1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 71 union ib_gid *mgid); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->list, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del(&id_priv->list); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int i; 770 771 cma_dev = NULL; 772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 773 dgid = (union ib_gid *) &addr->sib_addr; 774 pkey = ntohs(addr->sib_pkey); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cur_dev, &dev_list, list) { 778 rdma_for_each_port (cur_dev->device, p) { 779 if (!rdma_cap_af_ib(cur_dev->device, p)) 780 continue; 781 782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 783 continue; 784 785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 786 continue; 787 for (i = 0; !rdma_query_gid(cur_dev->device, 788 p, i, &gid); 789 i++) { 790 if (!memcmp(&gid, dgid, sizeof(gid))) { 791 cma_dev = cur_dev; 792 sgid = gid; 793 id_priv->id.port_num = p; 794 goto found; 795 } 796 797 if (!cma_dev && (gid.global.subnet_prefix == 798 dgid->global.subnet_prefix) && 799 port_state == IB_PORT_ACTIVE) { 800 cma_dev = cur_dev; 801 sgid = gid; 802 id_priv->id.port_num = p; 803 goto found; 804 } 805 } 806 } 807 } 808 mutex_unlock(&lock); 809 return -ENODEV; 810 811 found: 812 cma_attach_to_dev(id_priv, cma_dev); 813 rdma_restrack_add(&id_priv->res); 814 mutex_unlock(&lock); 815 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 816 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 817 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 818 return 0; 819 } 820 821 static void cma_id_get(struct rdma_id_private *id_priv) 822 { 823 refcount_inc(&id_priv->refcount); 824 } 825 826 static void cma_id_put(struct rdma_id_private *id_priv) 827 { 828 if (refcount_dec_and_test(&id_priv->refcount)) 829 complete(&id_priv->comp); 830 } 831 832 static struct rdma_id_private * 833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 834 void *context, enum rdma_ucm_port_space ps, 835 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 836 { 837 struct rdma_id_private *id_priv; 838 839 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 840 if (!id_priv) 841 return ERR_PTR(-ENOMEM); 842 843 id_priv->state = RDMA_CM_IDLE; 844 id_priv->id.context = context; 845 id_priv->id.event_handler = event_handler; 846 id_priv->id.ps = ps; 847 id_priv->id.qp_type = qp_type; 848 id_priv->tos_set = false; 849 id_priv->timeout_set = false; 850 id_priv->min_rnr_timer_set = false; 851 id_priv->gid_type = IB_GID_TYPE_IB; 852 spin_lock_init(&id_priv->lock); 853 mutex_init(&id_priv->qp_mutex); 854 init_completion(&id_priv->comp); 855 refcount_set(&id_priv->refcount, 1); 856 mutex_init(&id_priv->handler_mutex); 857 INIT_LIST_HEAD(&id_priv->listen_list); 858 INIT_LIST_HEAD(&id_priv->mc_list); 859 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 860 id_priv->id.route.addr.dev_addr.net = get_net(net); 861 id_priv->seq_num &= 0x00ffffff; 862 863 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 864 if (parent) 865 rdma_restrack_parent_name(&id_priv->res, &parent->res); 866 867 return id_priv; 868 } 869 870 struct rdma_cm_id * 871 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 872 void *context, enum rdma_ucm_port_space ps, 873 enum ib_qp_type qp_type, const char *caller) 874 { 875 struct rdma_id_private *ret; 876 877 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 878 if (IS_ERR(ret)) 879 return ERR_CAST(ret); 880 881 rdma_restrack_set_name(&ret->res, caller); 882 return &ret->id; 883 } 884 EXPORT_SYMBOL(__rdma_create_kernel_id); 885 886 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 887 void *context, 888 enum rdma_ucm_port_space ps, 889 enum ib_qp_type qp_type) 890 { 891 struct rdma_id_private *ret; 892 893 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 894 ps, qp_type, NULL); 895 if (IS_ERR(ret)) 896 return ERR_CAST(ret); 897 898 rdma_restrack_set_name(&ret->res, NULL); 899 return &ret->id; 900 } 901 EXPORT_SYMBOL(rdma_create_user_id); 902 903 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 904 { 905 struct ib_qp_attr qp_attr; 906 int qp_attr_mask, ret; 907 908 qp_attr.qp_state = IB_QPS_INIT; 909 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 910 if (ret) 911 return ret; 912 913 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 914 if (ret) 915 return ret; 916 917 qp_attr.qp_state = IB_QPS_RTR; 918 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 919 if (ret) 920 return ret; 921 922 qp_attr.qp_state = IB_QPS_RTS; 923 qp_attr.sq_psn = 0; 924 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 925 926 return ret; 927 } 928 929 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 930 { 931 struct ib_qp_attr qp_attr; 932 int qp_attr_mask, ret; 933 934 qp_attr.qp_state = IB_QPS_INIT; 935 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 936 if (ret) 937 return ret; 938 939 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 940 } 941 942 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 943 struct ib_qp_init_attr *qp_init_attr) 944 { 945 struct rdma_id_private *id_priv; 946 struct ib_qp *qp; 947 int ret; 948 949 id_priv = container_of(id, struct rdma_id_private, id); 950 if (id->device != pd->device) { 951 ret = -EINVAL; 952 goto out_err; 953 } 954 955 qp_init_attr->port_num = id->port_num; 956 qp = ib_create_qp(pd, qp_init_attr); 957 if (IS_ERR(qp)) { 958 ret = PTR_ERR(qp); 959 goto out_err; 960 } 961 962 if (id->qp_type == IB_QPT_UD) 963 ret = cma_init_ud_qp(id_priv, qp); 964 else 965 ret = cma_init_conn_qp(id_priv, qp); 966 if (ret) 967 goto out_destroy; 968 969 id->qp = qp; 970 id_priv->qp_num = qp->qp_num; 971 id_priv->srq = (qp->srq != NULL); 972 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 973 return 0; 974 out_destroy: 975 ib_destroy_qp(qp); 976 out_err: 977 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 978 return ret; 979 } 980 EXPORT_SYMBOL(rdma_create_qp); 981 982 void rdma_destroy_qp(struct rdma_cm_id *id) 983 { 984 struct rdma_id_private *id_priv; 985 986 id_priv = container_of(id, struct rdma_id_private, id); 987 trace_cm_qp_destroy(id_priv); 988 mutex_lock(&id_priv->qp_mutex); 989 ib_destroy_qp(id_priv->id.qp); 990 id_priv->id.qp = NULL; 991 mutex_unlock(&id_priv->qp_mutex); 992 } 993 EXPORT_SYMBOL(rdma_destroy_qp); 994 995 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 996 struct rdma_conn_param *conn_param) 997 { 998 struct ib_qp_attr qp_attr; 999 int qp_attr_mask, ret; 1000 1001 mutex_lock(&id_priv->qp_mutex); 1002 if (!id_priv->id.qp) { 1003 ret = 0; 1004 goto out; 1005 } 1006 1007 /* Need to update QP attributes from default values. */ 1008 qp_attr.qp_state = IB_QPS_INIT; 1009 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1010 if (ret) 1011 goto out; 1012 1013 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1014 if (ret) 1015 goto out; 1016 1017 qp_attr.qp_state = IB_QPS_RTR; 1018 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1019 if (ret) 1020 goto out; 1021 1022 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1023 1024 if (conn_param) 1025 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1026 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1027 out: 1028 mutex_unlock(&id_priv->qp_mutex); 1029 return ret; 1030 } 1031 1032 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1033 struct rdma_conn_param *conn_param) 1034 { 1035 struct ib_qp_attr qp_attr; 1036 int qp_attr_mask, ret; 1037 1038 mutex_lock(&id_priv->qp_mutex); 1039 if (!id_priv->id.qp) { 1040 ret = 0; 1041 goto out; 1042 } 1043 1044 qp_attr.qp_state = IB_QPS_RTS; 1045 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1046 if (ret) 1047 goto out; 1048 1049 if (conn_param) 1050 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1051 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1052 out: 1053 mutex_unlock(&id_priv->qp_mutex); 1054 return ret; 1055 } 1056 1057 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1058 { 1059 struct ib_qp_attr qp_attr; 1060 int ret; 1061 1062 mutex_lock(&id_priv->qp_mutex); 1063 if (!id_priv->id.qp) { 1064 ret = 0; 1065 goto out; 1066 } 1067 1068 qp_attr.qp_state = IB_QPS_ERR; 1069 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1070 out: 1071 mutex_unlock(&id_priv->qp_mutex); 1072 return ret; 1073 } 1074 1075 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1076 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1077 { 1078 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1079 int ret; 1080 u16 pkey; 1081 1082 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1083 pkey = 0xffff; 1084 else 1085 pkey = ib_addr_get_pkey(dev_addr); 1086 1087 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1088 pkey, &qp_attr->pkey_index); 1089 if (ret) 1090 return ret; 1091 1092 qp_attr->port_num = id_priv->id.port_num; 1093 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1094 1095 if (id_priv->id.qp_type == IB_QPT_UD) { 1096 ret = cma_set_qkey(id_priv, 0); 1097 if (ret) 1098 return ret; 1099 1100 qp_attr->qkey = id_priv->qkey; 1101 *qp_attr_mask |= IB_QP_QKEY; 1102 } else { 1103 qp_attr->qp_access_flags = 0; 1104 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1105 } 1106 return 0; 1107 } 1108 1109 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1110 int *qp_attr_mask) 1111 { 1112 struct rdma_id_private *id_priv; 1113 int ret = 0; 1114 1115 id_priv = container_of(id, struct rdma_id_private, id); 1116 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1117 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1118 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1119 else 1120 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1121 qp_attr_mask); 1122 1123 if (qp_attr->qp_state == IB_QPS_RTR) 1124 qp_attr->rq_psn = id_priv->seq_num; 1125 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1126 if (!id_priv->cm_id.iw) { 1127 qp_attr->qp_access_flags = 0; 1128 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1129 } else 1130 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1131 qp_attr_mask); 1132 qp_attr->port_num = id_priv->id.port_num; 1133 *qp_attr_mask |= IB_QP_PORT; 1134 } else { 1135 ret = -ENOSYS; 1136 } 1137 1138 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1139 qp_attr->timeout = id_priv->timeout; 1140 1141 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1142 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(rdma_init_qp_attr); 1147 1148 static inline bool cma_zero_addr(const struct sockaddr *addr) 1149 { 1150 switch (addr->sa_family) { 1151 case AF_INET: 1152 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1153 case AF_INET6: 1154 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1155 case AF_IB: 1156 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1157 default: 1158 return false; 1159 } 1160 } 1161 1162 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1163 { 1164 switch (addr->sa_family) { 1165 case AF_INET: 1166 return ipv4_is_loopback( 1167 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1168 case AF_INET6: 1169 return ipv6_addr_loopback( 1170 &((struct sockaddr_in6 *)addr)->sin6_addr); 1171 case AF_IB: 1172 return ib_addr_loopback( 1173 &((struct sockaddr_ib *)addr)->sib_addr); 1174 default: 1175 return false; 1176 } 1177 } 1178 1179 static inline bool cma_any_addr(const struct sockaddr *addr) 1180 { 1181 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1182 } 1183 1184 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1185 { 1186 if (src->sa_family != dst->sa_family) 1187 return -1; 1188 1189 switch (src->sa_family) { 1190 case AF_INET: 1191 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1192 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1193 case AF_INET6: { 1194 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1195 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1196 bool link_local; 1197 1198 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1199 &dst_addr6->sin6_addr)) 1200 return 1; 1201 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1202 IPV6_ADDR_LINKLOCAL; 1203 /* Link local must match their scope_ids */ 1204 return link_local ? (src_addr6->sin6_scope_id != 1205 dst_addr6->sin6_scope_id) : 1206 0; 1207 } 1208 1209 default: 1210 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1211 &((struct sockaddr_ib *) dst)->sib_addr); 1212 } 1213 } 1214 1215 static __be16 cma_port(const struct sockaddr *addr) 1216 { 1217 struct sockaddr_ib *sib; 1218 1219 switch (addr->sa_family) { 1220 case AF_INET: 1221 return ((struct sockaddr_in *) addr)->sin_port; 1222 case AF_INET6: 1223 return ((struct sockaddr_in6 *) addr)->sin6_port; 1224 case AF_IB: 1225 sib = (struct sockaddr_ib *) addr; 1226 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1227 be64_to_cpu(sib->sib_sid_mask))); 1228 default: 1229 return 0; 1230 } 1231 } 1232 1233 static inline int cma_any_port(const struct sockaddr *addr) 1234 { 1235 return !cma_port(addr); 1236 } 1237 1238 static void cma_save_ib_info(struct sockaddr *src_addr, 1239 struct sockaddr *dst_addr, 1240 const struct rdma_cm_id *listen_id, 1241 const struct sa_path_rec *path) 1242 { 1243 struct sockaddr_ib *listen_ib, *ib; 1244 1245 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1246 if (src_addr) { 1247 ib = (struct sockaddr_ib *)src_addr; 1248 ib->sib_family = AF_IB; 1249 if (path) { 1250 ib->sib_pkey = path->pkey; 1251 ib->sib_flowinfo = path->flow_label; 1252 memcpy(&ib->sib_addr, &path->sgid, 16); 1253 ib->sib_sid = path->service_id; 1254 ib->sib_scope_id = 0; 1255 } else { 1256 ib->sib_pkey = listen_ib->sib_pkey; 1257 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1258 ib->sib_addr = listen_ib->sib_addr; 1259 ib->sib_sid = listen_ib->sib_sid; 1260 ib->sib_scope_id = listen_ib->sib_scope_id; 1261 } 1262 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1263 } 1264 if (dst_addr) { 1265 ib = (struct sockaddr_ib *)dst_addr; 1266 ib->sib_family = AF_IB; 1267 if (path) { 1268 ib->sib_pkey = path->pkey; 1269 ib->sib_flowinfo = path->flow_label; 1270 memcpy(&ib->sib_addr, &path->dgid, 16); 1271 } 1272 } 1273 } 1274 1275 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1276 struct sockaddr_in *dst_addr, 1277 struct cma_hdr *hdr, 1278 __be16 local_port) 1279 { 1280 if (src_addr) { 1281 *src_addr = (struct sockaddr_in) { 1282 .sin_family = AF_INET, 1283 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1284 .sin_port = local_port, 1285 }; 1286 } 1287 1288 if (dst_addr) { 1289 *dst_addr = (struct sockaddr_in) { 1290 .sin_family = AF_INET, 1291 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1292 .sin_port = hdr->port, 1293 }; 1294 } 1295 } 1296 1297 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1298 struct sockaddr_in6 *dst_addr, 1299 struct cma_hdr *hdr, 1300 __be16 local_port) 1301 { 1302 if (src_addr) { 1303 *src_addr = (struct sockaddr_in6) { 1304 .sin6_family = AF_INET6, 1305 .sin6_addr = hdr->dst_addr.ip6, 1306 .sin6_port = local_port, 1307 }; 1308 } 1309 1310 if (dst_addr) { 1311 *dst_addr = (struct sockaddr_in6) { 1312 .sin6_family = AF_INET6, 1313 .sin6_addr = hdr->src_addr.ip6, 1314 .sin6_port = hdr->port, 1315 }; 1316 } 1317 } 1318 1319 static u16 cma_port_from_service_id(__be64 service_id) 1320 { 1321 return (u16)be64_to_cpu(service_id); 1322 } 1323 1324 static int cma_save_ip_info(struct sockaddr *src_addr, 1325 struct sockaddr *dst_addr, 1326 const struct ib_cm_event *ib_event, 1327 __be64 service_id) 1328 { 1329 struct cma_hdr *hdr; 1330 __be16 port; 1331 1332 hdr = ib_event->private_data; 1333 if (hdr->cma_version != CMA_VERSION) 1334 return -EINVAL; 1335 1336 port = htons(cma_port_from_service_id(service_id)); 1337 1338 switch (cma_get_ip_ver(hdr)) { 1339 case 4: 1340 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1341 (struct sockaddr_in *)dst_addr, hdr, port); 1342 break; 1343 case 6: 1344 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1345 (struct sockaddr_in6 *)dst_addr, hdr, port); 1346 