xref: /openbmc/linux/drivers/infiniband/core/cma.c (revision 2aa71b4b)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52 
53 static const char * const cma_events[] = {
54 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
55 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
56 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
57 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
58 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
59 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
61 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
62 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
63 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
64 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
65 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
66 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
67 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
68 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
69 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
70 };
71 
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 			      enum ib_gid_type gid_type);
74 
75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 	size_t index = event;
78 
79 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 			cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83 
84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 						int reason)
86 {
87 	if (rdma_ib_or_roce(id->device, id->port_num))
88 		return ibcm_reject_msg(reason);
89 
90 	if (rdma_protocol_iwarp(id->device, id->port_num))
91 		return iwcm_reject_msg(reason);
92 
93 	WARN_ON_ONCE(1);
94 	return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97 
98 /**
99  * rdma_is_consumer_reject - return true if the consumer rejected the connect
100  *                           request.
101  * @id: Communication identifier that received the REJECT event.
102  * @reason: Value returned in the REJECT event status field.
103  */
104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 	if (rdma_ib_or_roce(id->device, id->port_num))
107 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
108 
109 	if (rdma_protocol_iwarp(id->device, id->port_num))
110 		return reason == -ECONNREFUSED;
111 
112 	WARN_ON_ONCE(1);
113 	return false;
114 }
115 
116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 				      struct rdma_cm_event *ev, u8 *data_len)
118 {
119 	const void *p;
120 
121 	if (rdma_is_consumer_reject(id, ev->status)) {
122 		*data_len = ev->param.conn.private_data_len;
123 		p = ev->param.conn.private_data;
124 	} else {
125 		*data_len = 0;
126 		p = NULL;
127 	}
128 	return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131 
132 /**
133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134  * @id: Communication Identifier
135  */
136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 	struct rdma_id_private *id_priv;
139 
140 	id_priv = container_of(id, struct rdma_id_private, id);
141 	if (id->device->node_type == RDMA_NODE_RNIC)
142 		return id_priv->cm_id.iw;
143 	return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146 
147 /**
148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149  * @res: rdma resource tracking entry pointer
150  */
151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 	struct rdma_id_private *id_priv =
154 		container_of(res, struct rdma_id_private, res);
155 
156 	return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159 
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162 
163 static struct ib_client cma_client = {
164 	.name   = "cma",
165 	.add    = cma_add_one,
166 	.remove = cma_remove_one
167 };
168 
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178 
179 struct cma_pernet {
180 	struct xarray tcp_ps;
181 	struct xarray udp_ps;
182 	struct xarray ipoib_ps;
183 	struct xarray ib_ps;
184 };
185 
186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 	return net_generic(net, cma_pernet_id);
189 }
190 
191 static
192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 	struct cma_pernet *pernet = cma_pernet(net);
195 
196 	switch (ps) {
197 	case RDMA_PS_TCP:
198 		return &pernet->tcp_ps;
199 	case RDMA_PS_UDP:
200 		return &pernet->udp_ps;
201 	case RDMA_PS_IPOIB:
202 		return &pernet->ipoib_ps;
203 	case RDMA_PS_IB:
204 		return &pernet->ib_ps;
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 struct id_table_entry {
211 	struct list_head id_list;
212 	struct rb_node rb_node;
213 };
214 
215 struct cma_device {
216 	struct list_head	list;
217 	struct ib_device	*device;
218 	struct completion	comp;
219 	refcount_t refcount;
220 	struct list_head	id_list;
221 	enum ib_gid_type	*default_gid_type;
222 	u8			*default_roce_tos;
223 };
224 
225 struct rdma_bind_list {
226 	enum rdma_ucm_port_space ps;
227 	struct hlist_head	owners;
228 	unsigned short		port;
229 };
230 
231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 			struct rdma_bind_list *bind_list, int snum)
233 {
234 	struct xarray *xa = cma_pernet_xa(net, ps);
235 
236 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238 
239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 					  enum rdma_ucm_port_space ps, int snum)
241 {
242 	struct xarray *xa = cma_pernet_xa(net, ps);
243 
244 	return xa_load(xa, snum);
245 }
246 
247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 			  int snum)
249 {
250 	struct xarray *xa = cma_pernet_xa(net, ps);
251 
252 	xa_erase(xa, snum);
253 }
254 
255 enum {
256 	CMA_OPTION_AFONLY,
257 };
258 
259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 	refcount_inc(&cma_dev->refcount);
262 }
263 
264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 	if (refcount_dec_and_test(&cma_dev->refcount))
267 		complete(&cma_dev->comp);
268 }
269 
270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
271 					     void		*cookie)
272 {
273 	struct cma_device *cma_dev;
274 	struct cma_device *found_cma_dev = NULL;
275 
276 	mutex_lock(&lock);
277 
278 	list_for_each_entry(cma_dev, &dev_list, list)
279 		if (filter(cma_dev->device, cookie)) {
280 			found_cma_dev = cma_dev;
281 			break;
282 		}
283 
284 	if (found_cma_dev)
285 		cma_dev_get(found_cma_dev);
286 	mutex_unlock(&lock);
287 	return found_cma_dev;
288 }
289 
290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 			     u32 port)
292 {
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298 
299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 			     u32 port,
301 			     enum ib_gid_type default_gid_type)
302 {
303 	unsigned long supported_gids;
304 
305 	if (!rdma_is_port_valid(cma_dev->device, port))
306 		return -EINVAL;
307 
308 	if (default_gid_type == IB_GID_TYPE_IB &&
309 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 		default_gid_type = IB_GID_TYPE_ROCE;
311 
312 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313 
314 	if (!(supported_gids & 1 << default_gid_type))
315 		return -EINVAL;
316 
317 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 		default_gid_type;
319 
320 	return 0;
321 }
322 
323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 	if (!rdma_is_port_valid(cma_dev->device, port))
326 		return -EINVAL;
327 
328 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330 
331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 			     u8 default_roce_tos)
333 {
334 	if (!rdma_is_port_valid(cma_dev->device, port))
335 		return -EINVAL;
336 
337 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 		 default_roce_tos;
339 
340 	return 0;
341 }
342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 	return cma_dev->device;
345 }
346 
347 /*
348  * Device removal can occur at anytime, so we need extra handling to
349  * serialize notifying the user of device removal with other callbacks.
350  * We do this by disabling removal notification while a callback is in process,
351  * and reporting it after the callback completes.
352  */
353 
354 struct cma_multicast {
355 	struct rdma_id_private *id_priv;
356 	union {
357 		struct ib_sa_multicast *sa_mc;
358 		struct {
359 			struct work_struct work;
360 			struct rdma_cm_event event;
361 		} iboe_join;
362 	};
363 	struct list_head	list;
364 	void			*context;
365 	struct sockaddr_storage	addr;
366 	u8			join_state;
367 };
368 
369 struct cma_work {
370 	struct work_struct	work;
371 	struct rdma_id_private	*id;
372 	enum rdma_cm_state	old_state;
373 	enum rdma_cm_state	new_state;
374 	struct rdma_cm_event	event;
375 };
376 
377 union cma_ip_addr {
378 	struct in6_addr ip6;
379 	struct {
380 		__be32 pad[3];
381 		__be32 addr;
382 	} ip4;
383 };
384 
385 struct cma_hdr {
386 	u8 cma_version;
387 	u8 ip_version;	/* IP version: 7:4 */
388 	__be16 port;
389 	union cma_ip_addr src_addr;
390 	union cma_ip_addr dst_addr;
391 };
392 
393 #define CMA_VERSION 0x00
394 
395 struct cma_req_info {
396 	struct sockaddr_storage listen_addr_storage;
397 	struct sockaddr_storage src_addr_storage;
398 	struct ib_device *device;
399 	union ib_gid local_gid;
400 	__be64 service_id;
401 	int port;
402 	bool has_gid;
403 	u16 pkey;
404 };
405 
406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 	unsigned long flags;
410 	int ret;
411 
412 	/*
413 	 * The FSM uses a funny double locking where state is protected by both
414 	 * the handler_mutex and the spinlock. State is not allowed to change
415 	 * to/from a handler_mutex protected value without also holding
416 	 * handler_mutex.
417 	 */
418 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 		lockdep_assert_held(&id_priv->handler_mutex);
420 
421 	spin_lock_irqsave(&id_priv->lock, flags);
422 	if ((ret = (id_priv->state == comp)))
423 		id_priv->state = exch;
424 	spin_unlock_irqrestore(&id_priv->lock, flags);
425 	return ret;
426 }
427 
428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 	return hdr->ip_version >> 4;
431 }
432 
433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437 
438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442 
443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447 
448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 	struct in_device *in_dev = NULL;
451 
452 	if (ndev) {
453 		rtnl_lock();
454 		in_dev = __in_dev_get_rtnl(ndev);
455 		if (in_dev) {
456 			if (join)
457 				ip_mc_inc_group(in_dev,
458 						*(__be32 *)(mgid->raw + 12));
459 			else
460 				ip_mc_dec_group(in_dev,
461 						*(__be32 *)(mgid->raw + 12));
462 		}
463 		rtnl_unlock();
464 	}
465 	return (in_dev) ? 0 : -ENODEV;
466 }
467 
468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 				 struct id_table_entry *entry_b)
470 {
471 	struct rdma_id_private *id_priv = list_first_entry(
472 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
473 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 	struct sockaddr *sb = cma_dst_addr(id_priv);
475 
476 	if (ifindex_a != ifindex_b)
477 		return (ifindex_a > ifindex_b) ? 1 : -1;
478 
479 	if (sa->sa_family != sb->sa_family)
480 		return sa->sa_family - sb->sa_family;
481 
482 	if (sa->sa_family == AF_INET &&
483 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 			      &((struct sockaddr_in *)sb)->sin_addr,
486 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 	}
488 
489 	if (sa->sa_family == AF_INET6 &&
490 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
493 	}
494 
495 	return -1;
496 }
497 
498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 	struct rb_node **new, *parent = NULL;
501 	struct id_table_entry *this, *node;
502 	unsigned long flags;
503 	int result;
504 
505 	node = kzalloc(sizeof(*node), GFP_KERNEL);
506 	if (!node)
507 		return -ENOMEM;
508 
509 	spin_lock_irqsave(&id_table_lock, flags);
510 	new = &id_table.rb_node;
511 	while (*new) {
512 		this = container_of(*new, struct id_table_entry, rb_node);
513 		result = compare_netdev_and_ip(
514 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 			cma_dst_addr(node_id_priv), this);
516 
517 		parent = *new;
518 		if (result < 0)
519 			new = &((*new)->rb_left);
520 		else if (result > 0)
521 			new = &((*new)->rb_right);
522 		else {
523 			list_add_tail(&node_id_priv->id_list_entry,
524 				      &this->id_list);
525 			kfree(node);
526 			goto unlock;
527 		}
528 	}
529 
530 	INIT_LIST_HEAD(&node->id_list);
531 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532 
533 	rb_link_node(&node->rb_node, parent, new);
534 	rb_insert_color(&node->rb_node, &id_table);
535 
536 unlock:
537 	spin_unlock_irqrestore(&id_table_lock, flags);
538 	return 0;
539 }
540 
541 static struct id_table_entry *
542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 	struct rb_node *node = root->rb_node;
545 	struct id_table_entry *data;
546 	int result;
547 
548 	while (node) {
549 		data = container_of(node, struct id_table_entry, rb_node);
550 		result = compare_netdev_and_ip(ifindex, sa, data);
551 		if (result < 0)
552 			node = node->rb_left;
553 		else if (result > 0)
554 			node = node->rb_right;
555 		else
556 			return data;
557 	}
558 
559 	return NULL;
560 }
561 
562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 	struct id_table_entry *data;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&id_table_lock, flags);
568 	if (list_empty(&id_priv->id_list_entry))
569 		goto out;
570 
571 	data = node_from_ndev_ip(&id_table,
572 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 				 cma_dst_addr(id_priv));
574 	if (!data)
575 		goto out;
576 
577 	list_del_init(&id_priv->id_list_entry);
578 	if (list_empty(&data->id_list)) {
579 		rb_erase(&data->rb_node, &id_table);
580 		kfree(data);
581 	}
582 out:
583 	spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585 
586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 			       struct cma_device *cma_dev)
588 {
589 	cma_dev_get(cma_dev);
590 	id_priv->cma_dev = cma_dev;
591 	id_priv->id.device = cma_dev->device;
592 	id_priv->id.route.addr.dev_addr.transport =
593 		rdma_node_get_transport(cma_dev->device->node_type);
594 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595 
596 	trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598 
599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 			      struct cma_device *cma_dev)
601 {
602 	_cma_attach_to_dev(id_priv, cma_dev);
603 	id_priv->gid_type =
604 		cma_dev->default_gid_type[id_priv->id.port_num -
605 					  rdma_start_port(cma_dev->device)];
606 }
607 
608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 	mutex_lock(&lock);
611 	list_del_init(&id_priv->device_item);
612 	cma_dev_put(id_priv->cma_dev);
613 	id_priv->cma_dev = NULL;
614 	id_priv->id.device = NULL;
615 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 	}
619 	mutex_unlock(&lock);
620 }
621 
622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 	return id_priv->id.route.addr.src_addr.ss_family;
625 }
626 
627 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
628 {
629 	struct ib_sa_mcmember_rec rec;
630 	int ret = 0;
631 
632 	switch (id_priv->id.ps) {
633 	case RDMA_PS_UDP:
634 	case RDMA_PS_IB:
635 		id_priv->qkey = RDMA_UDP_QKEY;
636 		break;
637 	case RDMA_PS_IPOIB:
638 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
639 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
640 					     id_priv->id.port_num, &rec.mgid,
641 					     &rec);
642 		if (!ret)
643 			id_priv->qkey = be32_to_cpu(rec.qkey);
644 		break;
645 	default:
646 		break;
647 	}
648 	return ret;
649 }
650 
651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
652 {
653 	if (!qkey ||
654 	    (id_priv->qkey && (id_priv->qkey != qkey)))
655 		return -EINVAL;
656 
657 	id_priv->qkey = qkey;
658 	return 0;
659 }
660 
661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
662 {
663 	dev_addr->dev_type = ARPHRD_INFINIBAND;
664 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
665 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
666 }
667 
668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
669 {
670 	int ret;
671 
672 	if (addr->sa_family != AF_IB) {
673 		ret = rdma_translate_ip(addr, dev_addr);
674 	} else {
675 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
676 		ret = 0;
677 	}
678 
679 	return ret;
680 }
681 
682 static const struct ib_gid_attr *
683 cma_validate_port(struct ib_device *device, u32 port,
684 		  enum ib_gid_type gid_type,
685 		  union ib_gid *gid,
686 		  struct rdma_id_private *id_priv)
687 {
688 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
689 	int bound_if_index = dev_addr->bound_dev_if;
690 	const struct ib_gid_attr *sgid_attr;
691 	int dev_type = dev_addr->dev_type;
692 	struct net_device *ndev = NULL;
693 
694 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
695 		return ERR_PTR(-ENODEV);
696 
697 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
698 		return ERR_PTR(-ENODEV);
699 
700 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
701 		return ERR_PTR(-ENODEV);
702 
703 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
704 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
705 		if (!ndev)
706 			return ERR_PTR(-ENODEV);
707 	} else {
708 		gid_type = IB_GID_TYPE_IB;
709 	}
710 
711 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
712 	dev_put(ndev);
713 	return sgid_attr;
714 }
715 
716 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
717 			       const struct ib_gid_attr *sgid_attr)
718 {
719 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
720 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
721 }
722 
723 /**
724  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
725  * based on source ip address.
726  * @id_priv:	cm_id which should be bound to cma device
727  *
728  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
729  * based on source IP address. It returns 0 on success or error code otherwise.
730  * It is applicable to active and passive side cm_id.
731  */
732 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
733 {
734 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
735 	const struct ib_gid_attr *sgid_attr;
736 	union ib_gid gid, iboe_gid, *gidp;
737 	struct cma_device *cma_dev;
738 	enum ib_gid_type gid_type;
739 	int ret = -ENODEV;
740 	u32 port;
741 
742 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
743 	    id_priv->id.ps == RDMA_PS_IPOIB)
744 		return -EINVAL;
745 
746 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
747 		    &iboe_gid);
748 
749 	memcpy(&gid, dev_addr->src_dev_addr +
750 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
751 
752 	mutex_lock(&lock);
753 	list_for_each_entry(cma_dev, &dev_list, list) {
754 		rdma_for_each_port (cma_dev->device, port) {
755 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
756 			       &iboe_gid : &gid;
757 			gid_type = cma_dev->default_gid_type[port - 1];
758 			sgid_attr = cma_validate_port(cma_dev->device, port,
759 						      gid_type, gidp, id_priv);
760 			if (!IS_ERR(sgid_attr)) {
761 				id_priv->id.port_num = port;
762 				cma_bind_sgid_attr(id_priv, sgid_attr);
763 				cma_attach_to_dev(id_priv, cma_dev);
764 				ret = 0;
765 				goto out;
766 			}
767 		}
768 	}
769 out:
770 	mutex_unlock(&lock);
771 	return ret;
772 }
773 
774 /**
775  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
776  * @id_priv:		cm id to bind to cma device
777  * @listen_id_priv:	listener cm id to match against
778  * @req:		Pointer to req structure containaining incoming
779  *			request information
780  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
781  * rdma device matches for listen_id and incoming request. It also verifies
782  * that a GID table entry is present for the source address.
