1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 47 #define CMA_MAX_CM_RETRIES 15 48 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 49 #define CMA_IBOE_PACKET_LIFETIME 18 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 72 union ib_gid *mgid); 73 74 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 75 { 76 size_t index = event; 77 78 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 79 cma_events[index] : "unrecognized event"; 80 } 81 EXPORT_SYMBOL(rdma_event_msg); 82 83 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 84 int reason) 85 { 86 if (rdma_ib_or_roce(id->device, id->port_num)) 87 return ibcm_reject_msg(reason); 88 89 if (rdma_protocol_iwarp(id->device, id->port_num)) 90 return iwcm_reject_msg(reason); 91 92 WARN_ON_ONCE(1); 93 return "unrecognized transport"; 94 } 95 EXPORT_SYMBOL(rdma_reject_msg); 96 97 /** 98 * rdma_is_consumer_reject - return true if the consumer rejected the connect 99 * request. 100 * @id: Communication identifier that received the REJECT event. 101 * @reason: Value returned in the REJECT event status field. 102 */ 103 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 104 { 105 if (rdma_ib_or_roce(id->device, id->port_num)) 106 return reason == IB_CM_REJ_CONSUMER_DEFINED; 107 108 if (rdma_protocol_iwarp(id->device, id->port_num)) 109 return reason == -ECONNREFUSED; 110 111 WARN_ON_ONCE(1); 112 return false; 113 } 114 115 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 116 struct rdma_cm_event *ev, u8 *data_len) 117 { 118 const void *p; 119 120 if (rdma_is_consumer_reject(id, ev->status)) { 121 *data_len = ev->param.conn.private_data_len; 122 p = ev->param.conn.private_data; 123 } else { 124 *data_len = 0; 125 p = NULL; 126 } 127 return p; 128 } 129 EXPORT_SYMBOL(rdma_consumer_reject_data); 130 131 /** 132 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 133 * @id: Communication Identifier 134 */ 135 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 136 { 137 struct rdma_id_private *id_priv; 138 139 id_priv = container_of(id, struct rdma_id_private, id); 140 if (id->device->node_type == RDMA_NODE_RNIC) 141 return id_priv->cm_id.iw; 142 return NULL; 143 } 144 EXPORT_SYMBOL(rdma_iw_cm_id); 145 146 /** 147 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 148 * @res: rdma resource tracking entry pointer 149 */ 150 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 151 { 152 struct rdma_id_private *id_priv = 153 container_of(res, struct rdma_id_private, res); 154 155 return &id_priv->id; 156 } 157 EXPORT_SYMBOL(rdma_res_to_id); 158 159 static int cma_add_one(struct ib_device *device); 160 static void cma_remove_one(struct ib_device *device, void *client_data); 161 162 static struct ib_client cma_client = { 163 .name = "cma", 164 .add = cma_add_one, 165 .remove = cma_remove_one 166 }; 167 168 static struct ib_sa_client sa_client; 169 static LIST_HEAD(dev_list); 170 static LIST_HEAD(listen_any_list); 171 static DEFINE_MUTEX(lock); 172 static struct workqueue_struct *cma_wq; 173 static unsigned int cma_pernet_id; 174 175 struct cma_pernet { 176 struct xarray tcp_ps; 177 struct xarray udp_ps; 178 struct xarray ipoib_ps; 179 struct xarray ib_ps; 180 }; 181 182 static struct cma_pernet *cma_pernet(struct net *net) 183 { 184 return net_generic(net, cma_pernet_id); 185 } 186 187 static 188 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 189 { 190 struct cma_pernet *pernet = cma_pernet(net); 191 192 switch (ps) { 193 case RDMA_PS_TCP: 194 return &pernet->tcp_ps; 195 case RDMA_PS_UDP: 196 return &pernet->udp_ps; 197 case RDMA_PS_IPOIB: 198 return &pernet->ipoib_ps; 199 case RDMA_PS_IB: 200 return &pernet->ib_ps; 201 default: 202 return NULL; 203 } 204 } 205 206 struct cma_device { 207 struct list_head list; 208 struct ib_device *device; 209 struct completion comp; 210 refcount_t refcount; 211 struct list_head id_list; 212 enum ib_gid_type *default_gid_type; 213 u8 *default_roce_tos; 214 }; 215 216 struct rdma_bind_list { 217 enum rdma_ucm_port_space ps; 218 struct hlist_head owners; 219 unsigned short port; 220 }; 221 222 struct class_port_info_context { 223 struct ib_class_port_info *class_port_info; 224 struct ib_device *device; 225 struct completion done; 226 struct ib_sa_query *sa_query; 227 u8 port_num; 228 }; 229 230 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 231 struct rdma_bind_list *bind_list, int snum) 232 { 233 struct xarray *xa = cma_pernet_xa(net, ps); 234 235 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 236 } 237 238 static struct rdma_bind_list *cma_ps_find(struct net *net, 239 enum rdma_ucm_port_space ps, int snum) 240 { 241 struct xarray *xa = cma_pernet_xa(net, ps); 242 243 return xa_load(xa, snum); 244 } 245 246 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 247 int snum) 248 { 249 struct xarray *xa = cma_pernet_xa(net, ps); 250 251 xa_erase(xa, snum); 252 } 253 254 enum { 255 CMA_OPTION_AFONLY, 256 }; 257 258 void cma_dev_get(struct cma_device *cma_dev) 259 { 260 refcount_inc(&cma_dev->refcount); 261 } 262 263 void cma_dev_put(struct cma_device *cma_dev) 264 { 265 if (refcount_dec_and_test(&cma_dev->refcount)) 266 complete(&cma_dev->comp); 267 } 268 269 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 270 void *cookie) 271 { 272 struct cma_device *cma_dev; 273 struct cma_device *found_cma_dev = NULL; 274 275 mutex_lock(&lock); 276 277 list_for_each_entry(cma_dev, &dev_list, list) 278 if (filter(cma_dev->device, cookie)) { 279 found_cma_dev = cma_dev; 280 break; 281 } 282 283 if (found_cma_dev) 284 cma_dev_get(found_cma_dev); 285 mutex_unlock(&lock); 286 return found_cma_dev; 287 } 288 289 int cma_get_default_gid_type(struct cma_device *cma_dev, 290 unsigned int port) 291 { 292 if (!rdma_is_port_valid(cma_dev->device, port)) 293 return -EINVAL; 294 295 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 296 } 297 298 int cma_set_default_gid_type(struct cma_device *cma_dev, 299 unsigned int port, 300 enum ib_gid_type default_gid_type) 301 { 302 unsigned long supported_gids; 303 304 if (!rdma_is_port_valid(cma_dev->device, port)) 305 return -EINVAL; 306 307 if (default_gid_type == IB_GID_TYPE_IB && 308 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 309 default_gid_type = IB_GID_TYPE_ROCE; 310 311 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 312 313 if (!(supported_gids & 1 << default_gid_type)) 314 return -EINVAL; 315 316 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 317 default_gid_type; 318 319 return 0; 320 } 321 322 int cma_get_default_roce_tos(struct cma_device *cma_dev, unsigned int port) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 328 } 329 330 int cma_set_default_roce_tos(struct cma_device *cma_dev, unsigned int port, 331 u8 default_roce_tos) 332 { 333 if (!rdma_is_port_valid(cma_dev->device, port)) 334 return -EINVAL; 335 336 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 337 default_roce_tos; 338 339 return 0; 340 } 341 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 342 { 343 return cma_dev->device; 344 } 345 346 /* 347 * Device removal can occur at anytime, so we need extra handling to 348 * serialize notifying the user of device removal with other callbacks. 349 * We do this by disabling removal notification while a callback is in process, 350 * and reporting it after the callback completes. 351 */ 352 353 struct cma_multicast { 354 struct rdma_id_private *id_priv; 355 struct ib_sa_multicast *sa_mc; 356 struct list_head list; 357 void *context; 358 struct sockaddr_storage addr; 359 u8 join_state; 360 }; 361 362 struct cma_work { 363 struct work_struct work; 364 struct rdma_id_private *id; 365 enum rdma_cm_state old_state; 366 enum rdma_cm_state new_state; 367 struct rdma_cm_event event; 368 }; 369 370 union cma_ip_addr { 371 struct in6_addr ip6; 372 struct { 373 __be32 pad[3]; 374 __be32 addr; 375 } ip4; 376 }; 377 378 struct cma_hdr { 379 u8 cma_version; 380 u8 ip_version; /* IP version: 7:4 */ 381 __be16 port; 382 union cma_ip_addr src_addr; 383 union cma_ip_addr dst_addr; 384 }; 385 386 #define CMA_VERSION 0x00 387 388 struct cma_req_info { 389 struct sockaddr_storage listen_addr_storage; 390 struct sockaddr_storage src_addr_storage; 391 struct ib_device *device; 392 union ib_gid local_gid; 393 __be64 service_id; 394 int port; 395 bool has_gid; 396 u16 pkey; 397 }; 398 399 static int cma_comp_exch(struct rdma_id_private *id_priv, 400 enum rdma_cm_state comp, enum rdma_cm_state exch) 401 { 402 unsigned long flags; 403 int ret; 404 405 /* 406 * The FSM uses a funny double locking where state is protected by both 407 * the handler_mutex and the spinlock. State is not allowed to change 408 * to/from a handler_mutex protected value without also holding 409 * handler_mutex. 410 */ 411 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 412 lockdep_assert_held(&id_priv->handler_mutex); 413 414 spin_lock_irqsave(&id_priv->lock, flags); 415 if ((ret = (id_priv->state == comp))) 416 id_priv->state = exch; 417 spin_unlock_irqrestore(&id_priv->lock, flags); 418 return ret; 419 } 420 421 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 422 { 423 return hdr->ip_version >> 4; 424 } 425 426 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 427 { 428 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 429 } 430 431 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 432 { 433 struct in_device *in_dev = NULL; 434 435 if (ndev) { 436 rtnl_lock(); 437 in_dev = __in_dev_get_rtnl(ndev); 438 if (in_dev) { 439 if (join) 440 ip_mc_inc_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 else 443 ip_mc_dec_group(in_dev, 444 *(__be32 *)(mgid->raw + 12)); 445 } 446 rtnl_unlock(); 447 } 448 return (in_dev) ? 0 : -ENODEV; 449 } 450 451 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 452 struct cma_device *cma_dev) 453 { 454 cma_dev_get(cma_dev); 455 id_priv->cma_dev = cma_dev; 456 id_priv->id.device = cma_dev->device; 457 id_priv->id.route.addr.dev_addr.transport = 458 rdma_node_get_transport(cma_dev->device->node_type); 459 list_add_tail(&id_priv->list, &cma_dev->id_list); 460 rdma_restrack_add(&id_priv->res); 461 462 trace_cm_id_attach(id_priv, cma_dev->device); 463 } 464 465 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 466 struct cma_device *cma_dev) 467 { 468 _cma_attach_to_dev(id_priv, cma_dev); 469 id_priv->gid_type = 470 cma_dev->default_gid_type[id_priv->id.port_num - 471 rdma_start_port(cma_dev->device)]; 472 } 473 474 static void cma_release_dev(struct rdma_id_private *id_priv) 475 { 476 mutex_lock(&lock); 477 list_del(&id_priv->list); 478 cma_dev_put(id_priv->cma_dev); 479 id_priv->cma_dev = NULL; 480 mutex_unlock(&lock); 481 } 482 483 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 484 { 485 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 486 } 487 488 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 489 { 490 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 491 } 492 493 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 494 { 495 return id_priv->id.route.addr.src_addr.ss_family; 496 } 497 498 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 499 { 500 struct ib_sa_mcmember_rec rec; 501 int ret = 0; 502 503 if (id_priv->qkey) { 504 if (qkey && id_priv->qkey != qkey) 505 return -EINVAL; 506 return 0; 507 } 508 509 if (qkey) { 510 id_priv->qkey = qkey; 511 return 0; 512 } 513 514 switch (id_priv->id.ps) { 515 case RDMA_PS_UDP: 516 case RDMA_PS_IB: 517 id_priv->qkey = RDMA_UDP_QKEY; 518 break; 519 case RDMA_PS_IPOIB: 520 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 521 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 522 id_priv->id.port_num, &rec.mgid, 523 &rec); 524 if (!ret) 525 id_priv->qkey = be32_to_cpu(rec.qkey); 526 break; 527 default: 528 break; 529 } 530 return ret; 531 } 532 533 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 534 { 535 dev_addr->dev_type = ARPHRD_INFINIBAND; 536 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 537 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 538 } 539 540 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 541 { 542 int ret; 543 544 if (addr->sa_family != AF_IB) { 545 ret = rdma_translate_ip(addr, dev_addr); 546 } else { 547 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 548 ret = 0; 549 } 550 551 return ret; 552 } 553 554 static const struct ib_gid_attr * 555 cma_validate_port(struct ib_device *device, u8 port, 556 enum ib_gid_type gid_type, 557 union ib_gid *gid, 558 struct rdma_id_private *id_priv) 559 { 560 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 561 int bound_if_index = dev_addr->bound_dev_if; 562 const struct ib_gid_attr *sgid_attr; 563 int dev_type = dev_addr->dev_type; 564 struct net_device *ndev = NULL; 565 566 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 567 return ERR_PTR(-ENODEV); 568 569 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 570 return ERR_PTR(-ENODEV); 571 572 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 573 return ERR_PTR(-ENODEV); 574 575 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 576 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 577 if (!ndev) 578 return ERR_PTR(-ENODEV); 579 } else { 580 gid_type = IB_GID_TYPE_IB; 581 } 582 583 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 584 if (ndev) 585 dev_put(ndev); 586 return sgid_attr; 587 } 588 589 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 590 const struct ib_gid_attr *sgid_attr) 591 { 592 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 593 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 594 } 595 596 /** 597 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 598 * based on source ip address. 599 * @id_priv: cm_id which should be bound to cma device 600 * 601 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 602 * based on source IP address. It returns 0 on success or error code otherwise. 603 * It is applicable to active and passive side cm_id. 604 */ 605 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 606 { 607 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 608 const struct ib_gid_attr *sgid_attr; 609 union ib_gid gid, iboe_gid, *gidp; 610 struct cma_device *cma_dev; 611 enum ib_gid_type gid_type; 612 int ret = -ENODEV; 613 unsigned int port; 614 615 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 616 id_priv->id.ps == RDMA_PS_IPOIB) 617 return -EINVAL; 618 619 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 620 &iboe_gid); 621 622 memcpy(&gid, dev_addr->src_dev_addr + 623 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 624 625 mutex_lock(&lock); 626 list_for_each_entry(cma_dev, &dev_list, list) { 627 rdma_for_each_port (cma_dev->device, port) { 628 gidp = rdma_protocol_roce(cma_dev->device, port) ? 629 &iboe_gid : &gid; 630 gid_type = cma_dev->default_gid_type[port - 1]; 631 sgid_attr = cma_validate_port(cma_dev->device, port, 632 gid_type, gidp, id_priv); 633 if (!IS_ERR(sgid_attr)) { 634 id_priv->id.port_num = port; 635 cma_bind_sgid_attr(id_priv, sgid_attr); 636 cma_attach_to_dev(id_priv, cma_dev); 637 ret = 0; 638 goto out; 639 } 640 } 641 } 642 out: 643 mutex_unlock(&lock); 644 return ret; 645 } 646 647 /** 648 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 649 * @id_priv: cm id to bind to cma device 650 * @listen_id_priv: listener cm id to match against 651 * @req: Pointer to req structure containaining incoming 652 * request information 653 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 654 * rdma device matches for listen_id and incoming request. It also verifies 655 * that a GID table entry is present for the source address. 656 * Returns 0 on success, or returns error code otherwise. 657 */ 658 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 659 const struct rdma_id_private *listen_id_priv, 660 struct cma_req_info *req) 661 { 662 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 663 const struct ib_gid_attr *sgid_attr; 664 enum ib_gid_type gid_type; 665 union ib_gid gid; 666 667 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 668 id_priv->id.ps == RDMA_PS_IPOIB) 669 return -EINVAL; 670 671 if (rdma_protocol_roce(req->device, req->port)) 672 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 673 &gid); 674 else 675 memcpy(&gid, dev_addr->src_dev_addr + 676 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 677 678 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 679 sgid_attr = cma_validate_port(req->device, req->port, 680 gid_type, &gid, id_priv); 681 if (IS_ERR(sgid_attr)) 682 return PTR_ERR(sgid_attr); 683 684 id_priv->id.port_num = req->port; 685 cma_bind_sgid_attr(id_priv, sgid_attr); 686 /* Need to acquire lock to protect against reader 687 * of cma_dev->id_list such as cma_netdev_callback() and 688 * cma_process_remove(). 689 */ 690 mutex_lock(&lock); 691 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 692 mutex_unlock(&lock); 693 return 0; 694 } 695 696 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 697 const struct rdma_id_private *listen_id_priv) 698 { 699 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 700 const struct ib_gid_attr *sgid_attr; 701 struct cma_device *cma_dev; 702 enum ib_gid_type gid_type; 703 int ret = -ENODEV; 704 unsigned int port; 705 union ib_gid gid; 706 707 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 708 id_priv->id.ps == RDMA_PS_IPOIB) 709 return -EINVAL; 710 711 memcpy(&gid, dev_addr->src_dev_addr + 712 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 713 714 mutex_lock(&lock); 715 716 cma_dev = listen_id_priv->cma_dev; 717 port = listen_id_priv->id.port_num; 718 gid_type = listen_id_priv->gid_type; 719 sgid_attr = cma_validate_port(cma_dev->device, port, 720 gid_type, &gid, id_priv); 721 if (!IS_ERR(sgid_attr)) { 722 id_priv->id.port_num = port; 723 cma_bind_sgid_attr(id_priv, sgid_attr); 724 ret = 0; 725 goto out; 726 } 727 728 list_for_each_entry(cma_dev, &dev_list, list) { 729 rdma_for_each_port (cma_dev->device, port) { 730 if (listen_id_priv->cma_dev == cma_dev && 731 listen_id_priv->id.port_num == port) 732 continue; 733 734 gid_type = cma_dev->default_gid_type[port - 1]; 735 sgid_attr = cma_validate_port(cma_dev->device, port, 736 gid_type, &gid, id_priv); 737 if (!IS_ERR(sgid_attr)) { 738 id_priv->id.port_num = port; 739 cma_bind_sgid_attr(id_priv, sgid_attr); 740 ret = 0; 741 goto out; 742 } 743 } 744 } 745 746 out: 747 if (!ret) 748 cma_attach_to_dev(id_priv, cma_dev); 749 750 mutex_unlock(&lock); 751 return ret; 752 } 753 754 /* 755 * Select the source IB device and address to reach the destination IB address. 