break; 1347 default: 1348 return -EAFNOSUPPORT; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int cma_save_net_info(struct sockaddr *src_addr, 1355 struct sockaddr *dst_addr, 1356 const struct rdma_cm_id *listen_id, 1357 const struct ib_cm_event *ib_event, 1358 sa_family_t sa_family, __be64 service_id) 1359 { 1360 if (sa_family == AF_IB) { 1361 if (ib_event->event == IB_CM_REQ_RECEIVED) 1362 cma_save_ib_info(src_addr, dst_addr, listen_id, 1363 ib_event->param.req_rcvd.primary_path); 1364 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1365 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1366 return 0; 1367 } 1368 1369 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1370 } 1371 1372 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1373 struct cma_req_info *req) 1374 { 1375 const struct ib_cm_req_event_param *req_param = 1376 &ib_event->param.req_rcvd; 1377 const struct ib_cm_sidr_req_event_param *sidr_param = 1378 &ib_event->param.sidr_req_rcvd; 1379 1380 switch (ib_event->event) { 1381 case IB_CM_REQ_RECEIVED: 1382 req->device = req_param->listen_id->device; 1383 req->port = req_param->port; 1384 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1385 sizeof(req->local_gid)); 1386 req->has_gid = true; 1387 req->service_id = req_param->primary_path->service_id; 1388 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1389 if (req->pkey != req_param->bth_pkey) 1390 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1391 "RDMA CMA: in the future this may cause the request to be dropped\n", 1392 req_param->bth_pkey, req->pkey); 1393 break; 1394 case IB_CM_SIDR_REQ_RECEIVED: 1395 req->device = sidr_param->listen_id->device; 1396 req->port = sidr_param->port; 1397 req->has_gid = false; 1398 req->service_id = sidr_param->service_id; 1399 req->pkey = sidr_param->pkey; 1400 if (req->pkey != sidr_param->bth_pkey) 1401 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1402 "RDMA CMA: in the future this may cause the request to be dropped\n", 1403 sidr_param->bth_pkey, req->pkey); 1404 break; 1405 default: 1406 return -EINVAL; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1413 const struct sockaddr_in *dst_addr, 1414 const struct sockaddr_in *src_addr) 1415 { 1416 __be32 daddr = dst_addr->sin_addr.s_addr, 1417 saddr = src_addr->sin_addr.s_addr; 1418 struct fib_result res; 1419 struct flowi4 fl4; 1420 int err; 1421 bool ret; 1422 1423 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1424 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1425 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1426 ipv4_is_loopback(saddr)) 1427 return false; 1428 1429 memset(&fl4, 0, sizeof(fl4)); 1430 fl4.flowi4_iif = net_dev->ifindex; 1431 fl4.daddr = daddr; 1432 fl4.saddr = saddr; 1433 1434 rcu_read_lock(); 1435 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1436 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1437 rcu_read_unlock(); 1438 1439 return ret; 1440 } 1441 1442 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1443 const struct sockaddr_in6 *dst_addr, 1444 const struct sockaddr_in6 *src_addr) 1445 { 1446 #if IS_ENABLED(CONFIG_IPV6) 1447 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1448 IPV6_ADDR_LINKLOCAL; 1449 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1450 &src_addr->sin6_addr, net_dev->ifindex, 1451 NULL, strict); 1452 bool ret; 1453 1454 if (!rt) 1455 return false; 1456 1457 ret = rt->rt6i_idev->dev == net_dev; 1458 ip6_rt_put(rt); 1459 1460 return ret; 1461 #else 1462 return false; 1463 #endif 1464 } 1465 1466 static bool validate_net_dev(struct net_device *net_dev, 1467 const struct sockaddr *daddr, 1468 const struct sockaddr *saddr) 1469 { 1470 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1471 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1472 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1473 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1474 1475 switch (daddr->sa_family) { 1476 case AF_INET: 1477 return saddr->sa_family == AF_INET && 1478 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1479 1480 case AF_INET6: 1481 return saddr->sa_family == AF_INET6 && 1482 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1483 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 static struct net_device * 1490 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1491 { 1492 const struct ib_gid_attr *sgid_attr = NULL; 1493 struct net_device *ndev; 1494 1495 if (ib_event->event == IB_CM_REQ_RECEIVED) 1496 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1497 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1498 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1499 1500 if (!sgid_attr) 1501 return NULL; 1502 1503 rcu_read_lock(); 1504 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1505 if (IS_ERR(ndev)) 1506 ndev = NULL; 1507 else 1508 dev_hold(ndev); 1509 rcu_read_unlock(); 1510 return ndev; 1511 } 1512 1513 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1514 struct cma_req_info *req) 1515 { 1516 struct sockaddr *listen_addr = 1517 (struct sockaddr *)&req->listen_addr_storage; 1518 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1519 struct net_device *net_dev; 1520 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1521 int err; 1522 1523 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1524 req->service_id); 1525 if (err) 1526 return ERR_PTR(err); 1527 1528 if (rdma_protocol_roce(req->device, req->port)) 1529 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1530 else 1531 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1532 req->pkey, 1533 gid, listen_addr); 1534 if (!net_dev) 1535 return ERR_PTR(-ENODEV); 1536 1537 return net_dev; 1538 } 1539 1540 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1541 { 1542 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1543 } 1544 1545 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1546 const struct cma_hdr *hdr) 1547 { 1548 struct sockaddr *addr = cma_src_addr(id_priv); 1549 __be32 ip4_addr; 1550 struct in6_addr ip6_addr; 1551 1552 if (cma_any_addr(addr) && !id_priv->afonly) 1553 return true; 1554 1555 switch (addr->sa_family) { 1556 case AF_INET: 1557 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1558 if (cma_get_ip_ver(hdr) != 4) 1559 return false; 1560 if (!cma_any_addr(addr) && 1561 hdr->dst_addr.ip4.addr != ip4_addr) 1562 return false; 1563 break; 1564 case AF_INET6: 1565 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1566 if (cma_get_ip_ver(hdr) != 6) 1567 return false; 1568 if (!cma_any_addr(addr) && 1569 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1570 return false; 1571 break; 1572 case AF_IB: 1573 return true; 1574 default: 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1582 { 1583 struct ib_device *device = id->device; 1584 const u32 port_num = id->port_num ?: rdma_start_port(device); 1585 1586 return rdma_protocol_roce(device, port_num); 1587 } 1588 1589 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1590 { 1591 const struct sockaddr *daddr = 1592 (const struct sockaddr *)&req->listen_addr_storage; 1593 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1594 1595 /* Returns true if the req is for IPv6 link local */ 1596 return (daddr->sa_family == AF_INET6 && 1597 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1598 } 1599 1600 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1601 const struct net_device *net_dev, 1602 const struct cma_req_info *req) 1603 { 1604 const struct rdma_addr *addr = &id->route.addr; 1605 1606 if (!net_dev) 1607 /* This request is an AF_IB request */ 1608 return (!id->port_num || id->port_num == req->port) && 1609 (addr->src_addr.ss_family == AF_IB); 1610 1611 /* 1612 * If the request is not for IPv6 link local, allow matching 1613 * request to any netdevice of the one or multiport rdma device. 1614 */ 1615 if (!cma_is_req_ipv6_ll(req)) 1616 return true; 1617 /* 1618 * Net namespaces must match, and if the listner is listening 1619 * on a specific netdevice than netdevice must match as well. 1620 */ 1621 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1622 (!!addr->dev_addr.bound_dev_if == 1623 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1624 return true; 1625 else 1626 return false; 1627 } 1628 1629 static struct rdma_id_private *cma_find_listener( 1630 const struct rdma_bind_list *bind_list, 1631 const struct ib_cm_id *cm_id, 1632 const struct ib_cm_event *ib_event, 1633 const struct cma_req_info *req, 1634 const struct net_device *net_dev) 1635 { 1636 struct rdma_id_private *id_priv, *id_priv_dev; 1637 1638 lockdep_assert_held(&lock); 1639 1640 if (!bind_list) 1641 return ERR_PTR(-EINVAL); 1642 1643 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1644 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1645 if (id_priv->id.device == cm_id->device && 1646 cma_match_net_dev(&id_priv->id, net_dev, req)) 1647 return id_priv; 1648 list_for_each_entry(id_priv_dev, 1649 &id_priv->listen_list, 1650 listen_list) { 1651 if (id_priv_dev->id.device == cm_id->device && 1652 cma_match_net_dev(&id_priv_dev->id, 1653 net_dev, req)) 1654 return id_priv_dev; 1655 } 1656 } 1657 } 1658 1659 return ERR_PTR(-EINVAL); 1660 } 1661 1662 static struct rdma_id_private * 1663 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1664 const struct ib_cm_event *ib_event, 1665 struct cma_req_info *req, 1666 struct net_device **net_dev) 1667 { 1668 struct rdma_bind_list *bind_list; 1669 struct rdma_id_private *id_priv; 1670 int err; 1671 1672 err = cma_save_req_info(ib_event, req); 1673 if (err) 1674 return ERR_PTR(err); 1675 1676 *net_dev = cma_get_net_dev(ib_event, req); 1677 if (IS_ERR(*net_dev)) { 1678 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1679 /* Assuming the protocol is AF_IB */ 1680 *net_dev = NULL; 1681 } else { 1682 return ERR_CAST(*net_dev); 1683 } 1684 } 1685 1686 mutex_lock(&lock); 1687 /* 1688 * Net namespace might be getting deleted while route lookup, 1689 * cm_id lookup is in progress. Therefore, perform netdevice 1690 * validation, cm_id lookup under rcu lock. 1691 * RCU lock along with netdevice state check, synchronizes with 1692 * netdevice migrating to different net namespace and also avoids 1693 * case where net namespace doesn't get deleted while lookup is in 1694 * progress. 1695 * If the device state is not IFF_UP, its properties such as ifindex 1696 * and nd_net cannot be trusted to remain valid without rcu lock. 1697 * net/core/dev.c change_net_namespace() ensures to synchronize with 1698 * ongoing operations on net device after device is closed using 1699 * synchronize_net(). 1700 */ 1701 rcu_read_lock(); 1702 if (*net_dev) { 1703 /* 1704 * If netdevice is down, it is likely that it is administratively 1705 * down or it might be migrating to different namespace. 1706 * In that case avoid further processing, as the net namespace 1707 * or ifindex may change. 1708 */ 1709 if (((*net_dev)->flags & IFF_UP) == 0) { 1710 id_priv = ERR_PTR(-EHOSTUNREACH); 1711 goto err; 1712 } 1713 1714 if (!validate_net_dev(*net_dev, 1715 (struct sockaddr *)&req->listen_addr_storage, 1716 (struct sockaddr *)&req->src_addr_storage)) { 1717 id_priv = ERR_PTR(-EHOSTUNREACH); 1718 goto err; 1719 } 1720 } 1721 1722 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1723 rdma_ps_from_service_id(req->service_id), 1724 cma_port_from_service_id(req->service_id)); 1725 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1726 err: 1727 rcu_read_unlock(); 1728 mutex_unlock(&lock); 1729 if (IS_ERR(id_priv) && *net_dev) { 1730 dev_put(*net_dev); 1731 *net_dev = NULL; 1732 } 1733 return id_priv; 1734 } 1735 1736 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1737 { 1738 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1739 } 1740 1741 static void cma_cancel_route(struct rdma_id_private *id_priv) 1742 { 1743 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1744 if (id_priv->query) 1745 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1746 } 1747 } 1748 1749 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1750 { 1751 struct rdma_id_private *dev_id_priv; 1752 1753 /* 1754 * Remove from listen_any_list to prevent added devices from spawning 1755 * additional listen requests. 1756 */ 1757 mutex_lock(&lock); 1758 list_del(&id_priv->list); 1759 1760 while (!list_empty(&id_priv->listen_list)) { 1761 dev_id_priv = list_entry(id_priv->listen_list.next, 1762 struct rdma_id_private, listen_list); 1763 /* sync with device removal to avoid duplicate destruction */ 1764 list_del_init(&dev_id_priv->list); 1765 list_del(&dev_id_priv->listen_list); 1766 mutex_unlock(&lock); 1767 1768 rdma_destroy_id(&dev_id_priv->id); 1769 mutex_lock(&lock); 1770 } 1771 mutex_unlock(&lock); 1772 } 1773 1774 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1775 enum rdma_cm_state state) 1776 { 1777 switch (state) { 1778 case RDMA_CM_ADDR_QUERY: 1779 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1780 break; 1781 case RDMA_CM_ROUTE_QUERY: 1782 cma_cancel_route(id_priv); 1783 break; 1784 case RDMA_CM_LISTEN: 1785 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1786 cma_cancel_listens(id_priv); 1787 break; 1788 default: 1789 break; 1790 } 1791 } 1792 1793 static void cma_release_port(struct rdma_id_private *id_priv) 1794 { 1795 struct rdma_bind_list *bind_list = id_priv->bind_list; 1796 struct net *net = id_priv->id.route.addr.dev_addr.net; 1797 1798 if (!bind_list) 1799 return; 1800 1801 mutex_lock(&lock); 1802 hlist_del(&id_priv->node); 1803 if (hlist_empty(&bind_list->owners)) { 1804 cma_ps_remove(net, bind_list->ps, bind_list->port); 1805 kfree(bind_list); 1806 } 1807 mutex_unlock(&lock); 1808 } 1809 1810 static void destroy_mc(struct rdma_id_private *id_priv, 1811 struct cma_multicast *mc) 1812 { 1813 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1814 ib_sa_free_multicast(mc->sa_mc); 1815 1816 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1817 struct rdma_dev_addr *dev_addr = 1818 &id_priv->id.route.addr.dev_addr; 1819 struct net_device *ndev = NULL; 1820 1821 if (dev_addr->bound_dev_if) 1822 ndev = dev_get_by_index(dev_addr->net, 1823 dev_addr->bound_dev_if); 1824 if (ndev) { 1825 union ib_gid mgid; 1826 1827 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1828 &mgid); 1829 cma_igmp_send(ndev, &mgid, false); 1830 dev_put(ndev); 1831 } 1832 1833 cancel_work_sync(&mc->iboe_join.work); 1834 } 1835 kfree(mc); 1836 } 1837 1838 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1839 { 1840 struct cma_multicast *mc; 1841 1842 while (!list_empty(&id_priv->mc_list)) { 1843 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1844 list); 1845 list_del(&mc->list); 1846 destroy_mc(id_priv, mc); 1847 } 1848 } 1849 1850 static void _destroy_id(struct rdma_id_private *id_priv, 1851 enum rdma_cm_state state) 1852 { 1853 cma_cancel_operation(id_priv, state); 1854 1855 if (id_priv->cma_dev) { 1856 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1857 if (id_priv->cm_id.ib) 1858 ib_destroy_cm_id(id_priv->cm_id.ib); 1859 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1860 if (id_priv->cm_id.iw) 1861 iw_destroy_cm_id(id_priv->cm_id.iw); 1862 } 1863 cma_leave_mc_groups(id_priv); 1864 rdma_restrack_del(&id_priv->res); 1865 cma_release_dev(id_priv); 1866 } 1867 1868 cma_release_port(id_priv); 1869 cma_id_put(id_priv); 1870 wait_for_completion(&id_priv->comp); 1871 1872 if (id_priv->internal_id) 1873 cma_id_put(id_priv->id.context); 1874 1875 kfree(id_priv->id.route.path_rec); 1876 1877 put_net(id_priv->id.route.addr.dev_addr.net); 1878 kfree(id_priv); 1879 } 1880 1881 /* 1882 * destroy an ID from within the handler_mutex. This ensures that no other 1883 * handlers can start running concurrently. 