783  * Returns 0 on success, or returns error code otherwise.
784  */
785 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
786 			      const struct rdma_id_private *listen_id_priv,
787 			      struct cma_req_info *req)
788 {
789 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
790 	const struct ib_gid_attr *sgid_attr;
791 	enum ib_gid_type gid_type;
792 	union ib_gid gid;
793 
794 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
795 	    id_priv->id.ps == RDMA_PS_IPOIB)
796 		return -EINVAL;
797 
798 	if (rdma_protocol_roce(req->device, req->port))
799 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
800 			    &gid);
801 	else
802 		memcpy(&gid, dev_addr->src_dev_addr +
803 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
804 
805 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
806 	sgid_attr = cma_validate_port(req->device, req->port,
807 				      gid_type, &gid, id_priv);
808 	if (IS_ERR(sgid_attr))
809 		return PTR_ERR(sgid_attr);
810 
811 	id_priv->id.port_num = req->port;
812 	cma_bind_sgid_attr(id_priv, sgid_attr);
813 	/* Need to acquire lock to protect against reader
814 	 * of cma_dev->id_list such as cma_netdev_callback() and
815 	 * cma_process_remove().
816 	 */
817 	mutex_lock(&lock);
818 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
819 	mutex_unlock(&lock);
820 	rdma_restrack_add(&id_priv->res);
821 	return 0;
822 }
823 
824 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
825 			      const struct rdma_id_private *listen_id_priv)
826 {
827 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
828 	const struct ib_gid_attr *sgid_attr;
829 	struct cma_device *cma_dev;
830 	enum ib_gid_type gid_type;
831 	int ret = -ENODEV;
832 	union ib_gid gid;
833 	u32 port;
834 
835 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
836 	    id_priv->id.ps == RDMA_PS_IPOIB)
837 		return -EINVAL;
838 
839 	memcpy(&gid, dev_addr->src_dev_addr +
840 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
841 
842 	mutex_lock(&lock);
843 
844 	cma_dev = listen_id_priv->cma_dev;
845 	port = listen_id_priv->id.port_num;
846 	gid_type = listen_id_priv->gid_type;
847 	sgid_attr = cma_validate_port(cma_dev->device, port,
848 				      gid_type, &gid, id_priv);
849 	if (!IS_ERR(sgid_attr)) {
850 		id_priv->id.port_num = port;
851 		cma_bind_sgid_attr(id_priv, sgid_attr);
852 		ret = 0;
853 		goto out;
854 	}
855 
856 	list_for_each_entry(cma_dev, &dev_list, list) {
857 		rdma_for_each_port (cma_dev->device, port) {
858 			if (listen_id_priv->cma_dev == cma_dev &&
859 			    listen_id_priv->id.port_num == port)
860 				continue;
861 
862 			gid_type = cma_dev->default_gid_type[port - 1];
863 			sgid_attr = cma_validate_port(cma_dev->device, port,
864 						      gid_type, &gid, id_priv);
865 			if (!IS_ERR(sgid_attr)) {
866 				id_priv->id.port_num = port;
867 				cma_bind_sgid_attr(id_priv, sgid_attr);
868 				ret = 0;
869 				goto out;
870 			}
871 		}
872 	}
873 
874 out:
875 	if (!ret) {
876 		cma_attach_to_dev(id_priv, cma_dev);
877 		rdma_restrack_add(&id_priv->res);
878 	}
879 
880 	mutex_unlock(&lock);
881 	return ret;
882 }
883 
884 /*
885  * Select the source IB device and address to reach the destination IB address.
886  */
887 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
888 {
889 	struct cma_device *cma_dev, *cur_dev;
890 	struct sockaddr_ib *addr;
891 	union ib_gid gid, sgid, *dgid;
892 	unsigned int p;
893 	u16 pkey, index;
894 	enum ib_port_state port_state;
895 	int ret;
896 	int i;
897 
898 	cma_dev = NULL;
899 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
900 	dgid = (union ib_gid *) &addr->sib_addr;
901 	pkey = ntohs(addr->sib_pkey);
902 
903 	mutex_lock(&lock);
904 	list_for_each_entry(cur_dev, &dev_list, list) {
905 		rdma_for_each_port (cur_dev->device, p) {
906 			if (!rdma_cap_af_ib(cur_dev->device, p))
907 				continue;
908 
909 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
910 				continue;
911 
912 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
913 				continue;
914 
915 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
916 			     ++i) {
917 				ret = rdma_query_gid(cur_dev->device, p, i,
918 						     &gid);
919 				if (ret)
920 					continue;
921 
922 				if (!memcmp(&gid, dgid, sizeof(gid))) {
923 					cma_dev = cur_dev;
924 					sgid = gid;
925 					id_priv->id.port_num = p;
926 					goto found;
927 				}
928 
929 				if (!cma_dev && (gid.global.subnet_prefix ==
930 				    dgid->global.subnet_prefix) &&
931 				    port_state == IB_PORT_ACTIVE) {
932 					cma_dev = cur_dev;
933 					sgid = gid;
934 					id_priv->id.port_num = p;
935 					goto found;
936 				}
937 			}
938 		}
939 	}
940 	mutex_unlock(&lock);
941 	return -ENODEV;
942 
943 found:
944 	cma_attach_to_dev(id_priv, cma_dev);
945 	rdma_restrack_add(&id_priv->res);
946 	mutex_unlock(&lock);
947 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
948 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
949 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
950 	return 0;
951 }
952 
953 static void cma_id_get(struct rdma_id_private *id_priv)
954 {
955 	refcount_inc(&id_priv->refcount);
956 }
957 
958 static void cma_id_put(struct rdma_id_private *id_priv)
959 {
960 	if (refcount_dec_and_test(&id_priv->refcount))
961 		complete(&id_priv->comp);
962 }
963 
964 static struct rdma_id_private *
965 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
966 		 void *context, enum rdma_ucm_port_space ps,
967 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
968 {
969 	struct rdma_id_private *id_priv;
970 
971 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
972 	if (!id_priv)
973 		return ERR_PTR(-ENOMEM);
974 
975 	id_priv->state = RDMA_CM_IDLE;
976 	id_priv->id.context = context;
977 	id_priv->id.event_handler = event_handler;
978 	id_priv->id.ps = ps;
979 	id_priv->id.qp_type = qp_type;
980 	id_priv->tos_set = false;
981 	id_priv->timeout_set = false;
982 	id_priv->min_rnr_timer_set = false;
983 	id_priv->gid_type = IB_GID_TYPE_IB;
984 	spin_lock_init(&id_priv->lock);
985 	mutex_init(&id_priv->qp_mutex);
986 	init_completion(&id_priv->comp);
987 	refcount_set(&id_priv->refcount, 1);
988 	mutex_init(&id_priv->handler_mutex);
989 	INIT_LIST_HEAD(&id_priv->device_item);
990 	INIT_LIST_HEAD(&id_priv->id_list_entry);
991 	INIT_LIST_HEAD(&id_priv->listen_list);
992 	INIT_LIST_HEAD(&id_priv->mc_list);
993 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
994 	id_priv->id.route.addr.dev_addr.net = get_net(net);
995 	id_priv->seq_num &= 0x00ffffff;
996 
997 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
998 	if (parent)
999 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1000 
1001 	return id_priv;
1002 }
1003 
1004 struct rdma_cm_id *
1005 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1006 			void *context, enum rdma_ucm_port_space ps,
1007 			enum ib_qp_type qp_type, const char *caller)
1008 {
1009 	struct rdma_id_private *ret;
1010 
1011 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1012 	if (IS_ERR(ret))
1013 		return ERR_CAST(ret);
1014 
1015 	rdma_restrack_set_name(&ret->res, caller);
1016 	return &ret->id;
1017 }
1018 EXPORT_SYMBOL(__rdma_create_kernel_id);
1019 
1020 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1021 				       void *context,
1022 				       enum rdma_ucm_port_space ps,
1023 				       enum ib_qp_type qp_type)
1024 {
1025 	struct rdma_id_private *ret;
1026 
1027 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1028 			       ps, qp_type, NULL);
1029 	if (IS_ERR(ret))
1030 		return ERR_CAST(ret);
1031 
1032 	rdma_restrack_set_name(&ret->res, NULL);
1033 	return &ret->id;
1034 }
1035 EXPORT_SYMBOL(rdma_create_user_id);
1036 
1037 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1038 {
1039 	struct ib_qp_attr qp_attr;
1040 	int qp_attr_mask, ret;
1041 
1042 	qp_attr.qp_state = IB_QPS_INIT;
1043 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1044 	if (ret)
1045 		return ret;
1046 
1047 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1048 	if (ret)
1049 		return ret;
1050 
1051 	qp_attr.qp_state = IB_QPS_RTR;
1052 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1053 	if (ret)
1054 		return ret;
1055 
1056 	qp_attr.qp_state = IB_QPS_RTS;
1057 	qp_attr.sq_psn = 0;
1058 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1059 
1060 	return ret;
1061 }
1062 
1063 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1064 {
1065 	struct ib_qp_attr qp_attr;
1066 	int qp_attr_mask, ret;
1067 
1068 	qp_attr.qp_state = IB_QPS_INIT;
1069 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1070 	if (ret)
1071 		return ret;
1072 
1073 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1074 }
1075 
1076 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1077 		   struct ib_qp_init_attr *qp_init_attr)
1078 {
1079 	struct rdma_id_private *id_priv;
1080 	struct ib_qp *qp;
1081 	int ret;
1082 
1083 	id_priv = container_of(id, struct rdma_id_private, id);
1084 	if (id->device != pd->device) {
1085 		ret = -EINVAL;
1086 		goto out_err;
1087 	}
1088 
1089 	qp_init_attr->port_num = id->port_num;
1090 	qp = ib_create_qp(pd, qp_init_attr);
1091 	if (IS_ERR(qp)) {
1092 		ret = PTR_ERR(qp);
1093 		goto out_err;
1094 	}
1095 
1096 	if (id->qp_type == IB_QPT_UD)
1097 		ret = cma_init_ud_qp(id_priv, qp);
1098 	else
1099 		ret = cma_init_conn_qp(id_priv, qp);
1100 	if (ret)
1101 		goto out_destroy;
1102 
1103 	id->qp = qp;
1104 	id_priv->qp_num = qp->qp_num;
1105 	id_priv->srq = (qp->srq != NULL);
1106 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1107 	return 0;
1108 out_destroy:
1109 	ib_destroy_qp(qp);
1110 out_err:
1111 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL(rdma_create_qp);
1115 
1116 void rdma_destroy_qp(struct rdma_cm_id *id)
1117 {
1118 	struct rdma_id_private *id_priv;
1119 
1120 	id_priv = container_of(id, struct rdma_id_private, id);
1121 	trace_cm_qp_destroy(id_priv);
1122 	mutex_lock(&id_priv->qp_mutex);
1123 	ib_destroy_qp(id_priv->id.qp);
1124 	id_priv->id.qp = NULL;
1125 	mutex_unlock(&id_priv->qp_mutex);
1126 }
1127 EXPORT_SYMBOL(rdma_destroy_qp);
1128 
1129 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1130 			     struct rdma_conn_param *conn_param)
1131 {
1132 	struct ib_qp_attr qp_attr;
1133 	int qp_attr_mask, ret;
1134 
1135 	mutex_lock(&id_priv->qp_mutex);
1136 	if (!id_priv->id.qp) {
1137 		ret = 0;
1138 		goto out;
1139 	}
1140 
1141 	/* Need to update QP attributes from default values. */
1142 	qp_attr.qp_state = IB_QPS_INIT;
1143 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1144 	if (ret)
1145 		goto out;
1146 
1147 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1148 	if (ret)
1149 		goto out;
1150 
1151 	qp_attr.qp_state = IB_QPS_RTR;
1152 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1153 	if (ret)
1154 		goto out;
1155 
1156 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1157 
1158 	if (conn_param)
1159 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1160 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1161 out:
1162 	mutex_unlock(&id_priv->qp_mutex);
1163 	return ret;
1164 }
1165 
1166 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1167 			     struct rdma_conn_param *conn_param)
1168 {
1169 	struct ib_qp_attr qp_attr;
1170 	int qp_attr_mask, ret;
1171 
1172 	mutex_lock(&id_priv->qp_mutex);
1173 	if (!id_priv->id.qp) {
1174 		ret = 0;
1175 		goto out;
1176 	}
1177 
1178 	qp_attr.qp_state = IB_QPS_RTS;
1179 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1180 	if (ret)
1181 		goto out;
1182 
1183 	if (conn_param)
1184 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1185 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1186 out:
1187 	mutex_unlock(&id_priv->qp_mutex);
1188 	return ret;
1189 }
1190 
1191 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1192 {
1193 	struct ib_qp_attr qp_attr;
1194 	int ret;
1195 
1196 	mutex_lock(&id_priv->qp_mutex);
1197 	if (!id_priv->id.qp) {
1198 		ret = 0;
1199 		goto out;
1200 	}
1201 
1202 	qp_attr.qp_state = IB_QPS_ERR;
1203 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1204 out:
1205 	mutex_unlock(&id_priv->qp_mutex);
1206 	return ret;
1207 }
1208 
1209 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1210 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1211 {
1212 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1213 	int ret;
1214 	u16 pkey;
1215 
1216 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1217 		pkey = 0xffff;
1218 	else
1219 		pkey = ib_addr_get_pkey(dev_addr);
1220 
1221 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1222 				  pkey, &qp_attr->pkey_index);
1223 	if (ret)
1224 		return ret;
1225 
1226 	qp_attr->port_num = id_priv->id.port_num;
1227 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1228 
1229 	if (id_priv->id.qp_type == IB_QPT_UD) {
1230 		ret = cma_set_default_qkey(id_priv);
1231 		if (ret)
1232 			return ret;
1233 
1234 		qp_attr->qkey = id_priv->qkey;
1235 		*qp_attr_mask |= IB_QP_QKEY;
1236 	} else {
1237 		qp_attr->qp_access_flags = 0;
1238 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1239 	}
1240 	return 0;
1241 }
1242 
1243 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1244 		       int *qp_attr_mask)
1245 {
1246 	struct rdma_id_private *id_priv;
1247 	int ret = 0;
1248 
1249 	id_priv = container_of(id, struct rdma_id_private, id);
1250 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1251 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1252 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1253 		else
1254 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1255 						 qp_attr_mask);
1256 
1257 		if (qp_attr->qp_state == IB_QPS_RTR)
1258 			qp_attr->rq_psn = id_priv->seq_num;
1259 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1260 		if (!id_priv->cm_id.iw) {
1261 			qp_attr->qp_access_flags = 0;
1262 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1263 		} else
1264 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1265 						 qp_attr_mask);
1266 		qp_attr->port_num = id_priv->id.port_num;
1267 		*qp_attr_mask |= IB_QP_PORT;
1268 	} else {
1269 		ret = -ENOSYS;
1270 	}
1271 
1272 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1273 		qp_attr->timeout = id_priv->timeout;
1274 
1275 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1276 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1277 
1278 	return ret;
1279 }
1280 EXPORT_SYMBOL(rdma_init_qp_attr);
1281 
1282 static inline bool cma_zero_addr(const struct sockaddr *addr)
1283 {
1284 	switch (addr->sa_family) {
1285 	case AF_INET:
1286 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1287 	case AF_INET6:
1288 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1289 	case AF_IB:
1290 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1291 	default:
1292 		return false;
1293 	}
1294 }
1295 
1296 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1297 {
1298 	switch (addr->sa_family) {
1299 	case AF_INET:
1300 		return ipv4_is_loopback(
1301 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1302 	case AF_INET6:
1303 		return ipv6_addr_loopback(
1304 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1305 	case AF_IB:
1306 		return ib_addr_loopback(
1307 			&((struct sockaddr_ib *)addr)->sib_addr);
1308 	default:
1309 		return false;
1310 	}
1311 }
1312 
1313 static inline bool cma_any_addr(const struct sockaddr *addr)
1314 {
1315 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1316 }
1317 
1318 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1319 {
1320 	if (src->sa_family != dst->sa_family)
1321 		return -1;
1322 
1323 	switch (src->sa_family) {
1324 	case AF_INET:
1325 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1326 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1327 	case AF_INET6: {
1328 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1329 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1330 		bool link_local;
1331 
1332 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1333 					  &dst_addr6->sin6_addr))
1334 			return 1;
1335 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1336 			     IPV6_ADDR_LINKLOCAL;
1337 		/* Link local must match their scope_ids */
1338 		return link_local ? (src_addr6->sin6_scope_id !=
1339 				     dst_addr6->sin6_scope_id) :
1340 				    0;
1341 	}
1342 
1343 	default:
1344 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1345 				   &((struct sockaddr_ib *) dst)->sib_addr);
1346 	}
1347 }
1348 
1349 static __be16 cma_port(const struct sockaddr *addr)
1350 {
1351 	struct sockaddr_ib *sib;
1352 
1353 	switch (addr->sa_family) {
1354 	case AF_INET:
1355 		return ((struct sockaddr_in *) addr)->sin_port;
