 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3948 event.status = ret; 3949 break; 3950 } 3951 ib_init_ah_attr_from_path(id_priv->id.device, 3952 id_priv->id.port_num, 3953 id_priv->id.route.path_rec, 3954 &event.param.ud.ah_attr, 3955 rep->sgid_attr); 3956 event.param.ud.qp_num = rep->qpn; 3957 event.param.ud.qkey = rep->qkey; 3958 event.event = RDMA_CM_EVENT_ESTABLISHED; 3959 event.status = 0; 3960 break; 3961 default: 3962 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3963 ib_event->event); 3964 goto out; 3965 } 3966 3967 ret = cma_cm_event_handler(id_priv, &event); 3968 3969 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3970 if (ret) { 3971 /* Destroy the CM ID by returning a non-zero value. */ 3972 id_priv->cm_id.ib = NULL; 3973 destroy_id_handler_unlock(id_priv); 3974 return ret; 3975 } 3976 out: 3977 mutex_unlock(&id_priv->handler_mutex); 3978 return 0; 3979 } 3980 3981 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3982 struct rdma_conn_param *conn_param) 3983 { 3984 struct ib_cm_sidr_req_param req; 3985 struct ib_cm_id *id; 3986 void *private_data; 3987 u8 offset; 3988 int ret; 3989 3990 memset(&req, 0, sizeof req); 3991 offset = cma_user_data_offset(id_priv); 3992 req.private_data_len = offset + conn_param->private_data_len; 3993 if (req.private_data_len < conn_param->private_data_len) 3994 return -EINVAL; 3995 3996 if (req.private_data_len) { 3997 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3998 if (!private_data) 3999 return -ENOMEM; 4000 } else { 4001 private_data = NULL; 4002 } 4003 4004 if (conn_param->private_data && conn_param->private_data_len) 4005 memcpy(private_data + offset, conn_param->private_data, 4006 conn_param->private_data_len); 4007 4008 if (private_data) { 4009 ret = cma_format_hdr(private_data, id_priv); 4010 if (ret) 4011 goto out; 4012 req.private_data = private_data; 4013 } 4014 4015 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4016 id_priv); 4017 if (IS_ERR(id)) { 4018 ret = PTR_ERR(id); 4019 goto out; 4020 } 4021 id_priv->cm_id.ib = id; 4022 4023 req.path = id_priv->id.route.path_rec; 4024 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4025 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4026 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4027 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4028 4029 trace_cm_send_sidr_req(id_priv); 4030 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4031 if (ret) { 4032 ib_destroy_cm_id(id_priv->cm_id.ib); 4033 id_priv->cm_id.ib = NULL; 4034 } 4035 out: 4036 kfree(private_data); 4037 return ret; 4038 } 4039 4040 static int cma_connect_ib(struct rdma_id_private *id_priv, 4041 struct rdma_conn_param *conn_param) 4042 { 4043 struct ib_cm_req_param req; 4044 struct rdma_route *route; 4045 void *private_data; 4046 struct ib_cm_id *id; 4047 u8 offset; 4048 int ret; 4049 4050 memset(&req, 0, sizeof req); 4051 offset = cma_user_data_offset(id_priv); 4052 req.private_data_len = offset + conn_param->private_data_len; 4053 if (req.private_data_len < conn_param->private_data_len) 4054 return -EINVAL; 4055 4056 if (req.private_data_len) { 4057 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4058 if (!private_data) 4059 return -ENOMEM; 4060 } else { 4061 private_data = NULL; 4062 } 4063 4064 if (conn_param->private_data && conn_param->private_data_len) 4065 memcpy(private_data + offset, conn_param->private_data, 4066 conn_param->private_data_len); 4067 4068 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4069 if (IS_ERR(id)) { 4070 ret = PTR_ERR(id); 4071 goto out; 4072 } 4073 id_priv->cm_id.ib = id; 4074 4075 route = &id_priv->id.route; 4076 if (private_data) { 4077 ret = cma_format_hdr(private_data, id_priv); 4078 if (ret) 4079 goto out; 4080 req.private_data = private_data; 4081 } 4082 4083 req.primary_path = &route->path_rec[0]; 4084 if (route->num_paths == 2) 4085 req.alternate_path = &route->path_rec[1]; 4086 4087 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4088 /* Alternate path SGID attribute currently unsupported */ 4089 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4090 req.qp_num = id_priv->qp_num; 4091 req.qp_type = id_priv->id.qp_type; 4092 req.starting_psn = id_priv->seq_num; 4093 req.responder_resources = conn_param->responder_resources; 4094 req.initiator_depth = conn_param->initiator_depth; 4095 req.flow_control = conn_param->flow_control; 4096 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4097 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4098 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4099 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4100 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4101 req.srq = id_priv->srq ? 