1884 */ 1885 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1886 __releases(&idprv->handler_mutex) 1887 { 1888 enum rdma_cm_state state; 1889 unsigned long flags; 1890 1891 trace_cm_id_destroy(id_priv); 1892 1893 /* 1894 * Setting the state to destroyed under the handler mutex provides a 1895 * fence against calling handler callbacks. If this is invoked due to 1896 * the failure of a handler callback then it guarentees that no future 1897 * handlers will be called. 1898 */ 1899 lockdep_assert_held(&id_priv->handler_mutex); 1900 spin_lock_irqsave(&id_priv->lock, flags); 1901 state = id_priv->state; 1902 id_priv->state = RDMA_CM_DESTROYING; 1903 spin_unlock_irqrestore(&id_priv->lock, flags); 1904 mutex_unlock(&id_priv->handler_mutex); 1905 _destroy_id(id_priv, state); 1906 } 1907 1908 void rdma_destroy_id(struct rdma_cm_id *id) 1909 { 1910 struct rdma_id_private *id_priv = 1911 container_of(id, struct rdma_id_private, id); 1912 1913 mutex_lock(&id_priv->handler_mutex); 1914 destroy_id_handler_unlock(id_priv); 1915 } 1916 EXPORT_SYMBOL(rdma_destroy_id); 1917 1918 static int cma_rep_recv(struct rdma_id_private *id_priv) 1919 { 1920 int ret; 1921 1922 ret = cma_modify_qp_rtr(id_priv, NULL); 1923 if (ret) 1924 goto reject; 1925 1926 ret = cma_modify_qp_rts(id_priv, NULL); 1927 if (ret) 1928 goto reject; 1929 1930 trace_cm_send_rtu(id_priv); 1931 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1932 if (ret) 1933 goto reject; 1934 1935 return 0; 1936 reject: 1937 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1938 cma_modify_qp_err(id_priv); 1939 trace_cm_send_rej(id_priv); 1940 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1941 NULL, 0, NULL, 0); 1942 return ret; 1943 } 1944 1945 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1946 const struct ib_cm_rep_event_param *rep_data, 1947 void *private_data) 1948 { 1949 event->param.conn.private_data = private_data; 1950 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1951 event->param.conn.responder_resources = rep_data->responder_resources; 1952 event->param.conn.initiator_depth = rep_data->initiator_depth; 1953 event->param.conn.flow_control = rep_data->flow_control; 1954 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1955 event->param.conn.srq = rep_data->srq; 1956 event->param.conn.qp_num = rep_data->remote_qpn; 1957 1958 event->ece.vendor_id = rep_data->ece.vendor_id; 1959 event->ece.attr_mod = rep_data->ece.attr_mod; 1960 } 1961 1962 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1963 struct rdma_cm_event *event) 1964 { 1965 int ret; 1966 1967 lockdep_assert_held(&id_priv->handler_mutex); 1968 1969 trace_cm_event_handler(id_priv, event); 1970 ret = id_priv->id.event_handler(&id_priv->id, event); 1971 trace_cm_event_done(id_priv, event, ret); 1972 return ret; 1973 } 1974 1975 static int cma_ib_handler(struct ib_cm_id *cm_id, 1976 const struct ib_cm_event *ib_event) 1977 { 1978 struct rdma_id_private *id_priv = cm_id->context; 1979 struct rdma_cm_event event = {}; 1980 enum rdma_cm_state state; 1981 int ret; 1982 1983 mutex_lock(&id_priv->handler_mutex); 1984 state = READ_ONCE(id_priv->state); 1985 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1986 state != RDMA_CM_CONNECT) || 1987 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1988 state != RDMA_CM_DISCONNECT)) 1989 goto out; 1990 1991 switch (ib_event->event) { 1992 case IB_CM_REQ_ERROR: 1993 case IB_CM_REP_ERROR: 1994 event.event = RDMA_CM_EVENT_UNREACHABLE; 1995 event.status = -ETIMEDOUT; 1996 break; 1997 case IB_CM_REP_RECEIVED: 1998 if (state == RDMA_CM_CONNECT && 1999 (id_priv->id.qp_type != IB_QPT_UD)) { 2000 trace_cm_send_mra(id_priv); 2001 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2002 } 2003 if (id_priv->id.qp) { 2004 event.status = cma_rep_recv(id_priv); 2005 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2006 RDMA_CM_EVENT_ESTABLISHED; 2007 } else { 2008 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2009 } 2010 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2011 ib_event->private_data); 2012 break; 2013 case IB_CM_RTU_RECEIVED: 2014 case IB_CM_USER_ESTABLISHED: 2015 event.event = RDMA_CM_EVENT_ESTABLISHED; 2016 break; 2017 case IB_CM_DREQ_ERROR: 2018 event.status = -ETIMEDOUT; 2019 fallthrough; 2020 case IB_CM_DREQ_RECEIVED: 2021 case IB_CM_DREP_RECEIVED: 2022 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2023 RDMA_CM_DISCONNECT)) 2024 goto out; 2025 event.event = RDMA_CM_EVENT_DISCONNECTED; 2026 break; 2027 case IB_CM_TIMEWAIT_EXIT: 2028 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2029 break; 2030 case IB_CM_MRA_RECEIVED: 2031 /* ignore event */ 2032 goto out; 2033 case IB_CM_REJ_RECEIVED: 2034 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2035 ib_event->param.rej_rcvd.reason)); 2036 cma_modify_qp_err(id_priv); 2037 event.status = ib_event->param.rej_rcvd.reason; 2038 event.event = RDMA_CM_EVENT_REJECTED; 2039 event.param.conn.private_data = ib_event->private_data; 2040 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2041 break; 2042 default: 2043 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2044 ib_event->event); 2045 goto out; 2046 } 2047 2048 ret = cma_cm_event_handler(id_priv, &event); 2049 if (ret) { 2050 /* Destroy the CM ID by returning a non-zero value. */ 2051 id_priv->cm_id.ib = NULL; 2052 destroy_id_handler_unlock(id_priv); 2053 return ret; 2054 } 2055 out: 2056 mutex_unlock(&id_priv->handler_mutex); 2057 return 0; 2058 } 2059 2060 static struct rdma_id_private * 2061 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2062 const struct ib_cm_event *ib_event, 2063 struct net_device *net_dev) 2064 { 2065 struct rdma_id_private *listen_id_priv; 2066 struct rdma_id_private *id_priv; 2067 struct rdma_cm_id *id; 2068 struct rdma_route *rt; 2069 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2070 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2071 const __be64 service_id = 2072 ib_event->param.req_rcvd.primary_path->service_id; 2073 int ret; 2074 2075 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2076 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2077 listen_id->event_handler, listen_id->context, 2078 listen_id->ps, 2079 ib_event->param.req_rcvd.qp_type, 2080 listen_id_priv); 2081 if (IS_ERR(id_priv)) 2082 return NULL; 2083 2084 id = &id_priv->id; 2085 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2086 (struct sockaddr *)&id->route.addr.dst_addr, 2087 listen_id, ib_event, ss_family, service_id)) 2088 goto err; 2089 2090 rt = &id->route; 2091 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2092 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2093 GFP_KERNEL); 2094 if (!rt->path_rec) 2095 goto err; 2096 2097 rt->path_rec[0] = *path; 2098 if (rt->num_paths == 2) 2099 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2100 2101 if (net_dev) { 2102 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2103 } else { 2104 if (!cma_protocol_roce(listen_id) && 2105 cma_any_addr(cma_src_addr(id_priv))) { 2106 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2107 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2108 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2109 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2110 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2111 if (ret) 2112 goto err; 2113 } 2114 } 2115 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2116 2117 id_priv->state = RDMA_CM_CONNECT; 2118 return id_priv; 2119 2120 err: 2121 rdma_destroy_id(id); 2122 return NULL; 2123 } 2124 2125 static struct rdma_id_private * 2126 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2127 const struct ib_cm_event *ib_event, 2128 struct net_device *net_dev) 2129 { 2130 const struct rdma_id_private *listen_id_priv; 2131 struct rdma_id_private *id_priv; 2132 struct rdma_cm_id *id; 2133 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2134 struct net *net = listen_id->route.addr.dev_addr.net; 2135 int ret; 2136 2137 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2138 id_priv = __rdma_create_id(net, listen_id->event_handler, 2139 listen_id->context, listen_id->ps, IB_QPT_UD, 2140 listen_id_priv); 2141 if (IS_ERR(id_priv)) 2142 return NULL; 2143 2144 id = &id_priv->id; 2145 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2146 (struct sockaddr *)&id->route.addr.dst_addr, 2147 listen_id, ib_event, ss_family, 2148 ib_event->param.sidr_req_rcvd.service_id)) 2149 goto err; 2150 2151 if (net_dev) { 2152 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2153 } else { 2154 if (!cma_any_addr(cma_src_addr(id_priv))) { 2155 ret = cma_translate_addr(cma_src_addr(id_priv), 2156 &id->route.addr.dev_addr); 2157 if (ret) 2158 goto err; 2159 } 2160 } 2161 2162 id_priv->state = RDMA_CM_CONNECT; 2163 return id_priv; 2164 err: 2165 rdma_destroy_id(id); 2166 return NULL; 2167 } 2168 2169 static void cma_set_req_event_data(struct rdma_cm_event *event, 2170 const struct ib_cm_req_event_param *req_data, 2171 void *private_data, int offset) 2172 { 2173 event->param.conn.private_data = private_data + offset; 2174 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2175 event->param.conn.responder_resources = req_data->responder_resources; 2176 event->param.conn.initiator_depth = req_data->initiator_depth; 2177 event->param.conn.flow_control = req_data->flow_control; 2178 event->param.conn.retry_count = req_data->retry_count; 2179 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2180 event->param.conn.srq = req_data->srq; 2181 event->param.conn.qp_num = req_data->remote_qpn; 2182 2183 event->ece.vendor_id = req_data->ece.vendor_id; 2184 event->ece.attr_mod = req_data->ece.attr_mod; 2185 } 2186 2187 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2188 const struct ib_cm_event *ib_event) 2189 { 2190 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2191 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2192 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2193 (id->qp_type == IB_QPT_UD)) || 2194 (!id->qp_type)); 2195 } 2196 2197 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2198 const struct ib_cm_event *ib_event) 2199 { 2200 struct rdma_id_private *listen_id, *conn_id = NULL; 2201 struct rdma_cm_event event = {}; 2202 struct cma_req_info req = {}; 2203 struct net_device *net_dev; 2204 u8 offset; 2205 int ret; 2206 2207 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2208 if (IS_ERR(listen_id)) 2209 return PTR_ERR(listen_id); 2210 2211 trace_cm_req_handler(listen_id, ib_event->event); 2212 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2213 ret = -EINVAL; 2214 goto net_dev_put; 2215 } 2216 2217 mutex_lock(&listen_id->handler_mutex); 2218 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2219 ret = -ECONNABORTED; 2220 goto err_unlock; 2221 } 2222 2223 offset = cma_user_data_offset(listen_id); 2224 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2225 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2226 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2227 event.param.ud.private_data = ib_event->private_data + offset; 2228 event.param.ud.private_data_len = 2229 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2230 } else { 2231 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2232 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2233 ib_event->private_data, offset); 2234 } 2235 if (!conn_id) { 2236 ret = -ENOMEM; 2237 goto err_unlock; 2238 } 2239 2240 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2241 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2242 if (ret) { 2243 destroy_id_handler_unlock(conn_id); 2244 goto err_unlock; 2245 } 2246 2247 conn_id->cm_id.ib = cm_id; 2248 cm_id->context = conn_id; 2249 cm_id->cm_handler = cma_ib_handler; 2250 2251 ret = cma_cm_event_handler(conn_id, &event); 2252 if (ret) { 2253 /* Destroy the CM ID by returning a non-zero value. */ 2254 conn_id->cm_id.ib = NULL; 2255 mutex_unlock(&listen_id->handler_mutex); 2256 destroy_id_handler_unlock(conn_id); 2257 goto net_dev_put; 2258 } 2259 2260 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2261 conn_id->id.qp_type != IB_QPT_UD) { 2262 trace_cm_send_mra(cm_id->context); 2263 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2264 } 2265 mutex_unlock(&conn_id->handler_mutex); 2266 2267 err_unlock: 2268 mutex_unlock(&listen_id->handler_mutex); 2269 2270 net_dev_put: 2271 if (net_dev) 2272 dev_put(net_dev); 2273 2274 return ret; 2275 } 2276 2277 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2278 { 2279 if (addr->sa_family == AF_IB) 2280 return ((struct sockaddr_ib *) addr)->sib_sid; 2281 2282 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2283 } 2284 EXPORT_SYMBOL(rdma_get_service_id); 2285 2286 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2287 union ib_gid *dgid) 2288 { 2289 struct rdma_addr *addr = &cm_id->route.addr; 2290 2291 if (!cm_id->device) { 2292 if (sgid) 2293 memset(sgid, 0, sizeof(*sgid)); 2294 if (dgid) 2295 memset(dgid, 0, sizeof(*dgid)); 2296 return; 2297 } 2298 2299 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2300 if (sgid) 2301 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2302 if (dgid) 2303 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2304 } else { 2305 if (sgid) 2306 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2307 if (dgid) 2308 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2309 } 2310 } 2311 EXPORT_SYMBOL(rdma_read_gids); 2312 2313 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2314 { 2315 struct rdma_id_private *id_priv = iw_id->context; 2316 struct rdma_cm_event event = {}; 2317 int ret = 0; 2318 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2319 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2320 2321 mutex_lock(&id_priv->handler_mutex); 2322 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2323 goto out; 2324 2325 switch (iw_event->event) { 2326 case IW_CM_EVENT_CLOSE: 2327 event.event = RDMA_CM_EVENT_DISCONNECTED; 2328 break; 2329 case IW_CM_EVENT_CONNECT_REPLY: 2330 memcpy(cma_src_addr(id_priv), laddr, 2331 rdma_addr_size(laddr)); 2332 memcpy(cma_dst_addr(id_priv), raddr, 2333 rdma_addr_size(raddr)); 2334 switch (iw_event->status) { 2335 case 0: 2336 event.event = RDMA_CM_EVENT_ESTABLISHED; 2337 event.param.conn.initiator_depth = iw_event->ird; 2338 event.param.conn.responder_resources = iw_event->ord; 2339 break; 2340 case -ECONNRESET: 2341 case -ECONNREFUSED: 2342 event.event = RDMA_CM_EVENT_REJECTED; 2343 break; 2344 case -ETIMEDOUT: 2345 event.event = RDMA_CM_EVENT_UNREACHABLE; 2346 break; 2347 default: 2348 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2349 break; 2350 } 2351 break; 2352 case IW_CM_EVENT_ESTABLISHED: 2353 event.event = RDMA_CM_EVENT_ESTABLISHED; 2354 event.param.conn.initiator_depth = iw_event->ird; 2355 event.param.conn.responder_resources = iw_event->ord; 2356 break; 2357 default: 2358 goto out; 2359 } 2360 2361 event.status = iw_event->status; 2362 event.param.conn.private_data = iw_event->private_data; 2363 event.param.conn.private_data_len = iw_event->private_data_len; 2364 ret = cma_cm_event_handler(id_priv, &event); 2365 if (ret) { 2366 /* Destroy the CM ID by returning a non-zero value. */ 2367 id_priv->cm_id.iw = NULL; 2368 destroy_id_handler_unlock(id_priv); 2369 return ret; 2370 } 2371 2372 out: 2373 mutex_unlock(&id_priv->handler_mutex); 2374 return ret; 2375 } 2376 2377 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2378 struct iw_cm_event *iw_event) 2379 { 2380 struct rdma_id_private *listen_id, *conn_id; 2381 struct rdma_cm_event event = {}; 2382 int ret = -ECONNABORTED; 2383 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2384 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2385 2386 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2387 event.param.conn.private_data = iw_event->private_data; 2388 event.param.conn.private_data_len = iw_event->private_data_len; 2389 event.param.conn.initiator_depth = iw_event->ird; 2390 event.param.conn.responder_resources = iw_event->ord; 2391 2392 listen_id = cm_id->context; 2393 2394 mutex_lock(&listen_id->handler_mutex); 2395 