1356 	case AF_INET6:
1357 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1358 	case AF_IB:
1359 		sib = (struct sockaddr_ib *) addr;
1360 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1361 				    be64_to_cpu(sib->sib_sid_mask)));
1362 	default:
1363 		return 0;
1364 	}
1365 }
1366 
1367 static inline int cma_any_port(const struct sockaddr *addr)
1368 {
1369 	return !cma_port(addr);
1370 }
1371 
1372 static void cma_save_ib_info(struct sockaddr *src_addr,
1373 			     struct sockaddr *dst_addr,
1374 			     const struct rdma_cm_id *listen_id,
1375 			     const struct sa_path_rec *path)
1376 {
1377 	struct sockaddr_ib *listen_ib, *ib;
1378 
1379 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1380 	if (src_addr) {
1381 		ib = (struct sockaddr_ib *)src_addr;
1382 		ib->sib_family = AF_IB;
1383 		if (path) {
1384 			ib->sib_pkey = path->pkey;
1385 			ib->sib_flowinfo = path->flow_label;
1386 			memcpy(&ib->sib_addr, &path->sgid, 16);
1387 			ib->sib_sid = path->service_id;
1388 			ib->sib_scope_id = 0;
1389 		} else {
1390 			ib->sib_pkey = listen_ib->sib_pkey;
1391 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1392 			ib->sib_addr = listen_ib->sib_addr;
1393 			ib->sib_sid = listen_ib->sib_sid;
1394 			ib->sib_scope_id = listen_ib->sib_scope_id;
1395 		}
1396 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1397 	}
1398 	if (dst_addr) {
1399 		ib = (struct sockaddr_ib *)dst_addr;
1400 		ib->sib_family = AF_IB;
1401 		if (path) {
1402 			ib->sib_pkey = path->pkey;
1403 			ib->sib_flowinfo = path->flow_label;
1404 			memcpy(&ib->sib_addr, &path->dgid, 16);
1405 		}
1406 	}
1407 }
1408 
1409 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1410 			      struct sockaddr_in *dst_addr,
1411 			      struct cma_hdr *hdr,
1412 			      __be16 local_port)
1413 {
1414 	if (src_addr) {
1415 		*src_addr = (struct sockaddr_in) {
1416 			.sin_family = AF_INET,
1417 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1418 			.sin_port = local_port,
1419 		};
1420 	}
1421 
1422 	if (dst_addr) {
1423 		*dst_addr = (struct sockaddr_in) {
1424 			.sin_family = AF_INET,
1425 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1426 			.sin_port = hdr->port,
1427 		};
1428 	}
1429 }
1430 
1431 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1432 			      struct sockaddr_in6 *dst_addr,
1433 			      struct cma_hdr *hdr,
1434 			      __be16 local_port)
1435 {
1436 	if (src_addr) {
1437 		*src_addr = (struct sockaddr_in6) {
1438 			.sin6_family = AF_INET6,
1439 			.sin6_addr = hdr->dst_addr.ip6,
1440 			.sin6_port = local_port,
1441 		};
1442 	}
1443 
1444 	if (dst_addr) {
1445 		*dst_addr = (struct sockaddr_in6) {
1446 			.sin6_family = AF_INET6,
1447 			.sin6_addr = hdr->src_addr.ip6,
1448 			.sin6_port = hdr->port,
1449 		};
1450 	}
1451 }
1452 
1453 static u16 cma_port_from_service_id(__be64 service_id)
1454 {
1455 	return (u16)be64_to_cpu(service_id);
1456 }
1457 
1458 static int cma_save_ip_info(struct sockaddr *src_addr,
1459 			    struct sockaddr *dst_addr,
1460 			    const struct ib_cm_event *ib_event,
1461 			    __be64 service_id)
1462 {
1463 	struct cma_hdr *hdr;
1464 	__be16 port;
1465 
1466 	hdr = ib_event->private_data;
1467 	if (hdr->cma_version != CMA_VERSION)
1468 		return -EINVAL;
1469 
1470 	port = htons(cma_port_from_service_id(service_id));
1471 
1472 	switch (cma_get_ip_ver(hdr)) {
1473 	case 4:
1474 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1475 				  (struct sockaddr_in *)dst_addr, hdr, port);
1476 		break;
1477 	case 6:
1478 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1479 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1480 		break;
1481 	default:
1482 		return -EAFNOSUPPORT;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 static int cma_save_net_info(struct sockaddr *src_addr,
1489 			     struct sockaddr *dst_addr,
1490 			     const struct rdma_cm_id *listen_id,
1491 			     const struct ib_cm_event *ib_event,
1492 			     sa_family_t sa_family, __be64 service_id)
1493 {
1494 	if (sa_family == AF_IB) {
1495 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1496 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1497 					 ib_event->param.req_rcvd.primary_path);
1498 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1499 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1500 		return 0;
1501 	}
1502 
1503 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1504 }
1505 
1506 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1507 			     struct cma_req_info *req)
1508 {
1509 	const struct ib_cm_req_event_param *req_param =
1510 		&ib_event->param.req_rcvd;
1511 	const struct ib_cm_sidr_req_event_param *sidr_param =
1512 		&ib_event->param.sidr_req_rcvd;
1513 
1514 	switch (ib_event->event) {
1515 	case IB_CM_REQ_RECEIVED:
1516 		req->device	= req_param->listen_id->device;
1517 		req->port	= req_param->port;
1518 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1519 		       sizeof(req->local_gid));
1520 		req->has_gid	= true;
1521 		req->service_id = req_param->primary_path->service_id;
1522 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1523 		if (req->pkey != req_param->bth_pkey)
1524 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1525 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1526 					    req_param->bth_pkey, req->pkey);
1527 		break;
1528 	case IB_CM_SIDR_REQ_RECEIVED:
1529 		req->device	= sidr_param->listen_id->device;
1530 		req->port	= sidr_param->port;
1531 		req->has_gid	= false;
1532 		req->service_id	= sidr_param->service_id;
1533 		req->pkey	= sidr_param->pkey;
1534 		if (req->pkey != sidr_param->bth_pkey)
1535 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1536 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1537 					    sidr_param->bth_pkey, req->pkey);
1538 		break;
1539 	default:
1540 		return -EINVAL;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1547 				  const struct sockaddr_in *dst_addr,
1548 				  const struct sockaddr_in *src_addr)
1549 {
1550 	__be32 daddr = dst_addr->sin_addr.s_addr,
1551 	       saddr = src_addr->sin_addr.s_addr;
1552 	struct fib_result res;
1553 	struct flowi4 fl4;
1554 	int err;
1555 	bool ret;
1556 
1557 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1558 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1559 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1560 	    ipv4_is_loopback(saddr))
1561 		return false;
1562 
1563 	memset(&fl4, 0, sizeof(fl4));
1564 	fl4.flowi4_oif = net_dev->ifindex;
1565 	fl4.daddr = daddr;
1566 	fl4.saddr = saddr;
1567 
1568 	rcu_read_lock();
1569 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1570 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1571 	rcu_read_unlock();
1572 
1573 	return ret;
1574 }
1575 
1576 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1577 				  const struct sockaddr_in6 *dst_addr,
1578 				  const struct sockaddr_in6 *src_addr)
1579 {
1580 #if IS_ENABLED(CONFIG_IPV6)
1581 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1582 			   IPV6_ADDR_LINKLOCAL;
1583 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1584 					 &src_addr->sin6_addr, net_dev->ifindex,
1585 					 NULL, strict);
1586 	bool ret;
1587 
1588 	if (!rt)
1589 		return false;
1590 
1591 	ret = rt->rt6i_idev->dev == net_dev;
1592 	ip6_rt_put(rt);
1593 
1594 	return ret;
1595 #else
1596 	return false;
1597 #endif
1598 }
1599 
1600 static bool validate_net_dev(struct net_device *net_dev,
1601 			     const struct sockaddr *daddr,
1602 			     const struct sockaddr *saddr)
1603 {
1604 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1605 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1606 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1607 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1608 
1609 	switch (daddr->sa_family) {
1610 	case AF_INET:
1611 		return saddr->sa_family == AF_INET &&
1612 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1613 
1614 	case AF_INET6:
1615 		return saddr->sa_family == AF_INET6 &&
1616 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1617 
1618 	default:
1619 		return false;
1620 	}
1621 }
1622 
1623 static struct net_device *
1624 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1625 {
1626 	const struct ib_gid_attr *sgid_attr = NULL;
1627 	struct net_device *ndev;
1628 
1629 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1630 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1631 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1632 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1633 
1634 	if (!sgid_attr)
1635 		return NULL;
1636 
1637 	rcu_read_lock();
1638 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1639 	if (IS_ERR(ndev))
1640 		ndev = NULL;
1641 	else
1642 		dev_hold(ndev);
1643 	rcu_read_unlock();
1644 	return ndev;
1645 }
1646 
1647 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1648 					  struct cma_req_info *req)
1649 {
1650 	struct sockaddr *listen_addr =
1651 			(struct sockaddr *)&req->listen_addr_storage;
1652 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1653 	struct net_device *net_dev;
1654 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1655 	int err;
1656 
1657 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1658 			       req->service_id);
1659 	if (err)
1660 		return ERR_PTR(err);
1661 
1662 	if (rdma_protocol_roce(req->device, req->port))
1663 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1664 	else
1665 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1666 						   req->pkey,
1667 						   gid, listen_addr);
1668 	if (!net_dev)
1669 		return ERR_PTR(-ENODEV);
1670 
1671 	return net_dev;
1672 }
1673 
1674 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1675 {
1676 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1677 }
1678 
1679 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1680 				   const struct cma_hdr *hdr)
1681 {
1682 	struct sockaddr *addr = cma_src_addr(id_priv);
1683 	__be32 ip4_addr;
1684 	struct in6_addr ip6_addr;
1685 
1686 	if (cma_any_addr(addr) && !id_priv->afonly)
1687 		return true;
1688 
1689 	switch (addr->sa_family) {
1690 	case AF_INET:
1691 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1692 		if (cma_get_ip_ver(hdr) != 4)
1693 			return false;
1694 		if (!cma_any_addr(addr) &&
1695 		    hdr->dst_addr.ip4.addr != ip4_addr)
1696 			return false;
1697 		break;
1698 	case AF_INET6:
1699 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1700 		if (cma_get_ip_ver(hdr) != 6)
1701 			return false;
1702 		if (!cma_any_addr(addr) &&
1703 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1704 			return false;
1705 		break;
1706 	case AF_IB:
1707 		return true;
1708 	default:
1709 		return false;
1710 	}
1711 
1712 	return true;
1713 }
1714 
1715 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1716 {
1717 	struct ib_device *device = id->device;
1718 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1719 
1720 	return rdma_protocol_roce(device, port_num);
1721 }
1722 
1723 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1724 {
1725 	const struct sockaddr *daddr =
1726 			(const struct sockaddr *)&req->listen_addr_storage;
1727 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1728 
1729 	/* Returns true if the req is for IPv6 link local */
1730 	return (daddr->sa_family == AF_INET6 &&
1731 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1732 }
1733 
1734 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1735 			      const struct net_device *net_dev,
1736 			      const struct cma_req_info *req)
1737 {
1738 	const struct rdma_addr *addr = &id->route.addr;
1739 
1740 	if (!net_dev)
1741 		/* This request is an AF_IB request */
1742 		return (!id->port_num || id->port_num == req->port) &&
1743 		       (addr->src_addr.ss_family == AF_IB);
1744 
1745 	/*
1746 	 * If the request is not for IPv6 link local, allow matching
1747 	 * request to any netdevice of the one or multiport rdma device.
1748 	 */
1749 	if (!cma_is_req_ipv6_ll(req))
1750 		return true;
1751 	/*
1752 	 * Net namespaces must match, and if the listner is listening
1753 	 * on a specific netdevice than netdevice must match as well.
1754 	 */
1755 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1756 	    (!!addr->dev_addr.bound_dev_if ==
1757 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1758 		return true;
1759 	else
1760 		return false;
1761 }
1762 
1763 static struct rdma_id_private *cma_find_listener(
1764 		const struct rdma_bind_list *bind_list,
1765 		const struct ib_cm_id *cm_id,
1766 		const struct ib_cm_event *ib_event,
1767 		const struct cma_req_info *req,
1768 		const struct net_device *net_dev)
1769 {
1770 	struct rdma_id_private *id_priv, *id_priv_dev;
1771 
1772 	lockdep_assert_held(&lock);
1773 
1774 	if (!bind_list)
1775 		return ERR_PTR(-EINVAL);
1776 
1777 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1778 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1779 			if (id_priv->id.device == cm_id->device &&
1780 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1781 				return id_priv;
1782 			list_for_each_entry(id_priv_dev,
1783 					    &id_priv->listen_list,
1784 					    listen_item) {
1785 				if (id_priv_dev->id.device == cm_id->device &&
1786 				    cma_match_net_dev(&id_priv_dev->id,
1787 						      net_dev, req))
1788 					return id_priv_dev;
1789 			}
1790 		}
1791 	}
1792 
1793 	return ERR_PTR(-EINVAL);
1794 }
1795 
1796 static struct rdma_id_private *
1797 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1798 		     const struct ib_cm_event *ib_event,
1799 		     struct cma_req_info *req,
1800 		     struct net_device **net_dev)
1801 {
1802 	struct rdma_bind_list *bind_list;
1803 	struct rdma_id_private *id_priv;
1804 	int err;
1805 
1806 	err = cma_save_req_info(ib_event, req);
1807 	if (err)
1808 		return ERR_PTR(err);
1809 
1810 	*net_dev = cma_get_net_dev(ib_event, req);
1811 	if (IS_ERR(*net_dev)) {
1812 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1813 			/* Assuming the protocol is AF_IB */
1814 			*net_dev = NULL;
1815 		} else {
1816 			return ERR_CAST(*net_dev);
1817 		}
1818 	}
1819 
1820 	mutex_lock(&lock);
1821 	/*
1822 	 * Net namespace might be getting deleted while route lookup,
1823 	 * cm_id lookup is in progress. Therefore, perform netdevice
1824 	 * validation, cm_id lookup under rcu lock.
1825 	 * RCU lock along with netdevice state check, synchronizes with
1826 	 * netdevice migrating to different net namespace and also avoids
1827 	 * case where net namespace doesn't get deleted while lookup is in
1828 	 * progress.
1829 	 * If the device state is not IFF_UP, its properties such as ifindex
1830 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1831 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1832 	 * ongoing operations on net device after device is closed using
1833 	 * synchronize_net().
1834 	 */
1835 	rcu_read_lock();
1836 	if (*net_dev) {
1837 		/*
1838 		 * If netdevice is down, it is likely that it is administratively
1839 		 * down or it might be migrating to different namespace.
1840 		 * In that case avoid further processing, as the net namespace
1841 		 * or ifindex may change.
1842 		 */
1843 		if (((*net_dev)->flags & IFF_UP) == 0) {
1844 			id_priv = ERR_PTR(-EHOSTUNREACH);
1845 			goto err;
1846 		}
1847 
1848 		if (!validate_net_dev(*net_dev,
1849 				 (struct sockaddr *)&req->src_addr_storage,
1850 				 (struct sockaddr *)&req->listen_addr_storage)) {
1851 			id_priv = ERR_PTR(-EHOSTUNREACH);
1852 			goto err;
1853 		}
1854 	}
1855 
1856 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1857 				rdma_ps_from_service_id(req->service_id),
1858 				cma_port_from_service_id(req->service_id));
1859 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1860 err:
1861 	rcu_read_unlock();
1862 	mutex_unlock(&lock);
1863 	if (IS_ERR(id_priv) && *net_dev) {
1864 		dev_put(*net_dev);
1865 		*net_dev = NULL;
1866 	}
1867 	return id_priv;
1868 }
1869 
1870 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1871 {
1872 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1873 }
1874 
1875 static void cma_cancel_route(struct rdma_id_private *id_priv)
1876 {
1877 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1878 		if (id_priv->query)
1879 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1880 	}
1881 }
1882 
1883 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1884 {
1885 	struct rdma_id_private *dev_id_priv;
1886 
1887 	lockdep_assert_held(&lock);
1888 
1889 	/*
1890 	 * Remove from listen_any_list to prevent added devices from spawning
1891 	 * additional listen requests.