756 */ 757 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 758 { 759 struct cma_device *cma_dev, *cur_dev; 760 struct sockaddr_ib *addr; 761 union ib_gid gid, sgid, *dgid; 762 unsigned int p; 763 u16 pkey, index; 764 enum ib_port_state port_state; 765 int i; 766 767 cma_dev = NULL; 768 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 769 dgid = (union ib_gid *) &addr->sib_addr; 770 pkey = ntohs(addr->sib_pkey); 771 772 mutex_lock(&lock); 773 list_for_each_entry(cur_dev, &dev_list, list) { 774 rdma_for_each_port (cur_dev->device, p) { 775 if (!rdma_cap_af_ib(cur_dev->device, p)) 776 continue; 777 778 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 779 continue; 780 781 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 782 continue; 783 for (i = 0; !rdma_query_gid(cur_dev->device, 784 p, i, &gid); 785 i++) { 786 if (!memcmp(&gid, dgid, sizeof(gid))) { 787 cma_dev = cur_dev; 788 sgid = gid; 789 id_priv->id.port_num = p; 790 goto found; 791 } 792 793 if (!cma_dev && (gid.global.subnet_prefix == 794 dgid->global.subnet_prefix) && 795 port_state == IB_PORT_ACTIVE) { 796 cma_dev = cur_dev; 797 sgid = gid; 798 id_priv->id.port_num = p; 799 goto found; 800 } 801 } 802 } 803 } 804 mutex_unlock(&lock); 805 return -ENODEV; 806 807 found: 808 cma_attach_to_dev(id_priv, cma_dev); 809 mutex_unlock(&lock); 810 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 811 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 812 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 813 return 0; 814 } 815 816 static void cma_id_get(struct rdma_id_private *id_priv) 817 { 818 refcount_inc(&id_priv->refcount); 819 } 820 821 static void cma_id_put(struct rdma_id_private *id_priv) 822 { 823 if (refcount_dec_and_test(&id_priv->refcount)) 824 complete(&id_priv->comp); 825 } 826 827 static struct rdma_id_private * 828 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 829 void *context, enum rdma_ucm_port_space ps, 830 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 831 { 832 struct rdma_id_private *id_priv; 833 834 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 835 if (!id_priv) 836 return ERR_PTR(-ENOMEM); 837 838 id_priv->state = RDMA_CM_IDLE; 839 id_priv->id.context = context; 840 id_priv->id.event_handler = event_handler; 841 id_priv->id.ps = ps; 842 id_priv->id.qp_type = qp_type; 843 id_priv->tos_set = false; 844 id_priv->timeout_set = false; 845 id_priv->gid_type = IB_GID_TYPE_IB; 846 spin_lock_init(&id_priv->lock); 847 mutex_init(&id_priv->qp_mutex); 848 init_completion(&id_priv->comp); 849 refcount_set(&id_priv->refcount, 1); 850 mutex_init(&id_priv->handler_mutex); 851 INIT_LIST_HEAD(&id_priv->listen_list); 852 INIT_LIST_HEAD(&id_priv->mc_list); 853 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 854 id_priv->id.route.addr.dev_addr.net = get_net(net); 855 id_priv->seq_num &= 0x00ffffff; 856 857 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 858 if (parent) 859 rdma_restrack_parent_name(&id_priv->res, &parent->res); 860 861 return id_priv; 862 } 863 864 struct rdma_cm_id * 865 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 866 void *context, enum rdma_ucm_port_space ps, 867 enum ib_qp_type qp_type, const char *caller) 868 { 869 struct rdma_id_private *ret; 870 871 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 872 if (IS_ERR(ret)) 873 return ERR_CAST(ret); 874 875 rdma_restrack_set_name(&ret->res, caller); 876 return &ret->id; 877 } 878 EXPORT_SYMBOL(__rdma_create_kernel_id); 879 880 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 881 void *context, 882 enum rdma_ucm_port_space ps, 883 enum ib_qp_type qp_type) 884 { 885 struct rdma_id_private *ret; 886 887 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 888 ps, qp_type, NULL); 889 if (IS_ERR(ret)) 890 return ERR_CAST(ret); 891 892 rdma_restrack_set_name(&ret->res, NULL); 893 return &ret->id; 894 } 895 EXPORT_SYMBOL(rdma_create_user_id); 896 897 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 898 { 899 struct ib_qp_attr qp_attr; 900 int qp_attr_mask, ret; 901 902 qp_attr.qp_state = IB_QPS_INIT; 903 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 904 if (ret) 905 return ret; 906 907 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 908 if (ret) 909 return ret; 910 911 qp_attr.qp_state = IB_QPS_RTR; 912 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 913 if (ret) 914 return ret; 915 916 qp_attr.qp_state = IB_QPS_RTS; 917 qp_attr.sq_psn = 0; 918 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 919 920 return ret; 921 } 922 923 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 924 { 925 struct ib_qp_attr qp_attr; 926 int qp_attr_mask, ret; 927 928 qp_attr.qp_state = IB_QPS_INIT; 929 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 930 if (ret) 931 return ret; 932 933 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 934 } 935 936 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 937 struct ib_qp_init_attr *qp_init_attr) 938 { 939 struct rdma_id_private *id_priv; 940 struct ib_qp *qp; 941 int ret; 942 943 id_priv = container_of(id, struct rdma_id_private, id); 944 if (id->device != pd->device) { 945 ret = -EINVAL; 946 goto out_err; 947 } 948 949 qp_init_attr->port_num = id->port_num; 950 qp = ib_create_qp(pd, qp_init_attr); 951 if (IS_ERR(qp)) { 952 ret = PTR_ERR(qp); 953 goto out_err; 954 } 955 956 if (id->qp_type == IB_QPT_UD) 957 ret = cma_init_ud_qp(id_priv, qp); 958 else 959 ret = cma_init_conn_qp(id_priv, qp); 960 if (ret) 961 goto out_destroy; 962 963 id->qp = qp; 964 id_priv->qp_num = qp->qp_num; 965 id_priv->srq = (qp->srq != NULL); 966 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 967 return 0; 968 out_destroy: 969 ib_destroy_qp(qp); 970 out_err: 971 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 972 return ret; 973 } 974 EXPORT_SYMBOL(rdma_create_qp); 975 976 void rdma_destroy_qp(struct rdma_cm_id *id) 977 { 978 struct rdma_id_private *id_priv; 979 980 id_priv = container_of(id, struct rdma_id_private, id); 981 trace_cm_qp_destroy(id_priv); 982 mutex_lock(&id_priv->qp_mutex); 983 ib_destroy_qp(id_priv->id.qp); 984 id_priv->id.qp = NULL; 985 mutex_unlock(&id_priv->qp_mutex); 986 } 987 EXPORT_SYMBOL(rdma_destroy_qp); 988 989 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 990 struct rdma_conn_param *conn_param) 991 { 992 struct ib_qp_attr qp_attr; 993 int qp_attr_mask, ret; 994 995 mutex_lock(&id_priv->qp_mutex); 996 if (!id_priv->id.qp) { 997 ret = 0; 998 goto out; 999 } 1000 1001 /* Need to update QP attributes from default values. */ 1002 qp_attr.qp_state = IB_QPS_INIT; 1003 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1004 if (ret) 1005 goto out; 1006 1007 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1008 if (ret) 1009 goto out; 1010 1011 qp_attr.qp_state = IB_QPS_RTR; 1012 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1013 if (ret) 1014 goto out; 1015 1016 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1017 1018 if (conn_param) 1019 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1020 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1021 out: 1022 mutex_unlock(&id_priv->qp_mutex); 1023 return ret; 1024 } 1025 1026 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1027 struct rdma_conn_param *conn_param) 1028 { 1029 struct ib_qp_attr qp_attr; 1030 int qp_attr_mask, ret; 1031 1032 mutex_lock(&id_priv->qp_mutex); 1033 if (!id_priv->id.qp) { 1034 ret = 0; 1035 goto out; 1036 } 1037 1038 qp_attr.qp_state = IB_QPS_RTS; 1039 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1040 if (ret) 1041 goto out; 1042 1043 if (conn_param) 1044 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1045 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1046 out: 1047 mutex_unlock(&id_priv->qp_mutex); 1048 return ret; 1049 } 1050 1051 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1052 { 1053 struct ib_qp_attr qp_attr; 1054 int ret; 1055 1056 mutex_lock(&id_priv->qp_mutex); 1057 if (!id_priv->id.qp) { 1058 ret = 0; 1059 goto out; 1060 } 1061 1062 qp_attr.qp_state = IB_QPS_ERR; 1063 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1064 out: 1065 mutex_unlock(&id_priv->qp_mutex); 1066 return ret; 1067 } 1068 1069 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1070 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1071 { 1072 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1073 int ret; 1074 u16 pkey; 1075 1076 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1077 pkey = 0xffff; 1078 else 1079 pkey = ib_addr_get_pkey(dev_addr); 1080 1081 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1082 pkey, &qp_attr->pkey_index); 1083 if (ret) 1084 return ret; 1085 1086 qp_attr->port_num = id_priv->id.port_num; 1087 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1088 1089 if (id_priv->id.qp_type == IB_QPT_UD) { 1090 ret = cma_set_qkey(id_priv, 0); 1091 if (ret) 1092 return ret; 1093 1094 qp_attr->qkey = id_priv->qkey; 1095 *qp_attr_mask |= IB_QP_QKEY; 1096 } else { 1097 qp_attr->qp_access_flags = 0; 1098 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1099 } 1100 return 0; 1101 } 1102 1103 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1104 int *qp_attr_mask) 1105 { 1106 struct rdma_id_private *id_priv; 1107 int ret = 0; 1108 1109 id_priv = container_of(id, struct rdma_id_private, id); 1110 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1111 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1112 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1113 else 1114 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1115 qp_attr_mask); 1116 1117 if (qp_attr->qp_state == IB_QPS_RTR) 1118 qp_attr->rq_psn = id_priv->seq_num; 1119 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1120 if (!id_priv->cm_id.iw) { 1121 qp_attr->qp_access_flags = 0; 1122 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1123 } else 1124 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1125 qp_attr_mask); 1126 qp_attr->port_num = id_priv->id.port_num; 1127 *qp_attr_mask |= IB_QP_PORT; 1128 } else 1129 ret = -ENOSYS; 1130 1131 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1132 qp_attr->timeout = id_priv->timeout; 1133 1134 return ret; 1135 } 1136 EXPORT_SYMBOL(rdma_init_qp_attr); 1137 1138 static inline bool cma_zero_addr(const struct sockaddr *addr) 1139 { 1140 switch (addr->sa_family) { 1141 case AF_INET: 1142 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1143 case AF_INET6: 1144 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1145 case AF_IB: 1146 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1147 default: 1148 return false; 1149 } 1150 } 1151 1152 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1153 { 1154 switch (addr->sa_family) { 1155 case AF_INET: 1156 return ipv4_is_loopback( 1157 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1158 case AF_INET6: 1159 return ipv6_addr_loopback( 1160 &((struct sockaddr_in6 *)addr)->sin6_addr); 1161 case AF_IB: 1162 return ib_addr_loopback( 1163 &((struct sockaddr_ib *)addr)->sib_addr); 1164 default: 1165 return false; 1166 } 1167 } 1168 1169 static inline bool cma_any_addr(const struct sockaddr *addr) 1170 { 1171 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1172 } 1173 1174 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1175 { 1176 if (src->sa_family != dst->sa_family) 1177 return -1; 1178 1179 switch (src->sa_family) { 1180 case AF_INET: 1181 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1182 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1183 case AF_INET6: { 1184 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1185 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1186 bool link_local; 1187 1188 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1189 &dst_addr6->sin6_addr)) 1190 return 1; 1191 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1192 IPV6_ADDR_LINKLOCAL; 1193 /* Link local must match their scope_ids */ 1194 return link_local ? (src_addr6->sin6_scope_id != 1195 dst_addr6->sin6_scope_id) : 1196 0; 1197 } 1198 1199 default: 1200 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1201 &((struct sockaddr_ib *) dst)->sib_addr); 1202 } 1203 } 1204 1205 static __be16 cma_port(const struct sockaddr *addr) 1206 { 1207 struct sockaddr_ib *sib; 1208 1209 switch (addr->sa_family) { 1210 case AF_INET: 1211 return ((struct sockaddr_in *) addr)->sin_port; 1212 case AF_INET6: 1213 return ((struct sockaddr_in6 *) addr)->sin6_port; 1214 case AF_IB: 1215 sib = (struct sockaddr_ib *) addr; 1216 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1217 be64_to_cpu(sib->sib_sid_mask))); 1218 default: 1219 return 0; 1220 } 1221 } 1222 1223 static inline int cma_any_port(const struct sockaddr *addr) 1224 { 1225 return !cma_port(addr); 1226 } 1227 1228 static void cma_save_ib_info(struct sockaddr *src_addr, 1229 struct sockaddr *dst_addr, 1230 const struct rdma_cm_id *listen_id, 1231 const struct sa_path_rec *path) 1232 { 1233 struct sockaddr_ib *listen_ib, *ib; 1234 1235 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1236 if (src_addr) { 1237 ib = (struct sockaddr_ib *)src_addr; 1238 ib->sib_family = AF_IB; 1239 if (path) { 1240 ib->sib_pkey = path->pkey; 1241 ib->sib_flowinfo = path->flow_label; 1242 memcpy(&ib->sib_addr, &path->sgid, 16); 1243 ib->sib_sid = path->service_id; 1244 ib->sib_scope_id = 0; 1245 } else { 1246 ib->sib_pkey = listen_ib->sib_pkey; 1247 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1248 ib->sib_addr = listen_ib->sib_addr; 1249 ib->sib_sid = listen_ib->sib_sid; 1250 ib->sib_scope_id = listen_ib->sib_scope_id; 1251 } 1252 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1253 } 1254 if (dst_addr) { 1255 ib = (struct sockaddr_ib *)dst_addr; 1256 ib->sib_family = AF_IB; 1257 if (path) { 1258 ib->sib_pkey = path->pkey; 1259 ib->sib_flowinfo = path->flow_label; 1260 memcpy(&ib->sib_addr, &path->dgid, 16); 1261 } 1262 } 1263 } 1264 1265 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1266 struct sockaddr_in *dst_addr, 1267 struct cma_hdr *hdr, 1268 __be16 local_port) 1269 { 1270 if (src_addr) { 1271 *src_addr = (struct sockaddr_in) { 1272 .sin_family = AF_INET, 1273 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1274 .sin_port = local_port, 1275 }; 1276 } 1277 1278 if (dst_addr) { 1279 *dst_addr = (struct sockaddr_in) { 1280 .sin_family = AF_INET, 1281 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1282 .sin_port = hdr->port, 1283 }; 1284 } 1285 } 1286 1287 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1288 struct sockaddr_in6 *dst_addr, 1289 struct cma_hdr *hdr, 1290 __be16 local_port) 1291 { 1292 if (src_addr) { 1293 *src_addr = (struct sockaddr_in6) { 1294 .sin6_family = AF_INET6, 1295 .sin6_addr = hdr->dst_addr.ip6, 1296 .sin6_port = local_port, 1297 }; 1298 } 1299 1300 if (dst_addr) { 1301 *dst_addr = (struct sockaddr_in6) { 1302 .sin6_family = AF_INET6, 1303 .sin6_addr = hdr->src_addr.ip6, 1304 .sin6_port = hdr->port, 1305 }; 1306 } 1307 } 1308 1309 static u16 cma_port_from_service_id(__be64 service_id) 1310 { 1311 return (u16)be64_to_cpu(service_id); 1312 } 1313 1314 static int cma_save_ip_info(struct sockaddr *src_addr, 1315 struct sockaddr *dst_addr, 1316 const struct ib_cm_event *ib_event, 1317 __be64 service_id) 1318 { 1319 struct cma_hdr *hdr; 1320 __be16 port; 1321 1322 hdr = ib_event->private_data; 1323 if (hdr->cma_version != CMA_VERSION) 1324 return -EINVAL; 1325 1326 port = htons(cma_port_from_service_id(service_id)); 1327 1328 switch (cma_get_ip_ver(hdr)) { 1329 case 4: 1330 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1331 (struct sockaddr_in *)dst_addr, hdr, port); 1332 break; 1333 case 6: 1334 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1335 (struct sockaddr_in6 *)dst_addr, hdr, port); 1336 break; 1337 default: 1338 return -EAFNOSUPPORT; 1339 } 1340 1341 return 0; 1342 } 1343 1344 static int cma_save_net_info(struct sockaddr *src_addr, 1345 struct sockaddr *dst_addr, 1346 const struct rdma_cm_id *listen_id, 1347 const struct ib_cm_event *ib_event, 1348 sa_family_t sa_family, __be64 service_id) 1349 { 1350 if (sa_family == AF_IB) { 1351 if (ib_event->event == IB_CM_REQ_RECEIVED) 1352 cma_save_ib_info(src_addr, dst_addr, listen_id, 1353 ib_event->param.req_rcvd.primary_path); 1354 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1355 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1356 return 0; 1357 } 1358 1359 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1360 } 1361 1362 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1363 struct cma_req_info *req) 1364 { 1365 const struct ib_cm_req_event_param *req_param = 1366 &ib_event->param.req_rcvd; 1367 const struct ib_cm_sidr_req_event_param *sidr_param = 1368 &ib_event->param.sidr_req_rcvd; 1369 1370 switch (ib_event->event) { 1371 case IB_CM_REQ_RECEIVED: 1372 req->device = req_param->listen_id->device; 1373 req->port = req_param->port; 1374 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1375 sizeof(req->local_gid)); 1376 req->has_gid = true; 1377 req->service_id = req_param->primary_path->service_id; 1378 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1379 if (req->pkey != req_param->bth_pkey) 1380 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1381 "RDMA CMA: in the future this may cause the request to be dropped\n", 1382 req_param->bth_pkey, req->pkey); 1383 break; 1384 case IB_CM_SIDR_REQ_RECEIVED: 1385 req->device = sidr_param->listen_id->device; 1386 req->port = sidr_param->port; 1387 req->has_gid = false; 1388 req->service_id = sidr_param->service_id; 1389 req->pkey = sidr_param->pkey; 1390 if (req->pkey != sidr_param->bth_pkey) 1391 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1392 "RDMA CMA: in the future this may cause the request to be dropped\n", 1393 sidr_param->bth_pkey, req->pkey); 1394 break; 1395 default: 1396 return -EINVAL; 1397 } 1398 1399 return 0; 1400 } 1401 1402 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1403 const struct sockaddr_in *dst_addr, 1404 const struct sockaddr_in *src_addr) 1405 { 1406 __be32 daddr = dst_addr->sin_addr.s_addr, 1407 saddr = src_addr->sin_addr.s_addr; 1408 struct fib_result res; 1409 struct flowi4 fl4; 1410 int err; 1411 bool ret; 1412 1413 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1414 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1415 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1416 ipv4_is_loopback(saddr)) 1417 return false; 1418 1419 memset(&fl4, 0, sizeof(fl4)); 1420 fl4.flowi4_iif = net_dev->ifindex; 1421 fl4.daddr = daddr; 1422 fl4.saddr = saddr; 1423 1424 rcu_read_lock(); 1425 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1426 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1427 rcu_read_unlock(); 1428 1429 return ret; 1430 } 1431 1432 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1433 const struct sockaddr_in6 *dst_addr, 1434 const struct sockaddr_in6 *src_addr) 1435 { 1436 #if IS_ENABLED(CONFIG_IPV6) 1437 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1438 IPV6_ADDR_LINKLOCAL; 1439 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1440 &src_addr->sin6_addr, net_dev->ifindex, 1441 NULL, strict); 1442 bool ret; 1443 1444 if (!rt) 1445 return false; 1446 1447 ret = rt->rt6i_idev->dev == net_dev; 1448 ip6_rt_put(rt); 1449 1450 return ret; 1451 #else 1452 return false; 1453 #endif 1454 } 1455 1456 static bool validate_net_dev(struct net_device *net_dev, 1457 const struct sockaddr *daddr, 1458 const struct sockaddr *saddr) 1459 { 1460 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1461 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1462 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1463 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1464 1465 switch (daddr->sa_family) { 1466 case AF_INET: 1467 return saddr->sa_family == AF_INET && 1468 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1469 1470 case AF_INET6: 1471 return saddr->sa_family == AF_INET6 && 1472 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1473 1474 default: 1475 return false; 1476 } 1477 } 1478 1479 static struct net_device * 1480 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1481 { 1482 const struct ib_gid_attr *sgid_attr = NULL; 1483 struct net_device *ndev; 1484 1485 if (ib_event->event == IB_CM_REQ_RECEIVED) 1486 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1487 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1488 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1489 1490 if (!sgid_attr) 1491 return NULL; 1492 1493 rcu_read_lock(); 1494 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1495 if (IS_ERR(ndev)) 1496 ndev = NULL; 1497 else 1498 dev_hold(ndev); 1499 rcu_read_unlock(); 1500 return ndev; 1501 } 1502 1503 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1504 struct cma_req_info *req) 1505 { 1506 struct sockaddr *listen_addr = 1507 (struct sockaddr *)&req->listen_addr_storage; 1508 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1509 struct net_device *net_dev; 1510 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1511 int err; 1512 1513 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1514 req->service_id); 1515 if (err) 1516 return ERR_PTR(err); 1517 1518 if (rdma_protocol_roce(req->device, req->port)) 1519 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1520 else 1521 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1522 req->pkey, 1523 gid, listen_addr); 1524 if (!net_dev) 1525 return ERR_PTR(-ENODEV); 1526 1527 return net_dev; 1528 } 1529 1530 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1531 { 1532 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1533 } 1534 1535 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1536 const struct cma_hdr *hdr) 1537 { 1538 struct sockaddr *addr = cma_src_addr(id_priv); 1539 __be32 ip4_addr; 1540 struct in6_addr ip6_addr; 1541 1542 if (cma_any_addr(addr) && !id_priv->afonly) 1543 return true; 1544 1545 switch (addr->sa_family) { 1546 case AF_INET: 1547 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1548 if (cma_get_ip_ver(hdr) != 4) 1549 return false; 1550 if (!cma_any_addr(addr) && 1551 hdr->dst_addr.ip4.addr != ip4_addr) 1552 return false; 1553 break; 1554 case AF_INET6: 1555 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1556 if (cma_get_ip_ver(hdr) != 6) 1557 return false; 1558 if (!cma_any_addr(addr) && 1559 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1560 return false; 1561 break; 1562 case AF_IB: 1563 return true; 1564 default: 1565 return false; 1566 } 1567 1568 return true; 1569 } 1570 1571 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1572 { 1573 struct ib_device *device = id->device; 1574 const int port_num = id->port_num ?: rdma_start_port(device); 1575 1576 return rdma_protocol_roce(device, port_num); 1577 } 1578 1579 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1580 { 1581 const struct sockaddr *daddr = 1582 (const struct sockaddr *)&req->listen_addr_storage; 1583 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1584 1585 /* Returns true if the req is for IPv6 link local */ 1586 return (daddr->sa_family == AF_INET6 && 1587 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1588 } 1589 1590 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1591 const struct net_device *net_dev, 1592 const struct cma_req_info *req) 1593 { 1594 const struct rdma_addr *addr = &id->route.addr; 1595 1596 if (!net_dev) 1597 /* This request is an AF_IB request */ 1598 return (!id->port_num || id->port_num == req->port) && 1599 (addr->src_addr.ss_family == AF_IB); 1600 1601 /* 1602 * If the request is not for IPv6 link local, allow matching 1603 * request to any netdevice of the one or multiport rdma device. 1604 */ 1605 if (!cma_is_req_ipv6_ll(req)) 1606 return true; 1607 /* 1608 * Net namespaces must match, and if the listner is listening 1609 * on a specific netdevice than netdevice must match as well. 1610 */ 1611 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1612 (!!addr->dev_addr.bound_dev_if == 1613 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1614 return true; 1615 else 1616 return false; 1617 } 1618 1619 static struct rdma_id_private *cma_find_listener( 1620 const struct rdma_bind_list *bind_list, 1621 const struct ib_cm_id *cm_id, 1622 const struct ib_cm_event *ib_event, 1623 const struct cma_req_info *req, 1624 const struct net_device *net_dev) 1625 { 1626 struct rdma_id_private *id_priv, *id_priv_dev; 1627 1628 lockdep_assert_held(&lock); 1629 1630 if (!bind_list) 1631 return ERR_PTR(-EINVAL); 1632 1633 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1634 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1635 if (id_priv->id.device == cm_id->device && 1636 cma_match_net_dev(&id_priv->id, net_dev, req)) 1637 return id_priv; 1638 list_for_each_entry(id_priv_dev, 1639 &id_priv->listen_list, 1640 listen_list) { 1641 if (id_priv_dev->id.device == cm_id->device && 1642 cma_match_net_dev(&id_priv_dev->id, 1643 net_dev, req)) 1644 return id_priv_dev; 1645 } 1646 } 1647 } 1648 1649 return ERR_PTR(-EINVAL); 1650 } 1651 1652 static struct rdma_id_private * 1653 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1654 const struct ib_cm_event *ib_event, 1655 struct cma_req_info *req, 1656 struct net_device **net_dev) 1657 { 1658 struct rdma_bind_list *bind_list; 1659 struct rdma_id_private *id_priv; 1660 int err; 1661 1662 err = cma_save_req_info(ib_event, req); 1663 if (err) 1664 return ERR_PTR(err); 1665 1666 *net_dev = cma_get_net_dev(ib_event, req); 1667 if (IS_ERR(*net_dev)) { 1668 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1669 /* Assuming the protocol is AF_IB */ 1670 *net_dev = NULL; 1671 } else { 1672 return ERR_CAST(*net_dev); 1673 } 1674 } 1675 1676 mutex_lock(&lock); 1677 /* 1678 * Net namespace might be getting deleted while route lookup, 1679 * cm_id lookup is in progress. Therefore, perform netdevice 1680 * validation, cm_id lookup under rcu lock. 1681 * RCU lock along with netdevice state check, synchronizes with 1682 * netdevice migrating to different net namespace and also avoids 1683 * case where net namespace doesn't get deleted while lookup is in 1684 * progress. 1685 * If the device state is not IFF_UP, its properties such as ifindex 1686 * and nd_net cannot be trusted to remain valid without rcu lock. 1687 * net/core/dev.c change_net_namespace() ensures to synchronize with 1688 * ongoing operations on net device after device is closed using 1689 * synchronize_net(). 1690 */ 1691 rcu_read_lock(); 1692 if (*net_dev) { 1693 /* 1694 * If netdevice is down, it is likely that it is administratively 1695 * down or it might be migrating to different namespace. 1696 * In that case avoid further processing, as the net namespace 1697 * or ifindex may change. 1698 */ 1699 if (((*net_dev)->flags & IFF_UP) == 0) { 1700 id_priv = ERR_PTR(-EHOSTUNREACH); 1701 goto err; 1702 } 1703 1704 if (!validate_net_dev(*net_dev, 1705 (struct sockaddr *)&req->listen_addr_storage, 1706 (struct sockaddr *)&req->src_addr_storage)) { 1707 id_priv = ERR_PTR(-EHOSTUNREACH); 1708 goto err; 1709 } 1710 } 1711 1712 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1713 rdma_ps_from_service_id(req->service_id), 1714 cma_port_from_service_id(req->service_id)); 1715 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1716 err: 1717 rcu_read_unlock(); 1718 mutex_unlock(&lock); 1719 if (IS_ERR(id_priv) && *net_dev) { 1720 dev_put(*net_dev); 1721 *net_dev = NULL; 1722 } 1723 return id_priv; 1724 } 1725 1726 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1727 { 1728 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1729 } 1730 1731 static void cma_cancel_route(struct rdma_id_private *id_priv) 1732 { 1733 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1734 if (id_priv->query) 1735 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1736 } 1737 } 1738 1739 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1740 { 1741 struct rdma_id_private *dev_id_priv; 1742 1743 /* 1744 * Remove from listen_any_list to prevent added devices from spawning 1745 * additional listen requests. 1746 */ 1747 mutex_lock(&lock); 1748 list_del(&id_priv->list); 1749 1750 while (!list_empty(&id_priv->listen_list)) { 1751 dev_id_priv = list_entry(id_priv->listen_list.next, 1752 struct rdma_id_private, listen_list); 1753 /* sync with device removal to avoid duplicate destruction */ 1754 list_del_init(&dev_id_priv->list); 1755 list_del(&dev_id_priv->listen_list); 1756 mutex_unlock(&lock); 1757 1758 rdma_destroy_id(&dev_id_priv->id); 1759 mutex_lock(&lock); 1760 } 1761 mutex_unlock(&lock); 1762 } 1763 1764 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1765 enum rdma_cm_state state) 1766 { 1767 switch (state) { 1768 case RDMA_CM_ADDR_QUERY: 1769 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1770 break; 1771 case RDMA_CM_ROUTE_QUERY: 1772 cma_cancel_route(id_priv); 1773 break; 1774 case RDMA_CM_LISTEN: 1775 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1776 cma_cancel_listens(id_priv); 1777 break; 1778 default: 1779 break; 1780 } 1781 } 1782 1783 static void cma_release_port(struct rdma_id_private *id_priv) 1784 { 1785 struct rdma_bind_list *bind_list = id_priv->bind_list; 1786 struct net *net = id_priv->id.route.addr.dev_addr.net; 1787 1788 if (!bind_list) 1789 return; 1790 1791 mutex_lock(&lock); 1792 hlist_del(&id_priv->node); 1793 if (hlist_empty(&bind_list->owners)) { 1794 cma_ps_remove(net, bind_list->ps, bind_list->port); 1795 kfree(bind_list); 1796 } 1797 mutex_unlock(&lock); 1798 } 1799 1800 static void destroy_mc(struct rdma_id_private *id_priv, 1801 struct cma_multicast *mc) 1802 { 1803 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1804 ib_sa_free_multicast(mc->sa_mc); 1805 1806 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1807 struct rdma_dev_addr *dev_addr = 1808 &id_priv->id.route.addr.dev_addr; 1809 struct net_device *ndev = NULL; 1810 1811 if (dev_addr->bound_dev_if) 1812 ndev = dev_get_by_index(dev_addr->net, 1813 dev_addr->bound_dev_if); 1814 if (ndev) { 1815 union ib_gid mgid; 1816 1817 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1818 &mgid); 1819 cma_igmp_send(ndev, &mgid, false); 1820 dev_put(ndev); 1821 } 1822 } 1823 kfree(mc); 1824 } 1825 1826 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1827 { 1828 struct cma_multicast *mc; 1829 1830 while (!list_empty(&id_priv->mc_list)) { 1831 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1832 list); 1833 list_del(&mc->list); 1834 destroy_mc(id_priv, mc); 1835 } 1836 } 1837 1838 static void _destroy_id(struct rdma_id_private *id_priv, 1839 enum rdma_cm_state state) 1840 { 1841 cma_cancel_operation(id_priv, state); 1842 1843 if (id_priv->cma_dev) { 1844 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1845 if (id_priv->cm_id.ib) 1846 ib_destroy_cm_id(id_priv->cm_id.ib); 1847 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1848 if (id_priv->cm_id.iw) 1849 iw_destroy_cm_id(id_priv->cm_id.iw); 1850 } 1851 cma_leave_mc_groups(id_priv); 1852 cma_release_dev(id_priv); 1853 } 1854 1855 cma_release_port(id_priv); 1856 cma_id_put(id_priv); 1857 wait_for_completion(&id_priv->comp); 1858 1859 if (id_priv->internal_id) 1860 cma_id_put(id_priv->id.context); 1861 1862 kfree(id_priv->id.route.path_rec); 1863 1864 if (id_priv->id.route.addr.dev_addr.sgid_attr) 1865 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 1866 1867 put_net(id_priv->id.route.addr.dev_addr.net); 1868 rdma_restrack_del(&id_priv->res); 1869 kfree(id_priv); 1870 } 1871 1872 /* 1873 * destroy an ID from within the handler_mutex. This ensures that no other 1874 * handlers can start running concurrently. 1875 */ 1876 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1877 __releases(&idprv->handler_mutex) 1878 { 1879 enum rdma_cm_state state; 1880 unsigned long flags; 1881 1882 trace_cm_id_destroy(id_priv); 1883 1884 /* 1885 * Setting the state to destroyed under the handler mutex provides a 1886 * fence against calling handler callbacks. If this is invoked due to 1887 * the failure of a handler callback then it guarentees that no future 1888 * handlers will be called. 1889 */ 1890 lockdep_assert_held(&id_priv->handler_mutex); 1891 spin_lock_irqsave(&id_priv->lock, flags); 1892 state = id_priv->state; 1893 id_priv->state = RDMA_CM_DESTROYING; 1894 spin_unlock_irqrestore(&id_priv->lock, flags); 1895 mutex_unlock(&id_priv->handler_mutex); 1896 _destroy_id(id_priv, state); 1897 } 1898 1899 void rdma_destroy_id(struct rdma_cm_id *id) 1900 { 1901 struct rdma_id_private *id_priv = 1902 container_of(id, struct rdma_id_private, id); 1903 1904 mutex_lock(&id_priv->handler_mutex); 1905 destroy_id_handler_unlock(id_priv); 1906 } 1907 EXPORT_SYMBOL(rdma_destroy_id); 1908 1909 static int cma_rep_recv(struct rdma_id_private *id_priv) 1910 { 1911 int ret; 1912 1913 ret = cma_modify_qp_rtr(id_priv, NULL); 1914 if (ret) 1915 goto reject; 1916 1917 ret = cma_modify_qp_rts(id_priv, NULL); 1918 if (ret) 1919 goto reject; 1920 1921 trace_cm_send_rtu(id_priv); 1922 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1923 if (ret) 1924 goto reject; 1925 1926 return 0; 1927 reject: 1928 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1929 cma_modify_qp_err(id_priv); 1930 trace_cm_send_rej(id_priv); 1931 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1932 NULL, 0, NULL, 0); 1933 return ret; 1934 } 1935 1936 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1937 const struct ib_cm_rep_event_param *rep_data, 1938 void *private_data) 1939 { 1940 event->param.conn.private_data = private_data; 1941 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1942 event->param.conn.responder_resources = rep_data->responder_resources; 1943 event->param.conn.initiator_depth = rep_data->initiator_depth; 1944 event->param.conn.flow_control = rep_data->flow_control; 1945 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1946 event->param.conn.srq = rep_data->srq; 1947 event->param.conn.qp_num = rep_data->remote_qpn; 1948 1949 event->ece.vendor_id = rep_data->ece.vendor_id; 1950 event->ece.attr_mod = rep_data->ece.attr_mod; 1951 } 1952 1953 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1954 struct rdma_cm_event *event) 1955 { 1956 int ret; 1957 1958 lockdep_assert_held(&id_priv->handler_mutex); 1959 1960 trace_cm_event_handler(id_priv, event); 1961 ret = id_priv->id.event_handler(&id_priv->id, event); 1962 trace_cm_event_done(id_priv, event, ret); 1963 return ret; 1964 } 1965 1966 static int cma_ib_handler(struct ib_cm_id *cm_id, 1967 const struct ib_cm_event *ib_event) 1968 { 1969 struct rdma_id_private *id_priv = cm_id->context; 1970 struct rdma_cm_event event = {}; 1971 enum rdma_cm_state state; 1972 int ret; 1973 1974 mutex_lock(&id_priv->handler_mutex); 1975 state = READ_ONCE(id_priv->state); 1976 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1977 state != RDMA_CM_CONNECT) || 1978 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1979 state != RDMA_CM_DISCONNECT)) 1980 goto out; 1981 1982 switch (ib_event->event) { 1983 case IB_CM_REQ_ERROR: 1984 case IB_CM_REP_ERROR: 1985 event.event = RDMA_CM_EVENT_UNREACHABLE; 