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2396 goto out; 2397 2398 /* Create a new RDMA id for the new IW CM ID */ 2399 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2400 listen_id->id.event_handler, 2401 listen_id->id.context, RDMA_PS_TCP, 2402 IB_QPT_RC, listen_id); 2403 if (IS_ERR(conn_id)) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2408 conn_id->state = RDMA_CM_CONNECT; 2409 2410 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2411 if (ret) { 2412 mutex_unlock(&listen_id->handler_mutex); 2413 destroy_id_handler_unlock(conn_id); 2414 return ret; 2415 } 2416 2417 ret = cma_iw_acquire_dev(conn_id, listen_id); 2418 if (ret) { 2419 mutex_unlock(&listen_id->handler_mutex); 2420 destroy_id_handler_unlock(conn_id); 2421 return ret; 2422 } 2423 2424 conn_id->cm_id.iw = cm_id; 2425 cm_id->context = conn_id; 2426 cm_id->cm_handler = cma_iw_handler; 2427 2428 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2429 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2430 2431 ret = cma_cm_event_handler(conn_id, &event); 2432 if (ret) { 2433 /* User wants to destroy the CM ID */ 2434 conn_id->cm_id.iw = NULL; 2435 mutex_unlock(&listen_id->handler_mutex); 2436 destroy_id_handler_unlock(conn_id); 2437 return ret; 2438 } 2439 2440 mutex_unlock(&conn_id->handler_mutex); 2441 2442 out: 2443 mutex_unlock(&listen_id->handler_mutex); 2444 return ret; 2445 } 2446 2447 static int cma_ib_listen(struct rdma_id_private *id_priv) 2448 { 2449 struct sockaddr *addr; 2450 struct ib_cm_id *id; 2451 __be64 svc_id; 2452 2453 addr = cma_src_addr(id_priv); 2454 svc_id = rdma_get_service_id(&id_priv->id, addr); 2455 id = ib_cm_insert_listen(id_priv->id.device, 2456 cma_ib_req_handler, svc_id); 2457 if (IS_ERR(id)) 2458 return PTR_ERR(id); 2459 id_priv->cm_id.ib = id; 2460 2461 return 0; 2462 } 2463 2464 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2465 { 2466 int ret; 2467 struct iw_cm_id *id; 2468 2469 id = iw_create_cm_id(id_priv->id.device, 2470 iw_conn_req_handler, 2471 id_priv); 2472 if (IS_ERR(id)) 2473 return PTR_ERR(id); 2474 2475 id->tos = id_priv->tos; 2476 id->tos_set = id_priv->tos_set; 2477 id->afonly = id_priv->afonly; 2478 id_priv->cm_id.iw = id; 2479 2480 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2481 rdma_addr_size(cma_src_addr(id_priv))); 2482 2483 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2484 2485 if (ret) { 2486 iw_destroy_cm_id(id_priv->cm_id.iw); 2487 id_priv->cm_id.iw = NULL; 2488 } 2489 2490 return ret; 2491 } 2492 2493 static int cma_listen_handler(struct rdma_cm_id *id, 2494 struct rdma_cm_event *event) 2495 { 2496 struct rdma_id_private *id_priv = id->context; 2497 2498 /* Listening IDs are always destroyed on removal */ 2499 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2500 return -1; 2501 2502 id->context = id_priv->id.context; 2503 id->event_handler = id_priv->id.event_handler; 2504 trace_cm_event_handler(id_priv, event); 2505 return id_priv->id.event_handler(id, event); 2506 } 2507 2508 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2509 struct cma_device *cma_dev, 2510 struct rdma_id_private **to_destroy) 2511 { 2512 struct rdma_id_private *dev_id_priv; 2513 struct net *net = id_priv->id.route.addr.dev_addr.net; 2514 int ret; 2515 2516 lockdep_assert_held(&lock); 2517 2518 *to_destroy = NULL; 2519 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2520 return 0; 2521 2522 dev_id_priv = 2523 __rdma_create_id(net, cma_listen_handler, id_priv, 2524 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2525 if (IS_ERR(dev_id_priv)) 2526 return PTR_ERR(dev_id_priv); 2527 2528 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2529 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2530 rdma_addr_size(cma_src_addr(id_priv))); 2531 2532 _cma_attach_to_dev(dev_id_priv, cma_dev); 2533 rdma_restrack_add(&dev_id_priv->res); 2534 cma_id_get(id_priv); 2535 dev_id_priv->internal_id = 1; 2536 dev_id_priv->afonly = id_priv->afonly; 2537 dev_id_priv->tos_set = id_priv->tos_set; 2538 dev_id_priv->tos = id_priv->tos; 2539 2540 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2541 if (ret) 2542 goto err_listen; 2543 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2544 return 0; 2545 err_listen: 2546 /* Caller must destroy this after releasing lock */ 2547 *to_destroy = dev_id_priv; 2548 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2549 return ret; 2550 } 2551 2552 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2553 { 2554 struct rdma_id_private *to_destroy; 2555 struct cma_device *cma_dev; 2556 int ret; 2557 2558 mutex_lock(&lock); 2559 list_add_tail(&id_priv->list, &listen_any_list); 2560 list_for_each_entry(cma_dev, &dev_list, list) { 2561 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2562 if (ret) { 2563 /* Prevent racing with cma_process_remove() */ 2564 if (to_destroy) 2565 list_del_init(&to_destroy->list); 2566 goto err_listen; 2567 } 2568 } 2569 mutex_unlock(&lock); 2570 return 0; 2571 2572 err_listen: 2573 list_del(&id_priv->list); 2574 mutex_unlock(&lock); 2575 if (to_destroy) 2576 rdma_destroy_id(&to_destroy->id); 2577 return ret; 2578 } 2579 2580 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2581 { 2582 struct rdma_id_private *id_priv; 2583 2584 id_priv = container_of(id, struct rdma_id_private, id); 2585 id_priv->tos = (u8) tos; 2586 id_priv->tos_set = true; 2587 } 2588 EXPORT_SYMBOL(rdma_set_service_type); 2589 2590 /** 2591 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2592 * with a connection identifier. 2593 * @id: Communication identifier to associated with service type. 2594 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2595 * 2596 * This function should be called before rdma_connect() on active side, 2597 * and on passive side before rdma_accept(). It is applicable to primary 2598 * path only. The timeout will affect the local side of the QP, it is not 2599 * negotiated with remote side and zero disables the timer. In case it is 2600 * set before rdma_resolve_route, the value will also be used to determine 2601 * PacketLifeTime for RoCE. 2602 * 2603 * Return: 0 for success 2604 */ 2605 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2606 { 2607 struct rdma_id_private *id_priv; 2608 2609 if (id->qp_type != IB_QPT_RC) 2610 return -EINVAL; 2611 2612 id_priv = container_of(id, struct rdma_id_private, id); 2613 id_priv->timeout = timeout; 2614 id_priv->timeout_set = true; 2615 2616 return 0; 2617 } 2618 EXPORT_SYMBOL(rdma_set_ack_timeout); 2619 2620 /** 2621 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2622 * QP associated with a connection identifier. 2623 * @id: Communication identifier to associated with service type. 2624 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2625 * Timer Field" in the IBTA specification. 2626 * 2627 * This function should be called before rdma_connect() on active 2628 * side, and on passive side before rdma_accept(). The timer value 2629 * will be associated with the local QP. When it receives a send it is 2630 * not read to handle, typically if the receive queue is empty, an RNR 2631 * Retry NAK is returned to the requester with the min_rnr_timer 2632 * encoded. The requester will then wait at least the time specified 2633 * in the NAK before retrying. The default is zero, which translates 2634 * to a minimum RNR Timer value of 655 ms. 2635 * 2636 * Return: 0 for success 2637 */ 2638 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2639 { 2640 struct rdma_id_private *id_priv; 2641 2642 /* It is a five-bit value */ 2643 if (min_rnr_timer & 0xe0) 2644 return -EINVAL; 2645 2646 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2647 return -EINVAL; 2648 2649 id_priv = container_of(id, struct rdma_id_private, id); 2650 id_priv->min_rnr_timer = min_rnr_timer; 2651 id_priv->min_rnr_timer_set = true; 2652 2653 return 0; 2654 } 2655 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2656 2657 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2658 void *context) 2659 { 2660 struct cma_work *work = context; 2661 struct rdma_route *route; 2662 2663 route = &work->id->id.route; 2664 2665 if (!status) { 2666 route->num_paths = 1; 2667 *route->path_rec = *path_rec; 2668 } else { 2669 work->old_state = RDMA_CM_ROUTE_QUERY; 2670 work->new_state = RDMA_CM_ADDR_RESOLVED; 2671 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2672 work->event.status = status; 2673 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2674 status); 2675 } 2676 2677 queue_work(cma_wq, &work->work); 2678 } 2679 2680 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2681 unsigned long timeout_ms, struct cma_work *work) 2682 { 2683 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2684 struct sa_path_rec path_rec; 2685 ib_sa_comp_mask comp_mask; 2686 struct sockaddr_in6 *sin6; 2687 struct sockaddr_ib *sib; 2688 2689 memset(&path_rec, 0, sizeof path_rec); 2690 2691 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2692 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2693 else 2694 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2695 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2696 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2697 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2698 path_rec.numb_path = 1; 2699 path_rec.reversible = 1; 2700 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2701 cma_dst_addr(id_priv)); 2702 2703 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2704 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2705 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2706 2707 switch (cma_family(id_priv)) { 2708 case AF_INET: 2709 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2710 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2711 break; 2712 case AF_INET6: 2713 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2714 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2715 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2716 break; 2717 case AF_IB: 2718 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2719 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2720 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2721 break; 2722 } 2723 2724 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2725 id_priv->id.port_num, &path_rec, 2726 comp_mask, timeout_ms, 2727 GFP_KERNEL, cma_query_handler, 2728 work, &id_priv->query); 2729 2730 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2731 } 2732 2733 static void cma_iboe_join_work_handler(struct work_struct *work) 2734 { 2735 struct cma_multicast *mc = 2736 container_of(work, struct cma_multicast, iboe_join.work); 2737 struct rdma_cm_event *event = &mc->iboe_join.event; 2738 struct rdma_id_private *id_priv = mc->id_priv; 2739 int ret; 2740 2741 mutex_lock(&id_priv->handler_mutex); 2742 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2743 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2744 goto out_unlock; 2745 2746 ret = cma_cm_event_handler(id_priv, event); 2747 WARN_ON(ret); 2748 2749 out_unlock: 2750 mutex_unlock(&id_priv->handler_mutex); 2751 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2752 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2753 } 2754 2755 static void cma_work_handler(struct work_struct *_work) 2756 { 2757 struct cma_work *work = container_of(_work, struct cma_work, work); 2758 struct rdma_id_private *id_priv = work->id; 2759 2760 mutex_lock(&id_priv->handler_mutex); 2761 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2762 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2763 goto out_unlock; 2764 if (work->old_state != 0 || work->new_state != 0) { 2765 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2766 goto out_unlock; 2767 } 2768 2769 if (cma_cm_event_handler(id_priv, &work->event)) { 2770 cma_id_put(id_priv); 2771 destroy_id_handler_unlock(id_priv); 2772 goto out_free; 2773 } 2774 2775 out_unlock: 2776 mutex_unlock(&id_priv->handler_mutex); 2777 cma_id_put(id_priv); 2778 out_free: 2779 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2780 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2781 kfree(work); 2782 } 2783 2784 static void cma_init_resolve_route_work(struct cma_work *work, 2785 struct rdma_id_private *id_priv) 2786 { 2787 work->id = id_priv; 2788 INIT_WORK(&work->work, cma_work_handler); 2789 work->old_state = RDMA_CM_ROUTE_QUERY; 2790 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2791 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2792 } 2793 2794 static void enqueue_resolve_addr_work(struct cma_work *work, 2795 struct rdma_id_private *id_priv) 2796 { 2797 /* Balances with cma_id_put() in cma_work_handler */ 2798 cma_id_get(id_priv); 2799 2800 work->id = id_priv; 2801 INIT_WORK(&work->work, cma_work_handler); 2802 work->old_state = RDMA_CM_ADDR_QUERY; 2803 work->new_state = RDMA_CM_ADDR_RESOLVED; 2804 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2805 2806 queue_work(cma_wq, &work->work); 2807 } 2808 2809 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2810 unsigned long timeout_ms) 2811 { 2812 struct rdma_route *route = &id_priv->id.route; 2813 struct cma_work *work; 2814 int ret; 2815 2816 work = kzalloc(sizeof *work, GFP_KERNEL); 2817 if (!work) 2818 return -ENOMEM; 2819 2820 cma_init_resolve_route_work(work, id_priv); 2821 2822 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2823 if (!route->path_rec) { 2824 ret = -ENOMEM; 2825 goto err1; 2826 } 2827 2828 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2829 if (ret) 2830 goto err2; 2831 2832 return 0; 2833 err2: 2834 kfree(route->path_rec); 2835 route->path_rec = NULL; 2836 err1: 2837 kfree(work); 2838 return ret; 2839 } 2840 2841 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2842 unsigned long supported_gids, 2843 enum ib_gid_type default_gid) 2844 { 2845 if ((network_type == RDMA_NETWORK_IPV4 || 2846 network_type == RDMA_NETWORK_IPV6) && 2847 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2848 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2849 2850 return default_gid; 2851 } 2852 2853 /* 2854 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2855 * path record type based on GID type. 2856 * It also sets up other L2 fields which includes destination mac address 2857 * netdev ifindex, of the path record. 2858 * It returns the netdev of the bound interface for this path record entry. 