1892 	 */
1893 	list_del_init(&id_priv->listen_any_item);
1894 
1895 	while (!list_empty(&id_priv->listen_list)) {
1896 		dev_id_priv =
1897 			list_first_entry(&id_priv->listen_list,
1898 					 struct rdma_id_private, listen_item);
1899 		/* sync with device removal to avoid duplicate destruction */
1900 		list_del_init(&dev_id_priv->device_item);
1901 		list_del_init(&dev_id_priv->listen_item);
1902 		mutex_unlock(&lock);
1903 
1904 		rdma_destroy_id(&dev_id_priv->id);
1905 		mutex_lock(&lock);
1906 	}
1907 }
1908 
1909 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1910 {
1911 	mutex_lock(&lock);
1912 	_cma_cancel_listens(id_priv);
1913 	mutex_unlock(&lock);
1914 }
1915 
1916 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1917 				 enum rdma_cm_state state)
1918 {
1919 	switch (state) {
1920 	case RDMA_CM_ADDR_QUERY:
1921 		/*
1922 		 * We can avoid doing the rdma_addr_cancel() based on state,
1923 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1924 		 * Notice that the addr_handler work could still be exiting
1925 		 * outside this state, however due to the interaction with the
1926 		 * handler_mutex the work is guaranteed not to touch id_priv
1927 		 * during exit.
1928 		 */
1929 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1930 		break;
1931 	case RDMA_CM_ROUTE_QUERY:
1932 		cma_cancel_route(id_priv);
1933 		break;
1934 	case RDMA_CM_LISTEN:
1935 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1936 			cma_cancel_listens(id_priv);
1937 		break;
1938 	default:
1939 		break;
1940 	}
1941 }
1942 
1943 static void cma_release_port(struct rdma_id_private *id_priv)
1944 {
1945 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1946 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1947 
1948 	if (!bind_list)
1949 		return;
1950 
1951 	mutex_lock(&lock);
1952 	hlist_del(&id_priv->node);
1953 	if (hlist_empty(&bind_list->owners)) {
1954 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1955 		kfree(bind_list);
1956 	}
1957 	mutex_unlock(&lock);
1958 }
1959 
1960 static void destroy_mc(struct rdma_id_private *id_priv,
1961 		       struct cma_multicast *mc)
1962 {
1963 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1964 
1965 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1966 		ib_sa_free_multicast(mc->sa_mc);
1967 
1968 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1969 		struct rdma_dev_addr *dev_addr =
1970 			&id_priv->id.route.addr.dev_addr;
1971 		struct net_device *ndev = NULL;
1972 
1973 		if (dev_addr->bound_dev_if)
1974 			ndev = dev_get_by_index(dev_addr->net,
1975 						dev_addr->bound_dev_if);
1976 		if (ndev && !send_only) {
1977 			enum ib_gid_type gid_type;
1978 			union ib_gid mgid;
1979 
1980 			gid_type = id_priv->cma_dev->default_gid_type
1981 					   [id_priv->id.port_num -
1982 					    rdma_start_port(
1983 						    id_priv->cma_dev->device)];
1984 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
1985 					  gid_type);
1986 			cma_igmp_send(ndev, &mgid, false);
1987 		}
1988 		dev_put(ndev);
1989 
1990 		cancel_work_sync(&mc->iboe_join.work);
1991 	}
1992 	kfree(mc);
1993 }
1994 
1995 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1996 {
1997 	struct cma_multicast *mc;
1998 
1999 	while (!list_empty(&id_priv->mc_list)) {
2000 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2001 				      list);
2002 		list_del(&mc->list);
2003 		destroy_mc(id_priv, mc);
2004 	}
2005 }
2006 
2007 static void _destroy_id(struct rdma_id_private *id_priv,
2008 			enum rdma_cm_state state)
2009 {
2010 	cma_cancel_operation(id_priv, state);
2011 
2012 	rdma_restrack_del(&id_priv->res);
2013 	cma_remove_id_from_tree(id_priv);
2014 	if (id_priv->cma_dev) {
2015 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2016 			if (id_priv->cm_id.ib)
2017 				ib_destroy_cm_id(id_priv->cm_id.ib);
2018 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2019 			if (id_priv->cm_id.iw)
2020 				iw_destroy_cm_id(id_priv->cm_id.iw);
2021 		}
2022 		cma_leave_mc_groups(id_priv);
2023 		cma_release_dev(id_priv);
2024 	}
2025 
2026 	cma_release_port(id_priv);
2027 	cma_id_put(id_priv);
2028 	wait_for_completion(&id_priv->comp);
2029 
2030 	if (id_priv->internal_id)
2031 		cma_id_put(id_priv->id.context);
2032 
2033 	kfree(id_priv->id.route.path_rec);
2034 	kfree(id_priv->id.route.path_rec_inbound);
2035 	kfree(id_priv->id.route.path_rec_outbound);
2036 
2037 	put_net(id_priv->id.route.addr.dev_addr.net);
2038 	kfree(id_priv);
2039 }
2040 
2041 /*
2042  * destroy an ID from within the handler_mutex. This ensures that no other
2043  * handlers can start running concurrently.
2044  */
2045 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2046 	__releases(&idprv->handler_mutex)
2047 {
2048 	enum rdma_cm_state state;
2049 	unsigned long flags;
2050 
2051 	trace_cm_id_destroy(id_priv);
2052 
2053 	/*
2054 	 * Setting the state to destroyed under the handler mutex provides a
2055 	 * fence against calling handler callbacks. If this is invoked due to
2056 	 * the failure of a handler callback then it guarentees that no future
2057 	 * handlers will be called.
2058 	 */
2059 	lockdep_assert_held(&id_priv->handler_mutex);
2060 	spin_lock_irqsave(&id_priv->lock, flags);
2061 	state = id_priv->state;
2062 	id_priv->state = RDMA_CM_DESTROYING;
2063 	spin_unlock_irqrestore(&id_priv->lock, flags);
2064 	mutex_unlock(&id_priv->handler_mutex);
2065 	_destroy_id(id_priv, state);
2066 }
2067 
2068 void rdma_destroy_id(struct rdma_cm_id *id)
2069 {
2070 	struct rdma_id_private *id_priv =
2071 		container_of(id, struct rdma_id_private, id);
2072 
2073 	mutex_lock(&id_priv->handler_mutex);
2074 	destroy_id_handler_unlock(id_priv);
2075 }
2076 EXPORT_SYMBOL(rdma_destroy_id);
2077 
2078 static int cma_rep_recv(struct rdma_id_private *id_priv)
2079 {
2080 	int ret;
2081 
2082 	ret = cma_modify_qp_rtr(id_priv, NULL);
2083 	if (ret)
2084 		goto reject;
2085 
2086 	ret = cma_modify_qp_rts(id_priv, NULL);
2087 	if (ret)
2088 		goto reject;
2089 
2090 	trace_cm_send_rtu(id_priv);
2091 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2092 	if (ret)
2093 		goto reject;
2094 
2095 	return 0;
2096 reject:
2097 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2098 	cma_modify_qp_err(id_priv);
2099 	trace_cm_send_rej(id_priv);
2100 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2101 		       NULL, 0, NULL, 0);
2102 	return ret;
2103 }
2104 
2105 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2106 				   const struct ib_cm_rep_event_param *rep_data,
2107 				   void *private_data)
2108 {
2109 	event->param.conn.private_data = private_data;
2110 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2111 	event->param.conn.responder_resources = rep_data->responder_resources;
2112 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2113 	event->param.conn.flow_control = rep_data->flow_control;
2114 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2115 	event->param.conn.srq = rep_data->srq;
2116 	event->param.conn.qp_num = rep_data->remote_qpn;
2117 
2118 	event->ece.vendor_id = rep_data->ece.vendor_id;
2119 	event->ece.attr_mod = rep_data->ece.attr_mod;
2120 }
2121 
2122 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2123 				struct rdma_cm_event *event)
2124 {
2125 	int ret;
2126 
2127 	lockdep_assert_held(&id_priv->handler_mutex);
2128 
2129 	trace_cm_event_handler(id_priv, event);
2130 	ret = id_priv->id.event_handler(&id_priv->id, event);
2131 	trace_cm_event_done(id_priv, event, ret);
2132 	return ret;
2133 }
2134 
2135 static int cma_ib_handler(struct ib_cm_id *cm_id,
2136 			  const struct ib_cm_event *ib_event)
2137 {
2138 	struct rdma_id_private *id_priv = cm_id->context;
2139 	struct rdma_cm_event event = {};
2140 	enum rdma_cm_state state;
2141 	int ret;
2142 
2143 	mutex_lock(&id_priv->handler_mutex);
2144 	state = READ_ONCE(id_priv->state);
2145 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2146 	     state != RDMA_CM_CONNECT) ||
2147 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2148 	     state != RDMA_CM_DISCONNECT))
2149 		goto out;
2150 
2151 	switch (ib_event->event) {
2152 	case IB_CM_REQ_ERROR:
2153 	case IB_CM_REP_ERROR:
2154 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2155 		event.status = -ETIMEDOUT;
2156 		break;
2157 	case IB_CM_REP_RECEIVED:
2158 		if (state == RDMA_CM_CONNECT &&
2159 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2160 			trace_cm_send_mra(id_priv);
2161 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2162 		}
2163 		if (id_priv->id.qp) {
2164 			event.status = cma_rep_recv(id_priv);
2165 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2166 						     RDMA_CM_EVENT_ESTABLISHED;
2167 		} else {
2168 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2169 		}
2170 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2171 				       ib_event->private_data);
2172 		break;
2173 	case IB_CM_RTU_RECEIVED:
2174 	case IB_CM_USER_ESTABLISHED:
2175 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2176 		break;
2177 	case IB_CM_DREQ_ERROR:
2178 		event.status = -ETIMEDOUT;
2179 		fallthrough;
2180 	case IB_CM_DREQ_RECEIVED:
2181 	case IB_CM_DREP_RECEIVED:
2182 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2183 				   RDMA_CM_DISCONNECT))
2184 			goto out;
2185 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2186 		break;
2187 	case IB_CM_TIMEWAIT_EXIT:
2188 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2189 		break;
2190 	case IB_CM_MRA_RECEIVED:
2191 		/* ignore event */
2192 		goto out;
2193 	case IB_CM_REJ_RECEIVED:
2194 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2195 										ib_event->param.rej_rcvd.reason));
2196 		cma_modify_qp_err(id_priv);
2197 		event.status = ib_event->param.rej_rcvd.reason;
2198 		event.event = RDMA_CM_EVENT_REJECTED;
2199 		event.param.conn.private_data = ib_event->private_data;
2200 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2201 		break;
2202 	default:
2203 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2204 		       ib_event->event);
2205 		goto out;
2206 	}
2207 
2208 	ret = cma_cm_event_handler(id_priv, &event);
2209 	if (ret) {
2210 		/* Destroy the CM ID by returning a non-zero value. */
2211 		id_priv->cm_id.ib = NULL;
2212 		destroy_id_handler_unlock(id_priv);
2213 		return ret;
2214 	}
2215 out:
2216 	mutex_unlock(&id_priv->handler_mutex);
2217 	return 0;
2218 }
2219 
2220 static struct rdma_id_private *
2221 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2222 		   const struct ib_cm_event *ib_event,
2223 		   struct net_device *net_dev)
2224 {
2225 	struct rdma_id_private *listen_id_priv;
2226 	struct rdma_id_private *id_priv;
2227 	struct rdma_cm_id *id;
2228 	struct rdma_route *rt;
2229 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2230 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2231 	const __be64 service_id =
2232 		ib_event->param.req_rcvd.primary_path->service_id;
2233 	int ret;
2234 
2235 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2236 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2237 				   listen_id->event_handler, listen_id->context,
2238 				   listen_id->ps,
2239 				   ib_event->param.req_rcvd.qp_type,
2240 				   listen_id_priv);
2241 	if (IS_ERR(id_priv))
2242 		return NULL;
2243 
2244 	id = &id_priv->id;
2245 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2246 			      (struct sockaddr *)&id->route.addr.dst_addr,
2247 			      listen_id, ib_event, ss_family, service_id))
2248 		goto err;
2249 
2250 	rt = &id->route;
2251 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2252 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2253 				     sizeof(*rt->path_rec), GFP_KERNEL);
2254 	if (!rt->path_rec)
2255 		goto err;
2256 
2257 	rt->path_rec[0] = *path;
2258 	if (rt->num_pri_alt_paths == 2)
2259 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2260 
2261 	if (net_dev) {
2262 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2263 	} else {
2264 		if (!cma_protocol_roce(listen_id) &&
2265 		    cma_any_addr(cma_src_addr(id_priv))) {
2266 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2267 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2268 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2269 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2270 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2271 			if (ret)
2272 				goto err;
2273 		}
2274 	}
2275 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2276 
2277 	id_priv->state = RDMA_CM_CONNECT;
2278 	return id_priv;
2279 
2280 err:
2281 	rdma_destroy_id(id);
2282 	return NULL;
2283 }
2284 
2285 static struct rdma_id_private *
2286 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2287 		  const struct ib_cm_event *ib_event,
2288 		  struct net_device *net_dev)
2289 {
2290 	const struct rdma_id_private *listen_id_priv;
2291 	struct rdma_id_private *id_priv;
2292 	struct rdma_cm_id *id;
2293 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2294 	struct net *net = listen_id->route.addr.dev_addr.net;
2295 	int ret;
2296 
2297 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2298 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2299 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2300 				   listen_id_priv);
2301 	if (IS_ERR(id_priv))
2302 		return NULL;
2303 
2304 	id = &id_priv->id;
2305 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2306 			      (struct sockaddr *)&id->route.addr.dst_addr,
2307 			      listen_id, ib_event, ss_family,
2308 			      ib_event->param.sidr_req_rcvd.service_id))
2309 		goto err;
2310 
2311 	if (net_dev) {
2312 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2313 	} else {
2314 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2315 			ret = cma_translate_addr(cma_src_addr(id_priv),
2316 						 &id->route.addr.dev_addr);
2317 			if (ret)
2318 				goto err;
2319 		}
2320 	}
2321 
2322 	id_priv->state = RDMA_CM_CONNECT;
2323 	return id_priv;
2324 err:
2325 	rdma_destroy_id(id);
2326 	return NULL;
2327 }
2328 
2329 static void cma_set_req_event_data(struct rdma_cm_event *event,
2330 				   const struct ib_cm_req_event_param *req_data,
2331 				   void *private_data, int offset)
2332 {
2333 	event->param.conn.private_data = private_data + offset;
2334 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2335 	event->param.conn.responder_resources = req_data->responder_resources;
2336 	event->param.conn.initiator_depth = req_data->initiator_depth;
2337 	event->param.conn.flow_control = req_data->flow_control;
2338 	event->param.conn.retry_count = req_data->retry_count;
2339 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2340 	event->param.conn.srq = req_data->srq;
2341 	event->param.conn.qp_num = req_data->remote_qpn;
2342 
2343 	event->ece.vendor_id = req_data->ece.vendor_id;
2344 	event->ece.attr_mod = req_data->ece.attr_mod;
2345 }
2346 
2347 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2348 				    const struct ib_cm_event *ib_event)
2349 {
2350 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2351 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2352 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2353 		 (id->qp_type == IB_QPT_UD)) ||
2354 		(!id->qp_type));
2355 }
2356 
2357 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2358 			      const struct ib_cm_event *ib_event)
2359 {
2360 	struct rdma_id_private *listen_id, *conn_id = NULL;
2361 	struct rdma_cm_event event = {};
2362 	struct cma_req_info req = {};
2363 	struct net_device *net_dev;
2364 	u8 offset;
2365 	int ret;
2366 
2367 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2368 	if (IS_ERR(listen_id))
2369 		return PTR_ERR(listen_id);
2370 
2371 	trace_cm_req_handler(listen_id, ib_event->event);
2372 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2373 		ret = -EINVAL;
2374 		goto net_dev_put;
2375 	}
2376 
2377 	mutex_lock(&listen_id->handler_mutex);
2378 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2379 		ret = -ECONNABORTED;
2380 		goto err_unlock;
2381 	}
2382 
2383 	offset = cma_user_data_offset(listen_id);
2384 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2385 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2386 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2387 		event.param.ud.private_data = ib_event->private_data + offset;
2388 		event.param.ud.private_data_len =
2389 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2390 	} else {
2391 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2392 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2393 				       ib_event->private_data, offset);
2394 	}
2395 	if (!conn_id) {
2396 		ret = -ENOMEM;
2397 		goto err_unlock;
2398 	}
2399 
2400 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2401 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2402 	if (ret) {
2403 		destroy_id_handler_unlock(conn_id);
2404 		goto err_unlock;
2405 	}
2406 
2407 	conn_id->cm_id.ib = cm_id;
2408 	cm_id->context = conn_id;
2409 	cm_id->cm_handler = cma_ib_handler;
2410 
2411 	ret = cma_cm_event_handler(conn_id, &event);
2412 	if (ret) {
2413 		/* Destroy the CM ID by returning a non-zero value. */
2414 		conn_id->cm_id.ib = NULL;
2415 		mutex_unlock(&listen_id->handler_mutex);
2416 		destroy_id_handler_unlock(conn_id);
2417 		goto net_dev_put;
2418 	}
2419 
2420 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2421 	    conn_id->id.qp_type != IB_QPT_UD) {
2422 		trace_cm_send_mra(cm_id->context);
2423 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2424 	}
2425 	mutex_unlock(&conn_id->handler_mutex);
2426 
2427 err_unlock:
2428 	mutex_unlock(&listen_id->handler_mutex);
2429 
2430 net_dev_put:
2431 	dev_put(net_dev);
2432 
2433 	return ret;
2434 }
2435 
2436 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2437 {
2438 	if (addr->sa_family == AF_IB)
2439 		return ((struct sockaddr_ib *) addr)->sib_sid;
2440 
2441 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2442 }
2443 EXPORT_SYMBOL(rdma_get_service_id);
2444 
2445 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2446 		    union ib_gid *dgid)
2447 {
2448 	struct rdma_addr *addr = &cm_id->route.addr;
2449 
2450 	if (!cm_id->device) {
2451 		if (sgid)
2452 			memset(sgid, 0, sizeof(*sgid));
2453 		if (dgid)
2454 			memset(dgid, 0, sizeof(*dgid));
2455 		return;
2456 	}
2457 
2458 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2459 		if (sgid)
2460 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2461 		if (dgid)
2462 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2463 	} else {
2464 		if (sgid)
2465 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2466 		if (dgid)
2467 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2468 	}
2469 }
2470 EXPORT_SYMBOL(rdma_read_gids);
2471 
2472 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2473 {
2474 	struct rdma_id_private *id_priv = iw_id->context;
2475 	struct rdma_cm_event event = {};
2476 	int ret = 0;
2477 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2478 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2479 
2480 	mutex_lock(&id_priv->handler_mutex);
2481 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2482 		goto out;
2483 