1986 event.status = -ETIMEDOUT; 1987 break; 1988 case IB_CM_REP_RECEIVED: 1989 if (state == RDMA_CM_CONNECT && 1990 (id_priv->id.qp_type != IB_QPT_UD)) { 1991 trace_cm_send_mra(id_priv); 1992 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 1993 } 1994 if (id_priv->id.qp) { 1995 event.status = cma_rep_recv(id_priv); 1996 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 1997 RDMA_CM_EVENT_ESTABLISHED; 1998 } else { 1999 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2000 } 2001 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2002 ib_event->private_data); 2003 break; 2004 case IB_CM_RTU_RECEIVED: 2005 case IB_CM_USER_ESTABLISHED: 2006 event.event = RDMA_CM_EVENT_ESTABLISHED; 2007 break; 2008 case IB_CM_DREQ_ERROR: 2009 event.status = -ETIMEDOUT; 2010 fallthrough; 2011 case IB_CM_DREQ_RECEIVED: 2012 case IB_CM_DREP_RECEIVED: 2013 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2014 RDMA_CM_DISCONNECT)) 2015 goto out; 2016 event.event = RDMA_CM_EVENT_DISCONNECTED; 2017 break; 2018 case IB_CM_TIMEWAIT_EXIT: 2019 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2020 break; 2021 case IB_CM_MRA_RECEIVED: 2022 /* ignore event */ 2023 goto out; 2024 case IB_CM_REJ_RECEIVED: 2025 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2026 ib_event->param.rej_rcvd.reason)); 2027 cma_modify_qp_err(id_priv); 2028 event.status = ib_event->param.rej_rcvd.reason; 2029 event.event = RDMA_CM_EVENT_REJECTED; 2030 event.param.conn.private_data = ib_event->private_data; 2031 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2032 break; 2033 default: 2034 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2035 ib_event->event); 2036 goto out; 2037 } 2038 2039 ret = cma_cm_event_handler(id_priv, &event); 2040 if (ret) { 2041 /* Destroy the CM ID by returning a non-zero value. */ 2042 id_priv->cm_id.ib = NULL; 2043 destroy_id_handler_unlock(id_priv); 2044 return ret; 2045 } 2046 out: 2047 mutex_unlock(&id_priv->handler_mutex); 2048 return 0; 2049 } 2050 2051 static struct rdma_id_private * 2052 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2053 const struct ib_cm_event *ib_event, 2054 struct net_device *net_dev) 2055 { 2056 struct rdma_id_private *listen_id_priv; 2057 struct rdma_id_private *id_priv; 2058 struct rdma_cm_id *id; 2059 struct rdma_route *rt; 2060 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2061 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2062 const __be64 service_id = 2063 ib_event->param.req_rcvd.primary_path->service_id; 2064 int ret; 2065 2066 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2067 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2068 listen_id->event_handler, listen_id->context, 2069 listen_id->ps, 2070 ib_event->param.req_rcvd.qp_type, 2071 listen_id_priv); 2072 if (IS_ERR(id_priv)) 2073 return NULL; 2074 2075 id = &id_priv->id; 2076 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2077 (struct sockaddr *)&id->route.addr.dst_addr, 2078 listen_id, ib_event, ss_family, service_id)) 2079 goto err; 2080 2081 rt = &id->route; 2082 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2083 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2084 GFP_KERNEL); 2085 if (!rt->path_rec) 2086 goto err; 2087 2088 rt->path_rec[0] = *path; 2089 if (rt->num_paths == 2) 2090 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2091 2092 if (net_dev) { 2093 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2094 } else { 2095 if (!cma_protocol_roce(listen_id) && 2096 cma_any_addr(cma_src_addr(id_priv))) { 2097 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2098 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2099 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2100 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2101 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2102 if (ret) 2103 goto err; 2104 } 2105 } 2106 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2107 2108 id_priv->state = RDMA_CM_CONNECT; 2109 return id_priv; 2110 2111 err: 2112 rdma_destroy_id(id); 2113 return NULL; 2114 } 2115 2116 static struct rdma_id_private * 2117 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2118 const struct ib_cm_event *ib_event, 2119 struct net_device *net_dev) 2120 { 2121 const struct rdma_id_private *listen_id_priv; 2122 struct rdma_id_private *id_priv; 2123 struct rdma_cm_id *id; 2124 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2125 struct net *net = listen_id->route.addr.dev_addr.net; 2126 int ret; 2127 2128 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2129 id_priv = __rdma_create_id(net, listen_id->event_handler, 2130 listen_id->context, listen_id->ps, IB_QPT_UD, 2131 listen_id_priv); 2132 if (IS_ERR(id_priv)) 2133 return NULL; 2134 2135 id = &id_priv->id; 2136 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2137 (struct sockaddr *)&id->route.addr.dst_addr, 2138 listen_id, ib_event, ss_family, 2139 ib_event->param.sidr_req_rcvd.service_id)) 2140 goto err; 2141 2142 if (net_dev) { 2143 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2144 } else { 2145 if (!cma_any_addr(cma_src_addr(id_priv))) { 2146 ret = cma_translate_addr(cma_src_addr(id_priv), 2147 &id->route.addr.dev_addr); 2148 if (ret) 2149 goto err; 2150 } 2151 } 2152 2153 id_priv->state = RDMA_CM_CONNECT; 2154 return id_priv; 2155 err: 2156 rdma_destroy_id(id); 2157 return NULL; 2158 } 2159 2160 static void cma_set_req_event_data(struct rdma_cm_event *event, 2161 const struct ib_cm_req_event_param *req_data, 2162 void *private_data, int offset) 2163 { 2164 event->param.conn.private_data = private_data + offset; 2165 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2166 event->param.conn.responder_resources = req_data->responder_resources; 2167 event->param.conn.initiator_depth = req_data->initiator_depth; 2168 event->param.conn.flow_control = req_data->flow_control; 2169 event->param.conn.retry_count = req_data->retry_count; 2170 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2171 event->param.conn.srq = req_data->srq; 2172 event->param.conn.qp_num = req_data->remote_qpn; 2173 2174 event->ece.vendor_id = req_data->ece.vendor_id; 2175 event->ece.attr_mod = req_data->ece.attr_mod; 2176 } 2177 2178 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2179 const struct ib_cm_event *ib_event) 2180 { 2181 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2182 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2183 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2184 (id->qp_type == IB_QPT_UD)) || 2185 (!id->qp_type)); 2186 } 2187 2188 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2189 const struct ib_cm_event *ib_event) 2190 { 2191 struct rdma_id_private *listen_id, *conn_id = NULL; 2192 struct rdma_cm_event event = {}; 2193 struct cma_req_info req = {}; 2194 struct net_device *net_dev; 2195 u8 offset; 2196 int ret; 2197 2198 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2199 if (IS_ERR(listen_id)) 2200 return PTR_ERR(listen_id); 2201 2202 trace_cm_req_handler(listen_id, ib_event->event); 2203 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2204 ret = -EINVAL; 2205 goto net_dev_put; 2206 } 2207 2208 mutex_lock(&listen_id->handler_mutex); 2209 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2210 ret = -ECONNABORTED; 2211 goto err_unlock; 2212 } 2213 2214 offset = cma_user_data_offset(listen_id); 2215 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2216 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2217 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2218 event.param.ud.private_data = ib_event->private_data + offset; 2219 event.param.ud.private_data_len = 2220 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2221 } else { 2222 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2223 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2224 ib_event->private_data, offset); 2225 } 2226 if (!conn_id) { 2227 ret = -ENOMEM; 2228 goto err_unlock; 2229 } 2230 2231 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2232 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2233 if (ret) { 2234 destroy_id_handler_unlock(conn_id); 2235 goto err_unlock; 2236 } 2237 2238 conn_id->cm_id.ib = cm_id; 2239 cm_id->context = conn_id; 2240 cm_id->cm_handler = cma_ib_handler; 2241 2242 ret = cma_cm_event_handler(conn_id, &event); 2243 if (ret) { 2244 /* Destroy the CM ID by returning a non-zero value. */ 2245 conn_id->cm_id.ib = NULL; 2246 mutex_unlock(&listen_id->handler_mutex); 2247 destroy_id_handler_unlock(conn_id); 2248 goto net_dev_put; 2249 } 2250 2251 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2252 conn_id->id.qp_type != IB_QPT_UD) { 2253 trace_cm_send_mra(cm_id->context); 2254 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2255 } 2256 mutex_unlock(&conn_id->handler_mutex); 2257 2258 err_unlock: 2259 mutex_unlock(&listen_id->handler_mutex); 2260 2261 net_dev_put: 2262 if (net_dev) 2263 dev_put(net_dev); 2264 2265 return ret; 2266 } 2267 2268 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2269 { 2270 if (addr->sa_family == AF_IB) 2271 return ((struct sockaddr_ib *) addr)->sib_sid; 2272 2273 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2274 } 2275 EXPORT_SYMBOL(rdma_get_service_id); 2276 2277 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2278 union ib_gid *dgid) 2279 { 2280 struct rdma_addr *addr = &cm_id->route.addr; 2281 2282 if (!cm_id->device) { 2283 if (sgid) 2284 memset(sgid, 0, sizeof(*sgid)); 2285 if (dgid) 2286 memset(dgid, 0, sizeof(*dgid)); 2287 return; 2288 } 2289 2290 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2291 if (sgid) 2292 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2293 if (dgid) 2294 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2295 } else { 2296 if (sgid) 2297 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2298 if (dgid) 2299 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2300 } 2301 } 2302 EXPORT_SYMBOL(rdma_read_gids); 2303 2304 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2305 { 2306 struct rdma_id_private *id_priv = iw_id->context; 2307 struct rdma_cm_event event = {}; 2308 int ret = 0; 2309 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2310 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2311 2312 mutex_lock(&id_priv->handler_mutex); 2313 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2314 goto out; 2315 2316 switch (iw_event->event) { 2317 case IW_CM_EVENT_CLOSE: 2318 event.event = RDMA_CM_EVENT_DISCONNECTED; 2319 break; 2320 case IW_CM_EVENT_CONNECT_REPLY: 2321 memcpy(cma_src_addr(id_priv), laddr, 2322 rdma_addr_size(laddr)); 2323 memcpy(cma_dst_addr(id_priv), raddr, 2324 rdma_addr_size(raddr)); 2325 switch (iw_event->status) { 2326 case 0: 2327 event.event = RDMA_CM_EVENT_ESTABLISHED; 2328 event.param.conn.initiator_depth = iw_event->ird; 2329 event.param.conn.responder_resources = iw_event->ord; 2330 break; 2331 case -ECONNRESET: 2332 case -ECONNREFUSED: 2333 event.event = RDMA_CM_EVENT_REJECTED; 2334 break; 2335 case -ETIMEDOUT: 2336 event.event = RDMA_CM_EVENT_UNREACHABLE; 2337 break; 2338 default: 2339 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2340 break; 2341 } 2342 break; 2343 case IW_CM_EVENT_ESTABLISHED: 2344 event.event = RDMA_CM_EVENT_ESTABLISHED; 2345 event.param.conn.initiator_depth = iw_event->ird; 2346 event.param.conn.responder_resources = iw_event->ord; 2347 break; 2348 default: 2349 goto out; 2350 } 2351 2352 event.status = iw_event->status; 2353 event.param.conn.private_data = iw_event->private_data; 2354 event.param.conn.private_data_len = iw_event->private_data_len; 2355 ret = cma_cm_event_handler(id_priv, &event); 2356 if (ret) { 2357 /* Destroy the CM ID by returning a non-zero value. */ 2358 id_priv->cm_id.iw = NULL; 2359 destroy_id_handler_unlock(id_priv); 2360 return ret; 2361 } 2362 2363 out: 2364 mutex_unlock(&id_priv->handler_mutex); 2365 return ret; 2366 } 2367 2368 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2369 struct iw_cm_event *iw_event) 2370 { 2371 struct rdma_id_private *listen_id, *conn_id; 2372 struct rdma_cm_event event = {}; 2373 int ret = -ECONNABORTED; 2374 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2375 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2376 2377 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2378 event.param.conn.private_data = iw_event->private_data; 2379 event.param.conn.private_data_len = iw_event->private_data_len; 2380 event.param.conn.initiator_depth = iw_event->ird; 2381 event.param.conn.responder_resources = iw_event->ord; 2382 2383 listen_id = cm_id->context; 2384 2385 mutex_lock(&listen_id->handler_mutex); 2386 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2387 goto out; 2388 2389 /* Create a new RDMA id for the new IW CM ID */ 2390 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2391 listen_id->id.event_handler, 2392 listen_id->id.context, RDMA_PS_TCP, 2393 IB_QPT_RC, listen_id); 2394 if (IS_ERR(conn_id)) { 2395 ret = -ENOMEM; 2396 goto out; 2397 } 2398 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2399 conn_id->state = RDMA_CM_CONNECT; 2400 2401 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2402 if (ret) { 2403 mutex_unlock(&listen_id->handler_mutex); 2404 destroy_id_handler_unlock(conn_id); 2405 return ret; 2406 } 2407 2408 ret = cma_iw_acquire_dev(conn_id, listen_id); 2409 if (ret) { 2410 mutex_unlock(&listen_id->handler_mutex); 2411 destroy_id_handler_unlock(conn_id); 2412 return ret; 2413 } 2414 2415 conn_id->cm_id.iw = cm_id; 2416 cm_id->context = conn_id; 2417 cm_id->cm_handler = cma_iw_handler; 2418 2419 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2420 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2421 2422 ret = cma_cm_event_handler(conn_id, &event); 2423 if (ret) { 2424 /* User wants to destroy the CM ID */ 2425 conn_id->cm_id.iw = NULL; 2426 mutex_unlock(&listen_id->handler_mutex); 2427 destroy_id_handler_unlock(conn_id); 2428 return ret; 2429 } 2430 2431 mutex_unlock(&conn_id->handler_mutex); 2432 2433 out: 2434 mutex_unlock(&listen_id->handler_mutex); 2435 return ret; 2436 } 2437 2438 static int cma_ib_listen(struct rdma_id_private *id_priv) 2439 { 2440 struct sockaddr *addr; 2441 struct ib_cm_id *id; 2442 __be64 svc_id; 2443 2444 addr = cma_src_addr(id_priv); 2445 svc_id = rdma_get_service_id(&id_priv->id, addr); 2446 id = ib_cm_insert_listen(id_priv->id.device, 2447 cma_ib_req_handler, svc_id); 2448 if (IS_ERR(id)) 2449 return PTR_ERR(id); 2450 id_priv->cm_id.ib = id; 2451 2452 return 0; 2453 } 2454 2455 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2456 { 2457 int ret; 2458 struct iw_cm_id *id; 2459 2460 id = iw_create_cm_id(id_priv->id.device, 2461 iw_conn_req_handler, 2462 id_priv); 2463 if (IS_ERR(id)) 2464 return PTR_ERR(id); 2465 2466 id->tos = id_priv->tos; 2467 id->tos_set = id_priv->tos_set; 2468 id_priv->cm_id.iw = id; 2469 2470 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2471 rdma_addr_size(cma_src_addr(id_priv))); 2472 2473 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2474 2475 if (ret) { 2476 iw_destroy_cm_id(id_priv->cm_id.iw); 2477 id_priv->cm_id.iw = NULL; 2478 } 2479 2480 return ret; 2481 } 2482 2483 static int cma_listen_handler(struct rdma_cm_id *id, 2484 struct rdma_cm_event *event) 2485 { 2486 struct rdma_id_private *id_priv = id->context; 2487 2488 /* Listening IDs are always destroyed on removal */ 2489 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2490 return -1; 2491 2492 id->context = id_priv->id.context; 2493 id->event_handler = id_priv->id.event_handler; 2494 trace_cm_event_handler(id_priv, event); 2495 return id_priv->id.event_handler(id, event); 2496 } 2497 2498 static void cma_listen_on_dev(struct rdma_id_private *id_priv, 2499 struct cma_device *cma_dev) 2500 { 2501 struct rdma_id_private *dev_id_priv; 2502 struct net *net = id_priv->id.route.addr.dev_addr.net; 2503 int ret; 2504 2505 lockdep_assert_held(&lock); 2506 2507 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2508 return; 2509 2510 dev_id_priv = 2511 __rdma_create_id(net, cma_listen_handler, id_priv, 2512 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2513 if (IS_ERR(dev_id_priv)) 2514 return; 2515 2516 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2517 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2518 rdma_addr_size(cma_src_addr(id_priv))); 2519 2520 _cma_attach_to_dev(dev_id_priv, cma_dev); 2521 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2522 cma_id_get(id_priv); 2523 dev_id_priv->internal_id = 1; 2524 dev_id_priv->afonly = id_priv->afonly; 2525 dev_id_priv->tos_set = id_priv->tos_set; 2526 dev_id_priv->tos = id_priv->tos; 2527 2528 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2529 if (ret) 2530 dev_warn(&cma_dev->device->dev, 2531 "RDMA CMA: cma_listen_on_dev, error %d\n", ret); 2532 } 2533 2534 static void cma_listen_on_all(struct rdma_id_private *id_priv) 2535 { 2536 struct cma_device *cma_dev; 2537 2538 mutex_lock(&lock); 2539 list_add_tail(&id_priv->list, &listen_any_list); 2540 list_for_each_entry(cma_dev, &dev_list, list) 2541 cma_listen_on_dev(id_priv, cma_dev); 2542 mutex_unlock(&lock); 2543 } 2544 2545 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2546 { 2547 struct rdma_id_private *id_priv; 2548 2549 id_priv = container_of(id, struct rdma_id_private, id); 2550 id_priv->tos = (u8) tos; 2551 id_priv->tos_set = true; 2552 } 2553 EXPORT_SYMBOL(rdma_set_service_type); 2554 2555 /** 2556 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2557 * with a connection identifier. 