2859 */ 2860 static struct net_device * 2861 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2862 { 2863 struct rdma_route *route = &id_priv->id.route; 2864 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2865 struct rdma_addr *addr = &route->addr; 2866 unsigned long supported_gids; 2867 struct net_device *ndev; 2868 2869 if (!addr->dev_addr.bound_dev_if) 2870 return NULL; 2871 2872 ndev = dev_get_by_index(addr->dev_addr.net, 2873 addr->dev_addr.bound_dev_if); 2874 if (!ndev) 2875 return NULL; 2876 2877 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2878 id_priv->id.port_num); 2879 gid_type = cma_route_gid_type(addr->dev_addr.network, 2880 supported_gids, 2881 id_priv->gid_type); 2882 /* Use the hint from IP Stack to select GID Type */ 2883 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2884 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2885 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2886 2887 route->path_rec->roce.route_resolved = true; 2888 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2889 return ndev; 2890 } 2891 2892 int rdma_set_ib_path(struct rdma_cm_id *id, 2893 struct sa_path_rec *path_rec) 2894 { 2895 struct rdma_id_private *id_priv; 2896 struct net_device *ndev; 2897 int ret; 2898 2899 id_priv = container_of(id, struct rdma_id_private, id); 2900 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2901 RDMA_CM_ROUTE_RESOLVED)) 2902 return -EINVAL; 2903 2904 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2905 GFP_KERNEL); 2906 if (!id->route.path_rec) { 2907 ret = -ENOMEM; 2908 goto err; 2909 } 2910 2911 if (rdma_protocol_roce(id->device, id->port_num)) { 2912 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2913 if (!ndev) { 2914 ret = -ENODEV; 2915 goto err_free; 2916 } 2917 dev_put(ndev); 2918 } 2919 2920 id->route.num_paths = 1; 2921 return 0; 2922 2923 err_free: 2924 kfree(id->route.path_rec); 2925 id->route.path_rec = NULL; 2926 err: 2927 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2928 return ret; 2929 } 2930 EXPORT_SYMBOL(rdma_set_ib_path); 2931 2932 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2933 { 2934 struct cma_work *work; 2935 2936 work = kzalloc(sizeof *work, GFP_KERNEL); 2937 if (!work) 2938 return -ENOMEM; 2939 2940 cma_init_resolve_route_work(work, id_priv); 2941 queue_work(cma_wq, &work->work); 2942 return 0; 2943 } 2944 2945 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2946 { 2947 struct net_device *dev; 2948 2949 dev = vlan_dev_real_dev(vlan_ndev); 2950 if (dev->num_tc) 2951 return netdev_get_prio_tc_map(dev, prio); 2952 2953 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2954 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2955 } 2956 2957 struct iboe_prio_tc_map { 2958 int input_prio; 2959 int output_tc; 2960 bool found; 2961 }; 2962 2963 static int get_lower_vlan_dev_tc(struct net_device *dev, 2964 struct netdev_nested_priv *priv) 2965 { 2966 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2967 2968 if (is_vlan_dev(dev)) 2969 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2970 else if (dev->num_tc) 2971 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2972 else 2973 map->output_tc = 0; 2974 /* We are interested only in first level VLAN device, so always 2975 * return 1 to stop iterating over next level devices. 2976 */ 2977 map->found = true; 2978 return 1; 2979 } 2980 2981 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2982 { 2983 struct iboe_prio_tc_map prio_tc_map = {}; 2984 int prio = rt_tos2priority(tos); 2985 struct netdev_nested_priv priv; 2986 2987 /* If VLAN device, get it directly from the VLAN netdev */ 2988 if (is_vlan_dev(ndev)) 2989 return get_vlan_ndev_tc(ndev, prio); 2990 2991 prio_tc_map.input_prio = prio; 2992 priv.data = (void *)&prio_tc_map; 2993 rcu_read_lock(); 2994 netdev_walk_all_lower_dev_rcu(ndev, 2995 get_lower_vlan_dev_tc, 2996 &priv); 2997 rcu_read_unlock(); 2998 /* If map is found from lower device, use it; Otherwise 2999 * continue with the current netdevice to get priority to tc map. 3000 */ 3001 if (prio_tc_map.found) 3002 return prio_tc_map.output_tc; 3003 else if (ndev->num_tc) 3004 return netdev_get_prio_tc_map(ndev, prio); 3005 else 3006 return 0; 3007 } 3008 3009 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3010 { 3011 struct sockaddr_in6 *addr6; 3012 u16 dport, sport; 3013 u32 hash, fl; 3014 3015 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3016 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3017 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3018 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3019 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3020 hash = (u32)sport * 31 + dport; 3021 fl = hash & IB_GRH_FLOWLABEL_MASK; 3022 } 3023 3024 return cpu_to_be32(fl); 3025 } 3026 3027 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3028 { 3029 struct rdma_route *route = &id_priv->id.route; 3030 struct rdma_addr *addr = &route->addr; 3031 struct cma_work *work; 3032 int ret; 3033 struct net_device *ndev; 3034 3035 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3036 rdma_start_port(id_priv->cma_dev->device)]; 3037 u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3038 3039 3040 work = kzalloc(sizeof *work, GFP_KERNEL); 3041 if (!work) 3042 return -ENOMEM; 3043 3044 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3045 if (!route->path_rec) { 3046 ret = -ENOMEM; 3047 goto err1; 3048 } 3049 3050 route->num_paths = 1; 3051 3052 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3053 if (!ndev) { 3054 ret = -ENODEV; 3055 goto err2; 3056 } 3057 3058 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3059 &route->path_rec->sgid); 3060 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3061 &route->path_rec->dgid); 3062 3063 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3064 /* TODO: get the hoplimit from the inet/inet6 device */ 3065 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3066 else 3067 route->path_rec->hop_limit = 1; 3068 route->path_rec->reversible = 1; 3069 route->path_rec->pkey = cpu_to_be16(0xffff); 3070 route->path_rec->mtu_selector = IB_SA_EQ; 3071 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3072 route->path_rec->traffic_class = tos; 3073 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3074 route->path_rec->rate_selector = IB_SA_EQ; 3075 route->path_rec->rate = iboe_get_rate(ndev); 3076 dev_put(ndev); 3077 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3078 /* In case ACK timeout is set, use this value to calculate 3079 * PacketLifeTime. As per IBTA 12.7.34, 3080 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3081 * Assuming a negligible local ACK delay, we can use 3082 * PacketLifeTime = local ACK timeout/2 3083 * as a reasonable approximation for RoCE networks. 3084 */ 3085 route->path_rec->packet_life_time = id_priv->timeout_set ? 3086 id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME; 3087 3088 if (!route->path_rec->mtu) { 3089 ret = -EINVAL; 3090 goto err2; 3091 } 3092 3093 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3094 id_priv->id.port_num)) 3095 route->path_rec->flow_label = 3096 cma_get_roce_udp_flow_label(id_priv); 3097 3098 cma_init_resolve_route_work(work, id_priv); 3099 queue_work(cma_wq, &work->work); 3100 3101 return 0; 3102 3103 err2: 3104 kfree(route->path_rec); 3105 route->path_rec = NULL; 3106 route->num_paths = 0; 3107 err1: 3108 kfree(work); 3109 return ret; 3110 } 3111 3112 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3113 { 3114 struct rdma_id_private *id_priv; 3115 int ret; 3116 3117 id_priv = container_of(id, struct rdma_id_private, id); 3118 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3119 return -EINVAL; 3120 3121 cma_id_get(id_priv); 3122 if (rdma_cap_ib_sa(id->device, id->port_num)) 3123 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3124 else if (rdma_protocol_roce(id->device, id->port_num)) 3125 ret = cma_resolve_iboe_route(id_priv); 3126 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3127 ret = cma_resolve_iw_route(id_priv); 3128 else 3129 ret = -ENOSYS; 3130 3131 if (ret) 3132 goto err; 3133 3134 return 0; 3135 err: 3136 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3137 cma_id_put(id_priv); 3138 return ret; 3139 } 3140 EXPORT_SYMBOL(rdma_resolve_route); 3141 3142 static void cma_set_loopback(struct sockaddr *addr) 3143 { 3144 switch (addr->sa_family) { 3145 case AF_INET: 3146 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3147 break; 3148 case AF_INET6: 3149 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3150 0, 0, 0, htonl(1)); 3151 break; 3152 default: 3153 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3154 0, 0, 0, htonl(1)); 3155 break; 3156 } 3157 } 3158 3159 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3160 { 3161 struct cma_device *cma_dev, *cur_dev; 3162 union ib_gid gid; 3163 enum ib_port_state port_state; 3164 unsigned int p; 3165 u16 pkey; 3166 int ret; 3167 3168 cma_dev = NULL; 3169 mutex_lock(&lock); 3170 list_for_each_entry(cur_dev, &dev_list, list) { 3171 if (cma_family(id_priv) == AF_IB && 3172 !rdma_cap_ib_cm(cur_dev->device, 1)) 3173 continue; 3174 3175 if (!cma_dev) 3176 cma_dev = cur_dev; 3177 3178 rdma_for_each_port (cur_dev->device, p) { 3179 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3180 port_state == IB_PORT_ACTIVE) { 3181 cma_dev = cur_dev; 3182 goto port_found; 3183 } 3184 } 3185 } 3186 3187 if (!cma_dev) { 3188 ret = -ENODEV; 3189 goto out; 3190 } 3191 3192 p = 1; 3193 3194 port_found: 3195 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3196 if (ret) 3197 goto out; 3198 3199 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3200 if (ret) 3201 goto out; 3202 3203 id_priv->id.route.addr.dev_addr.dev_type = 3204 (rdma_protocol_ib(cma_dev->device, p)) ? 3205 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3206 3207 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3208 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3209 id_priv->id.port_num = p; 3210 cma_attach_to_dev(id_priv, cma_dev); 3211 rdma_restrack_add(&id_priv->res); 3212 cma_set_loopback(cma_src_addr(id_priv)); 3213 out: 3214 mutex_unlock(&lock); 3215 return ret; 3216 } 3217 3218 static void addr_handler(int status, struct sockaddr *src_addr, 3219 struct rdma_dev_addr *dev_addr, void *context) 3220 { 3221 struct rdma_id_private *id_priv = context; 3222 struct rdma_cm_event event = {}; 3223 struct sockaddr *addr; 3224 struct sockaddr_storage old_addr; 3225 3226 mutex_lock(&id_priv->handler_mutex); 3227 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3228 RDMA_CM_ADDR_RESOLVED)) 3229 goto out; 3230 3231 /* 3232 * Store the previous src address, so that if we fail to acquire 3233 * matching rdma device, old address can be restored back, which helps 3234 * to cancel the cma listen operation correctly. 3235 */ 3236 addr = cma_src_addr(id_priv); 3237 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3238 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3239 if (!status && !id_priv->cma_dev) { 3240 status = cma_acquire_dev_by_src_ip(id_priv); 3241 if (status) 3242 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3243 status); 3244 rdma_restrack_add(&id_priv->res); 3245 } else if (status) { 3246 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3247 } 3248 3249 if (status) { 3250 memcpy(addr, &old_addr, 3251 rdma_addr_size((struct sockaddr *)&old_addr)); 3252 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3253 RDMA_CM_ADDR_BOUND)) 3254 goto out; 3255 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3256 event.status = status; 3257 } else 3258 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3259 3260 if (cma_cm_event_handler(id_priv, &event)) { 3261 destroy_id_handler_unlock(id_priv); 3262 return; 3263 } 3264 out: 3265 mutex_unlock(&id_priv->handler_mutex); 3266 } 3267 3268 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3269 { 3270 struct cma_work *work; 3271 union ib_gid gid; 3272 int ret; 3273 3274 work = kzalloc(sizeof *work, GFP_KERNEL); 3275 if (!work) 3276 return -ENOMEM; 3277 3278 if (!id_priv->cma_dev) { 3279 ret = cma_bind_loopback(id_priv); 3280 if (ret) 3281 goto err; 3282 } 3283 3284 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3285 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3286 3287 enqueue_resolve_addr_work(work, id_priv); 3288 return 0; 3289 err: 3290 kfree(work); 3291 return ret; 3292 } 3293 3294 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3295 { 3296 struct cma_work *work; 3297 int ret; 3298 3299 work = kzalloc(sizeof *work, GFP_KERNEL); 3300 if (!work) 3301 return -ENOMEM; 3302 3303 if (!id_priv->cma_dev) { 3304 ret = cma_resolve_ib_dev(id_priv); 3305 if (ret) 3306 goto err; 3307 } 3308 3309 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3310 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3311 3312 enqueue_resolve_addr_work(work, id_priv); 3313 return 0; 3314 err: 3315 kfree(work); 3316 return ret; 3317 } 3318 3319 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3320 const struct sockaddr *dst_addr) 3321 { 3322 if (!src_addr || !src_addr->sa_family) { 3323 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3324 src_addr->sa_family = dst_addr->sa_family; 3325 if (IS_ENABLED(CONFIG_IPV6) && 3326 dst_addr->sa_family == AF_INET6) { 3327 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3328 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3329 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3330 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3331 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3332 } else if (dst_addr->sa_family == AF_IB) { 3333 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3334 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3335 } 3336 } 3337 return rdma_bind_addr(id, src_addr); 3338 } 3339 3340 /* 3341 * If required, resolve the source address for bind and leave the id_priv in 3342 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3343 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3344 * ignored. 3345 */ 3346 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3347 struct sockaddr *src_addr, 3348 const struct sockaddr *dst_addr) 3349 { 3350 int ret; 3351 3352 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3353 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3354 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3355 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3356 if (ret) 3357 goto err_dst; 3358 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3359 RDMA_CM_ADDR_QUERY))) { 3360 ret = -EINVAL; 3361 goto err_dst; 3362 } 3363 } 3364 3365 if (cma_family(id_priv) != dst_addr->sa_family) { 3366 ret = -EINVAL; 3367 goto err_state; 3368 } 3369 return 0; 3370 3371 err_state: 3372 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3373 err_dst: 3374 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3375 return ret; 3376 } 3377 3378 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3379 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3380 { 3381 struct rdma_id_private *id_priv = 3382 container_of(id, struct rdma_id_private, id); 3383 int ret; 3384 3385 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3386 if (ret) 3387 return ret; 3388 3389 if (cma_any_addr(dst_addr)) { 3390 ret = cma_resolve_loopback(id_priv); 3391 } else { 3392 if (dst_addr->sa_family == AF_IB) { 3393 ret = cma_resolve_ib_addr(id_priv); 3394 } else { 3395 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3396 &id->route.addr.dev_addr, 3397 timeout_ms, addr_handler, 3398 false, id_priv); 3399 } 3400 } 3401 if (ret) 3402 goto err; 3403 3404 return 0; 3405 err: 3406 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3407 return ret; 3408 } 3409 EXPORT_SYMBOL(rdma_resolve_addr); 3410 3411 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3412 { 3413 struct rdma_id_private *id_priv; 3414 unsigned long flags; 3415 int ret; 3416 3417 id_priv = container_of(id, struct rdma_id_private, id); 3418 spin_lock_irqsave(&id_priv->lock, flags); 3419 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3420 id_priv->state == RDMA_CM_IDLE) { 3421 id_priv->reuseaddr = reuse; 3422 ret = 0; 3423 } else { 3424 ret = -EINVAL; 3425 } 3426 spin_unlock_irqrestore(&id_priv->lock, flags); 3427 return ret; 3428 } 3429 EXPORT_SYMBOL(rdma_set_reuseaddr); 3430 3431 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3432 { 3433 struct rdma_id_private *id_priv; 3434 unsigned long flags; 3435 int ret; 3436 3437 id_priv = container_of(id, struct rdma_id_private, id); 3438 spin_lock_irqsave(&id_priv->lock, flags); 3439 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3440 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3441 id_priv->afonly = afonly; 3442 ret = 0; 3443 } else { 3444 ret = -EINVAL; 3445 } 3446 spin_unlock_irqrestore(&id_priv->lock, flags); 3447 return ret; 3448 } 3449 EXPORT_SYMBOL(rdma_set_afonly); 3450 3451 static void cma_bind_port(struct rdma_bind_list *bind_list, 3452 struct rdma_id_private *id_priv) 3453 { 3454 struct sockaddr *addr; 3455 struct sockaddr_ib *sib; 3456 u64 sid, mask; 3457 __be16 port; 3458 3459 lockdep_assert_held(&lock); 3460 3461 addr = cma_src_addr(id_priv); 3462 port = htons(bind_list->port); 3463 3464 switch (addr->sa_family) { 3465 case AF_INET: 3466 ((struct sockaddr_in *) addr)->sin_port = port; 3467 break; 3468 case AF_INET6: 3469 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3470 break; 3471 case AF_IB: 3472 sib = (struct sockaddr_ib *) addr; 3473 sid = be64_to_cpu(sib->sib_sid); 3474 mask = be64_to_cpu(sib->sib_sid_mask); 3475 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3476 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3477 break; 3478 } 3479 id_priv->bind_list = bind_list; 3480 hlist_add_head(&id_priv->node, &bind_list->owners); 3481 } 3482 3483 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3484 struct rdma_id_private *id_priv, unsigned short snum) 3485 { 3486 struct rdma_bind_list *bind_list; 3487 int ret; 3488 3489 lockdep_assert_held(&lock); 3490 3491 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3492 if (!bind_list) 3493 return -ENOMEM; 3494 3495 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3496 snum); 3497 if (ret < 0) 3498 goto err; 3499 3500 bind_list->ps = ps; 3501 bind_list->port = snum; 3502 cma_bind_port(bind_list, id_priv); 3503 return 0; 3504 err: 3505 kfree(bind_list); 3506 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3507 } 3508 3509 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3510 struct rdma_id_private *id_priv) 3511 { 3512 struct rdma_id_private *cur_id; 3513 struct sockaddr *daddr = cma_dst_addr(id_priv); 3514 struct sockaddr *saddr = cma_src_addr(id_priv); 3515 __be16 dport = cma_port(daddr); 3516 3517 lockdep_assert_held(&lock); 3518 3519 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3520 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3521 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3522 __be16 cur_dport = cma_port(cur_daddr); 3523 3524 if (id_priv == cur_id) 3525 continue; 3526 3527 /* different dest port -> unique */ 3528 if (!cma_any_port(daddr) && 3529 !cma_any_port(cur_daddr) && 3530 (dport != cur_dport)) 3531 continue; 3532 3533 /* different src address -> unique */ 3534 if (!cma_any_addr(saddr) && 3535 !cma_any_addr(cur_saddr) && 3536 cma_addr_cmp(saddr, cur_saddr)) 3537 continue; 3538 3539 /* different dst address -> unique */ 3540 if (!cma_any_addr(daddr) && 3541 !cma_any_addr(cur_daddr) && 3542 cma_addr_cmp(daddr, cur_daddr)) 3543 continue; 3544 3545 return -EADDRNOTAVAIL; 3546 } 3547 return 0; 3548 } 3549 3550 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3551 struct rdma_id_private *id_priv) 3552 { 3553 static unsigned int last_used_port; 3554 int low, high, remaining; 3555 unsigned int rover; 3556 struct net *net = id_priv->id.route.addr.dev_addr.net; 3557 3558 lockdep_assert_held(&lock); 3559 3560 inet_get_local_port_range(net, &low, &high); 3561 remaining = (high - low) + 1; 3562 rover = prandom_u32() % remaining + low; 3563 retry: 3564 if (last_used_port != rover) { 3565 struct rdma_bind_list *bind_list; 3566 int ret; 3567 3568 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3569 3570 if (!bind_list) { 3571 ret = cma_alloc_port(ps, id_priv, rover); 3572 } else { 3573 ret = cma_port_is_unique(bind_list, id_priv); 3574 if (!ret) 3575 cma_bind_port(bind_list, id_priv); 3576 } 3577 /* 3578 * Remember previously used port number in order to avoid 3579 * re-using same port immediately after it is closed. 3580 */ 3581 if (!ret) 3582 last_used_port = rover; 3583 if (ret != -EADDRNOTAVAIL) 3584 return ret; 3585 } 3586 if (--remaining) { 3587 rover++; 3588 if ((rover < low) || (rover > high)) 3589 rover = low; 3590 goto retry; 3591 } 3592 return -EADDRNOTAVAIL; 3593 } 3594 3595 /* 3596 * Check that the requested port is available. This is called when trying to 3597 * bind to a specific port, or when trying to listen on a bound port. In 3598 * the latter case, the provided id_priv may already be on the bind_list, but 3599 * we still need to check that it's okay to start listening. 3600 */ 3601 static int cma_check_port(struct rdma_bind_list *bind_list, 3602 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3603 { 3604 struct rdma_id_private *cur_id; 3605 struct sockaddr *addr, *cur_addr; 3606 3607 lockdep_assert_held(&lock); 3608 3609 addr = cma_src_addr(id_priv); 3610 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3611 if (id_priv == cur_id) 3612 continue; 3613 3614 if (reuseaddr && cur_id->reuseaddr) 3615 continue; 3616 3617 cur_addr = cma_src_addr(cur_id); 3618 if (id_priv->afonly && cur_id->afonly && 3619 (addr->sa_family != cur_addr->sa_family)) 3620 continue; 3621 3622 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3623 return -EADDRNOTAVAIL; 3624 3625 if (!cma_addr_cmp(addr, cur_addr)) 3626 return -EADDRINUSE; 3627 } 3628 return 0; 3629 } 3630 3631 static int cma_use_port(enum rdma_ucm_port_space ps, 3632 struct rdma_id_private *id_priv) 3633 { 3634 struct rdma_bind_list *bind_list; 3635 unsigned short snum; 3636 int ret; 3637 3638 lockdep_assert_held(&lock); 3639 3640 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3641 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3642 return -EACCES; 3643 3644 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3645 if (!bind_list) { 3646 ret = cma_alloc_port(ps, id_priv, snum); 3647 } else { 3648 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3649 if (!ret) 3650 cma_bind_port(bind_list, id_priv); 3651 } 3652 return ret; 3653 } 3654 3655 static enum rdma_ucm_port_space 3656 cma_select_inet_ps(struct rdma_id_private *id_priv) 3657 { 3658 switch (id_priv->id.ps) { 3659 case RDMA_PS_TCP: 3660 case RDMA_PS_UDP: 3661 case RDMA_PS_IPOIB: 3662 case RDMA_PS_IB: 3663 return id_priv->id.ps; 3664 default: 3665 3666 return 0; 3667 } 3668 } 3669 3670 static enum rdma_ucm_port_space 3671 cma_select_ib_ps(struct rdma_id_private *id_priv) 3672 { 3673 enum rdma_ucm_port_space ps = 0; 3674 struct sockaddr_ib *sib; 3675 u64 sid_ps, mask, sid; 3676 3677 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3678 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3679 sid = be64_to_cpu(sib->sib_sid) & mask; 3680 3681 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3682 sid_ps = RDMA_IB_IP_PS_IB; 3683 ps = RDMA_PS_IB; 3684 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3685 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3686 sid_ps = RDMA_IB_IP_PS_TCP; 3687 ps = RDMA_PS_TCP; 3688 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3689 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3690 sid_ps = RDMA_IB_IP_PS_UDP; 3691 ps = RDMA_PS_UDP; 3692 } 3693 3694 if (ps) { 3695 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3696 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3697 be64_to_cpu(sib->sib_sid_mask)); 3698 } 3699 return ps; 3700 } 3701 3702 static int cma_get_port(struct rdma_id_private *id_priv) 3703 { 3704 enum rdma_ucm_port_space ps; 3705 int ret; 3706 3707 if (cma_family(id_priv) != AF_IB) 3708 ps = cma_select_inet_ps(id_priv); 3709 else 3710 ps = cma_select_ib_ps(id_priv); 3711 if (!ps) 3712 return -EPROTONOSUPPORT; 3713 3714 mutex_lock(&lock); 3715 if (cma_any_port(cma_src_addr(id_priv))) 3716 ret = cma_alloc_any_port(ps, id_priv); 3717 else 3718 ret = cma_use_port(ps, id_priv); 3719 mutex_unlock(&lock); 3720 3721 return ret; 3722 } 3723 3724 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3725 struct sockaddr *addr) 3726 { 3727 #if IS_ENABLED(CONFIG_IPV6) 3728 struct sockaddr_in6 *sin6; 3729 3730 if (addr->sa_family != AF_INET6) 3731 return 0; 3732 3733 sin6 = (struct sockaddr_in6 *) addr; 3734 3735 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3736 return 0; 3737 3738 if (!sin6->sin6_scope_id) 3739 return -EINVAL; 3740 3741 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3742 #endif 3743 return 0; 3744 } 3745 3746 int rdma_listen(struct rdma_cm_id *id, int backlog) 3747 { 3748 struct rdma_id_private *id_priv = 3749 container_of(id, struct rdma_id_private, id); 3750 int ret; 3751 3752 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3753 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3754 id->route.addr.src_addr.ss_family = AF_INET; 3755 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3756 if (ret) 3757 return ret; 3758 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3759 RDMA_CM_LISTEN))) 3760 return -EINVAL; 3761 } 3762 3763 /* 3764 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3765 * any more, and has to be unique in the bind list. 3766 */ 3767 if (id_priv->reuseaddr) { 3768 mutex_lock(&lock); 3769 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3770 if (!ret) 3771 id_priv->reuseaddr = 0; 3772 mutex_unlock(&lock); 3773 if (ret) 3774 goto err; 3775 } 3776 3777 id_priv->backlog = backlog; 3778 if (id_priv->cma_dev) { 3779 if (rdma_cap_ib_cm(id->device, 1)) { 3780 ret = cma_ib_listen(id_priv); 3781 if (ret) 3782 goto err; 3783 } else if (rdma_cap_iw_cm(id->device, 1)) { 3784 ret = cma_iw_listen(id_priv, backlog); 3785 if (ret) 3786 goto err; 3787 } else { 3788 ret = -ENOSYS; 3789 goto err; 3790 } 3791 } else { 3792 ret = cma_listen_on_all(id_priv); 3793 if (ret) 3794 goto err; 3795 } 3796 3797 return 0; 3798 err: 3799 id_priv->backlog = 0; 3800 /* 3801 * All the failure paths that lead here will not allow the req_handler's 3802 * to have run. 3803 */ 3804 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3805 return ret; 3806 } 3807 EXPORT_SYMBOL(rdma_listen); 3808 3809 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3810 { 3811 struct rdma_id_private *id_priv; 3812 int ret; 3813 struct sockaddr *daddr; 3814 3815 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3816 addr->sa_family != AF_IB) 3817 return -EAFNOSUPPORT; 3818 3819 id_priv = container_of(id, struct rdma_id_private, id); 3820 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3821 return -EINVAL; 3822 3823 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3824 if (ret) 3825 goto err1; 3826 3827 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3828 if (!cma_any_addr(addr)) { 3829 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3830 if (ret) 3831 goto err1; 3832 3833 ret = cma_acquire_dev_by_src_ip(id_priv); 3834 if (ret) 3835 goto err1; 3836 } 3837 3838 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3839 if (addr->sa_family == AF_INET) 3840 id_priv->afonly = 1; 3841 #if IS_ENABLED(CONFIG_IPV6) 3842 else if (addr->sa_family == AF_INET6) { 3843 struct net *net = id_priv->id.route.addr.dev_addr.net; 3844 3845 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3846 } 3847 #endif 3848 } 3849 daddr = cma_dst_addr(id_priv); 3850 daddr->sa_family = addr->sa_family; 3851 3852 ret = cma_get_port(id_priv); 3853 if (ret) 3854 goto err2; 3855 3856 if (!cma_any_addr(addr)) 3857 rdma_restrack_add(&id_priv->res); 3858 return 0; 3859 err2: 3860 if (id_priv->cma_dev) 3861 cma_release_dev(id_priv); 3862 err1: 3863 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3864 return ret; 3865 } 3866 EXPORT_SYMBOL(rdma_bind_addr); 3867 3868 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3869 { 3870 struct cma_hdr *cma_hdr; 3871 3872 cma_hdr = hdr; 3873 cma_hdr->cma_version = CMA_VERSION; 3874 if (cma_family(id_priv) == AF_INET) { 3875 struct sockaddr_in *src4, *dst4; 3876 3877 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3878 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3879 3880 cma_set_ip_ver(cma_hdr, 4); 3881 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3882 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3883 cma_hdr->port = src4->sin_port; 3884 } else if (cma_family(id_priv) == AF_INET6) { 3885 struct sockaddr_in6 *src6, *dst6; 3886 3887 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3888 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3889 3890 cma_set_ip_ver(cma_hdr, 6); 3891 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3892 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3893 cma_hdr->port = src6->sin6_port; 3894 } 3895 return 0; 3896 } 3897 3898 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3899 const struct ib_cm_event *ib_event) 3900 { 3901 struct rdma_id_private *id_priv = cm_id->context; 3902 struct rdma_cm_event event = {}; 3903 const struct ib_cm_sidr_rep_event_param *rep = 3904 &ib_event->param.sidr_rep_rcvd; 3905 int ret; 3906 3907 mutex_lock(&id_priv->handler_mutex); 3908 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3909 goto out; 3910 3911 switch (ib_event->event) { 3912 case IB_CM_SIDR_REQ_ERROR: 3913 event.event = RDMA_CM_EVENT_UNREACHABLE; 3914 event.status = -ETIMEDOUT; 3915 break; 3916 case IB_CM_SIDR_REP_RECEIVED: 3917 event.param.ud.private_data = ib_event->private_data; 3918 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3919 if (rep->status != IB_SIDR_SUCCESS) { 3920 event.event = RDMA_CM_EVENT_UNREACHABLE; 3921 event.status = ib_event->param.sidr_rep_rcvd.status; 3922 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3923 event.status); 3924 break; 3925 } 3926 ret = cma_set_qkey(id_priv, rep->qkey); 3927 if (ret) { 3928 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3929 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3930 event.status = ret; 3931 break; 3932 } 3933 ib_init_ah_attr_from_path(id_priv->id.device, 3934 id_priv->id.port_num, 3935 id_priv->id.route.path_rec, 3936 &event.param.ud.ah_attr, 3937 rep->sgid_attr); 3938 event.param.ud.qp_num = rep->qpn; 3939 event.param.ud.qkey = rep->qkey; 3940 event.event = RDMA_CM_EVENT_ESTABLISHED; 3941 event.status = 0; 3942 break; 3943 default: 3944 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3945 ib_event->event); 3946 goto out; 3947 } 3948 3949 ret = cma_cm_event_handler(id_priv, &event); 3950 3951 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3952 if (ret) { 3953 /* Destroy the CM ID by returning a non-zero value. */ 3954 id_priv->cm_id.ib = NULL; 3955 destroy_id_handler_unlock(id_priv); 3956 return ret; 3957 } 3958 out: 3959 mutex_unlock(&id_priv->handler_mutex); 3960 return 0; 3961 } 3962 3963 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3964 struct rdma_conn_param *conn_param) 3965 { 3966 struct ib_cm_sidr_req_param req; 3967 struct ib_cm_id *id; 3968 void *private_data; 3969 u8 offset; 3970 int ret; 3971 3972 memset(&req, 0, sizeof req); 3973 offset = cma_user_data_offset(id_priv); 3974 req.private_data_len = offset + conn_param->private_data_len; 3975 if (req.private_data_len < conn_param->private_data_len) 3976 return -EINVAL; 3977 3978 if (req.private_data_len) { 3979 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3980 if (!private_data) 3981 return -ENOMEM; 3982 } else { 3983 private_data = NULL; 3984 } 3985 3986 if (conn_param->private_data && conn_param->private_data_len) 3987 memcpy(private_data + offset, conn_param->private_data, 3988 conn_param->private_data_len); 3989 3990 if (private_data) { 3991 ret = cma_format_hdr(private_data, id_priv); 3992 if (ret) 3993 goto out; 3994 req.private_data = private_data; 3995 } 3996 3997 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 3998 id_priv); 3999 if (IS_ERR(id)) { 4000 ret = PTR_ERR(id); 4001 goto out; 4002 } 4003 id_priv->cm_id.ib = id; 4004 4005 req.path = id_priv->id.route.path_rec; 4006 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4007 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4008 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4009 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4010 4011 trace_cm_send_sidr_req(id_priv); 4012 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4013 if (ret) { 4014 ib_destroy_cm_id(id_priv->cm_id.ib); 4015 id_priv->cm_id.ib = NULL; 4016 } 4017 out: 4018 kfree(private_data); 4019 return ret; 4020 } 4021 4022 static int cma_connect_ib(struct rdma_id_private *id_priv, 4023 struct rdma_conn_param *conn_param) 4024 { 4025 struct ib_cm_req_param req; 4026 struct rdma_route *route; 4027 void *private_data; 4028 struct ib_cm_id *id; 4029 u8 offset; 4030 int ret; 4031 4032 memset(&req, 0, sizeof req); 4033 offset = cma_user_data_offset(id_priv); 4034 req.private_data_len = offset + conn_param->private_data_len; 4035 if (req.private_data_len < conn_param->private_data_len) 4036 return -EINVAL; 4037 4038 if (req.private_data_len) { 4039 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4040 if (!private_data) 4041 return -ENOMEM; 4042 } else { 4043 private_data = NULL; 4044 } 4045 4046 if (conn_param->private_data && conn_param->private_data_len) 4047 memcpy(private_data + offset, conn_param->private_data, 4048 conn_param->private_data_len); 4049 4050 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4051 if (IS_ERR(id)) { 4052 ret = PTR_ERR(id); 4053 goto out; 4054 } 4055 id_priv->cm_id.ib = id; 4056 4057 route = &id_priv->id.route; 4058 if (private_data) { 4059 ret = cma_format_hdr(private_data, id_priv); 4060 if (ret) 4061 goto out; 4062 req.private_data = private_data; 4063 } 4064 4065 req.primary_path = &route->path_rec[0]; 4066 if (route->num_paths == 2) 4067 req.alternate_path = &route->path_rec[1]; 4068 4069 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4070 /* Alternate path SGID attribute currently unsupported */ 4071 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4072 req.qp_num = id_priv->qp_num; 4073 req.qp_type = id_priv->id.qp_type; 4074 req.starting_psn = id_priv->seq_num; 4075 req.responder_resources = conn_param->responder_resources; 4076 req.initiator_depth = conn_param->initiator_depth; 4077 req.flow_control = conn_param->flow_control; 4078 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4079 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4080 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4081 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4082 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4083 req.srq = id_priv->srq ? 