2484 	switch (iw_event->event) {
2485 	case IW_CM_EVENT_CLOSE:
2486 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2487 		break;
2488 	case IW_CM_EVENT_CONNECT_REPLY:
2489 		memcpy(cma_src_addr(id_priv), laddr,
2490 		       rdma_addr_size(laddr));
2491 		memcpy(cma_dst_addr(id_priv), raddr,
2492 		       rdma_addr_size(raddr));
2493 		switch (iw_event->status) {
2494 		case 0:
2495 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2496 			event.param.conn.initiator_depth = iw_event->ird;
2497 			event.param.conn.responder_resources = iw_event->ord;
2498 			break;
2499 		case -ECONNRESET:
2500 		case -ECONNREFUSED:
2501 			event.event = RDMA_CM_EVENT_REJECTED;
2502 			break;
2503 		case -ETIMEDOUT:
2504 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2505 			break;
2506 		default:
2507 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2508 			break;
2509 		}
2510 		break;
2511 	case IW_CM_EVENT_ESTABLISHED:
2512 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2513 		event.param.conn.initiator_depth = iw_event->ird;
2514 		event.param.conn.responder_resources = iw_event->ord;
2515 		break;
2516 	default:
2517 		goto out;
2518 	}
2519 
2520 	event.status = iw_event->status;
2521 	event.param.conn.private_data = iw_event->private_data;
2522 	event.param.conn.private_data_len = iw_event->private_data_len;
2523 	ret = cma_cm_event_handler(id_priv, &event);
2524 	if (ret) {
2525 		/* Destroy the CM ID by returning a non-zero value. */
2526 		id_priv->cm_id.iw = NULL;
2527 		destroy_id_handler_unlock(id_priv);
2528 		return ret;
2529 	}
2530 
2531 out:
2532 	mutex_unlock(&id_priv->handler_mutex);
2533 	return ret;
2534 }
2535 
2536 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2537 			       struct iw_cm_event *iw_event)
2538 {
2539 	struct rdma_id_private *listen_id, *conn_id;
2540 	struct rdma_cm_event event = {};
2541 	int ret = -ECONNABORTED;
2542 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2543 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2544 
2545 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2546 	event.param.conn.private_data = iw_event->private_data;
2547 	event.param.conn.private_data_len = iw_event->private_data_len;
2548 	event.param.conn.initiator_depth = iw_event->ird;
2549 	event.param.conn.responder_resources = iw_event->ord;
2550 
2551 	listen_id = cm_id->context;
2552 
2553 	mutex_lock(&listen_id->handler_mutex);
2554 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2555 		goto out;
2556 
2557 	/* Create a new RDMA id for the new IW CM ID */
2558 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2559 				   listen_id->id.event_handler,
2560 				   listen_id->id.context, RDMA_PS_TCP,
2561 				   IB_QPT_RC, listen_id);
2562 	if (IS_ERR(conn_id)) {
2563 		ret = -ENOMEM;
2564 		goto out;
2565 	}
2566 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2567 	conn_id->state = RDMA_CM_CONNECT;
2568 
2569 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2570 	if (ret) {
2571 		mutex_unlock(&listen_id->handler_mutex);
2572 		destroy_id_handler_unlock(conn_id);
2573 		return ret;
2574 	}
2575 
2576 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2577 	if (ret) {
2578 		mutex_unlock(&listen_id->handler_mutex);
2579 		destroy_id_handler_unlock(conn_id);
2580 		return ret;
2581 	}
2582 
2583 	conn_id->cm_id.iw = cm_id;
2584 	cm_id->context = conn_id;
2585 	cm_id->cm_handler = cma_iw_handler;
2586 
2587 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2588 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2589 
2590 	ret = cma_cm_event_handler(conn_id, &event);
2591 	if (ret) {
2592 		/* User wants to destroy the CM ID */
2593 		conn_id->cm_id.iw = NULL;
2594 		mutex_unlock(&listen_id->handler_mutex);
2595 		destroy_id_handler_unlock(conn_id);
2596 		return ret;
2597 	}
2598 
2599 	mutex_unlock(&conn_id->handler_mutex);
2600 
2601 out:
2602 	mutex_unlock(&listen_id->handler_mutex);
2603 	return ret;
2604 }
2605 
2606 static int cma_ib_listen(struct rdma_id_private *id_priv)
2607 {
2608 	struct sockaddr *addr;
2609 	struct ib_cm_id	*id;
2610 	__be64 svc_id;
2611 
2612 	addr = cma_src_addr(id_priv);
2613 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2614 	id = ib_cm_insert_listen(id_priv->id.device,
2615 				 cma_ib_req_handler, svc_id);
2616 	if (IS_ERR(id))
2617 		return PTR_ERR(id);
2618 	id_priv->cm_id.ib = id;
2619 
2620 	return 0;
2621 }
2622 
2623 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2624 {
2625 	int ret;
2626 	struct iw_cm_id	*id;
2627 
2628 	id = iw_create_cm_id(id_priv->id.device,
2629 			     iw_conn_req_handler,
2630 			     id_priv);
2631 	if (IS_ERR(id))
2632 		return PTR_ERR(id);
2633 
2634 	mutex_lock(&id_priv->qp_mutex);
2635 	id->tos = id_priv->tos;
2636 	id->tos_set = id_priv->tos_set;
2637 	mutex_unlock(&id_priv->qp_mutex);
2638 	id->afonly = id_priv->afonly;
2639 	id_priv->cm_id.iw = id;
2640 
2641 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2642 	       rdma_addr_size(cma_src_addr(id_priv)));
2643 
2644 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2645 
2646 	if (ret) {
2647 		iw_destroy_cm_id(id_priv->cm_id.iw);
2648 		id_priv->cm_id.iw = NULL;
2649 	}
2650 
2651 	return ret;
2652 }
2653 
2654 static int cma_listen_handler(struct rdma_cm_id *id,
2655 			      struct rdma_cm_event *event)
2656 {
2657 	struct rdma_id_private *id_priv = id->context;
2658 
2659 	/* Listening IDs are always destroyed on removal */
2660 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2661 		return -1;
2662 
2663 	id->context = id_priv->id.context;
2664 	id->event_handler = id_priv->id.event_handler;
2665 	trace_cm_event_handler(id_priv, event);
2666 	return id_priv->id.event_handler(id, event);
2667 }
2668 
2669 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2670 			     struct cma_device *cma_dev,
2671 			     struct rdma_id_private **to_destroy)
2672 {
2673 	struct rdma_id_private *dev_id_priv;
2674 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2675 	int ret;
2676 
2677 	lockdep_assert_held(&lock);
2678 
2679 	*to_destroy = NULL;
2680 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2681 		return 0;
2682 
2683 	dev_id_priv =
2684 		__rdma_create_id(net, cma_listen_handler, id_priv,
2685 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2686 	if (IS_ERR(dev_id_priv))
2687 		return PTR_ERR(dev_id_priv);
2688 
2689 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2690 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2691 	       rdma_addr_size(cma_src_addr(id_priv)));
2692 
2693 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2694 	rdma_restrack_add(&dev_id_priv->res);
2695 	cma_id_get(id_priv);
2696 	dev_id_priv->internal_id = 1;
2697 	dev_id_priv->afonly = id_priv->afonly;
2698 	mutex_lock(&id_priv->qp_mutex);
2699 	dev_id_priv->tos_set = id_priv->tos_set;
2700 	dev_id_priv->tos = id_priv->tos;
2701 	mutex_unlock(&id_priv->qp_mutex);
2702 
2703 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2704 	if (ret)
2705 		goto err_listen;
2706 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2707 	return 0;
2708 err_listen:
2709 	/* Caller must destroy this after releasing lock */
2710 	*to_destroy = dev_id_priv;
2711 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2712 	return ret;
2713 }
2714 
2715 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2716 {
2717 	struct rdma_id_private *to_destroy;
2718 	struct cma_device *cma_dev;
2719 	int ret;
2720 
2721 	mutex_lock(&lock);
2722 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2723 	list_for_each_entry(cma_dev, &dev_list, list) {
2724 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2725 		if (ret) {
2726 			/* Prevent racing with cma_process_remove() */
2727 			if (to_destroy)
2728 				list_del_init(&to_destroy->device_item);
2729 			goto err_listen;
2730 		}
2731 	}
2732 	mutex_unlock(&lock);
2733 	return 0;
2734 
2735 err_listen:
2736 	_cma_cancel_listens(id_priv);
2737 	mutex_unlock(&lock);
2738 	if (to_destroy)
2739 		rdma_destroy_id(&to_destroy->id);
2740 	return ret;
2741 }
2742 
2743 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2744 {
2745 	struct rdma_id_private *id_priv;
2746 
2747 	id_priv = container_of(id, struct rdma_id_private, id);
2748 	mutex_lock(&id_priv->qp_mutex);
2749 	id_priv->tos = (u8) tos;
2750 	id_priv->tos_set = true;
2751 	mutex_unlock(&id_priv->qp_mutex);
2752 }
2753 EXPORT_SYMBOL(rdma_set_service_type);
2754 
2755 /**
2756  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2757  *                          with a connection identifier.
2758  * @id: Communication identifier to associated with service type.
2759  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2760  *
2761  * This function should be called before rdma_connect() on active side,
2762  * and on passive side before rdma_accept(). It is applicable to primary
2763  * path only. The timeout will affect the local side of the QP, it is not
2764  * negotiated with remote side and zero disables the timer. In case it is
2765  * set before rdma_resolve_route, the value will also be used to determine
2766  * PacketLifeTime for RoCE.
2767  *
2768  * Return: 0 for success
2769  */
2770 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2771 {
2772 	struct rdma_id_private *id_priv;
2773 
2774 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2775 		return -EINVAL;
2776 
2777 	id_priv = container_of(id, struct rdma_id_private, id);
2778 	mutex_lock(&id_priv->qp_mutex);
2779 	id_priv->timeout = timeout;
2780 	id_priv->timeout_set = true;
2781 	mutex_unlock(&id_priv->qp_mutex);
2782 
2783 	return 0;
2784 }
2785 EXPORT_SYMBOL(rdma_set_ack_timeout);
2786 
2787 /**
2788  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2789  *			      QP associated with a connection identifier.
2790  * @id: Communication identifier to associated with service type.
2791  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2792  *		   Timer Field" in the IBTA specification.
2793  *
2794  * This function should be called before rdma_connect() on active
2795  * side, and on passive side before rdma_accept(). The timer value
2796  * will be associated with the local QP. When it receives a send it is
2797  * not read to handle, typically if the receive queue is empty, an RNR
2798  * Retry NAK is returned to the requester with the min_rnr_timer
2799  * encoded. The requester will then wait at least the time specified
2800  * in the NAK before retrying. The default is zero, which translates
2801  * to a minimum RNR Timer value of 655 ms.
2802  *
2803  * Return: 0 for success
2804  */
2805 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2806 {
2807 	struct rdma_id_private *id_priv;
2808 
2809 	/* It is a five-bit value */
2810 	if (min_rnr_timer & 0xe0)
2811 		return -EINVAL;
2812 
2813 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2814 		return -EINVAL;
2815 
2816 	id_priv = container_of(id, struct rdma_id_private, id);
2817 	mutex_lock(&id_priv->qp_mutex);
2818 	id_priv->min_rnr_timer = min_rnr_timer;
2819 	id_priv->min_rnr_timer_set = true;
2820 	mutex_unlock(&id_priv->qp_mutex);
2821 
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2825 
2826 static int route_set_path_rec_inbound(struct cma_work *work,
2827 				      struct sa_path_rec *path_rec)
2828 {
2829 	struct rdma_route *route = &work->id->id.route;
2830 
2831 	if (!route->path_rec_inbound) {
2832 		route->path_rec_inbound =
2833 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2834 		if (!route->path_rec_inbound)
2835 			return -ENOMEM;
2836 	}
2837 
2838 	*route->path_rec_inbound = *path_rec;
2839 	return 0;
2840 }
2841 
2842 static int route_set_path_rec_outbound(struct cma_work *work,
2843 				       struct sa_path_rec *path_rec)
2844 {
2845 	struct rdma_route *route = &work->id->id.route;
2846 
2847 	if (!route->path_rec_outbound) {
2848 		route->path_rec_outbound =
2849 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2850 		if (!route->path_rec_outbound)
2851 			return -ENOMEM;
2852 	}
2853 
2854 	*route->path_rec_outbound = *path_rec;
2855 	return 0;
2856 }
2857 
2858 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2859 			      unsigned int num_prs, void *context)
2860 {
2861 	struct cma_work *work = context;
2862 	struct rdma_route *route;
2863 	int i;
2864 
2865 	route = &work->id->id.route;
2866 
2867 	if (status)
2868 		goto fail;
2869 
2870 	for (i = 0; i < num_prs; i++) {
2871 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2872 			*route->path_rec = path_rec[i];
2873 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2874 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2875 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2876 			status = route_set_path_rec_outbound(work,
2877 							     &path_rec[i]);
2878 		else
2879 			status = -EINVAL;
2880 
2881 		if (status)
2882 			goto fail;
2883 	}
2884 
2885 	route->num_pri_alt_paths = 1;
2886 	queue_work(cma_wq, &work->work);
2887 	return;
2888 
2889 fail:
2890 	work->old_state = RDMA_CM_ROUTE_QUERY;
2891 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2892 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2893 	work->event.status = status;
2894 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2895 			     status);
2896 	queue_work(cma_wq, &work->work);
2897 }
2898 
2899 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2900 			      unsigned long timeout_ms, struct cma_work *work)
2901 {
2902 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2903 	struct sa_path_rec path_rec;
2904 	ib_sa_comp_mask comp_mask;
2905 	struct sockaddr_in6 *sin6;
2906 	struct sockaddr_ib *sib;
2907 
2908 	memset(&path_rec, 0, sizeof path_rec);
2909 
2910 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2911 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2912 	else
2913 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2914 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2915 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2916 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2917 	path_rec.numb_path = 1;
2918 	path_rec.reversible = 1;
2919 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2920 						  cma_dst_addr(id_priv));
2921 
2922 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2923 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2924 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2925 
2926 	switch (cma_family(id_priv)) {
2927 	case AF_INET:
2928 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2929 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2930 		break;
2931 	case AF_INET6:
2932 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2933 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2934 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2935 		break;
2936 	case AF_IB:
2937 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2938 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2939 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2940 		break;
2941 	}
2942 
2943 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2944 					       id_priv->id.port_num, &path_rec,
2945 					       comp_mask, timeout_ms,
2946 					       GFP_KERNEL, cma_query_handler,
2947 					       work, &id_priv->query);
2948 
2949 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2950 }
2951 
2952 static void cma_iboe_join_work_handler(struct work_struct *work)
2953 {
2954 	struct cma_multicast *mc =
2955 		container_of(work, struct cma_multicast, iboe_join.work);
2956 	struct rdma_cm_event *event = &mc->iboe_join.event;
2957 	struct rdma_id_private *id_priv = mc->id_priv;
2958 	int ret;
2959 
2960 	mutex_lock(&id_priv->handler_mutex);
2961 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2962 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2963 		goto out_unlock;
2964 
2965 	ret = cma_cm_event_handler(id_priv, event);
2966 	WARN_ON(ret);
2967 
2968 out_unlock:
2969 	mutex_unlock(&id_priv->handler_mutex);
2970 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2971 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2972 }
2973 
2974 static void cma_work_handler(struct work_struct *_work)
2975 {
2976 	struct cma_work *work = container_of(_work, struct cma_work, work);
2977 	struct rdma_id_private *id_priv = work->id;
2978 
2979 	mutex_lock(&id_priv->handler_mutex);
2980 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2981 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2982 		goto out_unlock;
2983 	if (work->old_state != 0 || work->new_state != 0) {
2984 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2985 			goto out_unlock;
2986 	}
2987 
2988 	if (cma_cm_event_handler(id_priv, &work->event)) {
2989 		cma_id_put(id_priv);
2990 		destroy_id_handler_unlock(id_priv);
2991 		goto out_free;
2992 	}
2993 
2994 out_unlock:
2995 	mutex_unlock(&id_priv->handler_mutex);
2996 	cma_id_put(id_priv);
2997 out_free:
2998 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2999 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3000 	kfree(work);
3001 }
3002 
3003 static void cma_init_resolve_route_work(struct cma_work *work,
3004 					struct rdma_id_private *id_priv)
3005 {
3006 	work->id = id_priv;
3007 	INIT_WORK(&work->work, cma_work_handler);
3008 	work->old_state = RDMA_CM_ROUTE_QUERY;
3009 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3010 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3011 }
3012 
3013 static void enqueue_resolve_addr_work(struct cma_work *work,
3014 				      struct rdma_id_private *id_priv)
3015 {
3016 	/* Balances with cma_id_put() in cma_work_handler */
3017 	cma_id_get(id_priv);
3018 
3019 	work->id = id_priv;
3020 	INIT_WORK(&work->work, cma_work_handler);
3021 	work->old_state = RDMA_CM_ADDR_QUERY;
3022 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3023 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3024 
3025 	queue_work(cma_wq, &work->work);
3026 }
3027 
3028 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3029 				unsigned long timeout_ms)
3030 {
3031 	struct rdma_route *route = &id_priv->id.route;
3032 	struct cma_work *work;
3033 	int ret;
3034 
3035 	work = kzalloc(sizeof *work, GFP_KERNEL);
3036 	if (!work)
3037 		return -ENOMEM;
3038 
3039 	cma_init_resolve_route_work(work, id_priv);
3040 
3041 	if (!route->path_rec)
3042 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3043 	if (!route->path_rec) {
3044 		ret = -ENOMEM;
3045 		goto err1;
3046 	}
3047 
3048 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3049 	if (ret)
3050 		goto err2;
3051 
3052 	return 0;
3053 err2:
3054 	kfree(route->path_rec);
3055 	route->path_rec = NULL;
3056 err1:
3057 	kfree(work);
3058 	return ret;
3059 }
3060 
3061 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3062 					   unsigned long supported_gids,
3063 					   enum ib_gid_type default_gid)
3064 {
3065 	if ((network_type == RDMA_NETWORK_IPV4 ||
3066 	     network_type == RDMA_NETWORK_IPV6) &&
3067 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3068 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3069 
3070 	return default_gid;
3071 }
3072 
3073 /*
3074  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3075  * path record type based on GID type.