1 : 0; 4102 req.ece.vendor_id = id_priv->ece.vendor_id; 4103 req.ece.attr_mod = id_priv->ece.attr_mod; 4104 4105 trace_cm_send_req(id_priv); 4106 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4107 out: 4108 if (ret && !IS_ERR(id)) { 4109 ib_destroy_cm_id(id); 4110 id_priv->cm_id.ib = NULL; 4111 } 4112 4113 kfree(private_data); 4114 return ret; 4115 } 4116 4117 static int cma_connect_iw(struct rdma_id_private *id_priv, 4118 struct rdma_conn_param *conn_param) 4119 { 4120 struct iw_cm_id *cm_id; 4121 int ret; 4122 struct iw_cm_conn_param iw_param; 4123 4124 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4125 if (IS_ERR(cm_id)) 4126 return PTR_ERR(cm_id); 4127 4128 mutex_lock(&id_priv->qp_mutex); 4129 cm_id->tos = id_priv->tos; 4130 cm_id->tos_set = id_priv->tos_set; 4131 mutex_unlock(&id_priv->qp_mutex); 4132 4133 id_priv->cm_id.iw = cm_id; 4134 4135 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4136 rdma_addr_size(cma_src_addr(id_priv))); 4137 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4138 rdma_addr_size(cma_dst_addr(id_priv))); 4139 4140 ret = cma_modify_qp_rtr(id_priv, conn_param); 4141 if (ret) 4142 goto out; 4143 4144 if (conn_param) { 4145 iw_param.ord = conn_param->initiator_depth; 4146 iw_param.ird = conn_param->responder_resources; 4147 iw_param.private_data = conn_param->private_data; 4148 iw_param.private_data_len = conn_param->private_data_len; 4149 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4150 } else { 4151 memset(&iw_param, 0, sizeof iw_param); 4152 iw_param.qpn = id_priv->qp_num; 4153 } 4154 ret = iw_cm_connect(cm_id, &iw_param); 4155 out: 4156 if (ret) { 4157 iw_destroy_cm_id(cm_id); 4158 id_priv->cm_id.iw = NULL; 4159 } 4160 return ret; 4161 } 4162 4163 /** 4164 * rdma_connect_locked - Initiate an active connection request. 4165 * @id: Connection identifier to connect. 4166 * @conn_param: Connection information used for connected QPs. 4167 * 4168 * Same as rdma_connect() but can only be called from the 4169 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4170 */ 4171 int rdma_connect_locked(struct rdma_cm_id *id, 4172 struct rdma_conn_param *conn_param) 4173 { 4174 struct rdma_id_private *id_priv = 4175 container_of(id, struct rdma_id_private, id); 4176 int ret; 4177 4178 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4179 return -EINVAL; 4180 4181 if (!id->qp) { 4182 id_priv->qp_num = conn_param->qp_num; 4183 id_priv->srq = conn_param->srq; 4184 } 4185 4186 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4187 if (id->qp_type == IB_QPT_UD) 4188 ret = cma_resolve_ib_udp(id_priv, conn_param); 4189 else 4190 ret = cma_connect_ib(id_priv, conn_param); 4191 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4192 ret = cma_connect_iw(id_priv, conn_param); 4193 } else { 4194 ret = -ENOSYS; 4195 } 4196 if (ret) 4197 goto err_state; 4198 return 0; 4199 err_state: 4200 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4201 return ret; 4202 } 4203 EXPORT_SYMBOL(rdma_connect_locked); 4204 4205 /** 4206 * rdma_connect - Initiate an active connection request. 4207 * @id: Connection identifier to connect. 4208 * @conn_param: Connection information used for connected QPs. 4209 * 4210 * Users must have resolved a route for the rdma_cm_id to connect with by having 4211 * called rdma_resolve_route before calling this routine. 4212 * 4213 * This call will either connect to a remote QP or obtain remote QP information 4214 * for unconnected rdma_cm_id's. The actual operation is based on the 4215 * rdma_cm_id's port space. 4216 */ 4217 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4218 { 4219 struct rdma_id_private *id_priv = 4220 container_of(id, struct rdma_id_private, id); 4221 int ret; 4222 4223 mutex_lock(&id_priv->handler_mutex); 4224 ret = rdma_connect_locked(id, conn_param); 4225 mutex_unlock(&id_priv->handler_mutex); 4226 return ret; 4227 } 4228 EXPORT_SYMBOL(rdma_connect); 4229 4230 /** 4231 * rdma_connect_ece - Initiate an active connection request with ECE data. 4232 * @id: Connection identifier to connect. 