2558 * @id: Communication identifier to associated with service type. 2559 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2560 * 2561 * This function should be called before rdma_connect() on active side, 2562 * and on passive side before rdma_accept(). It is applicable to primary 2563 * path only. The timeout will affect the local side of the QP, it is not 2564 * negotiated with remote side and zero disables the timer. In case it is 2565 * set before rdma_resolve_route, the value will also be used to determine 2566 * PacketLifeTime for RoCE. 2567 * 2568 * Return: 0 for success 2569 */ 2570 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2571 { 2572 struct rdma_id_private *id_priv; 2573 2574 if (id->qp_type != IB_QPT_RC) 2575 return -EINVAL; 2576 2577 id_priv = container_of(id, struct rdma_id_private, id); 2578 id_priv->timeout = timeout; 2579 id_priv->timeout_set = true; 2580 2581 return 0; 2582 } 2583 EXPORT_SYMBOL(rdma_set_ack_timeout); 2584 2585 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2586 void *context) 2587 { 2588 struct cma_work *work = context; 2589 struct rdma_route *route; 2590 2591 route = &work->id->id.route; 2592 2593 if (!status) { 2594 route->num_paths = 1; 2595 *route->path_rec = *path_rec; 2596 } else { 2597 work->old_state = RDMA_CM_ROUTE_QUERY; 2598 work->new_state = RDMA_CM_ADDR_RESOLVED; 2599 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2600 work->event.status = status; 2601 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2602 status); 2603 } 2604 2605 queue_work(cma_wq, &work->work); 2606 } 2607 2608 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2609 unsigned long timeout_ms, struct cma_work *work) 2610 { 2611 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2612 struct sa_path_rec path_rec; 2613 ib_sa_comp_mask comp_mask; 2614 struct sockaddr_in6 *sin6; 2615 struct sockaddr_ib *sib; 2616 2617 memset(&path_rec, 0, sizeof path_rec); 2618 2619 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2620 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2621 else 2622 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2623 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2624 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2625 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2626 path_rec.numb_path = 1; 2627 path_rec.reversible = 1; 2628 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2629 cma_dst_addr(id_priv)); 2630 2631 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2632 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2633 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2634 2635 switch (cma_family(id_priv)) { 2636 case AF_INET: 2637 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2638 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2639 break; 2640 case AF_INET6: 2641 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2642 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2643 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2644 break; 2645 case AF_IB: 2646 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2647 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2648 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2649 break; 2650 } 2651 2652 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2653 id_priv->id.port_num, &path_rec, 2654 comp_mask, timeout_ms, 2655 GFP_KERNEL, cma_query_handler, 2656 work, &id_priv->query); 2657 2658 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2659 } 2660 2661 static void cma_work_handler(struct work_struct *_work) 2662 { 2663 struct cma_work *work = container_of(_work, struct cma_work, work); 2664 struct rdma_id_private *id_priv = work->id; 2665 2666 mutex_lock(&id_priv->handler_mutex); 2667 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2668 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2669 goto out_unlock; 2670 if (work->old_state != 0 || work->new_state != 0) { 2671 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2672 goto out_unlock; 2673 } 2674 2675 if (cma_cm_event_handler(id_priv, &work->event)) { 2676 cma_id_put(id_priv); 2677 destroy_id_handler_unlock(id_priv); 2678 goto out_free; 2679 } 2680 2681 out_unlock: 2682 mutex_unlock(&id_priv->handler_mutex); 2683 cma_id_put(id_priv); 2684 out_free: 2685 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2686 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2687 kfree(work); 2688 } 2689 2690 static void cma_init_resolve_route_work(struct cma_work *work, 2691 struct rdma_id_private *id_priv) 2692 { 2693 work->id = id_priv; 2694 INIT_WORK(&work->work, cma_work_handler); 2695 work->old_state = RDMA_CM_ROUTE_QUERY; 2696 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2697 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2698 } 2699 2700 static void enqueue_resolve_addr_work(struct cma_work *work, 2701 struct rdma_id_private *id_priv) 2702 { 2703 /* Balances with cma_id_put() in cma_work_handler */ 2704 cma_id_get(id_priv); 2705 2706 work->id = id_priv; 2707 INIT_WORK(&work->work, cma_work_handler); 2708 work->old_state = RDMA_CM_ADDR_QUERY; 2709 work->new_state = RDMA_CM_ADDR_RESOLVED; 2710 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2711 2712 queue_work(cma_wq, &work->work); 2713 } 2714 2715 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2716 unsigned long timeout_ms) 2717 { 2718 struct rdma_route *route = &id_priv->id.route; 2719 struct cma_work *work; 2720 int ret; 2721 2722 work = kzalloc(sizeof *work, GFP_KERNEL); 2723 if (!work) 2724 return -ENOMEM; 2725 2726 cma_init_resolve_route_work(work, id_priv); 2727 2728 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2729 if (!route->path_rec) { 2730 ret = -ENOMEM; 2731 goto err1; 2732 } 2733 2734 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2735 if (ret) 2736 goto err2; 2737 2738 return 0; 2739 err2: 2740 kfree(route->path_rec); 2741 route->path_rec = NULL; 2742 err1: 2743 kfree(work); 2744 return ret; 2745 } 2746 2747 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2748 unsigned long supported_gids, 2749 enum ib_gid_type default_gid) 2750 { 2751 if ((network_type == RDMA_NETWORK_IPV4 || 2752 network_type == RDMA_NETWORK_IPV6) && 2753 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2754 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2755 2756 return default_gid; 2757 } 2758 2759 /* 2760 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2761 * path record type based on GID type. 2762 * It also sets up other L2 fields which includes destination mac address 2763 * netdev ifindex, of the path record. 2764 * It returns the netdev of the bound interface for this path record entry. 2765 */ 2766 static struct net_device * 2767 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2768 { 2769 struct rdma_route *route = &id_priv->id.route; 2770 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2771 struct rdma_addr *addr = &route->addr; 2772 unsigned long supported_gids; 2773 struct net_device *ndev; 2774 2775 if (!addr->dev_addr.bound_dev_if) 2776 return NULL; 2777 2778 ndev = dev_get_by_index(addr->dev_addr.net, 2779 addr->dev_addr.bound_dev_if); 2780 if (!ndev) 2781 return NULL; 2782 2783 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2784 id_priv->id.port_num); 2785 gid_type = cma_route_gid_type(addr->dev_addr.network, 2786 supported_gids, 2787 id_priv->gid_type); 2788 /* Use the hint from IP Stack to select GID Type */ 2789 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2790 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2791 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2792 2793 route->path_rec->roce.route_resolved = true; 2794 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2795 return ndev; 2796 } 2797 2798 int rdma_set_ib_path(struct rdma_cm_id *id, 2799 struct sa_path_rec *path_rec) 2800 { 2801 struct rdma_id_private *id_priv; 2802 struct net_device *ndev; 2803 int ret; 2804 2805 id_priv = container_of(id, struct rdma_id_private, id); 2806 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2807 RDMA_CM_ROUTE_RESOLVED)) 2808 return -EINVAL; 2809 2810 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2811 GFP_KERNEL); 2812 if (!id->route.path_rec) { 2813 ret = -ENOMEM; 2814 goto err; 2815 } 2816 2817 if (rdma_protocol_roce(id->device, id->port_num)) { 2818 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2819 if (!ndev) { 2820 ret = -ENODEV; 2821 goto err_free; 2822 } 2823 dev_put(ndev); 2824 } 2825 2826 id->route.num_paths = 1; 2827 return 0; 2828 2829 err_free: 2830 kfree(id->route.path_rec); 2831 id->route.path_rec = NULL; 2832 err: 2833 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2834 return ret; 2835 } 2836 EXPORT_SYMBOL(rdma_set_ib_path); 2837 2838 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2839 { 2840 struct cma_work *work; 2841 2842 work = kzalloc(sizeof *work, GFP_KERNEL); 2843 if (!work) 2844 return -ENOMEM; 2845 2846 cma_init_resolve_route_work(work, id_priv); 2847 queue_work(cma_wq, &work->work); 2848 return 0; 2849 } 2850 2851 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2852 { 2853 struct net_device *dev; 2854 2855 dev = vlan_dev_real_dev(vlan_ndev); 2856 if (dev->num_tc) 2857 return netdev_get_prio_tc_map(dev, prio); 2858 2859 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2860 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2861 } 2862 2863 struct iboe_prio_tc_map { 2864 int input_prio; 2865 int output_tc; 2866 bool found; 2867 }; 2868 2869 static int get_lower_vlan_dev_tc(struct net_device *dev, 2870 struct netdev_nested_priv *priv) 2871 { 2872 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2873 2874 if (is_vlan_dev(dev)) 2875 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2876 else if (dev->num_tc) 2877 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2878 else 2879 map->output_tc = 0; 2880 /* We are interested only in first level VLAN device, so always 2881 * return 1 to stop iterating over next level devices. 2882 */ 2883 map->found = true; 2884 return 1; 2885 } 2886 2887 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2888 { 2889 struct iboe_prio_tc_map prio_tc_map = {}; 2890 int prio = rt_tos2priority(tos); 2891 struct netdev_nested_priv priv; 2892 2893 /* If VLAN device, get it directly from the VLAN netdev */ 2894 if (is_vlan_dev(ndev)) 2895 return get_vlan_ndev_tc(ndev, prio); 2896 2897 prio_tc_map.input_prio = prio; 2898 priv.data = (void *)&prio_tc_map; 2899 rcu_read_lock(); 2900 netdev_walk_all_lower_dev_rcu(ndev, 2901 get_lower_vlan_dev_tc, 2902 &priv); 2903 rcu_read_unlock(); 2904 /* If map is found from lower device, use it; Otherwise 2905 * continue with the current netdevice to get priority to tc map. 2906 */ 2907 if (prio_tc_map.found) 2908 return prio_tc_map.output_tc; 2909 else if (ndev->num_tc) 2910 return netdev_get_prio_tc_map(ndev, prio); 2911 else 2912 return 0; 2913 } 2914 2915 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 2916 { 2917 struct sockaddr_in6 *addr6; 2918 u16 dport, sport; 2919 u32 hash, fl; 2920 2921 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 2922 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 2923 if ((cma_family(id_priv) != AF_INET6) || !fl) { 2924 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 2925 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 2926 hash = (u32)sport * 31 + dport; 2927 fl = hash & IB_GRH_FLOWLABEL_MASK; 2928 } 2929 2930 return cpu_to_be32(fl); 2931 } 2932 2933 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 2934 { 2935 struct rdma_route *route = &id_priv->id.route; 2936 struct rdma_addr *addr = &route->addr; 2937 struct cma_work *work; 2938 int ret; 2939 struct net_device *ndev; 2940 2941 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 2942 rdma_start_port(id_priv->cma_dev->device)]; 2943 u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 2944 2945 2946 work = kzalloc(sizeof *work, GFP_KERNEL); 2947 if (!work) 2948 return -ENOMEM; 2949 2950 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 2951 if (!route->path_rec) { 2952 ret = -ENOMEM; 2953 goto err1; 2954 } 2955 2956 route->num_paths = 1; 2957 2958 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2959 if (!ndev) { 2960 ret = -ENODEV; 2961 goto err2; 2962 } 2963 2964 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 2965 &route->path_rec->sgid); 2966 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 2967 &route->path_rec->dgid); 2968 2969 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 2970 /* TODO: get the hoplimit from the inet/inet6 device */ 2971 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 2972 else 2973 route->path_rec->hop_limit = 1; 2974 route->path_rec->reversible = 1; 2975 route->path_rec->pkey = cpu_to_be16(0xffff); 2976 route->path_rec->mtu_selector = IB_SA_EQ; 2977 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 2978 route->path_rec->traffic_class = tos; 2979 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 2980 route->path_rec->rate_selector = IB_SA_EQ; 2981 route->path_rec->rate = iboe_get_rate(ndev); 2982 dev_put(ndev); 2983 route->path_rec->packet_life_time_selector = IB_SA_EQ; 2984 /* In case ACK timeout is set, use this value to calculate 2985 * PacketLifeTime. As per IBTA 12.7.34, 2986 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 2987 * Assuming a negligible local ACK delay, we can use 2988 * PacketLifeTime = local ACK timeout/2 2989 * as a reasonable approximation for RoCE networks. 2990 */ 2991 route->path_rec->packet_life_time = id_priv->timeout_set ? 2992 id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME; 2993 2994 if (!route->path_rec->mtu) { 2995 ret = -EINVAL; 2996 goto err2; 2997 } 2998 2999 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3000 id_priv->id.port_num)) 3001 route->path_rec->flow_label = 3002 cma_get_roce_udp_flow_label(id_priv); 3003 3004 cma_init_resolve_route_work(work, id_priv); 3005 queue_work(cma_wq, &work->work); 3006 3007 return 0; 3008 3009 err2: 3010 kfree(route->path_rec); 3011 route->path_rec = NULL; 3012 route->num_paths = 0; 3013 err1: 3014 kfree(work); 3015 return ret; 3016 } 3017 3018 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3019 { 3020 struct rdma_id_private *id_priv; 3021 int ret; 3022 3023 id_priv = container_of(id, struct rdma_id_private, id); 3024 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3025 return -EINVAL; 3026 3027 cma_id_get(id_priv); 3028 if (rdma_cap_ib_sa(id->device, id->port_num)) 3029 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3030 else if (rdma_protocol_roce(id->device, id->port_num)) 3031 ret = cma_resolve_iboe_route(id_priv); 3032 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3033 ret = cma_resolve_iw_route(id_priv); 3034 else 3035 ret = -ENOSYS; 3036 3037 if (ret) 3038 goto err; 3039 3040 return 0; 3041 err: 3042 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3043 cma_id_put(id_priv); 3044 return ret; 3045 } 3046 EXPORT_SYMBOL(rdma_resolve_route); 3047 3048 static void cma_set_loopback(struct sockaddr *addr) 3049 { 3050 switch (addr->sa_family) { 3051 case AF_INET: 3052 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3053 break; 3054 case AF_INET6: 3055 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3056 0, 0, 0, htonl(1)); 3057 break; 3058 default: 3059 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3060 0, 0, 0, htonl(1)); 3061 break; 3062 } 3063 } 3064 3065 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3066 { 3067 struct cma_device *cma_dev, *cur_dev; 3068 union ib_gid gid; 3069 enum ib_port_state port_state; 3070 unsigned int p; 3071 u16 pkey; 3072 int ret; 3073 3074 cma_dev = NULL; 3075 mutex_lock(&lock); 3076 list_for_each_entry(cur_dev, &dev_list, list) { 3077 if (cma_family(id_priv) == AF_IB && 3078 !rdma_cap_ib_cm(cur_dev->device, 1)) 3079 continue; 3080 3081 if (!cma_dev) 3082 cma_dev = cur_dev; 3083 3084 rdma_for_each_port (cur_dev->device, p) { 3085 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3086 port_state == IB_PORT_ACTIVE) { 3087 cma_dev = cur_dev; 3088 goto port_found; 3089 } 3090 } 3091 } 3092 3093 if (!cma_dev) { 3094 ret = -ENODEV; 3095 goto out; 3096 } 3097 3098 p = 1; 3099 3100 port_found: 3101 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3102 if (ret) 3103 goto out; 3104 3105 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3106 if (ret) 3107 goto out; 3108 3109 id_priv->id.route.addr.dev_addr.dev_type = 3110 (rdma_protocol_ib(cma_dev->device, p)) ? 3111 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3112 3113 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3114 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3115 id_priv->id.port_num = p; 3116 cma_attach_to_dev(id_priv, cma_dev); 3117 cma_set_loopback(cma_src_addr(id_priv)); 3118 out: 3119 mutex_unlock(&lock); 3120 return ret; 3121 } 3122 3123 static void addr_handler(int status, struct sockaddr *src_addr, 3124 struct rdma_dev_addr *dev_addr, void *context) 3125 { 3126 struct rdma_id_private *id_priv = context; 3127 struct rdma_cm_event event = {}; 3128 struct sockaddr *addr; 3129 struct sockaddr_storage old_addr; 3130 3131 mutex_lock(&id_priv->handler_mutex); 3132 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3133 RDMA_CM_ADDR_RESOLVED)) 3134 goto out; 3135 3136 /* 3137 * Store the previous src address, so that if we fail to acquire 3138 * matching rdma device, old address can be restored back, which helps 3139 * to cancel the cma listen operation correctly. 