3076  * It also sets up other L2 fields which includes destination mac address
3077  * netdev ifindex, of the path record.
3078  * It returns the netdev of the bound interface for this path record entry.
3079  */
3080 static struct net_device *
3081 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3082 {
3083 	struct rdma_route *route = &id_priv->id.route;
3084 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3085 	struct rdma_addr *addr = &route->addr;
3086 	unsigned long supported_gids;
3087 	struct net_device *ndev;
3088 
3089 	if (!addr->dev_addr.bound_dev_if)
3090 		return NULL;
3091 
3092 	ndev = dev_get_by_index(addr->dev_addr.net,
3093 				addr->dev_addr.bound_dev_if);
3094 	if (!ndev)
3095 		return NULL;
3096 
3097 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3098 						    id_priv->id.port_num);
3099 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3100 				      supported_gids,
3101 				      id_priv->gid_type);
3102 	/* Use the hint from IP Stack to select GID Type */
3103 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3104 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3105 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3106 
3107 	route->path_rec->roce.route_resolved = true;
3108 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3109 	return ndev;
3110 }
3111 
3112 int rdma_set_ib_path(struct rdma_cm_id *id,
3113 		     struct sa_path_rec *path_rec)
3114 {
3115 	struct rdma_id_private *id_priv;
3116 	struct net_device *ndev;
3117 	int ret;
3118 
3119 	id_priv = container_of(id, struct rdma_id_private, id);
3120 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3121 			   RDMA_CM_ROUTE_RESOLVED))
3122 		return -EINVAL;
3123 
3124 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3125 				     GFP_KERNEL);
3126 	if (!id->route.path_rec) {
3127 		ret = -ENOMEM;
3128 		goto err;
3129 	}
3130 
3131 	if (rdma_protocol_roce(id->device, id->port_num)) {
3132 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3133 		if (!ndev) {
3134 			ret = -ENODEV;
3135 			goto err_free;
3136 		}
3137 		dev_put(ndev);
3138 	}
3139 
3140 	id->route.num_pri_alt_paths = 1;
3141 	return 0;
3142 
3143 err_free:
3144 	kfree(id->route.path_rec);
3145 	id->route.path_rec = NULL;
3146 err:
3147 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL(rdma_set_ib_path);
3151 
3152 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3153 {
3154 	struct cma_work *work;
3155 
3156 	work = kzalloc(sizeof *work, GFP_KERNEL);
3157 	if (!work)
3158 		return -ENOMEM;
3159 
3160 	cma_init_resolve_route_work(work, id_priv);
3161 	queue_work(cma_wq, &work->work);
3162 	return 0;
3163 }
3164 
3165 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3166 {
3167 	struct net_device *dev;
3168 
3169 	dev = vlan_dev_real_dev(vlan_ndev);
3170 	if (dev->num_tc)
3171 		return netdev_get_prio_tc_map(dev, prio);
3172 
3173 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3174 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3175 }
3176 
3177 struct iboe_prio_tc_map {
3178 	int input_prio;
3179 	int output_tc;
3180 	bool found;
3181 };
3182 
3183 static int get_lower_vlan_dev_tc(struct net_device *dev,
3184 				 struct netdev_nested_priv *priv)
3185 {
3186 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3187 
3188 	if (is_vlan_dev(dev))
3189 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3190 	else if (dev->num_tc)
3191 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3192 	else
3193 		map->output_tc = 0;
3194 	/* We are interested only in first level VLAN device, so always
3195 	 * return 1 to stop iterating over next level devices.
3196 	 */
3197 	map->found = true;
3198 	return 1;
3199 }
3200 
3201 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3202 {
3203 	struct iboe_prio_tc_map prio_tc_map = {};
3204 	int prio = rt_tos2priority(tos);
3205 	struct netdev_nested_priv priv;
3206 
3207 	/* If VLAN device, get it directly from the VLAN netdev */
3208 	if (is_vlan_dev(ndev))
3209 		return get_vlan_ndev_tc(ndev, prio);
3210 
3211 	prio_tc_map.input_prio = prio;
3212 	priv.data = (void *)&prio_tc_map;
3213 	rcu_read_lock();
3214 	netdev_walk_all_lower_dev_rcu(ndev,
3215 				      get_lower_vlan_dev_tc,
3216 				      &priv);
3217 	rcu_read_unlock();
3218 	/* If map is found from lower device, use it; Otherwise
3219 	 * continue with the current netdevice to get priority to tc map.
3220 	 */
3221 	if (prio_tc_map.found)
3222 		return prio_tc_map.output_tc;
3223 	else if (ndev->num_tc)
3224 		return netdev_get_prio_tc_map(ndev, prio);
3225 	else
3226 		return 0;
3227 }
3228 
3229 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3230 {
3231 	struct sockaddr_in6 *addr6;
3232 	u16 dport, sport;
3233 	u32 hash, fl;
3234 
3235 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3236 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3237 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3238 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3239 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3240 		hash = (u32)sport * 31 + dport;
3241 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3242 	}
3243 
3244 	return cpu_to_be32(fl);
3245 }
3246 
3247 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3248 {
3249 	struct rdma_route *route = &id_priv->id.route;
3250 	struct rdma_addr *addr = &route->addr;
3251 	struct cma_work *work;
3252 	int ret;
3253 	struct net_device *ndev;
3254 
3255 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3256 					rdma_start_port(id_priv->cma_dev->device)];
3257 	u8 tos;
3258 
3259 	mutex_lock(&id_priv->qp_mutex);
3260 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3261 	mutex_unlock(&id_priv->qp_mutex);
3262 
3263 	work = kzalloc(sizeof *work, GFP_KERNEL);
3264 	if (!work)
3265 		return -ENOMEM;
3266 
3267 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3268 	if (!route->path_rec) {
3269 		ret = -ENOMEM;
3270 		goto err1;
3271 	}
3272 
3273 	route->num_pri_alt_paths = 1;
3274 
3275 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3276 	if (!ndev) {
3277 		ret = -ENODEV;
3278 		goto err2;
3279 	}
3280 
3281 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3282 		    &route->path_rec->sgid);
3283 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3284 		    &route->path_rec->dgid);
3285 
3286 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3287 		/* TODO: get the hoplimit from the inet/inet6 device */
3288 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3289 	else
3290 		route->path_rec->hop_limit = 1;
3291 	route->path_rec->reversible = 1;
3292 	route->path_rec->pkey = cpu_to_be16(0xffff);
3293 	route->path_rec->mtu_selector = IB_SA_EQ;
3294 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3295 	route->path_rec->traffic_class = tos;
3296 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3297 	route->path_rec->rate_selector = IB_SA_EQ;
3298 	route->path_rec->rate = IB_RATE_PORT_CURRENT;
3299 	dev_put(ndev);
3300 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3301 	/* In case ACK timeout is set, use this value to calculate
3302 	 * PacketLifeTime.  As per IBTA 12.7.34,
3303 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3304 	 * Assuming a negligible local ACK delay, we can use
3305 	 * PacketLifeTime = local ACK timeout/2
3306 	 * as a reasonable approximation for RoCE networks.
3307 	 */
3308 	mutex_lock(&id_priv->qp_mutex);
3309 	if (id_priv->timeout_set && id_priv->timeout)
3310 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3311 	else
3312 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3313 	mutex_unlock(&id_priv->qp_mutex);
3314 
3315 	if (!route->path_rec->mtu) {
3316 		ret = -EINVAL;
3317 		goto err2;
3318 	}
3319 
3320 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3321 					 id_priv->id.port_num))
3322 		route->path_rec->flow_label =
3323 			cma_get_roce_udp_flow_label(id_priv);
3324 
3325 	cma_init_resolve_route_work(work, id_priv);
3326 	queue_work(cma_wq, &work->work);
3327 
3328 	return 0;
3329 
3330 err2:
3331 	kfree(route->path_rec);
3332 	route->path_rec = NULL;
3333 	route->num_pri_alt_paths = 0;
3334 err1:
3335 	kfree(work);
3336 	return ret;
3337 }
3338 
3339 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3340 {
3341 	struct rdma_id_private *id_priv;
3342 	int ret;
3343 
3344 	if (!timeout_ms)
3345 		return -EINVAL;
3346 
3347 	id_priv = container_of(id, struct rdma_id_private, id);
3348 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3349 		return -EINVAL;
3350 
3351 	cma_id_get(id_priv);
3352 	if (rdma_cap_ib_sa(id->device, id->port_num))
3353 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3354 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3355 		ret = cma_resolve_iboe_route(id_priv);
3356 		if (!ret)
3357 			cma_add_id_to_tree(id_priv);
3358 	}
3359 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3360 		ret = cma_resolve_iw_route(id_priv);
3361 	else
3362 		ret = -ENOSYS;
3363 
3364 	if (ret)
3365 		goto err;
3366 
3367 	return 0;
3368 err:
3369 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3370 	cma_id_put(id_priv);
3371 	return ret;
3372 }
3373 EXPORT_SYMBOL(rdma_resolve_route);
3374 
3375 static void cma_set_loopback(struct sockaddr *addr)
3376 {
3377 	switch (addr->sa_family) {
3378 	case AF_INET:
3379 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3380 		break;
3381 	case AF_INET6:
3382 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3383 			      0, 0, 0, htonl(1));
3384 		break;
3385 	default:
3386 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3387 			    0, 0, 0, htonl(1));
3388 		break;
3389 	}
3390 }
3391 
3392 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3393 {
3394 	struct cma_device *cma_dev, *cur_dev;
3395 	union ib_gid gid;
3396 	enum ib_port_state port_state;
3397 	unsigned int p;
3398 	u16 pkey;
3399 	int ret;
3400 
3401 	cma_dev = NULL;
3402 	mutex_lock(&lock);
3403 	list_for_each_entry(cur_dev, &dev_list, list) {
3404 		if (cma_family(id_priv) == AF_IB &&
3405 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3406 			continue;
3407 
3408 		if (!cma_dev)
3409 			cma_dev = cur_dev;
3410 
3411 		rdma_for_each_port (cur_dev->device, p) {
3412 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3413 			    port_state == IB_PORT_ACTIVE) {
3414 				cma_dev = cur_dev;
3415 				goto port_found;
3416 			}
3417 		}
3418 	}
3419 
3420 	if (!cma_dev) {
3421 		ret = -ENODEV;
3422 		goto out;
3423 	}
3424 
3425 	p = 1;
3426 
3427 port_found:
3428 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3429 	if (ret)
3430 		goto out;
3431 
3432 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3433 	if (ret)
3434 		goto out;
3435 
3436 	id_priv->id.route.addr.dev_addr.dev_type =
3437 		(rdma_protocol_ib(cma_dev->device, p)) ?
3438 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3439 
3440 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3441 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3442 	id_priv->id.port_num = p;
3443 	cma_attach_to_dev(id_priv, cma_dev);
3444 	rdma_restrack_add(&id_priv->res);
3445 	cma_set_loopback(cma_src_addr(id_priv));
3446 out:
3447 	mutex_unlock(&lock);
3448 	return ret;
3449 }
3450 
3451 static void addr_handler(int status, struct sockaddr *src_addr,
3452 			 struct rdma_dev_addr *dev_addr, void *context)
3453 {
3454 	struct rdma_id_private *id_priv = context;
3455 	struct rdma_cm_event event = {};
3456 	struct sockaddr *addr;
3457 	struct sockaddr_storage old_addr;
3458 
3459 	mutex_lock(&id_priv->handler_mutex);
3460 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3461 			   RDMA_CM_ADDR_RESOLVED))
3462 		goto out;
3463 
3464 	/*
3465 	 * Store the previous src address, so that if we fail to acquire
3466 	 * matching rdma device, old address can be restored back, which helps
3467 	 * to cancel the cma listen operation correctly.