4233 * @conn_param: Connection information used for connected QPs. 4234 * @ece: ECE parameters 4235 * 4236 * See rdma_connect() explanation. 4237 */ 4238 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4239 struct rdma_ucm_ece *ece) 4240 { 4241 struct rdma_id_private *id_priv = 4242 container_of(id, struct rdma_id_private, id); 4243 4244 id_priv->ece.vendor_id = ece->vendor_id; 4245 id_priv->ece.attr_mod = ece->attr_mod; 4246 4247 return rdma_connect(id, conn_param); 4248 } 4249 EXPORT_SYMBOL(rdma_connect_ece); 4250 4251 static int cma_accept_ib(struct rdma_id_private *id_priv, 4252 struct rdma_conn_param *conn_param) 4253 { 4254 struct ib_cm_rep_param rep; 4255 int ret; 4256 4257 ret = cma_modify_qp_rtr(id_priv, conn_param); 4258 if (ret) 4259 goto out; 4260 4261 ret = cma_modify_qp_rts(id_priv, conn_param); 4262 if (ret) 4263 goto out; 4264 4265 memset(&rep, 0, sizeof rep); 4266 rep.qp_num = id_priv->qp_num; 4267 rep.starting_psn = id_priv->seq_num; 4268 rep.private_data = conn_param->private_data; 4269 rep.private_data_len = conn_param->private_data_len; 4270 rep.responder_resources = conn_param->responder_resources; 4271 rep.initiator_depth = conn_param->initiator_depth; 4272 rep.failover_accepted = 0; 4273 rep.flow_control = conn_param->flow_control; 4274 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4275 rep.srq = id_priv->srq ? 1 : 0; 4276 rep.ece.vendor_id = id_priv->ece.vendor_id; 4277 rep.ece.attr_mod = id_priv->ece.attr_mod; 4278 4279 trace_cm_send_rep(id_priv); 4280 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4281 out: 4282 return ret; 4283 } 4284 4285 static int cma_accept_iw(struct rdma_id_private *id_priv, 4286 struct rdma_conn_param *conn_param) 4287 { 4288 struct iw_cm_conn_param iw_param; 4289 int ret; 4290 4291 if (!conn_param) 4292 return -EINVAL; 4293 4294 ret = cma_modify_qp_rtr(id_priv, conn_param); 4295 if (ret) 4296 return ret; 4297 4298 iw_param.ord = conn_param->initiator_depth; 4299 iw_param.ird = conn_param->responder_resources; 4300 iw_param.private_data = conn_param->private_data; 4301 iw_param.private_data_len = conn_param->private_data_len; 4302 if (id_priv->id.qp) 4303 iw_param.qpn = id_priv->qp_num; 4304 else 4305 iw_param.qpn = conn_param->qp_num; 4306 4307 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4308 } 4309 4310 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4311 enum ib_cm_sidr_status status, u32 qkey, 4312 const void *private_data, int private_data_len) 4313 { 4314 struct ib_cm_sidr_rep_param rep; 4315 int ret; 4316 4317 memset(&rep, 0, sizeof rep); 4318 rep.status = status; 4319 if (status == IB_SIDR_SUCCESS) { 4320 ret = cma_set_qkey(id_priv, qkey); 4321 if (ret) 4322 return ret; 4323 rep.qp_num = id_priv->qp_num; 4324 rep.qkey = id_priv->qkey; 4325 4326 rep.ece.vendor_id = id_priv->ece.vendor_id; 4327 rep.ece.attr_mod = id_priv->ece.attr_mod; 4328 } 4329 4330 rep.private_data = private_data; 4331 rep.private_data_len = private_data_len; 4332 4333 trace_cm_send_sidr_rep(id_priv); 4334 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4335 } 4336 4337 /** 4338 * rdma_accept - Called to accept a connection request or response. 4339 * @id: Connection identifier associated with the request. 4340 * @conn_param: Information needed to establish the connection. This must be 4341 * provided if accepting a connection request. If accepting a connection 4342 * response, this parameter must be NULL. 4343 * 4344 * Typically, this routine is only called by the listener to accept a connection 4345 * request. It must also be called on the active side of a connection if the 4346 * user is performing their own QP transitions. 4347 * 4348 * In the case of error, a reject message is sent to the remote side and the 4349 * state of the qp associated with the id is modified to error, such that any 4350 * previously posted receive buffers would be flushed. 4351 * 4352 * This function is for use by kernel ULPs and must be called from under the 4353 * handler callback. 