1 : 0; 4084 req.ece.vendor_id = id_priv->ece.vendor_id; 4085 req.ece.attr_mod = id_priv->ece.attr_mod; 4086 4087 trace_cm_send_req(id_priv); 4088 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4089 out: 4090 if (ret && !IS_ERR(id)) { 4091 ib_destroy_cm_id(id); 4092 id_priv->cm_id.ib = NULL; 4093 } 4094 4095 kfree(private_data); 4096 return ret; 4097 } 4098 4099 static int cma_connect_iw(struct rdma_id_private *id_priv, 4100 struct rdma_conn_param *conn_param) 4101 { 4102 struct iw_cm_id *cm_id; 4103 int ret; 4104 struct iw_cm_conn_param iw_param; 4105 4106 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4107 if (IS_ERR(cm_id)) 4108 return PTR_ERR(cm_id); 4109 4110 cm_id->tos = id_priv->tos; 4111 cm_id->tos_set = id_priv->tos_set; 4112 id_priv->cm_id.iw = cm_id; 4113 4114 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4115 rdma_addr_size(cma_src_addr(id_priv))); 4116 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4117 rdma_addr_size(cma_dst_addr(id_priv))); 4118 4119 ret = cma_modify_qp_rtr(id_priv, conn_param); 4120 if (ret) 4121 goto out; 4122 4123 if (conn_param) { 4124 iw_param.ord = conn_param->initiator_depth; 4125 iw_param.ird = conn_param->responder_resources; 4126 iw_param.private_data = conn_param->private_data; 4127 iw_param.private_data_len = conn_param->private_data_len; 4128 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4129 } else { 4130 memset(&iw_param, 0, sizeof iw_param); 4131 iw_param.qpn = id_priv->qp_num; 4132 } 4133 ret = iw_cm_connect(cm_id, &iw_param); 4134 out: 4135 if (ret) { 4136 iw_destroy_cm_id(cm_id); 4137 id_priv->cm_id.iw = NULL; 4138 } 4139 return ret; 4140 } 4141 4142 /** 4143 * rdma_connect_locked - Initiate an active connection request. 4144 * @id: Connection identifier to connect. 4145 * @conn_param: Connection information used for connected QPs. 4146 * 4147 * Same as rdma_connect() but can only be called from the 4148 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4149 */ 4150 int rdma_connect_locked(struct rdma_cm_id *id, 4151 struct rdma_conn_param *conn_param) 4152 { 4153 struct rdma_id_private *id_priv = 4154 container_of(id, struct rdma_id_private, id); 4155 int ret; 4156 4157 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4158 return -EINVAL; 4159 4160 if (!id->qp) { 4161 id_priv->qp_num = conn_param->qp_num; 4162 id_priv->srq = conn_param->srq; 4163 } 4164 4165 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4166 if (id->qp_type == IB_QPT_UD) 4167 ret = cma_resolve_ib_udp(id_priv, conn_param); 4168 else 4169 ret = cma_connect_ib(id_priv, conn_param); 4170 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4171 ret = cma_connect_iw(id_priv, conn_param); 4172 } else { 4173 ret = -ENOSYS; 4174 } 4175 if (ret) 4176 goto err_state; 4177 return 0; 4178 err_state: 4179 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4180 return ret; 4181 } 4182 EXPORT_SYMBOL(rdma_connect_locked); 4183 4184 /** 4185 * rdma_connect - Initiate an active connection request. 4186 * @id: Connection identifier to connect. 4187 * @conn_param: Connection information used for connected QPs. 4188 * 4189 * Users must have resolved a route for the rdma_cm_id to connect with by having 4190 * called rdma_resolve_route before calling this routine. 4191 * 4192 * This call will either connect to a remote QP or obtain remote QP information 4193 * for unconnected rdma_cm_id's. The actual operation is based on the 4194 * rdma_cm_id's port space. 4195 */ 4196 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4197 { 4198 struct rdma_id_private *id_priv = 4199 container_of(id, struct rdma_id_private, id); 4200 int ret; 4201 4202 mutex_lock(&id_priv->handler_mutex); 4203 ret = rdma_connect_locked(id, conn_param); 4204 mutex_unlock(&id_priv->handler_mutex); 4205 return ret; 4206 } 4207 EXPORT_SYMBOL(rdma_connect); 4208 4209 /** 4210 * rdma_connect_ece - Initiate an active connection request with ECE data. 4211 * @id: Connection identifier to connect. 4212 * @conn_param: Connection information used for connected QPs. 4213 * @ece: ECE parameters 4214 * 4215 * See rdma_connect() explanation. 4216 */ 4217 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4218 struct rdma_ucm_ece *ece) 4219 { 4220 struct rdma_id_private *id_priv = 4221 container_of(id, struct rdma_id_private, id); 4222 4223 id_priv->ece.vendor_id = ece->vendor_id; 4224 id_priv->ece.attr_mod = ece->attr_mod; 4225 4226 return rdma_connect(id, conn_param); 4227 } 4228 EXPORT_SYMBOL(rdma_connect_ece); 4229 4230 static int cma_accept_ib(struct rdma_id_private *id_priv, 4231 struct rdma_conn_param *conn_param) 4232 { 4233 struct ib_cm_rep_param rep; 4234 int ret; 4235 4236 ret = cma_modify_qp_rtr(id_priv, conn_param); 4237 if (ret) 4238 goto out; 4239 4240 ret = cma_modify_qp_rts(id_priv, conn_param); 4241 if (ret) 4242 goto out; 4243 4244 memset(&rep, 0, sizeof rep); 4245 rep.qp_num = id_priv->qp_num; 4246 rep.starting_psn = id_priv->seq_num; 4247 rep.private_data = conn_param->private_data; 4248 rep.private_data_len = conn_param->private_data_len; 4249 rep.responder_resources = conn_param->responder_resources; 4250 rep.initiator_depth = conn_param->initiator_depth; 4251 rep.failover_accepted = 0; 4252 rep.flow_control = conn_param->flow_control; 4253 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4254 rep.srq = id_priv->srq ? 1 : 0; 4255 rep.ece.vendor_id = id_priv->ece.vendor_id; 4256 rep.ece.attr_mod = id_priv->ece.attr_mod; 4257 4258 trace_cm_send_rep(id_priv); 4259 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4260 out: 4261 return ret; 4262 } 4263 4264 static int cma_accept_iw(struct rdma_id_private *id_priv, 4265 struct rdma_conn_param *conn_param) 4266 { 4267 struct iw_cm_conn_param iw_param; 4268 int ret; 4269 4270 if (!conn_param) 4271 return -EINVAL; 4272 4273 ret = cma_modify_qp_rtr(id_priv, conn_param); 4274 if (ret) 4275 return ret; 4276 4277 iw_param.ord = conn_param->initiator_depth; 4278 iw_param.ird = conn_param->responder_resources; 4279 iw_param.private_data = conn_param->private_data; 4280 iw_param.private_data_len = conn_param->private_data_len; 4281 if (id_priv->id.qp) 4282 iw_param.qpn = id_priv->qp_num; 4283 else 4284 iw_param.qpn = conn_param->qp_num; 4285 4286 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4287 } 4288 4289 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4290 enum ib_cm_sidr_status status, u32 qkey, 4291 const void *private_data, int private_data_len) 4292 { 4293 struct ib_cm_sidr_rep_param rep; 4294 int ret; 4295 4296 memset(&rep, 0, sizeof rep); 4297 rep.status = status; 4298 if (status == IB_SIDR_SUCCESS) { 4299 ret = cma_set_qkey(id_priv, qkey); 4300 if (ret) 4301 return ret; 4302 rep.qp_num = id_priv->qp_num; 4303 rep.qkey = id_priv->qkey; 4304 4305 rep.ece.vendor_id = id_priv->ece.vendor_id; 4306 rep.ece.attr_mod = id_priv->ece.attr_mod; 4307 } 4308 4309 rep.private_data = private_data; 4310 rep.private_data_len = private_data_len; 4311 4312 trace_cm_send_sidr_rep(id_priv); 4313 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4314 } 4315 4316 /** 4317 * rdma_accept - Called to accept a connection request or response. 4318 * @id: Connection identifier associated with the request. 4319 * @conn_param: Information needed to establish the connection. This must be 4320 * provided if accepting a connection request. If accepting a connection 4321 * response, this parameter must be NULL. 4322 * 4323 * Typically, this routine is only called by the listener to accept a connection 4324 * request. It must also be called on the active side of a connection if the 4325 * user is performing their own QP transitions. 4326 * 4327 * In the case of error, a reject message is sent to the remote side and the 4328 * state of the qp associated with the id is modified to error, such that any 4329 * previously posted receive buffers would be flushed. 4330 * 4331 * This function is for use by kernel ULPs and must be called from under the 4332 * handler callback. 4333 */ 4334 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4335 { 4336 struct rdma_id_private *id_priv = 4337 container_of(id, struct rdma_id_private, id); 4338 int ret; 4339 4340 lockdep_assert_held(&id_priv->handler_mutex); 4341 4342 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4343 return -EINVAL; 4344 4345 if (!id->qp && conn_param) { 4346 id_priv->qp_num = conn_param->qp_num; 4347 id_priv->srq = conn_param->srq; 4348 } 4349 4350 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4351 if (id->qp_type == IB_QPT_UD) { 4352 if (conn_param) 4353 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4354 conn_param->qkey, 4355 conn_param->private_data, 4356 conn_param->private_data_len); 4357 else 4358 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4359 0, NULL, 0); 4360 } else { 4361 if (conn_param) 4362 ret = cma_accept_ib(id_priv, conn_param); 4363 else 4364 ret = cma_rep_recv(id_priv); 4365 } 4366 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4367 ret = cma_accept_iw(id_priv, conn_param); 4368 } else { 4369 ret = -ENOSYS; 4370 } 4371 if (ret) 4372 goto reject; 4373 4374 return 0; 4375 reject: 4376 cma_modify_qp_err(id_priv); 4377 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4378 return ret; 4379 } 4380 EXPORT_SYMBOL(rdma_accept); 4381 4382 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4383 struct rdma_ucm_ece *ece) 4384 { 4385 struct rdma_id_private *id_priv = 4386 container_of(id, struct rdma_id_private, id); 4387 4388 id_priv->ece.vendor_id = ece->vendor_id; 4389 id_priv->ece.attr_mod = ece->attr_mod; 4390 4391 return rdma_accept(id, conn_param); 4392 } 4393 EXPORT_SYMBOL(rdma_accept_ece); 4394 4395 void rdma_lock_handler(struct rdma_cm_id *id) 4396 { 4397 struct rdma_id_private *id_priv = 4398 container_of(id, struct rdma_id_private, id); 4399 4400 mutex_lock(&id_priv->handler_mutex); 4401 } 4402 EXPORT_SYMBOL(rdma_lock_handler); 4403 4404 void rdma_unlock_handler(struct rdma_cm_id *id) 4405 { 4406 struct rdma_id_private *id_priv = 4407 container_of(id, struct rdma_id_private, id); 4408 4409 mutex_unlock(&id_priv->handler_mutex); 4410 } 4411 EXPORT_SYMBOL(rdma_unlock_handler); 4412 4413 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4414 { 4415 struct rdma_id_private *id_priv; 4416 int ret; 4417 4418 id_priv = container_of(id, struct rdma_id_private, id); 4419 if (!id_priv->cm_id.ib) 4420 return -EINVAL; 4421 4422 switch (id->device->node_type) { 4423 case RDMA_NODE_IB_CA: 4424 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4425 break; 4426 default: 4427 ret = 0; 4428 break; 4429 } 4430 return ret; 4431 } 4432 EXPORT_SYMBOL(rdma_notify); 4433 4434 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4435 u8 private_data_len, u8 reason) 4436 { 4437 struct rdma_id_private *id_priv; 4438 int ret; 4439 4440 id_priv = container_of(id, struct rdma_id_private, id); 4441 if (!id_priv->cm_id.ib) 4442 return -EINVAL; 4443 4444 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4445 if (id->qp_type == IB_QPT_UD) { 4446 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4447 private_data, private_data_len); 4448 } else { 4449 trace_cm_send_rej(id_priv); 4450 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4451 private_data, private_data_len); 4452 } 4453 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4454 ret = iw_cm_reject(id_priv->cm_id.iw, 4455 private_data, private_data_len); 4456 } else { 4457 ret = -ENOSYS; 4458 } 4459 4460 return ret; 4461 } 4462 EXPORT_SYMBOL(rdma_reject); 4463 4464 int rdma_disconnect(struct rdma_cm_id *id) 4465 { 4466 struct rdma_id_private *id_priv; 4467 int ret; 4468 4469 id_priv = container_of(id, struct rdma_id_private, id); 4470 if (!id_priv->cm_id.ib) 4471 return -EINVAL; 4472 4473 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4474 ret = cma_modify_qp_err(id_priv); 4475 if (ret) 4476 goto out; 4477 /* Initiate or respond to a disconnect. */ 4478 trace_cm_disconnect(id_priv); 4479 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4480 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4481 trace_cm_sent_drep(id_priv); 4482 } else { 4483 trace_cm_sent_dreq(id_priv); 4484 } 4485 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4486 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4487 } else 4488 ret = -EINVAL; 4489 4490 out: 4491 return ret; 4492 } 4493 EXPORT_SYMBOL(rdma_disconnect); 4494 4495 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4496 struct ib_sa_multicast *multicast, 4497 struct rdma_cm_event *event, 4498 struct cma_multicast *mc) 4499 { 4500 struct rdma_dev_addr *dev_addr; 4501 enum ib_gid_type gid_type; 4502 struct net_device *ndev; 4503 4504 if (!status) 4505 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4506 else 4507 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4508 status); 4509 4510 event->status = status; 4511 event->param.ud.private_data = mc->context; 4512 if (status) { 4513 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4514 return; 4515 } 4516 4517 dev_addr = &id_priv->id.route.addr.dev_addr; 4518 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4519 gid_type = 4520 id_priv->cma_dev 4521 ->default_gid_type[id_priv->id.port_num - 4522 rdma_start_port( 4523 id_priv->cma_dev->device)]; 4524 4525 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4526 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4527 &multicast->rec, ndev, gid_type, 4528 &event->param.ud.ah_attr)) { 4529 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4530 goto out; 4531 } 4532 4533 event->param.ud.qp_num = 0xFFFFFF; 4534 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4535 4536 out: 4537 if (ndev) 4538 dev_put(ndev); 4539 } 4540 4541 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4542 { 4543 struct cma_multicast *mc = multicast->context; 4544 struct rdma_id_private *id_priv = mc->id_priv; 4545 struct rdma_cm_event event = {}; 4546 int ret = 0; 4547 4548 mutex_lock(&id_priv->handler_mutex); 4549 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4550 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4551 goto out; 4552 4553 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4554 ret = cma_cm_event_handler(id_priv, &event); 4555 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4556 WARN_ON(ret); 4557 4558 out: 4559 mutex_unlock(&id_priv->handler_mutex); 4560 return 0; 4561 } 