3140 */ 3141 addr = cma_src_addr(id_priv); 3142 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3143 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3144 if (!status && !id_priv->cma_dev) { 3145 status = cma_acquire_dev_by_src_ip(id_priv); 3146 if (status) 3147 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3148 status); 3149 } else if (status) { 3150 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3151 } 3152 3153 if (status) { 3154 memcpy(addr, &old_addr, 3155 rdma_addr_size((struct sockaddr *)&old_addr)); 3156 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3157 RDMA_CM_ADDR_BOUND)) 3158 goto out; 3159 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3160 event.status = status; 3161 } else 3162 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3163 3164 if (cma_cm_event_handler(id_priv, &event)) { 3165 destroy_id_handler_unlock(id_priv); 3166 return; 3167 } 3168 out: 3169 mutex_unlock(&id_priv->handler_mutex); 3170 } 3171 3172 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3173 { 3174 struct cma_work *work; 3175 union ib_gid gid; 3176 int ret; 3177 3178 work = kzalloc(sizeof *work, GFP_KERNEL); 3179 if (!work) 3180 return -ENOMEM; 3181 3182 if (!id_priv->cma_dev) { 3183 ret = cma_bind_loopback(id_priv); 3184 if (ret) 3185 goto err; 3186 } 3187 3188 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3189 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3190 3191 enqueue_resolve_addr_work(work, id_priv); 3192 return 0; 3193 err: 3194 kfree(work); 3195 return ret; 3196 } 3197 3198 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3199 { 3200 struct cma_work *work; 3201 int ret; 3202 3203 work = kzalloc(sizeof *work, GFP_KERNEL); 3204 if (!work) 3205 return -ENOMEM; 3206 3207 if (!id_priv->cma_dev) { 3208 ret = cma_resolve_ib_dev(id_priv); 3209 if (ret) 3210 goto err; 3211 } 3212 3213 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3214 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3215 3216 enqueue_resolve_addr_work(work, id_priv); 3217 return 0; 3218 err: 3219 kfree(work); 3220 return ret; 3221 } 3222 3223 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3224 const struct sockaddr *dst_addr) 3225 { 3226 if (!src_addr || !src_addr->sa_family) { 3227 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3228 src_addr->sa_family = dst_addr->sa_family; 3229 if (IS_ENABLED(CONFIG_IPV6) && 3230 dst_addr->sa_family == AF_INET6) { 3231 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3232 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3233 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3234 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3235 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3236 } else if (dst_addr->sa_family == AF_IB) { 3237 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3238 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3239 } 3240 } 3241 return rdma_bind_addr(id, src_addr); 3242 } 3243 3244 /* 3245 * If required, resolve the source address for bind and leave the id_priv in 3246 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3247 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3248 * ignored. 3249 */ 3250 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3251 struct sockaddr *src_addr, 3252 const struct sockaddr *dst_addr) 3253 { 3254 int ret; 3255 3256 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3257 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3258 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3259 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3260 if (ret) 3261 goto err_dst; 3262 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3263 RDMA_CM_ADDR_QUERY))) { 3264 ret = -EINVAL; 3265 goto err_dst; 3266 } 3267 } 3268 3269 if (cma_family(id_priv) != dst_addr->sa_family) { 3270 ret = -EINVAL; 3271 goto err_state; 3272 } 3273 return 0; 3274 3275 err_state: 3276 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3277 err_dst: 3278 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3279 return ret; 3280 } 3281 3282 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3283 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3284 { 3285 struct rdma_id_private *id_priv = 3286 container_of(id, struct rdma_id_private, id); 3287 int ret; 3288 3289 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3290 if (ret) 3291 return ret; 3292 3293 if (cma_any_addr(dst_addr)) { 3294 ret = cma_resolve_loopback(id_priv); 3295 } else { 3296 if (dst_addr->sa_family == AF_IB) { 3297 ret = cma_resolve_ib_addr(id_priv); 3298 } else { 3299 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3300 &id->route.addr.dev_addr, 3301 timeout_ms, addr_handler, 3302 false, id_priv); 3303 } 3304 } 3305 if (ret) 3306 goto err; 3307 3308 return 0; 3309 err: 3310 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3311 return ret; 3312 } 3313 EXPORT_SYMBOL(rdma_resolve_addr); 3314 3315 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3316 { 3317 struct rdma_id_private *id_priv; 3318 unsigned long flags; 3319 int ret; 3320 3321 id_priv = container_of(id, struct rdma_id_private, id); 3322 spin_lock_irqsave(&id_priv->lock, flags); 3323 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3324 id_priv->state == RDMA_CM_IDLE) { 3325 id_priv->reuseaddr = reuse; 3326 ret = 0; 3327 } else { 3328 ret = -EINVAL; 3329 } 3330 spin_unlock_irqrestore(&id_priv->lock, flags); 3331 return ret; 3332 } 3333 EXPORT_SYMBOL(rdma_set_reuseaddr); 3334 3335 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3336 { 3337 struct rdma_id_private *id_priv; 3338 unsigned long flags; 3339 int ret; 3340 3341 id_priv = container_of(id, struct rdma_id_private, id); 3342 spin_lock_irqsave(&id_priv->lock, flags); 3343 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3344 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3345 id_priv->afonly = afonly; 3346 ret = 0; 3347 } else { 3348 ret = -EINVAL; 3349 } 3350 spin_unlock_irqrestore(&id_priv->lock, flags); 3351 return ret; 3352 } 3353 EXPORT_SYMBOL(rdma_set_afonly); 3354 3355 static void cma_bind_port(struct rdma_bind_list *bind_list, 3356 struct rdma_id_private *id_priv) 3357 { 3358 struct sockaddr *addr; 3359 struct sockaddr_ib *sib; 3360 u64 sid, mask; 3361 __be16 port; 3362 3363 lockdep_assert_held(&lock); 3364 3365 addr = cma_src_addr(id_priv); 3366 port = htons(bind_list->port); 3367 3368 switch (addr->sa_family) { 3369 case AF_INET: 3370 ((struct sockaddr_in *) addr)->sin_port = port; 3371 break; 3372 case AF_INET6: 3373 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3374 break; 3375 case AF_IB: 3376 sib = (struct sockaddr_ib *) addr; 3377 sid = be64_to_cpu(sib->sib_sid); 3378 mask = be64_to_cpu(sib->sib_sid_mask); 3379 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3380 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3381 break; 3382 } 3383 id_priv->bind_list = bind_list; 3384 hlist_add_head(&id_priv->node, &bind_list->owners); 3385 } 3386 3387 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3388 struct rdma_id_private *id_priv, unsigned short snum) 3389 { 3390 struct rdma_bind_list *bind_list; 3391 int ret; 3392 3393 lockdep_assert_held(&lock); 3394 3395 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3396 if (!bind_list) 3397 return -ENOMEM; 3398 3399 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3400 snum); 3401 if (ret < 0) 3402 goto err; 3403 3404 bind_list->ps = ps; 3405 bind_list->port = snum; 3406 cma_bind_port(bind_list, id_priv); 3407 return 0; 3408 err: 3409 kfree(bind_list); 3410 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3411 } 3412 3413 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3414 struct rdma_id_private *id_priv) 3415 { 3416 struct rdma_id_private *cur_id; 3417 struct sockaddr *daddr = cma_dst_addr(id_priv); 3418 struct sockaddr *saddr = cma_src_addr(id_priv); 3419 __be16 dport = cma_port(daddr); 3420 3421 lockdep_assert_held(&lock); 3422 3423 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3424 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3425 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3426 __be16 cur_dport = cma_port(cur_daddr); 3427 3428 if (id_priv == cur_id) 3429 continue; 3430 3431 /* different dest port -> unique */ 3432 if (!cma_any_port(daddr) && 3433 !cma_any_port(cur_daddr) && 3434 (dport != cur_dport)) 3435 continue; 3436 3437 /* different src address -> unique */ 3438 if (!cma_any_addr(saddr) && 3439 !cma_any_addr(cur_saddr) && 3440 cma_addr_cmp(saddr, cur_saddr)) 3441 continue; 3442 3443 /* different dst address -> unique */ 3444 if (!cma_any_addr(daddr) && 3445 !cma_any_addr(cur_daddr) && 3446 cma_addr_cmp(daddr, cur_daddr)) 3447 continue; 3448 3449 return -EADDRNOTAVAIL; 3450 } 3451 return 0; 3452 } 3453 3454 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3455 struct rdma_id_private *id_priv) 3456 { 3457 static unsigned int last_used_port; 3458 int low, high, remaining; 3459 unsigned int rover; 3460 struct net *net = id_priv->id.route.addr.dev_addr.net; 3461 3462 lockdep_assert_held(&lock); 3463 3464 inet_get_local_port_range(net, &low, &high); 3465 remaining = (high - low) + 1; 3466 rover = prandom_u32() % remaining + low; 3467 retry: 3468 if (last_used_port != rover) { 3469 struct rdma_bind_list *bind_list; 3470 int ret; 3471 3472 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3473 3474 if (!bind_list) { 3475 ret = cma_alloc_port(ps, id_priv, rover); 3476 } else { 3477 ret = cma_port_is_unique(bind_list, id_priv); 3478 if (!ret) 3479 cma_bind_port(bind_list, id_priv); 3480 } 3481 /* 3482 * Remember previously used port number in order to avoid 3483 * re-using same port immediately after it is closed. 3484 */ 3485 if (!ret) 3486 last_used_port = rover; 3487 if (ret != -EADDRNOTAVAIL) 3488 return ret; 3489 } 3490 if (--remaining) { 3491 rover++; 3492 if ((rover < low) || (rover > high)) 3493 rover = low; 3494 goto retry; 3495 } 3496 return -EADDRNOTAVAIL; 3497 } 3498 3499 /* 3500 * Check that the requested port is available. This is called when trying to 3501 * bind to a specific port, or when trying to listen on a bound port. In 3502 * the latter case, the provided id_priv may already be on the bind_list, but 3503 * we still need to check that it's okay to start listening. 3504 */ 3505 static int cma_check_port(struct rdma_bind_list *bind_list, 3506 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3507 { 3508 struct rdma_id_private *cur_id; 3509 struct sockaddr *addr, *cur_addr; 3510 3511 lockdep_assert_held(&lock); 3512 3513 addr = cma_src_addr(id_priv); 3514 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3515 if (id_priv == cur_id) 3516 continue; 3517 3518 if (reuseaddr && cur_id->reuseaddr) 3519 continue; 3520 3521 cur_addr = cma_src_addr(cur_id); 3522 if (id_priv->afonly && cur_id->afonly && 3523 (addr->sa_family != cur_addr->sa_family)) 3524 continue; 3525 3526 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3527 return -EADDRNOTAVAIL; 3528 3529 if (!cma_addr_cmp(addr, cur_addr)) 3530 return -EADDRINUSE; 3531 } 3532 return 0; 3533 } 3534 3535 static int cma_use_port(enum rdma_ucm_port_space ps, 3536 struct rdma_id_private *id_priv) 3537 { 3538 struct rdma_bind_list *bind_list; 3539 unsigned short snum; 3540 int ret; 3541 3542 lockdep_assert_held(&lock); 3543 3544 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3545 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3546 return -EACCES; 3547 3548 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3549 if (!bind_list) { 3550 ret = cma_alloc_port(ps, id_priv, snum); 3551 } else { 3552 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3553 if (!ret) 3554 cma_bind_port(bind_list, id_priv); 3555 } 3556 return ret; 3557 } 3558 3559 static enum rdma_ucm_port_space 3560 cma_select_inet_ps(struct rdma_id_private *id_priv) 3561 { 3562 switch (id_priv->id.ps) { 3563 case RDMA_PS_TCP: 3564 case RDMA_PS_UDP: 3565 case RDMA_PS_IPOIB: 3566 case RDMA_PS_IB: 3567 return id_priv->id.ps; 3568 default: 3569 3570 return 0; 3571 } 3572 } 3573 3574 static enum rdma_ucm_port_space 3575 cma_select_ib_ps(struct rdma_id_private *id_priv) 3576 { 3577 enum rdma_ucm_port_space ps = 0; 3578 struct sockaddr_ib *sib; 3579 u64 sid_ps, mask, sid; 3580 3581 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3582 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3583 sid = be64_to_cpu(sib->sib_sid) & mask; 3584 3585 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3586 sid_ps = RDMA_IB_IP_PS_IB; 3587 ps = RDMA_PS_IB; 3588 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3589 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3590 sid_ps = RDMA_IB_IP_PS_TCP; 3591 ps = RDMA_PS_TCP; 3592 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3593 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3594 sid_ps = RDMA_IB_IP_PS_UDP; 3595 ps = RDMA_PS_UDP; 3596 } 3597 3598 if (ps) { 3599 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3600 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3601 be64_to_cpu(sib->sib_sid_mask)); 3602 } 3603 return ps; 3604 } 3605 3606 static int cma_get_port(struct rdma_id_private *id_priv) 3607 { 3608 enum rdma_ucm_port_space ps; 3609 int ret; 3610 3611 if (cma_family(id_priv) != AF_IB) 3612 ps = cma_select_inet_ps(id_priv); 3613 else 3614 ps = cma_select_ib_ps(id_priv); 3615 if (!ps) 3616 return -EPROTONOSUPPORT; 3617 3618 mutex_lock(&lock); 3619 if (cma_any_port(cma_src_addr(id_priv))) 3620 ret = cma_alloc_any_port(ps, id_priv); 3621 else 3622 ret = cma_use_port(ps, id_priv); 3623 mutex_unlock(&lock); 3624 3625 return ret; 3626 } 3627 3628 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3629 struct sockaddr *addr) 3630 { 3631 #if IS_ENABLED(CONFIG_IPV6) 3632 struct sockaddr_in6 *sin6; 3633 3634 if (addr->sa_family != AF_INET6) 3635 return 0; 3636 3637 sin6 = (struct sockaddr_in6 *) addr; 3638 3639 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3640 return 0; 3641 3642 if (!sin6->sin6_scope_id) 3643 return -EINVAL; 3644 3645 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3646 #endif 3647 return 0; 3648 } 3649 3650 int rdma_listen(struct rdma_cm_id *id, int backlog) 3651 { 3652 struct rdma_id_private *id_priv = 3653 container_of(id, struct rdma_id_private, id); 3654 int ret; 3655 3656 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3657 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3658 id->route.addr.src_addr.ss_family = AF_INET; 3659 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3660 if (ret) 3661 return ret; 3662 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3663 RDMA_CM_LISTEN))) 3664 return -EINVAL; 3665 } 3666 3667 /* 3668 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3669 * any more, and has to be unique in the bind list. 3670 */ 3671 if (id_priv->reuseaddr) { 3672 mutex_lock(&lock); 3673 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3674 if (!ret) 3675 id_priv->reuseaddr = 0; 3676 mutex_unlock(&lock); 3677 if (ret) 3678 goto err; 3679 } 3680 3681 id_priv->backlog = backlog; 3682 if (id->device) { 3683 if (rdma_cap_ib_cm(id->device, 1)) { 3684 ret = cma_ib_listen(id_priv); 3685 if (ret) 3686 goto err; 3687 } else if (rdma_cap_iw_cm(id->device, 1)) { 3688 ret = cma_iw_listen(id_priv, backlog); 3689 if (ret) 3690 goto err; 3691 } else { 3692 ret = -ENOSYS; 3693 goto err; 3694 } 3695 } else 3696 cma_listen_on_all(id_priv); 3697 3698 return 0; 3699 err: 3700 id_priv->backlog = 0; 3701 /* 3702 * All the failure paths that lead here will not allow the req_handler's 3703 * to have run. 3704 */ 3705 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3706 return ret; 3707 } 3708 EXPORT_SYMBOL(rdma_listen); 3709 3710 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3711 { 3712 struct rdma_id_private *id_priv; 3713 int ret; 3714 struct sockaddr *daddr; 3715 3716 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3717 addr->sa_family != AF_IB) 3718 return -EAFNOSUPPORT; 3719 3720 id_priv = container_of(id, struct rdma_id_private, id); 3721 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3722 return -EINVAL; 3723 3724 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3725 if (ret) 3726 goto err1; 3727 3728 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3729 if (!cma_any_addr(addr)) { 3730 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3731 if (ret) 3732 goto err1; 3733 3734 ret = cma_acquire_dev_by_src_ip(id_priv); 3735 if (ret) 3736 goto err1; 3737 } 3738 3739 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3740 if (addr->sa_family == AF_INET) 3741 id_priv->afonly = 1; 3742 #if IS_ENABLED(CONFIG_IPV6) 3743 else if (addr->sa_family == AF_INET6) { 3744 struct net *net = id_priv->id.route.addr.dev_addr.net; 3745 3746 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3747 } 3748 #endif 3749 } 3750 daddr = cma_dst_addr(id_priv); 3751 daddr->sa_family = addr->sa_family; 3752 3753 ret = cma_get_port(id_priv); 3754 if (ret) 3755 goto err2; 3756 3757 return 0; 3758 err2: 3759 if (id_priv->cma_dev) 3760 cma_release_dev(id_priv); 3761 err1: 3762 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3763 return ret; 3764 } 3765 EXPORT_SYMBOL(rdma_bind_addr); 3766 3767 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3768 { 3769 struct cma_hdr *cma_hdr; 3770 3771 cma_hdr = hdr; 3772 cma_hdr->cma_version = CMA_VERSION; 3773 if (cma_family(id_priv) == AF_INET) { 3774 struct sockaddr_in *src4, *dst4; 3775 3776 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3777 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3778 3779 cma_set_ip_ver(cma_hdr, 4); 3780 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3781 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3782 cma_hdr->port = src4->sin_port; 3783 } else if (cma_family(id_priv) == AF_INET6) { 3784 struct sockaddr_in6 *src6, *dst6; 3785 3786 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3787 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3788 3789 cma_set_ip_ver(cma_hdr, 6); 3790 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3791 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3792 cma_hdr->port = src6->sin6_port; 3793 } 3794 return 0; 3795 } 3796 3797 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3798 const struct ib_cm_event *ib_event) 3799 { 3800 struct rdma_id_private *id_priv = cm_id->context; 3801 struct rdma_cm_event event = {}; 3802 const struct ib_cm_sidr_rep_event_param *rep = 3803 &ib_event->param.sidr_rep_rcvd; 3804 int ret; 3805 3806 mutex_lock(&id_priv->handler_mutex); 3807 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3808 goto out; 3809 3810 switch (ib_event->event) { 3811 