4354 */ 4355 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4356 { 4357 struct rdma_id_private *id_priv = 4358 container_of(id, struct rdma_id_private, id); 4359 int ret; 4360 4361 lockdep_assert_held(&id_priv->handler_mutex); 4362 4363 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4364 return -EINVAL; 4365 4366 if (!id->qp && conn_param) { 4367 id_priv->qp_num = conn_param->qp_num; 4368 id_priv->srq = conn_param->srq; 4369 } 4370 4371 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4372 if (id->qp_type == IB_QPT_UD) { 4373 if (conn_param) 4374 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4375 conn_param->qkey, 4376 conn_param->private_data, 4377 conn_param->private_data_len); 4378 else 4379 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4380 0, NULL, 0); 4381 } else { 4382 if (conn_param) 4383 ret = cma_accept_ib(id_priv, conn_param); 4384 else 4385 ret = cma_rep_recv(id_priv); 4386 } 4387 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4388 ret = cma_accept_iw(id_priv, conn_param); 4389 } else { 4390 ret = -ENOSYS; 4391 } 4392 if (ret) 4393 goto reject; 4394 4395 return 0; 4396 reject: 4397 cma_modify_qp_err(id_priv); 4398 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4399 return ret; 4400 } 4401 EXPORT_SYMBOL(rdma_accept); 4402 4403 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4404 struct rdma_ucm_ece *ece) 4405 { 4406 struct rdma_id_private *id_priv = 4407 container_of(id, struct rdma_id_private, id); 4408 4409 id_priv->ece.vendor_id = ece->vendor_id; 4410 id_priv->ece.attr_mod = ece->attr_mod; 4411 4412 return rdma_accept(id, conn_param); 4413 } 4414 EXPORT_SYMBOL(rdma_accept_ece); 4415 4416 void rdma_lock_handler(struct rdma_cm_id *id) 4417 { 4418 struct rdma_id_private *id_priv = 4419 container_of(id, struct rdma_id_private, id); 4420 4421 mutex_lock(&id_priv->handler_mutex); 4422 } 4423 EXPORT_SYMBOL(rdma_lock_handler); 4424 4425 void rdma_unlock_handler(struct rdma_cm_id *id) 4426 { 4427 struct rdma_id_private *id_priv = 4428 container_of(id, struct rdma_id_private, id); 4429 4430 mutex_unlock(&id_priv->handler_mutex); 4431 } 4432 EXPORT_SYMBOL(rdma_unlock_handler); 4433 4434 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4435 { 4436 struct rdma_id_private *id_priv; 4437 int ret; 4438 4439 id_priv = container_of(id, struct rdma_id_private, id); 4440 if (!id_priv->cm_id.ib) 4441 return -EINVAL; 4442 4443 switch (id->device->node_type) { 4444 case RDMA_NODE_IB_CA: 4445 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4446 break; 4447 default: 4448 ret = 0; 4449 break; 4450 } 4451 return ret; 4452 } 4453 EXPORT_SYMBOL(rdma_notify); 4454 4455 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4456 u8 private_data_len, u8 reason) 4457 { 4458 struct rdma_id_private *id_priv; 4459 int ret; 4460 4461 id_priv = container_of(id, struct rdma_id_private, id); 4462 if (!id_priv->cm_id.ib) 4463 return -EINVAL; 4464 4465 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4466 if (id->qp_type == IB_QPT_UD) { 4467 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4468 private_data, private_data_len); 4469 } else { 4470 trace_cm_send_rej(id_priv); 4471 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4472 private_data, private_data_len); 4473 } 4474 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4475 ret = iw_cm_reject(id_priv->cm_id.iw, 4476 private_data, private_data_len); 4477 } else { 4478 ret = -ENOSYS; 4479 } 4480 4481 return ret; 4482 } 4483 EXPORT_SYMBOL(rdma_reject); 4484 4485 int rdma_disconnect(struct rdma_cm_id *id) 4486 { 4487 struct rdma_id_private *id_priv; 4488 int ret; 4489 4490 id_priv = container_of(id, struct rdma_id_private, id); 4491 if (!id_priv->cm_id.ib) 4492 return -EINVAL; 4493 4494 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4495 ret = cma_modify_qp_err(id_priv); 4496 if (ret) 4497 goto out; 4498 /* Initiate or respond to a disconnect. */ 4499 trace_cm_disconnect(id_priv); 4500 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4501 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4502 trace_cm_sent_drep(id_priv); 4503 } else { 4504 trace_cm_sent_dreq(id_priv); 4505 } 4506 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4507 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4508 } else 4509 ret = -EINVAL; 4510 4511 out: 4512 return ret; 4513 } 4514 EXPORT_SYMBOL(rdma_disconnect); 4515 4516 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4517 struct ib_sa_multicast *multicast, 4518 struct rdma_cm_event *event, 4519 struct cma_multicast *mc) 4520 { 4521 struct rdma_dev_addr *dev_addr; 4522 enum ib_gid_type gid_type; 4523 struct net_device *ndev; 4524 4525 if (!status) 4526 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4527 else 