3468 	 */
3469 	addr = cma_src_addr(id_priv);
3470 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3471 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3472 	if (!status && !id_priv->cma_dev) {
3473 		status = cma_acquire_dev_by_src_ip(id_priv);
3474 		if (status)
3475 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3476 					     status);
3477 		rdma_restrack_add(&id_priv->res);
3478 	} else if (status) {
3479 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3480 	}
3481 
3482 	if (status) {
3483 		memcpy(addr, &old_addr,
3484 		       rdma_addr_size((struct sockaddr *)&old_addr));
3485 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3486 				   RDMA_CM_ADDR_BOUND))
3487 			goto out;
3488 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3489 		event.status = status;
3490 	} else
3491 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3492 
3493 	if (cma_cm_event_handler(id_priv, &event)) {
3494 		destroy_id_handler_unlock(id_priv);
3495 		return;
3496 	}
3497 out:
3498 	mutex_unlock(&id_priv->handler_mutex);
3499 }
3500 
3501 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3502 {
3503 	struct cma_work *work;
3504 	union ib_gid gid;
3505 	int ret;
3506 
3507 	work = kzalloc(sizeof *work, GFP_KERNEL);
3508 	if (!work)
3509 		return -ENOMEM;
3510 
3511 	if (!id_priv->cma_dev) {
3512 		ret = cma_bind_loopback(id_priv);
3513 		if (ret)
3514 			goto err;
3515 	}
3516 
3517 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3518 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3519 
3520 	enqueue_resolve_addr_work(work, id_priv);
3521 	return 0;
3522 err:
3523 	kfree(work);
3524 	return ret;
3525 }
3526 
3527 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3528 {
3529 	struct cma_work *work;
3530 	int ret;
3531 
3532 	work = kzalloc(sizeof *work, GFP_KERNEL);
3533 	if (!work)
3534 		return -ENOMEM;
3535 
3536 	if (!id_priv->cma_dev) {
3537 		ret = cma_resolve_ib_dev(id_priv);
3538 		if (ret)
3539 			goto err;
3540 	}
3541 
3542 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3543 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3544 
3545 	enqueue_resolve_addr_work(work, id_priv);
3546 	return 0;
3547 err:
3548 	kfree(work);
3549 	return ret;
3550 }
3551 
3552 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3553 {
3554 	struct rdma_id_private *id_priv;
3555 	unsigned long flags;
3556 	int ret;
3557 
3558 	id_priv = container_of(id, struct rdma_id_private, id);
3559 	spin_lock_irqsave(&id_priv->lock, flags);
3560 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3561 	    id_priv->state == RDMA_CM_IDLE) {
3562 		id_priv->reuseaddr = reuse;
3563 		ret = 0;
3564 	} else {
3565 		ret = -EINVAL;
3566 	}
3567 	spin_unlock_irqrestore(&id_priv->lock, flags);
3568 	return ret;
3569 }
3570 EXPORT_SYMBOL(rdma_set_reuseaddr);
3571 
3572 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3573 {
3574 	struct rdma_id_private *id_priv;
3575 	unsigned long flags;
3576 	int ret;
3577 
3578 	id_priv = container_of(id, struct rdma_id_private, id);
3579 	spin_lock_irqsave(&id_priv->lock, flags);
3580 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3581 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3582 		id_priv->afonly = afonly;
3583 		ret = 0;
3584 	} else {
3585 		ret = -EINVAL;
3586 	}
3587 	spin_unlock_irqrestore(&id_priv->lock, flags);
3588 	return ret;
3589 }
3590 EXPORT_SYMBOL(rdma_set_afonly);
3591 
3592 static void cma_bind_port(struct rdma_bind_list *bind_list,
3593 			  struct rdma_id_private *id_priv)
3594 {
3595 	struct sockaddr *addr;
3596 	struct sockaddr_ib *sib;
3597 	u64 sid, mask;
3598 	__be16 port;
3599 
3600 	lockdep_assert_held(&lock);
3601 
3602 	addr = cma_src_addr(id_priv);
3603 	port = htons(bind_list->port);
3604 
3605 	switch (addr->sa_family) {
3606 	case AF_INET:
3607 		((struct sockaddr_in *) addr)->sin_port = port;
3608 		break;
3609 	case AF_INET6:
3610 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3611 		break;
3612 	case AF_IB:
3613 		sib = (struct sockaddr_ib *) addr;
3614 		sid = be64_to_cpu(sib->sib_sid);
3615 		mask = be64_to_cpu(sib->sib_sid_mask);
3616 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3617 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3618 		break;
3619 	}
3620 	id_priv->bind_list = bind_list;
3621 	hlist_add_head(&id_priv->node, &bind_list->owners);
3622 }
3623 
3624 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3625 			  struct rdma_id_private *id_priv, unsigned short snum)
3626 {
3627 	struct rdma_bind_list *bind_list;
3628 	int ret;
3629 
3630 	lockdep_assert_held(&lock);
3631 
3632 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3633 	if (!bind_list)
3634 		return -ENOMEM;
3635 
3636 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3637 			   snum);
3638 	if (ret < 0)
3639 		goto err;
3640 
3641 	bind_list->ps = ps;
3642 	bind_list->port = snum;
3643 	cma_bind_port(bind_list, id_priv);
3644 	return 0;
3645 err:
3646 	kfree(bind_list);
3647 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3648 }
3649 
3650 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3651 			      struct rdma_id_private *id_priv)
3652 {
3653 	struct rdma_id_private *cur_id;
3654 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3655 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3656 	__be16 dport = cma_port(daddr);
3657 
3658 	lockdep_assert_held(&lock);
3659 
3660 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3661 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3662 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3663 		__be16 cur_dport = cma_port(cur_daddr);
3664 
3665 		if (id_priv == cur_id)
3666 			continue;
3667 
3668 		/* different dest port -> unique */
3669 		if (!cma_any_port(daddr) &&
3670 		    !cma_any_port(cur_daddr) &&
3671 		    (dport != cur_dport))
3672 			continue;
3673 
3674 		/* different src address -> unique */
3675 		if (!cma_any_addr(saddr) &&
3676 		    !cma_any_addr(cur_saddr) &&
3677 		    cma_addr_cmp(saddr, cur_saddr))
3678 			continue;
3679 
3680 		/* different dst address -> unique */
3681 		if (!cma_any_addr(daddr) &&
3682 		    !cma_any_addr(cur_daddr) &&
3683 		    cma_addr_cmp(daddr, cur_daddr))
3684 			continue;
3685 
3686 		return -EADDRNOTAVAIL;
3687 	}
3688 	return 0;
3689 }
3690 
3691 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3692 			      struct rdma_id_private *id_priv)
3693 {
3694 	static unsigned int last_used_port;
3695 	int low, high, remaining;
3696 	unsigned int rover;
3697 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3698 
3699 	lockdep_assert_held(&lock);
3700 
3701 	inet_get_local_port_range(net, &low, &high);
3702 	remaining = (high - low) + 1;
3703 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3704 retry:
3705 	if (last_used_port != rover) {
3706 		struct rdma_bind_list *bind_list;
3707 		int ret;
3708 
3709 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3710 
3711 		if (!bind_list) {
3712 			ret = cma_alloc_port(ps, id_priv, rover);
3713 		} else {
3714 			ret = cma_port_is_unique(bind_list, id_priv);
3715 			if (!ret)
3716 				cma_bind_port(bind_list, id_priv);
3717 		}
3718 		/*
3719 		 * Remember previously used port number in order to avoid
3720 		 * re-using same port immediately after it is closed.
3721 		 */
3722 		if (!ret)
3723 			last_used_port = rover;
3724 		if (ret != -EADDRNOTAVAIL)
3725 			return ret;
3726 	}
3727 	if (--remaining) {
3728 		rover++;
3729 		if ((rover < low) || (rover > high))
3730 			rover = low;
3731 		goto retry;
3732 	}
3733 	return -EADDRNOTAVAIL;
3734 }
3735 
3736 /*
3737  * Check that the requested port is available.  This is called when trying to
3738  * bind to a specific port, or when trying to listen on a bound port.  In
3739  * the latter case, the provided id_priv may already be on the bind_list, but
3740  * we still need to check that it's okay to start listening.
3741  */
3742 static int cma_check_port(struct rdma_bind_list *bind_list,
3743 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3744 {
3745 	struct rdma_id_private *cur_id;
3746 	struct sockaddr *addr, *cur_addr;
3747 
3748 	lockdep_assert_held(&lock);
3749 
3750 	addr = cma_src_addr(id_priv);
3751 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3752 		if (id_priv == cur_id)
3753 			continue;
3754 
3755 		if (reuseaddr && cur_id->reuseaddr)
3756 			continue;
3757 
3758 		cur_addr = cma_src_addr(cur_id);
3759 		if (id_priv->afonly && cur_id->afonly &&
3760 		    (addr->sa_family != cur_addr->sa_family))
3761 			continue;
3762 
3763 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3764 			return -EADDRNOTAVAIL;
3765 
3766 		if (!cma_addr_cmp(addr, cur_addr))
3767 			return -EADDRINUSE;
3768 	}
3769 	return 0;
3770 }
3771 
3772 static int cma_use_port(enum rdma_ucm_port_space ps,
3773 			struct rdma_id_private *id_priv)
3774 {
3775 	struct rdma_bind_list *bind_list;
3776 	unsigned short snum;
3777 	int ret;
3778 
3779 	lockdep_assert_held(&lock);
3780 
3781 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3782 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3783 		return -EACCES;
3784 
3785 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3786 	if (!bind_list) {
3787 		ret = cma_alloc_port(ps, id_priv, snum);
3788 	} else {
3789 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3790 		if (!ret)
3791 			cma_bind_port(bind_list, id_priv);
3792 	}
3793 	return ret;
3794 }
3795 
3796 static enum rdma_ucm_port_space
3797 cma_select_inet_ps(struct rdma_id_private *id_priv)
3798 {
3799 	switch (id_priv->id.ps) {
3800 	case RDMA_PS_TCP:
3801 	case RDMA_PS_UDP:
3802 	case RDMA_PS_IPOIB:
3803 	case RDMA_PS_IB:
3804 		return id_priv->id.ps;
3805 	default:
3806 
3807 		return 0;
3808 	}
3809 }
3810 
3811 static enum rdma_ucm_port_space
3812 cma_select_ib_ps(struct rdma_id_private *id_priv)
3813 {
3814 	enum rdma_ucm_port_space ps = 0;
3815 	struct sockaddr_ib *sib;
3816 	u64 sid_ps, mask, sid;
3817 
3818 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3819 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3820 	sid = be64_to_cpu(sib->sib_sid) & mask;
3821 
3822 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3823 		sid_ps = RDMA_IB_IP_PS_IB;
3824 		ps = RDMA_PS_IB;
3825 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3826 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3827 		sid_ps = RDMA_IB_IP_PS_TCP;
3828 		ps = RDMA_PS_TCP;
3829 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3830 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3831 		sid_ps = RDMA_IB_IP_PS_UDP;
3832 		ps = RDMA_PS_UDP;
3833 	}
3834 
3835 	if (ps) {
3836 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3837 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3838 						be64_to_cpu(sib->sib_sid_mask));
3839 	}
3840 	return ps;
3841 }
3842 
3843 static int cma_get_port(struct rdma_id_private *id_priv)
3844 {
3845 	enum rdma_ucm_port_space ps;
3846 	int ret;
3847 
3848 	if (cma_family(id_priv) != AF_IB)
3849 		ps = cma_select_inet_ps(id_priv);
3850 	else
3851 		ps = cma_select_ib_ps(id_priv);
3852 	if (!ps)
3853 		return -EPROTONOSUPPORT;
3854 
3855 	mutex_lock(&lock);
3856 	if (cma_any_port(cma_src_addr(id_priv)))
3857 		ret = cma_alloc_any_port(ps, id_priv);
3858 	else
3859 		ret = cma_use_port(ps, id_priv);
3860 	mutex_unlock(&lock);
3861 
3862 	return ret;
3863 }
3864 
3865 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3866 			       struct sockaddr *addr)
3867 {
3868 #if IS_ENABLED(CONFIG_IPV6)
3869 	struct sockaddr_in6 *sin6;
3870 
3871 	if (addr->sa_family != AF_INET6)
3872 		return 0;
3873 
3874 	sin6 = (struct sockaddr_in6 *) addr;
3875 
3876 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3877 		return 0;
3878 
3879 	if (!sin6->sin6_scope_id)
3880 			return -EINVAL;
3881 
3882 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3883 #endif
3884 	return 0;
3885 }
3886 
3887 int rdma_listen(struct rdma_cm_id *id, int backlog)
3888 {
3889 	struct rdma_id_private *id_priv =
3890 		container_of(id, struct rdma_id_private, id);
3891 	int ret;
3892 
3893 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3894 		struct sockaddr_in any_in = {
3895 			.sin_family = AF_INET,
3896 			.sin_addr.s_addr = htonl(INADDR_ANY),
3897 		};
3898 
3899 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3900 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3901 		if (ret)
3902 			return ret;
3903 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3904 					   RDMA_CM_LISTEN)))
3905 			return -EINVAL;
3906 	}
3907 
3908 	/*
3909 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3910 	 * any more, and has to be unique in the bind list.
3911 	 */
3912 	if (id_priv->reuseaddr) {
3913 		mutex_lock(&lock);
3914 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3915 		if (!ret)
3916 			id_priv->reuseaddr = 0;
3917 		mutex_unlock(&lock);
3918 		if (ret)
3919 			goto err;
3920 	}
3921 
3922 	id_priv->backlog = backlog;
3923 	if (id_priv->cma_dev) {
3924 		if (rdma_cap_ib_cm(id->device, 1)) {
3925 			ret = cma_ib_listen(id_priv);
3926 			if (ret)
3927 				goto err;
3928 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3929 			ret = cma_iw_listen(id_priv, backlog);
3930 			if (ret)
3931 				goto err;
3932 		} else {
3933 			ret = -ENOSYS;
3934 			goto err;
3935 		}
3936 	} else {
3937 		ret = cma_listen_on_all(id_priv);
3938 		if (ret)
3939 			goto err;
3940 	}
3941 
3942 	return 0;
3943 err:
3944 	id_priv->backlog = 0;
3945 	/*
3946 	 * All the failure paths that lead here will not allow the req_handler's
3947 	 * to have run.
3948 	 */
3949 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3950 	return ret;
3951 }
3952 EXPORT_SYMBOL(rdma_listen);
3953 
3954 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
3955 			      struct sockaddr *addr, const struct sockaddr *daddr)
3956 {
3957 	struct sockaddr *id_daddr;
3958 	int ret;
3959 
3960 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3961 	    addr->sa_family != AF_IB)
3962 		return -EAFNOSUPPORT;
3963 
3964 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3965 		return -EINVAL;
3966 
3967 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
3968 	if (ret)
3969 		goto err1;
3970 
3971 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3972 	if (!cma_any_addr(addr)) {
3973 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
3974 		if (ret)
3975 			goto err1;
3976 
3977 		ret = cma_acquire_dev_by_src_ip(id_priv);
3978 		if (ret)
3979 			goto err1;
3980 	}
3981 
3982 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3983 		if (addr->sa_family == AF_INET)
3984 			id_priv->afonly = 1;
3985 #if IS_ENABLED(CONFIG_IPV6)
3986 		else if (addr->sa_family == AF_INET6) {
3987 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3988 
3989 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3990 		}
3991 #endif
3992 	}
3993 	id_daddr = cma_dst_addr(id_priv);
3994 	if (daddr != id_daddr)
3995 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
3996 	id_daddr->sa_family = addr->sa_family;
3997 
3998 	ret = cma_get_port(id_priv);
3999 	if (ret)
4000 		goto err2;
4001 
4002 	if (!cma_any_addr(addr))
4003 		rdma_restrack_add(&id_priv->res);
4004 	return 0;
4005 err2:
4006 	if (id_priv->cma_dev)
4007 		cma_release_dev(id_priv);
4008 err1:
4009 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4010 	return ret;
4011 }
4012 
4013 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4014 			 const struct sockaddr *dst_addr)
4015 {
4016 	struct rdma_id_private *id_priv =
4017 		container_of(id, struct rdma_id_private, id);
4018 	struct sockaddr_storage zero_sock = {};
4019 
4020 	if (src_addr && src_addr->sa_family)
4021 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4022 
4023 	/*
4024 	 * When the src_addr is not specified, automatically supply an any addr
4025 	 */
4026 	zero_sock.ss_family = dst_addr->sa_family;
4027 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4028 		struct sockaddr_in6 *src_addr6 =
4029 			(struct sockaddr_in6 *)&zero_sock;
4030 		struct sockaddr_in6 *dst_addr6 =
4031 			(struct sockaddr_in6 *)dst_addr;
4032 
4033 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4034 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4035 			id->route.addr.dev_addr.bound_dev_if =
4036 				dst_addr6->sin6_scope_id;
4037 	} else if (dst_addr->sa_family == AF_IB) {
4038 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4039 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4040 	}
4041 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4042 }
4043 
4044 /*
4045  * If required, resolve the source address for bind and leave the id_priv in
4046  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4047  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4048  * ignored.
4049  */
4050 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4051 			       struct sockaddr *src_addr,
4052 			       const struct sockaddr *dst_addr)
4053 {
4054 	int ret;
4055 
4056 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4057 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4058 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4059 		if (ret)
4060 			return ret;
4061 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4062 					   RDMA_CM_ADDR_QUERY)))
4063 			return -EINVAL;
4064 
4065 	} else {
4066 		memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4067 	}
4068 
4069 	if (cma_family(id_priv) != dst_addr->sa_family) {
4070 		ret = -EINVAL;
4071 		goto err_state;
4072 	}
4073 	return 0;
4074 
4075 err_state:
4076 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4077 	return ret;
4078 }
4079 
4080 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4081 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4082 {
4083 	struct rdma_id_private *id_priv =
4084 		container_of(id, struct rdma_id_private, id);
4085 	int ret;
4086 
4087 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4088 	if (ret)
4089 		return ret;
4090 
4091 	if (cma_any_addr(dst_addr)) {
4092 		ret = cma_resolve_loopback(id_priv);
4093 	} else {
4094 		if (dst_addr->sa_family == AF_IB) {
4095 			ret = cma_resolve_ib_addr(id_priv);
4096 		} else {
4097 			/*
4098 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4099 			 * rdma_resolve_ip() is called, eg through the error
4100 			 * path in addr_handler(). If this happens the existing
4101 			 * request must be canceled before issuing a new one.