case IB_CM_SIDR_REQ_ERROR: 3812 event.event = RDMA_CM_EVENT_UNREACHABLE; 3813 event.status = -ETIMEDOUT; 3814 break; 3815 case IB_CM_SIDR_REP_RECEIVED: 3816 event.param.ud.private_data = ib_event->private_data; 3817 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3818 if (rep->status != IB_SIDR_SUCCESS) { 3819 event.event = RDMA_CM_EVENT_UNREACHABLE; 3820 event.status = ib_event->param.sidr_rep_rcvd.status; 3821 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3822 event.status); 3823 break; 3824 } 3825 ret = cma_set_qkey(id_priv, rep->qkey); 3826 if (ret) { 3827 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3828 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3829 event.status = ret; 3830 break; 3831 } 3832 ib_init_ah_attr_from_path(id_priv->id.device, 3833 id_priv->id.port_num, 3834 id_priv->id.route.path_rec, 3835 &event.param.ud.ah_attr, 3836 rep->sgid_attr); 3837 event.param.ud.qp_num = rep->qpn; 3838 event.param.ud.qkey = rep->qkey; 3839 event.event = RDMA_CM_EVENT_ESTABLISHED; 3840 event.status = 0; 3841 break; 3842 default: 3843 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3844 ib_event->event); 3845 goto out; 3846 } 3847 3848 ret = cma_cm_event_handler(id_priv, &event); 3849 3850 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3851 if (ret) { 3852 /* Destroy the CM ID by returning a non-zero value. */ 3853 id_priv->cm_id.ib = NULL; 3854 destroy_id_handler_unlock(id_priv); 3855 return ret; 3856 } 3857 out: 3858 mutex_unlock(&id_priv->handler_mutex); 3859 return 0; 3860 } 3861 3862 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3863 struct rdma_conn_param *conn_param) 3864 { 3865 struct ib_cm_sidr_req_param req; 3866 struct ib_cm_id *id; 3867 void *private_data; 3868 u8 offset; 3869 int ret; 3870 3871 memset(&req, 0, sizeof req); 3872 offset = cma_user_data_offset(id_priv); 3873 req.private_data_len = offset + conn_param->private_data_len; 3874 if (req.private_data_len < conn_param->private_data_len) 3875 return -EINVAL; 3876 3877 if (req.private_data_len) { 3878 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3879 if (!private_data) 3880 return -ENOMEM; 3881 } else { 3882 private_data = NULL; 3883 } 3884 3885 if (conn_param->private_data && conn_param->private_data_len) 3886 memcpy(private_data + offset, conn_param->private_data, 3887 conn_param->private_data_len); 3888 3889 if (private_data) { 3890 ret = cma_format_hdr(private_data, id_priv); 3891 if (ret) 3892 goto out; 3893 req.private_data = private_data; 3894 } 3895 3896 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 3897 id_priv); 3898 if (IS_ERR(id)) { 3899 ret = PTR_ERR(id); 3900 goto out; 3901 } 3902 id_priv->cm_id.ib = id; 3903 3904 req.path = id_priv->id.route.path_rec; 3905 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3906 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3907 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 3908 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3909 3910 trace_cm_send_sidr_req(id_priv); 3911 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 3912 if (ret) { 3913 ib_destroy_cm_id(id_priv->cm_id.ib); 3914 id_priv->cm_id.ib = NULL; 3915 } 3916 out: 3917 kfree(private_data); 3918 return ret; 3919 } 3920 3921 static int cma_connect_ib(struct rdma_id_private *id_priv, 3922 struct rdma_conn_param *conn_param) 3923 { 3924 struct ib_cm_req_param req; 3925 struct rdma_route *route; 3926 void *private_data; 3927 struct ib_cm_id *id; 3928 u8 offset; 3929 int ret; 3930 3931 memset(&req, 0, sizeof req); 3932 offset = cma_user_data_offset(id_priv); 3933 req.private_data_len = offset + conn_param->private_data_len; 3934 if (req.private_data_len < conn_param->private_data_len) 3935 return -EINVAL; 3936 3937 if (req.private_data_len) { 3938 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3939 if (!private_data) 3940 return -ENOMEM; 3941 } else { 3942 private_data = NULL; 3943 } 3944 3945 if (conn_param->private_data && conn_param->private_data_len) 3946 memcpy(private_data + offset, conn_param->private_data, 3947 conn_param->private_data_len); 3948 3949 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 3950 if (IS_ERR(id)) { 3951 ret = PTR_ERR(id); 3952 goto out; 3953 } 3954 id_priv->cm_id.ib = id; 3955 3956 route = &id_priv->id.route; 3957 if (private_data) { 3958 ret = cma_format_hdr(private_data, id_priv); 3959 if (ret) 3960 goto out; 3961 req.private_data = private_data; 3962 } 3963 3964 req.primary_path = &route->path_rec[0]; 3965 if (route->num_paths == 2) 3966 req.alternate_path = &route->path_rec[1]; 3967 3968 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3969 /* Alternate path SGID attribute currently unsupported */ 3970 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3971 req.qp_num = id_priv->qp_num; 3972 req.qp_type = id_priv->id.qp_type; 3973 req.starting_psn = id_priv->seq_num; 3974 req.responder_resources = conn_param->responder_resources; 3975 req.initiator_depth = conn_param->initiator_depth; 3976 req.flow_control = conn_param->flow_control; 3977 req.retry_count = min_t(u8, 7, conn_param->retry_count); 3978 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 3979 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 3980 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 3981 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3982 req.srq = id_priv->srq ? 1 : 0; 3983 req.ece.vendor_id = id_priv->ece.vendor_id; 3984 req.ece.attr_mod = id_priv->ece.attr_mod; 3985 3986 trace_cm_send_req(id_priv); 3987 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 3988 out: 3989 if (ret && !IS_ERR(id)) { 3990 ib_destroy_cm_id(id); 3991 id_priv->cm_id.ib = NULL; 3992 } 3993 3994 kfree(private_data); 3995 return ret; 3996 } 3997 3998 static int cma_connect_iw(struct rdma_id_private *id_priv, 3999 struct rdma_conn_param *conn_param) 4000 { 4001 struct iw_cm_id *cm_id; 4002 int ret; 4003 struct iw_cm_conn_param iw_param; 4004 4005 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4006 if (IS_ERR(cm_id)) 4007 return PTR_ERR(cm_id); 4008 4009 cm_id->tos = id_priv->tos; 4010 cm_id->tos_set = id_priv->tos_set; 4011 id_priv->cm_id.iw = cm_id; 4012 4013 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4014 rdma_addr_size(cma_src_addr(id_priv))); 4015 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4016 rdma_addr_size(cma_dst_addr(id_priv))); 4017 4018 ret = cma_modify_qp_rtr(id_priv, conn_param); 4019 if (ret) 4020 goto out; 4021 4022 if (conn_param) { 4023 iw_param.ord = conn_param->initiator_depth; 4024 iw_param.ird = conn_param->responder_resources; 4025 iw_param.private_data = conn_param->private_data; 4026 iw_param.private_data_len = conn_param->private_data_len; 4027 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4028 } else { 4029 memset(&iw_param, 0, sizeof iw_param); 4030 iw_param.qpn = id_priv->qp_num; 4031 } 4032 ret = iw_cm_connect(cm_id, &iw_param); 4033 out: 4034 if (ret) { 4035 iw_destroy_cm_id(cm_id); 4036 id_priv->cm_id.iw = NULL; 4037 } 4038 return ret; 4039 } 4040 4041 /** 4042 * rdma_connect_locked - Initiate an active connection request. 4043 * @id: Connection identifier to connect. 4044 * @conn_param: Connection information used for connected QPs. 4045 * 4046 * Same as rdma_connect() but can only be called from the 4047 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4048 */ 4049 int rdma_connect_locked(struct rdma_cm_id *id, 4050 struct rdma_conn_param *conn_param) 4051 { 4052 struct rdma_id_private *id_priv = 4053 container_of(id, struct rdma_id_private, id); 4054 int ret; 4055 4056 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4057 return -EINVAL; 4058 4059 if (!id->qp) { 4060 id_priv->qp_num = conn_param->qp_num; 4061 id_priv->srq = conn_param->srq; 4062 } 4063 4064 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4065 if (id->qp_type == IB_QPT_UD) 4066 ret = cma_resolve_ib_udp(id_priv, conn_param); 4067 else 4068 ret = cma_connect_ib(id_priv, conn_param); 4069 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4070 ret = cma_connect_iw(id_priv, conn_param); 4071 else 4072 ret = -ENOSYS; 4073 if (ret) 4074 goto err_state; 4075 return 0; 4076 err_state: 4077 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4078 return ret; 4079 } 4080 EXPORT_SYMBOL(rdma_connect_locked); 4081 4082 /** 4083 * rdma_connect - Initiate an active connection request. 4084 * @id: Connection identifier to connect. 4085 * @conn_param: Connection information used for connected QPs. 4086 * 4087 * Users must have resolved a route for the rdma_cm_id to connect with by having 4088 * called rdma_resolve_route before calling this routine. 4089 * 4090 * This call will either connect to a remote QP or obtain remote QP information 4091 * for unconnected rdma_cm_id's. The actual operation is based on the 4092 * rdma_cm_id's port space. 4093 */ 4094 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4095 { 4096 struct rdma_id_private *id_priv = 4097 container_of(id, struct rdma_id_private, id); 4098 int ret; 4099 4100 mutex_lock(&id_priv->handler_mutex); 4101 ret = rdma_connect_locked(id, conn_param); 4102 mutex_unlock(&id_priv->handler_mutex); 4103 return ret; 4104 } 4105 EXPORT_SYMBOL(rdma_connect); 4106 4107 /** 4108 * rdma_connect_ece - Initiate an active connection request with ECE data. 4109 * @id: Connection identifier to connect. 4110 * @conn_param: Connection information used for connected QPs. 4111 * @ece: ECE parameters 4112 * 4113 * See rdma_connect() explanation. 4114 */ 4115 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4116 struct rdma_ucm_ece *ece) 4117 { 4118 struct rdma_id_private *id_priv = 4119 container_of(id, struct rdma_id_private, id); 4120 4121 id_priv->ece.vendor_id = ece->vendor_id; 4122 id_priv->ece.attr_mod = ece->attr_mod; 4123 4124 return rdma_connect(id, conn_param); 4125 } 4126 EXPORT_SYMBOL(rdma_connect_ece); 4127 4128 static int cma_accept_ib(struct rdma_id_private *id_priv, 4129 struct rdma_conn_param *conn_param) 4130 { 4131 struct ib_cm_rep_param rep; 4132 int ret; 4133 4134 ret = cma_modify_qp_rtr(id_priv, conn_param); 4135 if (ret) 4136 goto out; 4137 4138 ret = cma_modify_qp_rts(id_priv, conn_param); 4139 if (ret) 4140 goto out; 4141 4142 memset(&rep, 0, sizeof rep); 4143 rep.qp_num = id_priv->qp_num; 4144 rep.starting_psn = id_priv->seq_num; 4145 rep.private_data = conn_param->private_data; 4146 rep.private_data_len = conn_param->private_data_len; 4147 rep.responder_resources = conn_param->responder_resources; 4148 rep.initiator_depth = conn_param->initiator_depth; 4149 rep.failover_accepted = 0; 4150 rep.flow_control = conn_param->flow_control; 4151 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4152 rep.srq = id_priv->srq ? 1 : 0; 4153 rep.ece.vendor_id = id_priv->ece.vendor_id; 4154 rep.ece.attr_mod = id_priv->ece.attr_mod; 4155 4156 trace_cm_send_rep(id_priv); 4157 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4158 out: 4159 return ret; 4160 } 4161 4162 static int cma_accept_iw(struct rdma_id_private *id_priv, 4163 struct rdma_conn_param *conn_param) 4164 { 4165 struct iw_cm_conn_param iw_param; 4166 int ret; 4167 4168 if (!conn_param) 4169 return -EINVAL; 4170 4171 ret = cma_modify_qp_rtr(id_priv, conn_param); 4172 if (ret) 4173 return ret; 4174 4175 iw_param.ord = conn_param->initiator_depth; 4176 iw_param.ird = conn_param->responder_resources; 4177 iw_param.private_data = conn_param->private_data; 4178 iw_param.private_data_len = conn_param->private_data_len; 4179 if (id_priv->id.qp) { 4180 iw_param.qpn = id_priv->qp_num; 4181 } else 4182 iw_param.qpn = conn_param->qp_num; 4183 4184 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4185 } 4186 4187 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4188 enum ib_cm_sidr_status status, u32 qkey, 4189 const void *private_data, int private_data_len) 4190 { 4191 struct ib_cm_sidr_rep_param rep; 4192 int ret; 4193 4194 memset(&rep, 0, sizeof rep); 4195 rep.status = status; 4196 if (status == IB_SIDR_SUCCESS) { 4197 ret = cma_set_qkey(id_priv, qkey); 4198 if (ret) 4199 return ret; 4200 rep.qp_num = id_priv->qp_num; 4201 rep.qkey = id_priv->qkey; 4202 4203 rep.ece.vendor_id = id_priv->ece.vendor_id; 4204 rep.ece.attr_mod = id_priv->ece.attr_mod; 4205 } 4206 4207 rep.private_data = private_data; 4208 rep.private_data_len = private_data_len; 4209 4210 trace_cm_send_sidr_rep(id_priv); 4211 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4212 } 4213 4214 /** 4215 * rdma_accept - Called to accept a connection request or response. 4216 * @id: Connection identifier associated with the request. 4217 * @conn_param: Information needed to establish the connection. This must be 4218 * provided if accepting a connection request. If accepting a connection 4219 * response, this parameter must be NULL. 4220 * 4221 * Typically, this routine is only called by the listener to accept a connection 4222 * request. It must also be called on the active side of a connection if the 4223 * user is performing their own QP transitions. 4224 * 4225 * In the case of error, a reject message is sent to the remote side and the 4226 * state of the qp associated with the id is modified to error, such that any 4227 * previously posted receive buffers would be flushed. 4228 * 4229 * This function is for use by kernel ULPs and must be called from under the 4230 * handler callback. 4231 */ 4232 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4233 { 4234 struct rdma_id_private *id_priv = 4235 container_of(id, struct rdma_id_private, id); 4236 int ret; 4237 4238 lockdep_assert_held(&id_priv->handler_mutex); 4239 4240 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4241 return -EINVAL; 4242 4243 if (!id->qp && conn_param) { 4244 id_priv->qp_num = conn_param->qp_num; 4245 id_priv->srq = conn_param->srq; 4246 } 4247 4248 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4249 if (id->qp_type == IB_QPT_UD) { 4250 if (conn_param) 4251 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4252 conn_param->qkey, 4253 conn_param->private_data, 4254 conn_param->private_data_len); 4255 else 4256 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4257 0, NULL, 0); 4258 } else { 4259 if (conn_param) 4260 ret = cma_accept_ib(id_priv, conn_param); 4261 else 4262 ret = cma_rep_recv(id_priv); 4263 } 4264 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4265 ret = cma_accept_iw(id_priv, conn_param); 4266 else 4267 ret = -ENOSYS; 4268 4269 if (ret) 4270 goto reject; 4271 4272 return 0; 4273 reject: 4274 cma_modify_qp_err(id_priv); 4275 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4276 return ret; 4277 } 4278 EXPORT_SYMBOL(rdma_accept); 4279 4280 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4281 struct rdma_ucm_ece *ece) 4282 { 4283 struct rdma_id_private *id_priv = 4284 container_of(id, struct rdma_id_private, id); 4285 4286 id_priv->ece.vendor_id = ece->vendor_id; 4287 id_priv->ece.attr_mod = ece->attr_mod; 4288 4289 return rdma_accept(id, conn_param); 4290 } 4291 EXPORT_SYMBOL(rdma_accept_ece); 4292 4293 void rdma_lock_handler(struct rdma_cm_id *id) 4294 { 4295 struct rdma_id_private *id_priv = 4296 container_of(id, struct rdma_id_private, id); 4297 4298 mutex_lock(&id_priv->handler_mutex); 4299 } 4300 EXPORT_SYMBOL(rdma_lock_handler); 4301 4302 void rdma_unlock_handler(struct rdma_cm_id *id) 4303 { 4304 struct rdma_id_private *id_priv = 4305 container_of(id, struct rdma_id_private, id); 4306 4307 mutex_unlock(&id_priv->handler_mutex); 4308 } 4309 EXPORT_SYMBOL(rdma_unlock_handler); 4310 4311 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4312 { 4313 struct rdma_id_private *id_priv; 4314 int ret; 4315 4316 id_priv = container_of(id, struct rdma_id_private, id); 4317 if (!id_priv->cm_id.ib) 4318 return -EINVAL; 4319 4320 switch (id->device->node_type) { 4321 case RDMA_NODE_IB_CA: 4322 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4323 break; 4324 default: 4325 ret = 0; 4326 break; 4327 } 4328 return ret; 4329 } 4330 EXPORT_SYMBOL(rdma_notify); 4331 4332 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4333 u8 private_data_len, u8 reason) 4334 { 4335 struct rdma_id_private *id_priv; 4336 int ret; 4337 4338 id_priv = container_of(id, struct rdma_id_private, id); 4339 if (!id_priv->cm_id.ib) 4340 return -EINVAL; 4341 4342 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4343 if (id->qp_type == IB_QPT_UD) { 4344 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4345 private_data, private_data_len); 4346 } else { 4347 trace_cm_send_rej(id_priv); 4348 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4349 private_data, private_data_len); 4350 } 4351 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4352 ret = iw_cm_reject(id_priv->cm_id.iw, 4353 private_data, private_data_len); 4354 } else 4355 ret = -ENOSYS; 4356 4357 return ret; 4358 } 4359 EXPORT_SYMBOL(rdma_reject); 4360 4361 int rdma_disconnect(struct rdma_cm_id *id) 4362 { 4363 struct rdma_id_private *id_priv; 4364 int ret; 4365 4366 id_priv = container_of(id, struct rdma_id_private, id); 4367 if (!id_priv->cm_id.ib) 4368 return -EINVAL; 4369 4370 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4371 ret = cma_modify_qp_err(id_priv); 4372 if (ret) 4373 goto out; 4374 /* Initiate or respond to a disconnect. */ 4375 trace_cm_disconnect(id_priv); 4376 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4377 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4378 trace_cm_sent_drep(id_priv); 4379 } else { 4380 trace_cm_sent_dreq(id_priv); 4381 } 4382 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4383 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4384 } else 4385 ret = -EINVAL; 4386 4387 out: 4388 return ret; 4389 } 4390 EXPORT_SYMBOL(rdma_disconnect); 4391 4392 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4393 struct ib_sa_multicast *multicast, 4394 struct rdma_cm_event *event, 4395 struct cma_multicast *mc) 4396 { 4397 struct rdma_dev_addr *dev_addr; 4398 enum ib_gid_type gid_type; 4399 struct net_device *ndev; 4400 4401 if (!status) 4402 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4403 else 4404 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4405 status); 4406 4407 event->status = status; 4408 event->param.ud.private_data = mc->context; 4409 if (status) { 4410 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4411 return; 4412 } 4413 4414 dev_addr = &id_priv->id.route.addr.dev_addr; 4415 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4416 gid_type = 4417 id_priv->cma_dev 4418 ->default_gid_type[id_priv->id.port_num - 4419 rdma_start_port( 4420 id_priv->cma_dev->device)]; 4421 4422 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4423 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4424 &multicast->rec, ndev, gid_type, 4425 &event->param.ud.ah_attr)) { 4426 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4427 goto out; 4428 } 4429 4430 event->param.ud.qp_num = 0xFFFFFF; 4431 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4432 4433 out: 4434 if (ndev) 4435 dev_put(ndev); 4436 } 4437 4438 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4439 { 4440 struct cma_multicast *mc = multicast->context; 4441 struct rdma_id_private *id_priv = mc->id_priv; 4442 struct rdma_cm_event event = {}; 4443 int ret = 0; 4444 4445 mutex_lock(&id_priv->handler_mutex); 4446 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4447 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4448 goto out; 4449 4450 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4451 ret = cma_cm_event_handler(id_priv, &event); 4452 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4453 if (ret) { 4454 destroy_id_handler_unlock(id_priv); 4455 return 0; 4456 } 4457 4458 out: 4459 mutex_unlock(&id_priv->handler_mutex); 4460 return 0; 4461 } 4462 4463 static void cma_set_mgid(struct rdma_id_private *id_priv, 4464 struct sockaddr *addr, union ib_gid *mgid) 4465 { 4466 unsigned char mc_map[MAX_ADDR_LEN]; 4467 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4468 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4469 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4470 4471 if (cma_any_addr(addr)) { 4472 memset(mgid, 0, sizeof *mgid); 4473 } else if ((addr->sa_family == AF_INET6) && 4474 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4475 0xFF10A01B)) { 4476 /* IPv6 address is an SA assigned MGID. */ 4477 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4478 } else if (addr->sa_family == AF_IB) { 4479 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4480 } else if (addr->sa_family == AF_INET6) { 4481 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4482 if (id_priv->id.ps == RDMA_PS_UDP) 4483 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4484 *mgid = *(union ib_gid *) (mc_map + 4); 4485 } else { 4486 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4487 if (id_priv->id.ps == RDMA_PS_UDP) 4488 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4489 *mgid = *(union ib_gid *) (mc_map + 4); 4490 } 4491 } 4492 4493 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4494 struct cma_multicast *mc) 4495 { 4496 struct ib_sa_mcmember_rec rec; 4497 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4498 ib_sa_comp_mask comp_mask; 4499 int ret; 4500 4501 ib_addr_get_mgid(dev_addr, &rec.mgid); 4502 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4503 &rec.mgid, &rec); 4504 if (ret) 4505 return ret; 4506 4507 ret = cma_set_qkey(id_priv, 0); 4508 if (ret) 4509 return ret; 4510 4511 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4512 rec.qkey = cpu_to_be32(id_priv->qkey); 4513 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4514 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4515 rec.join_state = mc->join_state; 4516 4517 if ((rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) && 4518 (!ib_sa_sendonly_fullmem_support(&sa_client, 4519 id_priv->id.device, 4520 id_priv->id.port_num))) { 4521 dev_warn( 4522 &id_priv->id.device->dev, 4523 "RDMA CM: port %u Unable to multicast join: SM doesn't support Send Only Full Member option\n", 4524 id_priv->id.port_num); 4525 return -EOPNOTSUPP; 4526 } 4527 4528 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4529 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4530 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4531 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4532 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4533 4534 if (id_priv->id.ps == RDMA_PS_IPOIB) 4535 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4536 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4537 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4538 IB_SA_MCMEMBER_REC_MTU | 4539 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4540 4541 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4542 id_priv->id.port_num, &rec, comp_mask, 4543 GFP_KERNEL, cma_ib_mc_handler, mc); 4544 return PTR_ERR_OR_ZERO(mc->sa_mc); 4545 } 4546 4547 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4548 enum ib_gid_type gid_type) 4549 { 4550 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4551 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4552 4553 if (cma_any_addr(addr)) { 4554 memset(mgid, 0, sizeof *mgid); 4555 } else if (addr->sa_family == AF_INET6) { 4556 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4557 } else { 4558 mgid->raw[0] = 4559 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4560 mgid->raw[1] = 4561 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4562 mgid->raw[2] = 0; 4563 mgid->raw[3] = 0; 4564 mgid->raw[4] = 0; 4565 mgid->raw[5] = 0; 4566 mgid->raw[6] = 0; 4567 mgid->raw[7] = 0; 4568 mgid->raw[8] = 0; 4569 mgid->raw[9] = 0; 4570 mgid->raw[10] = 0xff; 4571 mgid->raw[11] = 0xff; 4572 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4573 } 4574 } 4575 4576 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4577 struct cma_multicast *mc) 4578 { 4579 struct cma_work *work; 4580 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4581 int err = 0; 4582 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4583 struct net_device *ndev = NULL; 4584 struct ib_sa_multicast ib; 4585 enum ib_gid_type gid_type; 4586 bool send_only; 4587 4588 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4589 4590 if (cma_zero_addr(addr)) 4591 return -EINVAL; 4592 4593 work = kzalloc(sizeof *work, GFP_KERNEL); 4594 if (!work) 4595 return -ENOMEM; 4596 4597 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4598 rdma_start_port(id_priv->cma_dev->device)]; 4599 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4600 4601 ib.rec.pkey = cpu_to_be16(0xffff); 4602 if (id_priv->id.ps == RDMA_PS_UDP) 4603 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4604 4605 if (dev_addr->bound_dev_if) 4606 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4607 if (!ndev) { 4608 err = -ENODEV; 4609 goto err_free; 4610 } 4611 ib.rec.rate = iboe_get_rate(ndev); 4612 ib.rec.hop_limit = 1; 4613 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4614 4615 if (addr->sa_family == AF_INET) { 4616 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4617 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4618 if (!send_only) { 4619 err = cma_igmp_send(ndev, &ib.rec.mgid, 4620 true); 4621 } 4622 } 4623 } else { 4624 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4625 err = -ENOTSUPP; 4626 } 4627 dev_put(ndev); 4628 if (err || !ib.rec.mtu) { 4629 if (!err) 4630 err = -EINVAL; 4631 goto err_free; 4632 } 4633 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4634 &ib.rec.port_gid); 4635 work->id = id_priv; 4636 INIT_WORK(&work->work, cma_work_handler); 4637 cma_make_mc_event(0, id_priv, &ib, &work->event, mc); 4638 /* Balances with cma_id_put() in cma_work_handler */ 4639 cma_id_get(id_priv); 4640 queue_work(cma_wq, &work->work); 4641 return 0; 4642 4643 err_free: 4644 kfree(work); 4645 return err; 4646 } 4647 4648 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4649 u8 join_state, void *context) 4650 { 4651 struct rdma_id_private *id_priv = 4652 container_of(id, struct rdma_id_private, id); 4653 struct cma_multicast *mc; 4654 int ret; 4655 4656 /* Not supported for kernel QPs */ 4657 if (WARN_ON(id->qp)) 4658 return -EINVAL; 4659 4660 /* ULP is calling this wrong. */ 4661 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4662 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4663 return -EINVAL; 4664 4665 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4666 if (!mc) 4667 return -ENOMEM; 4668 4669 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4670 mc->context = context; 4671 mc->id_priv = id_priv; 4672 mc->join_state = join_state; 4673 4674 if (rdma_protocol_roce(id->device, id->port_num)) { 4675 ret = cma_iboe_join_multicast(id_priv, mc); 4676 if (ret) 4677 goto out_err; 4678 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4679 ret = cma_join_ib_multicast(id_priv, mc); 4680 if (ret) 4681 goto out_err; 4682 } else { 4683 ret = -ENOSYS; 4684 goto out_err; 4685 } 4686 4687 spin_lock(&id_priv->lock); 4688 list_add(&mc->list, &id_priv->mc_list); 4689 spin_unlock(&id_priv->lock); 4690 4691 return 0; 4692 out_err: 4693 kfree(mc); 4694 return ret; 4695 } 4696 EXPORT_SYMBOL(rdma_join_multicast); 4697 4698 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4699 { 4700 struct rdma_id_private *id_priv; 4701 struct cma_multicast *mc; 4702 4703 id_priv = container_of(id, struct rdma_id_private, id); 4704 spin_lock_irq(&id_priv->lock); 4705 list_for_each_entry(mc, &id_priv->mc_list, list) { 4706 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4707 continue; 4708 list_del(&mc->list); 4709 spin_unlock_irq(&id_priv->lock); 4710 4711 WARN_ON(id_priv->cma_dev->device != id->device); 4712 destroy_mc(id_priv, mc); 4713 return; 4714 } 4715 spin_unlock_irq(&id_priv->lock); 4716 } 4717 EXPORT_SYMBOL(rdma_leave_multicast); 4718 4719 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4720 { 4721 struct rdma_dev_addr *dev_addr; 4722 struct cma_work *work; 4723 4724 dev_addr = &id_priv->id.route.addr.dev_addr; 4725 4726 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4727 (net_eq(dev_net(ndev), dev_addr->net)) && 4728 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4729 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4730 ndev->name, &id_priv->id); 4731 work = kzalloc(sizeof *work, GFP_KERNEL); 4732 if (!work) 4733 return -ENOMEM; 4734 4735 INIT_WORK(&work->work, cma_work_handler); 4736 work->id = id_priv; 4737 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4738 cma_id_get(id_priv); 4739 queue_work(cma_wq, &work->work); 4740 } 4741 4742 return 0; 4743 } 4744 4745 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4746 void *ptr) 4747 { 4748 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4749 struct cma_device *cma_dev; 4750 struct rdma_id_private *id_priv; 4751 int ret = NOTIFY_DONE; 4752 4753 if (event != NETDEV_BONDING_FAILOVER) 4754 return NOTIFY_DONE; 4755 4756 if (!netif_is_bond_master(ndev)) 4757 return NOTIFY_DONE; 4758 4759 mutex_lock(&lock); 4760 list_for_each_entry(cma_dev, &dev_list, list) 4761 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4762 ret = cma_netdev_change(ndev, id_priv); 4763 if (ret) 4764 goto out; 4765 } 4766 4767 out: 4768 mutex_unlock(&lock); 4769 return ret; 4770 } 4771 4772 static struct notifier_block cma_nb = { 4773 .notifier_call = cma_netdev_callback 4774 }; 4775 4776 static int cma_add_one(struct ib_device *device) 4777 { 4778 struct cma_device *cma_dev; 4779 struct rdma_id_private *id_priv; 4780 unsigned int i; 4781 unsigned long supported_gids = 0; 4782 int ret; 4783 4784 cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); 4785 if (!cma_dev) 4786 return -ENOMEM; 4787 4788 cma_dev->device = device; 4789 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4790 sizeof(*cma_dev->default_gid_type), 4791 GFP_KERNEL); 4792 if (!cma_dev->default_gid_type) { 4793 ret = -ENOMEM; 4794 goto free_cma_dev; 4795 } 4796 4797 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4798 sizeof(*cma_dev->default_roce_tos), 4799 GFP_KERNEL); 4800 if (!cma_dev->default_roce_tos) { 4801 ret = -ENOMEM; 4802 goto free_gid_type; 4803 } 4804 4805 rdma_for_each_port (device, i) { 4806 supported_gids = roce_gid_type_mask_support(device, i); 4807 WARN_ON(!supported_gids); 4808 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4809 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4810 CMA_PREFERRED_ROCE_GID_TYPE; 4811 else 4812 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4813 find_first_bit(&supported_gids, BITS_PER_LONG); 4814 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4815 } 4816 4817 init_completion(&cma_dev->comp); 4818 refcount_set(&cma_dev->refcount, 1); 4819 INIT_LIST_HEAD(&cma_dev->id_list); 4820 ib_set_client_data(device, &cma_client, cma_dev); 4821 4822 mutex_lock(&lock); 4823 list_add_tail(&cma_dev->list, &dev_list); 4824 list_for_each_entry(id_priv, &listen_any_list, list) 4825 cma_listen_on_dev(id_priv, cma_dev); 4826 mutex_unlock(&lock); 4827 4828 trace_cm_add_one(device); 4829 return 0; 4830 4831 free_gid_type: 4832 kfree(cma_dev->default_gid_type); 4833 4834 free_cma_dev: 4835 kfree(cma_dev); 4836 return ret; 4837 } 4838 4839 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4840 { 4841 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4842 enum rdma_cm_state state; 4843 unsigned long flags; 4844 4845 mutex_lock(&id_priv->handler_mutex); 4846 /* Record that we want to remove the device */ 4847 spin_lock_irqsave(&id_priv->lock, flags); 4848 state = id_priv->state; 4849 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4850 spin_unlock_irqrestore(&id_priv->lock, flags); 4851 mutex_unlock(&id_priv->handler_mutex); 4852 cma_id_put(id_priv); 4853 return; 4854 } 4855 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4856 spin_unlock_irqrestore(&id_priv->lock, flags); 4857 4858 if (cma_cm_event_handler(id_priv, &event)) { 4859 /* 4860 * At this point the ULP promises it won't call 4861 * rdma_destroy_id() concurrently 4862 */ 4863 cma_id_put(id_priv); 4864 mutex_unlock(&id_priv->handler_mutex); 4865 trace_cm_id_destroy(id_priv); 4866 _destroy_id(id_priv, state); 4867 return; 4868 } 4869 mutex_unlock(&id_priv->handler_mutex); 4870 4871 /* 4872 * If this races with destroy then the thread that first assigns state 4873 * to a destroying does the cancel. 4874 */ 4875 cma_cancel_operation(id_priv, state); 4876 cma_id_put(id_priv); 4877 } 4878 4879 static void cma_process_remove(struct cma_device *cma_dev) 4880 { 4881 mutex_lock(&lock); 4882 while (!list_empty(&cma_dev->id_list)) { 4883 struct rdma_id_private *id_priv = list_first_entry( 4884 &cma_dev->id_list, struct rdma_id_private, list); 4885 4886 list_del(&id_priv->listen_list); 4887 list_del_init(&id_priv->list); 4888 cma_id_get(id_priv); 4889 mutex_unlock(&lock); 4890 4891 cma_send_device_removal_put(id_priv); 4892 4893 mutex_lock(&lock); 4894 } 4895 mutex_unlock(&lock); 4896 4897 cma_dev_put(cma_dev); 4898 wait_for_completion(&cma_dev->comp); 4899 } 4900 4901 static void cma_remove_one(struct ib_device *device, void *client_data) 4902 { 4903 struct cma_device *cma_dev = client_data; 4904 4905 trace_cm_remove_one(device); 4906 4907 mutex_lock(&lock); 4908 list_del(&cma_dev->list); 4909 mutex_unlock(&lock); 4910 4911 cma_process_remove(cma_dev); 4912 kfree(cma_dev->default_roce_tos); 4913 kfree(cma_dev->default_gid_type); 4914 kfree(cma_dev); 4915 } 4916 4917 static int cma_init_net(struct net *net) 4918 { 4919 struct cma_pernet *pernet = cma_pernet(net); 4920 4921 xa_init(&pernet->tcp_ps); 4922 xa_init(&pernet->udp_ps); 4923 xa_init(&pernet->ipoib_ps); 4924 xa_init(&pernet->ib_ps); 4925 4926 return 0; 4927 } 4928 4929 static void cma_exit_net(struct net *net) 4930 { 4931 struct cma_pernet *pernet = cma_pernet(net); 4932 4933 WARN_ON(!xa_empty(&pernet->tcp_ps)); 4934 WARN_ON(!xa_empty(&pernet->udp_ps)); 4935 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 4936 WARN_ON(!xa_empty(&pernet->ib_ps)); 4937 } 4938 4939 static struct pernet_operations cma_pernet_operations = { 4940 .init = cma_init_net, 4941 .exit = cma_exit_net, 4942 .id = &cma_pernet_id, 4943 .size = sizeof(struct cma_pernet), 4944 }; 4945 4946 static int __init cma_init(void) 4947 { 4948 int ret; 4949 4950 /* 4951 * There is a rare lock ordering dependency in cma_netdev_callback() 4952 * that only happens when bonding is enabled. Teach lockdep that rtnl 4953 * must never be nested under lock so it can find these without having 4954 * to test with bonding. 4955 */ 4956 if (IS_ENABLED(CONFIG_LOCKDEP)) { 4957 rtnl_lock(); 4958 mutex_lock(&lock); 4959 mutex_unlock(&lock); 4960 rtnl_unlock(); 4961 } 4962 4963 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 4964 if (!cma_wq) 4965 return -ENOMEM; 4966 4967 ret = register_pernet_subsys(&cma_pernet_operations); 4968 if (ret) 4969 goto err_wq; 4970 4971 ib_sa_register_client(&sa_client); 4972 register_netdevice_notifier(&cma_nb); 4973 4974 ret = ib_register_client(&cma_client); 4975 if (ret) 4976 goto err; 4977 4978 ret = cma_configfs_init(); 4979 if (ret) 4980 goto err_ib; 4981 4982 return 0; 4983 4984 err_ib: 4985 ib_unregister_client(&cma_client); 4986 err: 4987 unregister_netdevice_notifier(&cma_nb); 4988 ib_sa_unregister_client(&sa_client); 4989 unregister_pernet_subsys(&cma_pernet_operations); 4990 err_wq: 4991 destroy_workqueue(cma_wq); 4992 return ret; 4993 } 4994 4995 static void __exit cma_cleanup(void) 4996 { 4997 cma_configfs_exit(); 4998 ib_unregister_client(&cma_client); 4999 unregister_netdevice_notifier(&cma_nb); 5000 ib_sa_unregister_client(&sa_client); 5001 unregister_pernet_subsys(&cma_pernet_operations); 5002 destroy_workqueue(cma_wq); 5003 } 5004 5005 module_init(cma_init); 5006 module_exit(cma_cleanup); 5007