4528 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4529 status); 4530 4531 event->status = status; 4532 event->param.ud.private_data = mc->context; 4533 if (status) { 4534 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4535 return; 4536 } 4537 4538 dev_addr = &id_priv->id.route.addr.dev_addr; 4539 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4540 gid_type = 4541 id_priv->cma_dev 4542 ->default_gid_type[id_priv->id.port_num - 4543 rdma_start_port( 4544 id_priv->cma_dev->device)]; 4545 4546 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4547 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4548 &multicast->rec, ndev, gid_type, 4549 &event->param.ud.ah_attr)) { 4550 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4551 goto out; 4552 } 4553 4554 event->param.ud.qp_num = 0xFFFFFF; 4555 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4556 4557 out: 4558 if (ndev) 4559 dev_put(ndev); 4560 } 4561 4562 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4563 { 4564 struct cma_multicast *mc = multicast->context; 4565 struct rdma_id_private *id_priv = mc->id_priv; 4566 struct rdma_cm_event event = {}; 4567 int ret = 0; 4568 4569 mutex_lock(&id_priv->handler_mutex); 4570 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4571 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4572 goto out; 4573 4574 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4575 ret = cma_cm_event_handler(id_priv, &event); 4576 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4577 WARN_ON(ret); 4578 4579 out: 4580 mutex_unlock(&id_priv->handler_mutex); 4581 return 0; 4582 } 4583 4584 static void cma_set_mgid(struct rdma_id_private *id_priv, 4585 struct sockaddr *addr, union ib_gid *mgid) 4586 { 4587 unsigned char mc_map[MAX_ADDR_LEN]; 4588 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4589 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4590 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4591 4592 if (cma_any_addr(addr)) { 4593 memset(mgid, 0, sizeof *mgid); 4594 } else if ((addr->sa_family == AF_INET6) && 4595 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4596 0xFF10A01B)) { 4597 /* IPv6 address is an SA assigned MGID. */ 4598 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4599 } else if (addr->sa_family == AF_IB) { 4600 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4601 } else if (addr->sa_family == AF_INET6) { 4602 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4603 if (id_priv->id.ps == RDMA_PS_UDP) 4604 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4605 *mgid = *(union ib_gid *) (mc_map + 4); 4606 } else { 4607 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4608 if (id_priv->id.ps == RDMA_PS_UDP) 4609 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4610 *mgid = *(union ib_gid *) (mc_map + 4); 4611 } 4612 } 4613 4614 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4615 struct cma_multicast *mc) 4616 { 4617 struct ib_sa_mcmember_rec rec; 4618 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4619 ib_sa_comp_mask comp_mask; 4620 int ret; 4621 4622 ib_addr_get_mgid(dev_addr, &rec.mgid); 4623 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4624 &rec.mgid, &rec); 4625 if (ret) 4626 return ret; 4627 4628 ret = cma_set_qkey(id_priv, 0); 4629 if (ret) 4630 return ret; 4631 4632 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4633 rec.qkey = cpu_to_be32(id_priv->qkey); 4634 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4635 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4636 rec.join_state = mc->join_state; 4637 4638 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4639 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4640 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4641 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4642 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4643 4644 if (id_priv->id.ps == RDMA_PS_IPOIB) 4645 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4646 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4647 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4648 IB_SA_MCMEMBER_REC_MTU | 4649 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4650 4651 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4652 id_priv->id.port_num, &rec, comp_mask, 4653 GFP_KERNEL, cma_ib_mc_handler, mc); 4654 return PTR_ERR_OR_ZERO(mc->sa_mc); 4655 } 4656 