4562 4563 static void cma_set_mgid(struct rdma_id_private *id_priv, 4564 struct sockaddr *addr, union ib_gid *mgid) 4565 { 4566 unsigned char mc_map[MAX_ADDR_LEN]; 4567 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4568 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4569 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4570 4571 if (cma_any_addr(addr)) { 4572 memset(mgid, 0, sizeof *mgid); 4573 } else if ((addr->sa_family == AF_INET6) && 4574 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4575 0xFF10A01B)) { 4576 /* IPv6 address is an SA assigned MGID. */ 4577 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4578 } else if (addr->sa_family == AF_IB) { 4579 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4580 } else if (addr->sa_family == AF_INET6) { 4581 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4582 if (id_priv->id.ps == RDMA_PS_UDP) 4583 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4584 *mgid = *(union ib_gid *) (mc_map + 4); 4585 } else { 4586 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4587 if (id_priv->id.ps == RDMA_PS_UDP) 4588 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4589 *mgid = *(union ib_gid *) (mc_map + 4); 4590 } 4591 } 4592 4593 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4594 struct cma_multicast *mc) 4595 { 4596 struct ib_sa_mcmember_rec rec; 4597 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4598 ib_sa_comp_mask comp_mask; 4599 int ret; 4600 4601 ib_addr_get_mgid(dev_addr, &rec.mgid); 4602 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4603 &rec.mgid, &rec); 4604 if (ret) 4605 return ret; 4606 4607 ret = cma_set_qkey(id_priv, 0); 4608 if (ret) 4609 return ret; 4610 4611 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4612 rec.qkey = cpu_to_be32(id_priv->qkey); 4613 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4614 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4615 rec.join_state = mc->join_state; 4616 4617 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4618 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4619 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4620 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4621 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4622 4623 if (id_priv->id.ps == RDMA_PS_IPOIB) 4624 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4625 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4626 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4627 IB_SA_MCMEMBER_REC_MTU | 4628 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4629 4630 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4631 id_priv->id.port_num, &rec, comp_mask, 4632 GFP_KERNEL, cma_ib_mc_handler, mc); 4633 return PTR_ERR_OR_ZERO(mc->sa_mc); 4634 } 4635 4636 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4637 enum ib_gid_type gid_type) 4638 { 4639 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4640 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4641 4642 if (cma_any_addr(addr)) { 4643 memset(mgid, 0, sizeof *mgid); 4644 } else if (addr->sa_family == AF_INET6) { 4645 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4646 } else { 4647 mgid->raw[0] = 4648 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4649 mgid->raw[1] = 4650 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4651 mgid->raw[2] = 0; 4652 mgid->raw[3] = 0; 4653 mgid->raw[4] = 0; 4654 mgid->raw[5] = 0; 4655 mgid->raw[6] = 0; 4656 mgid->raw[7] = 0; 4657 mgid->raw[8] = 0; 4658 mgid->raw[9] = 0; 4659 mgid->raw[10] = 0xff; 4660 mgid->raw[11] = 0xff; 4661 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4662 } 4663 } 4664 4665 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4666 struct cma_multicast *mc) 4667 { 4668 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4669 int err = 0; 4670 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4671 struct net_device *ndev = NULL; 4672 struct ib_sa_multicast ib; 4673 enum ib_gid_type gid_type; 4674 bool send_only; 4675 4676 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4677 4678 if (cma_zero_addr(addr)) 4679 return -EINVAL; 4680 4681 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4682 rdma_start_port(id_priv->cma_dev->device)]; 4683 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4684 4685 ib.rec.pkey = cpu_to_be16(0xffff); 4686 if (id_priv->id.ps == RDMA_PS_UDP) 4687 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4688 4689 if (dev_addr->bound_dev_if) 4690 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4691 if (!ndev) 4692 return -ENODEV; 4693 4694 ib.rec.rate = iboe_get_rate(ndev); 4695 ib.rec.hop_limit = 1; 4696 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4697 4698 if (addr->sa_family == AF_INET) { 4699 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4700 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4701 if (!send_only) { 4702 err = cma_igmp_send(ndev, &ib.rec.mgid, 4703 true); 4704 } 4705 } 4706 } else { 4707 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4708 err = -ENOTSUPP; 4709 } 4710 dev_put(ndev); 4711 if (err || !ib.rec.mtu) 4712 return err ?: -EINVAL; 4713 4714 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4715 &ib.rec.port_gid); 4716 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4717 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4718 queue_work(cma_wq, &mc->iboe_join.work); 4719 return 0; 4720 } 4721 4722 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4723 u8 join_state, void *context) 4724 { 4725 struct rdma_id_private *id_priv = 4726 container_of(id, struct rdma_id_private, id); 4727 struct cma_multicast *mc; 4728 int ret; 4729 4730 /* Not supported for kernel QPs */ 4731 if (WARN_ON(id->qp)) 4732 return -EINVAL; 4733 4734 /* ULP is calling this wrong. */ 4735 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4736 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4737 return -EINVAL; 4738 4739 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4740 if (!mc) 4741 return -ENOMEM; 4742 4743 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4744 mc->context = context; 4745 mc->id_priv = id_priv; 4746 mc->join_state = join_state; 4747 4748 if (rdma_protocol_roce(id->device, id->port_num)) { 4749 ret = cma_iboe_join_multicast(id_priv, mc); 4750 if (ret) 4751 goto out_err; 4752 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4753 ret = cma_join_ib_multicast(id_priv, mc); 4754 if (ret) 4755 goto out_err; 4756 } else { 4757 ret = -ENOSYS; 4758 goto out_err; 4759 } 4760 4761 spin_lock(&id_priv->lock); 4762 list_add(&mc->list, &id_priv->mc_list); 4763 spin_unlock(&id_priv->lock); 4764 4765 return 0; 4766 out_err: 4767 kfree(mc); 4768 return ret; 4769 } 4770 EXPORT_SYMBOL(rdma_join_multicast); 4771 4772 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4773 { 4774 struct rdma_id_private *id_priv; 4775 struct cma_multicast *mc; 4776 4777 id_priv = container_of(id, struct rdma_id_private, id); 4778 spin_lock_irq(&id_priv->lock); 4779 list_for_each_entry(mc, &id_priv->mc_list, list) { 4780 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4781 continue; 4782 list_del(&mc->list); 4783 spin_unlock_irq(&id_priv->lock); 4784 4785 WARN_ON(id_priv->cma_dev->device != id->device); 4786 destroy_mc(id_priv, mc); 4787 return; 4788 } 4789 spin_unlock_irq(&id_priv->lock); 4790 } 4791 EXPORT_SYMBOL(rdma_leave_multicast); 4792 4793 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4794 { 4795 struct rdma_dev_addr *dev_addr; 4796 struct cma_work *work; 4797 4798 dev_addr = &id_priv->id.route.addr.dev_addr; 4799 4800 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4801 (net_eq(dev_net(ndev), dev_addr->net)) && 4802 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4803 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4804 ndev->name, &id_priv->id); 4805 work = kzalloc(sizeof *work, GFP_KERNEL); 4806 if (!work) 4807 return -ENOMEM; 4808 4809 INIT_WORK(&work->work, cma_work_handler); 4810 work->id = id_priv; 4811 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4812 cma_id_get(id_priv); 4813 queue_work(cma_wq, &work->work); 4814 } 4815 4816 return 0; 4817 } 4818 4819 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4820 void *ptr) 4821 { 4822 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4823 struct cma_device *cma_dev; 4824 struct rdma_id_private *id_priv; 4825 int ret = NOTIFY_DONE; 4826 4827 if (event != NETDEV_BONDING_FAILOVER) 4828 return NOTIFY_DONE; 4829 4830 if (!netif_is_bond_master(ndev)) 4831 return NOTIFY_DONE; 4832 4833 mutex_lock(&lock); 4834 list_for_each_entry(cma_dev, &dev_list, list) 4835 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4836 ret = cma_netdev_change(ndev, id_priv); 4837 if (ret) 4838 goto out; 4839 } 4840 4841 out: 4842 mutex_unlock(&lock); 4843 return ret; 4844 } 4845 4846 static struct notifier_block cma_nb = { 4847 .notifier_call = cma_netdev_callback 4848 }; 4849 4850 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4851 { 4852 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4853 enum rdma_cm_state state; 4854 unsigned long flags; 4855 4856 mutex_lock(&id_priv->handler_mutex); 4857 /* Record that we want to remove the device */ 4858 spin_lock_irqsave(&id_priv->lock, flags); 4859 state = id_priv->state; 4860 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4861 spin_unlock_irqrestore(&id_priv->lock, flags); 4862 mutex_unlock(&id_priv->handler_mutex); 4863 cma_id_put(id_priv); 4864 return; 4865 } 4866 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4867 spin_unlock_irqrestore(&id_priv->lock, flags); 4868 4869 if (cma_cm_event_handler(id_priv, &event)) { 4870 /* 4871 * At this point the ULP promises it won't call 4872 * rdma_destroy_id() concurrently 4873 */ 4874 cma_id_put(id_priv); 4875 mutex_unlock(&id_priv->handler_mutex); 4876 trace_cm_id_destroy(id_priv); 4877 _destroy_id(id_priv, state); 4878 return; 4879 } 4880 mutex_unlock(&id_priv->handler_mutex); 4881 4882 /* 4883 * If this races with destroy then the thread that first assigns state 4884 * to a destroying does the cancel. 4885 */ 4886 cma_cancel_operation(id_priv, state); 4887 cma_id_put(id_priv); 4888 } 4889 4890 static void cma_process_remove(struct cma_device *cma_dev) 4891 { 4892 mutex_lock(&lock); 4893 while (!list_empty(&cma_dev->id_list)) { 4894 struct rdma_id_private *id_priv = list_first_entry( 4895 &cma_dev->id_list, struct rdma_id_private, list); 4896 4897 list_del(&id_priv->listen_list); 4898 list_del_init(&id_priv->list); 4899 cma_id_get(id_priv); 4900 mutex_unlock(&lock); 4901 4902 cma_send_device_removal_put(id_priv); 4903 4904 mutex_lock(&lock); 4905 } 4906 mutex_unlock(&lock); 4907 4908 cma_dev_put(cma_dev); 4909 wait_for_completion(&cma_dev->comp); 4910 } 4911 4912 static bool cma_supported(struct ib_device *device) 4913 { 4914 u32 i; 4915 4916 rdma_for_each_port(device, i) { 4917 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4918 return true; 4919 } 4920 return false; 4921 } 4922 4923 static int cma_add_one(struct ib_device *device) 4924 { 4925 struct rdma_id_private *to_destroy; 4926 struct cma_device *cma_dev; 4927 struct rdma_id_private *id_priv; 4928 unsigned long supported_gids = 0; 4929 int ret; 4930 u32 i; 4931 4932 if (!cma_supported(device)) 4933 return -EOPNOTSUPP; 4934 4935 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 4936 if (!cma_dev) 4937 return -ENOMEM; 4938 4939 cma_dev->device = device; 4940 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4941 sizeof(*cma_dev->default_gid_type), 4942 GFP_KERNEL); 4943 if (!cma_dev->default_gid_type) { 4944 ret = -ENOMEM; 4945 goto free_cma_dev; 4946 } 4947 4948 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4949 sizeof(*cma_dev->default_roce_tos), 4950 GFP_KERNEL); 4951 if (!cma_dev->default_roce_tos) { 4952 ret = -ENOMEM; 4953 goto free_gid_type; 4954 } 4955 4956 rdma_for_each_port (device, i) { 4957 supported_gids = roce_gid_type_mask_support(device, i); 4958 WARN_ON(!supported_gids); 4959 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4960 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4961 CMA_PREFERRED_ROCE_GID_TYPE; 4962 else 4963 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4964 find_first_bit(&supported_gids, BITS_PER_LONG); 4965 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4966 } 4967 4968 init_completion(&cma_dev->comp); 4969 refcount_set(&cma_dev->refcount, 1); 4970 INIT_LIST_HEAD(&cma_dev->id_list); 4971 ib_set_client_data(device, &cma_client, cma_dev); 4972 4973 mutex_lock(&lock); 4974 list_add_tail(&cma_dev->list, &dev_list); 4975 list_for_each_entry(id_priv, &listen_any_list, list) { 4976 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 4977 if (ret) 4978 goto free_listen; 4979 } 4980 mutex_unlock(&lock); 4981 4982 trace_cm_add_one(device); 4983 return 0; 4984 4985 free_listen: 4986 list_del(&cma_dev->list); 4987 mutex_unlock(&lock); 4988 4989 /* cma_process_remove() will delete to_destroy */ 4990 cma_process_remove(cma_dev); 4991 kfree(cma_dev->default_roce_tos); 4992 free_gid_type: 4993 kfree(cma_dev->default_gid_type); 4994 4995 free_cma_dev: 4996 kfree(cma_dev); 4997 return ret; 4998 } 4999 5000 static void cma_remove_one(struct ib_device *device, void *client_data) 5001 { 5002 struct cma_device *cma_dev = client_data; 5003 5004 trace_cm_remove_one(device); 5005 5006 mutex_lock(&lock); 5007 list_del(&cma_dev->list); 5008 mutex_unlock(&lock); 5009 5010 cma_process_remove(cma_dev); 5011 kfree(cma_dev->default_roce_tos); 5012 kfree(cma_dev->default_gid_type); 5013 kfree(cma_dev); 5014 } 5015 5016 static int cma_init_net(struct net *net) 5017 { 5018 struct cma_pernet *pernet = cma_pernet(net); 5019 5020 xa_init(&pernet->tcp_ps); 5021 xa_init(&pernet->udp_ps); 5022 xa_init(&pernet->ipoib_ps); 5023 xa_init(&pernet->ib_ps); 5024 5025 return 0; 5026 } 5027 5028 static void cma_exit_net(struct net *net) 5029 { 5030 struct cma_pernet *pernet = cma_pernet(net); 5031 5032 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5033 WARN_ON(!xa_empty(&pernet->udp_ps)); 5034 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5035 WARN_ON(!xa_empty(&pernet->ib_ps)); 5036 } 5037 5038 static struct pernet_operations cma_pernet_operations = { 5039 .init = cma_init_net, 5040 .exit = cma_exit_net, 5041 .id = &cma_pernet_id, 5042 .size = sizeof(struct cma_pernet), 5043 }; 5044 5045 static int __init cma_init(void) 5046 { 5047 int ret; 5048 5049 /* 5050 * There is a rare lock ordering dependency in cma_netdev_callback() 5051 * that only happens when bonding is enabled. Teach lockdep that rtnl 5052 * must never be nested under lock so it can find these without having 5053 * to test with bonding. 5054 */ 5055 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5056 rtnl_lock(); 5057 mutex_lock(&lock); 5058 mutex_unlock(&lock); 5059 rtnl_unlock(); 5060 } 5061 5062 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5063 if (!cma_wq) 5064 return -ENOMEM; 5065 5066 ret = register_pernet_subsys(&cma_pernet_operations); 5067 if (ret) 5068 goto err_wq; 5069 5070 ib_sa_register_client(&sa_client); 5071 register_netdevice_notifier(&cma_nb); 5072 5073 ret = ib_register_client(&cma_client); 5074 if (ret) 5075 goto err; 5076 5077 ret = cma_configfs_init(); 5078 if (ret) 5079 goto err_ib; 5080 5081 return 0; 5082 5083 err_ib: 5084 ib_unregister_client(&cma_client); 5085 err: 5086 unregister_netdevice_notifier(&cma_nb); 5087 ib_sa_unregister_client(&sa_client); 5088 unregister_pernet_subsys(&cma_pernet_operations); 5089 err_wq: 5090 destroy_workqueue(cma_wq); 5091 return ret; 5092 } 5093 5094 static void __exit cma_cleanup(void) 5095 { 5096 cma_configfs_exit(); 5097 ib_unregister_client(&cma_client); 5098 unregister_netdevice_notifier(&cma_nb); 5099 ib_sa_unregister_client(&sa_client); 5100 unregister_pernet_subsys(&cma_pernet_operations); 5101 destroy_workqueue(cma_wq); 5102 } 5103 5104 module_init(cma_init); 5105 module_exit(cma_cleanup); 5106