4657 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4658 enum ib_gid_type gid_type) 4659 { 4660 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4661 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4662 4663 if (cma_any_addr(addr)) { 4664 memset(mgid, 0, sizeof *mgid); 4665 } else if (addr->sa_family == AF_INET6) { 4666 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4667 } else { 4668 mgid->raw[0] = 4669 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4670 mgid->raw[1] = 4671 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4672 mgid->raw[2] = 0; 4673 mgid->raw[3] = 0; 4674 mgid->raw[4] = 0; 4675 mgid->raw[5] = 0; 4676 mgid->raw[6] = 0; 4677 mgid->raw[7] = 0; 4678 mgid->raw[8] = 0; 4679 mgid->raw[9] = 0; 4680 mgid->raw[10] = 0xff; 4681 mgid->raw[11] = 0xff; 4682 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4683 } 4684 } 4685 4686 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4687 struct cma_multicast *mc) 4688 { 4689 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4690 int err = 0; 4691 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4692 struct net_device *ndev = NULL; 4693 struct ib_sa_multicast ib; 4694 enum ib_gid_type gid_type; 4695 bool send_only; 4696 4697 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4698 4699 if (cma_zero_addr(addr)) 4700 return -EINVAL; 4701 4702 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4703 rdma_start_port(id_priv->cma_dev->device)]; 4704 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4705 4706 ib.rec.pkey = cpu_to_be16(0xffff); 4707 if (id_priv->id.ps == RDMA_PS_UDP) 4708 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4709 4710 if (dev_addr->bound_dev_if) 4711 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4712 if (!ndev) 4713 return -ENODEV; 4714 4715 ib.rec.rate = iboe_get_rate(ndev); 4716 ib.rec.hop_limit = 1; 4717 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4718 4719 if (addr->sa_family == AF_INET) { 4720 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4721 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4722 if (!send_only) { 4723 err = cma_igmp_send(ndev, &ib.rec.mgid, 4724 true); 4725 } 4726 } 4727 } else { 4728 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4729 err = -ENOTSUPP; 4730 } 4731 dev_put(ndev); 4732 if (err || !ib.rec.mtu) 4733 return err ?: -EINVAL; 4734 4735 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4736 &ib.rec.port_gid); 4737 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4738 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4739 queue_work(cma_wq, &mc->iboe_join.work); 4740 return 0; 4741 } 4742 4743 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4744 u8 join_state, void *context) 4745 { 4746 struct rdma_id_private *id_priv = 4747 container_of(id, struct rdma_id_private, id); 4748 struct cma_multicast *mc; 4749 int ret; 4750 4751 /* Not supported for kernel QPs */ 4752 if (WARN_ON(id->qp)) 4753 return -EINVAL; 4754 4755 /* ULP is calling this wrong. */ 4756 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4757 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4758 return -EINVAL; 4759 4760 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4761 if (!mc) 4762 return -ENOMEM; 4763 4764 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4765 mc->context = context; 4766 mc->id_priv = id_priv; 4767 mc->join_state = join_state; 4768 4769 if (rdma_protocol_roce(id->device, id->port_num)) { 4770 ret = cma_iboe_join_multicast(id_priv, mc); 4771 if (ret) 4772 goto out_err; 4773 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4774 ret = cma_join_ib_multicast(id_priv, mc); 4775 if (ret) 4776 goto out_err; 4777 } else { 4778 ret = -ENOSYS; 4779 goto out_err; 4780 } 4781 4782 spin_lock(&id_priv->lock); 4783 list_add(&mc->list, &id_priv->mc_list); 4784 spin_unlock(&id_priv->lock); 4785 4786 return 0; 4787 out_err: 4788 kfree(mc); 4789 return ret; 4790 } 4791 EXPORT_SYMBOL(rdma_join_multicast); 4792 4793 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4794 { 4795 struct rdma_id_private *id_priv; 4796 struct cma_multicast *mc; 4797 4798 id_priv = container_of(id, struct rdma_id_private, id); 4799 spin_lock_irq(&id_priv->lock); 4800 list_for_each_entry(mc, &id_priv->mc_list, list) { 4801 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4802 continue; 4803 list_del(&mc->list); 4804 spin_unlock_irq(&id_priv->lock); 4805 4806 WARN_ON(id_priv->cma_dev->device != id->device); 4807 destroy_mc(id_priv, mc); 4808 return; 4809 } 4810 spin_unlock_irq(&id_priv->lock); 4811 } 4812 EXPORT_SYMBOL(rdma_leave_multicast); 4813 4814 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4815 { 4816 struct rdma_dev_addr *dev_addr; 4817 struct cma_work *work; 4818 4819 dev_addr = &id_priv->id.route.addr.dev_addr; 4820 4821 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4822 (net_eq(dev_net(ndev), dev_addr->net)) && 4823 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4824 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4825 ndev->name, &id_priv->id); 4826 work = kzalloc(sizeof *work, GFP_KERNEL); 4827 if (!work) 4828 return -ENOMEM; 4829 4830 INIT_WORK(&work->work, cma_work_handler); 4831 work->id = id_priv; 4832 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4833 cma_id_get(id_priv); 4834 queue_work(cma_wq, &work->work); 4835 } 4836 4837 return 0; 4838 } 4839 4840 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4841 void *ptr) 4842 { 4843 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4844 struct cma_device *cma_dev; 4845 struct rdma_id_private *id_priv; 4846 int ret = NOTIFY_DONE; 4847 4848 if (event != NETDEV_BONDING_FAILOVER) 4849 return NOTIFY_DONE; 4850 4851 if (!netif_is_bond_master(ndev)) 4852 return NOTIFY_DONE; 4853 4854 mutex_lock(&lock); 4855 list_for_each_entry(cma_dev, &dev_list, list) 4856 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4857 ret = cma_netdev_change(ndev, id_priv); 4858 if (ret) 4859 goto out; 4860 } 4861 4862 out: 4863 mutex_unlock(&lock); 4864 return ret; 4865 } 4866 4867 static struct notifier_block cma_nb = { 4868 .notifier_call = cma_netdev_callback 4869 }; 4870 4871 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4872 { 4873 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4874 enum rdma_cm_state state; 4875 unsigned long flags; 4876 4877 mutex_lock(&id_priv->handler_mutex); 4878 /* Record that we want to remove the device */ 4879 spin_lock_irqsave(&id_priv->lock, flags); 4880 state = id_priv->state; 4881 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4882 spin_unlock_irqrestore(&id_priv->lock, flags); 4883 mutex_unlock(&id_priv->handler_mutex); 4884 cma_id_put(id_priv); 4885 return; 4886 } 4887 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4888 spin_unlock_irqrestore(&id_priv->lock, flags); 4889 4890 if (cma_cm_event_handler(id_priv, &event)) { 4891 /* 4892 * At this point the ULP promises it won't call 4893 * rdma_destroy_id() concurrently 4894 */ 4895 cma_id_put(id_priv); 4896 mutex_unlock(&id_priv->handler_mutex); 4897 trace_cm_id_destroy(id_priv); 4898 _destroy_id(id_priv, state); 4899 return; 4900 } 4901 mutex_unlock(&id_priv->handler_mutex); 4902 4903 /* 4904 * If this races with destroy then the thread that first assigns state 4905 * to a destroying does the cancel. 4906 */ 4907 cma_cancel_operation(id_priv, state); 4908 cma_id_put(id_priv); 4909 } 4910 4911 static void cma_process_remove(struct cma_device *cma_dev) 4912 { 4913 mutex_lock(&lock); 4914 while (!list_empty(&cma_dev->id_list)) { 4915 struct rdma_id_private *id_priv = list_first_entry( 4916 &cma_dev->id_list, struct rdma_id_private, list); 4917 4918 list_del(&id_priv->listen_list); 4919 list_del_init(&id_priv->list); 4920 cma_id_get(id_priv); 4921 mutex_unlock(&lock); 4922 4923 cma_send_device_removal_put(id_priv); 4924 4925 mutex_lock(&lock); 4926 } 4927 mutex_unlock(&lock); 4928 4929 cma_dev_put(cma_dev); 4930 wait_for_completion(&cma_dev->comp); 4931 } 4932 4933 static bool cma_supported(struct ib_device *device) 4934 { 4935 u32 i; 4936 4937 rdma_for_each_port(device, i) { 4938 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4939 return true; 4940 } 4941 return false; 4942 } 4943 4944 static int cma_add_one(struct ib_device *device) 4945 { 4946 struct rdma_id_private *to_destroy; 4947 struct cma_device *cma_dev; 4948 struct rdma_id_private *id_priv; 4949 unsigned long supported_gids = 0; 4950 int ret; 4951 u32 i; 4952 4953 if (!cma_supported(device)) 4954 return -EOPNOTSUPP; 4955 4956 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 4957 if (!cma_dev) 4958 return -ENOMEM; 4959 4960 cma_dev->device = device; 4961 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4962 sizeof(*cma_dev->default_gid_type), 4963 GFP_KERNEL); 4964 if (!cma_dev->default_gid_type) { 4965 ret = -ENOMEM; 4966 goto free_cma_dev; 4967 } 4968 4969 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4970 sizeof(*cma_dev->default_roce_tos), 4971 GFP_KERNEL); 4972 if (!cma_dev->default_roce_tos) { 4973 ret = -ENOMEM; 4974 goto free_gid_type; 4975 } 4976 4977 rdma_for_each_port (device, i) { 4978 supported_gids = roce_gid_type_mask_support(device, i); 4979 WARN_ON(!supported_gids); 4980 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4981 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4982 CMA_PREFERRED_ROCE_GID_TYPE; 4983 else 4984 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4985 find_first_bit(&supported_gids, BITS_PER_LONG); 4986 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4987 } 4988 4989 init_completion(&cma_dev->comp); 4990 refcount_set(&cma_dev->refcount, 1); 4991 INIT_LIST_HEAD(&cma_dev->id_list); 4992 ib_set_client_data(device, &cma_client, cma_dev); 4993 4994 mutex_lock(&lock); 4995 list_add_tail(&cma_dev->list, &dev_list); 4996 list_for_each_entry(id_priv, &listen_any_list, list) { 4997 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 4998 if (ret) 4999 goto free_listen; 5000 } 5001 mutex_unlock(&lock); 5002 5003 trace_cm_add_one(device); 5004 return 0; 5005 5006 free_listen: 5007 list_del(&cma_dev->list); 5008 mutex_unlock(&lock); 5009 5010 /* cma_process_remove() will delete to_destroy */ 5011 cma_process_remove(cma_dev); 5012 kfree(cma_dev->default_roce_tos); 5013 free_gid_type: 5014 kfree(cma_dev->default_gid_type); 5015 5016 free_cma_dev: 5017 kfree(cma_dev); 5018 return ret; 5019 } 5020 5021 static void cma_remove_one(struct ib_device *device, void *client_data) 5022 { 5023 struct cma_device *cma_dev = client_data; 5024 5025 trace_cm_remove_one(device); 5026 5027 mutex_lock(&lock); 5028 list_del(&cma_dev->list); 5029 mutex_unlock(&lock); 5030 5031 cma_process_remove(cma_dev); 5032 kfree(cma_dev->default_roce_tos); 5033 kfree(cma_dev->default_gid_type); 5034 kfree(cma_dev); 5035 } 5036 5037 static int cma_init_net(struct net *net) 5038 { 5039 struct cma_pernet *pernet = cma_pernet(net); 5040 5041 xa_init(&pernet->tcp_ps); 5042 xa_init(&pernet->udp_ps); 5043 xa_init(&pernet->ipoib_ps); 5044 xa_init(&pernet->ib_ps); 5045 5046 return 0; 5047 } 5048 5049 static void cma_exit_net(struct net *net) 5050 { 5051 struct cma_pernet *pernet = cma_pernet(net); 5052 5053 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5054 WARN_ON(!xa_empty(&pernet->udp_ps)); 5055 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5056 WARN_ON(!xa_empty(&pernet->ib_ps)); 5057 } 5058 5059 static struct pernet_operations cma_pernet_operations = { 5060 .init = cma_init_net, 5061 .exit = cma_exit_net, 5062 .id = &cma_pernet_id, 5063 .size = sizeof(struct cma_pernet), 5064 }; 5065 5066 static int __init cma_init(void) 5067 { 5068 int ret; 5069 5070 /* 5071 * There is a rare lock ordering dependency in cma_netdev_callback() 5072 * that only happens when bonding is enabled. Teach lockdep that rtnl 5073 * must never be nested under lock so it can find these without having 5074 * to test with bonding. 5075 */ 5076 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5077 rtnl_lock(); 5078 mutex_lock(&lock); 5079 mutex_unlock(&lock); 5080 rtnl_unlock(); 5081 } 5082 5083 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5084 if (!cma_wq) 5085 return -ENOMEM; 5086 5087 ret = register_pernet_subsys(&cma_pernet_operations); 5088 if (ret) 5089 goto err_wq; 5090 5091 ib_sa_register_client(&sa_client); 5092 register_netdevice_notifier(&cma_nb); 5093 5094 ret = ib_register_client(&cma_client); 5095 if (ret) 5096 goto err; 5097 5098 ret = cma_configfs_init(); 5099 if (ret) 5100 goto err_ib; 5101 5102 return 0; 5103 5104 err_ib: 5105 ib_unregister_client(&cma_client); 5106 err: 5107 unregister_netdevice_notifier(&cma_nb); 5108 ib_sa_unregister_client(&sa_client); 5109 unregister_pernet_subsys(&cma_pernet_operations); 5110 err_wq: 5111 destroy_workqueue(cma_wq); 5112 return ret; 5113 } 5114 5115 static void __exit cma_cleanup(void) 5116 { 5117 cma_configfs_exit(); 5118 ib_unregister_client(&cma_client); 5119 unregister_netdevice_notifier(&cma_nb); 5120 ib_sa_unregister_client(&sa_client); 5121 unregister_pernet_subsys(&cma_pernet_operations); 5122 destroy_workqueue(cma_wq); 5123 } 5124 5125 module_init(cma_init); 5126 module_exit(cma_cleanup); 5127