4102 			 * Since canceling a request is a bit slow and this
4103 			 * oddball path is rare, keep track once a request has
4104 			 * been issued. The track turns out to be a permanent
4105 			 * state since this is the only cancel as it is
4106 			 * immediately before rdma_resolve_ip().
4107 			 */
4108 			if (id_priv->used_resolve_ip)
4109 				rdma_addr_cancel(&id->route.addr.dev_addr);
4110 			else
4111 				id_priv->used_resolve_ip = 1;
4112 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4113 					      &id->route.addr.dev_addr,
4114 					      timeout_ms, addr_handler,
4115 					      false, id_priv);
4116 		}
4117 	}
4118 	if (ret)
4119 		goto err;
4120 
4121 	return 0;
4122 err:
4123 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4124 	return ret;
4125 }
4126 EXPORT_SYMBOL(rdma_resolve_addr);
4127 
4128 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4129 {
4130 	struct rdma_id_private *id_priv =
4131 		container_of(id, struct rdma_id_private, id);
4132 
4133 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4134 }
4135 EXPORT_SYMBOL(rdma_bind_addr);
4136 
4137 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4138 {
4139 	struct cma_hdr *cma_hdr;
4140 
4141 	cma_hdr = hdr;
4142 	cma_hdr->cma_version = CMA_VERSION;
4143 	if (cma_family(id_priv) == AF_INET) {
4144 		struct sockaddr_in *src4, *dst4;
4145 
4146 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4147 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4148 
4149 		cma_set_ip_ver(cma_hdr, 4);
4150 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4151 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4152 		cma_hdr->port = src4->sin_port;
4153 	} else if (cma_family(id_priv) == AF_INET6) {
4154 		struct sockaddr_in6 *src6, *dst6;
4155 
4156 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4157 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4158 
4159 		cma_set_ip_ver(cma_hdr, 6);
4160 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4161 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4162 		cma_hdr->port = src6->sin6_port;
4163 	}
4164 	return 0;
4165 }
4166 
4167 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4168 				const struct ib_cm_event *ib_event)
4169 {
4170 	struct rdma_id_private *id_priv = cm_id->context;
4171 	struct rdma_cm_event event = {};
4172 	const struct ib_cm_sidr_rep_event_param *rep =
4173 				&ib_event->param.sidr_rep_rcvd;
4174 	int ret;
4175 
4176 	mutex_lock(&id_priv->handler_mutex);
4177 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4178 		goto out;
4179 
4180 	switch (ib_event->event) {
4181 	case IB_CM_SIDR_REQ_ERROR:
4182 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4183 		event.status = -ETIMEDOUT;
4184 		break;
4185 	case IB_CM_SIDR_REP_RECEIVED:
4186 		event.param.ud.private_data = ib_event->private_data;
4187 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4188 		if (rep->status != IB_SIDR_SUCCESS) {
4189 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4190 			event.status = ib_event->param.sidr_rep_rcvd.status;
4191 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4192 					     event.status);
4193 			break;
4194 		}
4195 		ret = cma_set_qkey(id_priv, rep->qkey);
4196 		if (ret) {
4197 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4198 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4199 			event.status = ret;
4200 			break;
4201 		}
4202 		ib_init_ah_attr_from_path(id_priv->id.device,
4203 					  id_priv->id.port_num,
4204 					  id_priv->id.route.path_rec,
4205 					  &event.param.ud.ah_attr,
4206 					  rep->sgid_attr);
4207 		event.param.ud.qp_num = rep->qpn;
4208 		event.param.ud.qkey = rep->qkey;
4209 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4210 		event.status = 0;
4211 		break;
4212 	default:
4213 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4214 		       ib_event->event);
4215 		goto out;
4216 	}
4217 
4218 	ret = cma_cm_event_handler(id_priv, &event);
4219 
4220 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4221 	if (ret) {
4222 		/* Destroy the CM ID by returning a non-zero value. */
4223 		id_priv->cm_id.ib = NULL;
4224 		destroy_id_handler_unlock(id_priv);
4225 		return ret;
4226 	}
4227 out:
4228 	mutex_unlock(&id_priv->handler_mutex);
4229 	return 0;
4230 }
4231 
4232 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4233 			      struct rdma_conn_param *conn_param)
4234 {
4235 	struct ib_cm_sidr_req_param req;
4236 	struct ib_cm_id	*id;
4237 	void *private_data;
4238 	u8 offset;
4239 	int ret;
4240 
4241 	memset(&req, 0, sizeof req);
4242 	offset = cma_user_data_offset(id_priv);
4243 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4244 		return -EINVAL;
4245 
4246 	if (req.private_data_len) {
4247 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4248 		if (!private_data)
4249 			return -ENOMEM;
4250 	} else {
4251 		private_data = NULL;
4252 	}
4253 
4254 	if (conn_param->private_data && conn_param->private_data_len)
4255 		memcpy(private_data + offset, conn_param->private_data,
4256 		       conn_param->private_data_len);
4257 
4258 	if (private_data) {
4259 		ret = cma_format_hdr(private_data, id_priv);
4260 		if (ret)
4261 			goto out;
4262 		req.private_data = private_data;
4263 	}
4264 
4265 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4266 			     id_priv);
4267 	if (IS_ERR(id)) {
4268 		ret = PTR_ERR(id);
4269 		goto out;
4270 	}
4271 	id_priv->cm_id.ib = id;
4272 
4273 	req.path = id_priv->id.route.path_rec;
4274 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4275 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4276 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4277 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4278 
4279 	trace_cm_send_sidr_req(id_priv);
4280 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4281 	if (ret) {
4282 		ib_destroy_cm_id(id_priv->cm_id.ib);
4283 		id_priv->cm_id.ib = NULL;
4284 	}
4285 out:
4286 	kfree(private_data);
4287 	return ret;
4288 }
4289 
4290 static int cma_connect_ib(struct rdma_id_private *id_priv,
4291 			  struct rdma_conn_param *conn_param)
4292 {
4293 	struct ib_cm_req_param req;
4294 	struct rdma_route *route;
4295 	void *private_data;
4296 	struct ib_cm_id	*id;
4297 	u8 offset;
4298 	int ret;
4299 
4300 	memset(&req, 0, sizeof req);
4301 	offset = cma_user_data_offset(id_priv);
4302 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4303 		return -EINVAL;
4304 
4305 	if (req.private_data_len) {
4306 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4307 		if (!private_data)
4308 			return -ENOMEM;
4309 	} else {
4310 		private_data = NULL;
4311 	}
4312 
4313 	if (conn_param->private_data && conn_param->private_data_len)
4314 		memcpy(private_data + offset, conn_param->private_data,
4315 		       conn_param->private_data_len);
4316 
4317 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4318 	if (IS_ERR(id)) {
4319 		ret = PTR_ERR(id);
4320 		goto out;
4321 	}
4322 	id_priv->cm_id.ib = id;
4323 
4324 	route = &id_priv->id.route;
4325 	if (private_data) {
4326 		ret = cma_format_hdr(private_data, id_priv);
4327 		if (ret)
4328 			goto out;
4329 		req.private_data = private_data;
4330 	}
4331 
4332 	req.primary_path = &route->path_rec[0];
4333 	req.primary_path_inbound = route->path_rec_inbound;
4334 	req.primary_path_outbound = route->path_rec_outbound;
4335 	if (route->num_pri_alt_paths == 2)
4336 		req.alternate_path = &route->path_rec[1];
4337 
4338 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4339 	/* Alternate path SGID attribute currently unsupported */
4340 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4341 	req.qp_num = id_priv->qp_num;
4342 	req.qp_type = id_priv->id.qp_type;
4343 	req.starting_psn = id_priv->seq_num;
4344 	req.responder_resources = conn_param->responder_resources;
4345 	req.initiator_depth = conn_param->initiator_depth;
4346 	req.flow_control = conn_param->flow_control;
4347 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4348 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4349 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4350 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4351 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4352 	req.srq = id_priv->srq ? 1 : 0;
4353 	req.ece.vendor_id = id_priv->ece.vendor_id;
4354 	req.ece.attr_mod = id_priv->ece.attr_mod;
4355 
4356 	trace_cm_send_req(id_priv);
4357 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4358 out:
4359 	if (ret && !IS_ERR(id)) {
4360 		ib_destroy_cm_id(id);
4361 		id_priv->cm_id.ib = NULL;
4362 	}
4363 
4364 	kfree(private_data);
4365 	return ret;
4366 }
4367 
4368 static int cma_connect_iw(struct rdma_id_private *id_priv,
4369 			  struct rdma_conn_param *conn_param)
4370 {
4371 	struct iw_cm_id *cm_id;
4372 	int ret;
4373 	struct iw_cm_conn_param iw_param;
4374 
4375 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4376 	if (IS_ERR(cm_id))
4377 		return PTR_ERR(cm_id);
4378 
4379 	mutex_lock(&id_priv->qp_mutex);
4380 	cm_id->tos = id_priv->tos;
4381 	cm_id->tos_set = id_priv->tos_set;
4382 	mutex_unlock(&id_priv->qp_mutex);
4383 
4384 	id_priv->cm_id.iw = cm_id;
4385 
4386 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4387 	       rdma_addr_size(cma_src_addr(id_priv)));
4388 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4389 	       rdma_addr_size(cma_dst_addr(id_priv)));
4390 
4391 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4392 	if (ret)
4393 		goto out;
4394 
4395 	if (conn_param) {
4396 		iw_param.ord = conn_param->initiator_depth;
4397 		iw_param.ird = conn_param->responder_resources;
4398 		iw_param.private_data = conn_param->private_data;
4399 		iw_param.private_data_len = conn_param->private_data_len;
4400 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4401 	} else {
4402 		memset(&iw_param, 0, sizeof iw_param);
4403 		iw_param.qpn = id_priv->qp_num;
4404 	}
4405 	ret = iw_cm_connect(cm_id, &iw_param);
4406 out:
4407 	if (ret) {
4408 		iw_destroy_cm_id(cm_id);
4409 		id_priv->cm_id.iw = NULL;
4410 	}
4411 	return ret;
4412 }
4413 
4414 /**
4415  * rdma_connect_locked - Initiate an active connection request.
4416  * @id: Connection identifier to connect.
4417  * @conn_param: Connection information used for connected QPs.
4418  *
4419  * Same as rdma_connect() but can only be called from the
4420  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4421  */
4422 int rdma_connect_locked(struct rdma_cm_id *id,
4423 			struct rdma_conn_param *conn_param)
4424 {
4425 	struct rdma_id_private *id_priv =
4426 		container_of(id, struct rdma_id_private, id);
4427 	int ret;
4428 
4429 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4430 		return -EINVAL;
4431 
4432 	if (!id->qp) {
4433 		id_priv->qp_num = conn_param->qp_num;
4434 		id_priv->srq = conn_param->srq;
4435 	}
4436 
4437 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4438 		if (id->qp_type == IB_QPT_UD)
4439 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4440 		else
4441 			ret = cma_connect_ib(id_priv, conn_param);
4442 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4443 		ret = cma_connect_iw(id_priv, conn_param);
4444 	} else {
4445 		ret = -ENOSYS;
4446 	}
4447 	if (ret)
4448 		goto err_state;
4449 	return 0;
4450 err_state:
4451 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4452 	return ret;
4453 }
4454 EXPORT_SYMBOL(rdma_connect_locked);
4455 
4456 /**
4457  * rdma_connect - Initiate an active connection request.
4458  * @id: Connection identifier to connect.
4459  * @conn_param: Connection information used for connected QPs.
4460  *
4461  * Users must have resolved a route for the rdma_cm_id to connect with by having
4462  * called rdma_resolve_route before calling this routine.
4463  *
4464  * This call will either connect to a remote QP or obtain remote QP information
4465  * for unconnected rdma_cm_id's.  The actual operation is based on the
4466  * rdma_cm_id's port space.
4467  */
4468 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4469 {
4470 	struct rdma_id_private *id_priv =
4471 		container_of(id, struct rdma_id_private, id);
4472 	int ret;
4473 
4474 	mutex_lock(&id_priv->handler_mutex);
4475 	ret = rdma_connect_locked(id, conn_param);
4476 	mutex_unlock(&id_priv->handler_mutex);
4477 	return ret;
4478 }
4479 EXPORT_SYMBOL(rdma_connect);
4480 
4481 /**
4482  * rdma_connect_ece - Initiate an active connection request with ECE data.
4483  * @id: Connection identifier to connect.
4484  * @conn_param: Connection information used for connected QPs.
4485  * @ece: ECE parameters
4486  *
4487  * See rdma_connect() explanation.
4488  */
4489 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4490 		     struct rdma_ucm_ece *ece)
4491 {
4492 	struct rdma_id_private *id_priv =
4493 		container_of(id, struct rdma_id_private, id);
4494 
4495 	id_priv->ece.vendor_id = ece->vendor_id;
4496 	id_priv->ece.attr_mod = ece->attr_mod;
4497 
4498 	return rdma_connect(id, conn_param);
4499 }
4500 EXPORT_SYMBOL(rdma_connect_ece);
4501 
4502 static int cma_accept_ib(struct rdma_id_private *id_priv,
4503 			 struct rdma_conn_param *conn_param)
4504 {
4505 	struct ib_cm_rep_param rep;
4506 	int ret;
4507 
4508 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4509 	if (ret)
4510 		goto out;
4511 
4512 	ret = cma_modify_qp_rts(id_priv, conn_param);
4513 	if (ret)
4514 		goto out;
4515 
4516 	memset(&rep, 0, sizeof rep);
4517 	rep.qp_num = id_priv->qp_num;
4518 	rep.starting_psn = id_priv->seq_num;
4519 	rep.private_data = conn_param->private_data;
4520 	rep.private_data_len = conn_param->private_data_len;
4521 	rep.responder_resources = conn_param->responder_resources;
4522 	rep.initiator_depth = conn_param->initiator_depth;
4523 	rep.failover_accepted = 0;
4524 	rep.flow_control = conn_param->flow_control;
4525 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4526 	rep.srq = id_priv->srq ? 1 : 0;
4527 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4528 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4529 
4530 	trace_cm_send_rep(id_priv);
4531 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4532 out:
4533 	return ret;
4534 }
4535 
4536 static int cma_accept_iw(struct rdma_id_private *id_priv,
4537 		  struct rdma_conn_param *conn_param)
4538 {
4539 	struct iw_cm_conn_param iw_param;
4540 	int ret;
4541 
4542 	if (!conn_param)
4543 		return -EINVAL;
4544 
4545 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4546 	if (ret)
4547 		return ret;
4548 
4549 	iw_param.ord = conn_param->initiator_depth;
4550 	iw_param.ird = conn_param->responder_resources;
4551 	iw_param.private_data = conn_param->private_data;
4552 	iw_param.private_data_len = conn_param->private_data_len;
4553 	if (id_priv->id.qp)
4554 		iw_param.qpn = id_priv->qp_num;
4555 	else
4556 		iw_param.qpn = conn_param->qp_num;
4557 
4558 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4559 }
4560 
4561 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4562 			     enum ib_cm_sidr_status status, u32 qkey,
4563 			     const void *private_data, int private_data_len)
4564 {
4565 	struct ib_cm_sidr_rep_param rep;
4566 	int ret;
4567 
4568 	memset(&rep, 0, sizeof rep);
4569 	rep.status = status;
4570 	if (status == IB_SIDR_SUCCESS) {
4571 		if (qkey)
4572 			ret = cma_set_qkey(id_priv, qkey);
4573 		else
4574 			ret = cma_set_default_qkey(id_priv);
4575 		if (ret)
4576 			return ret;
4577 		rep.qp_num = id_priv->qp_num;
4578 		rep.qkey = id_priv->qkey;
4579 
4580 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4581 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4582 	}
4583 
4584 	rep.private_data = private_data;
4585 	rep.private_data_len = private_data_len;
4586 
4587 	trace_cm_send_sidr_rep(id_priv);
4588 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4589 }
4590 
4591 /**
4592  * rdma_accept - Called to accept a connection request or response.
4593  * @id: Connection identifier associated with the request.
4594  * @conn_param: Information needed to establish the connection.  This must be
4595  *   provided if accepting a connection request.  If accepting a connection
4596  *   response, this parameter must be NULL.
4597  *
4598  * Typically, this routine is only called by the listener to accept a connection
4599  * request.  It must also be called on the active side of a connection if the
4600  * user is performing their own QP transitions.
4601  *
4602  * In the case of error, a reject message is sent to the remote side and the
4603  * state of the qp associated with the id is modified to error, such that any
4604  * previously posted receive buffers would be flushed.
4605  *
4606  * This function is for use by kernel ULPs and must be called from under the
4607  * handler callback.
4608  */
4609 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4610 {
4611 	struct rdma_id_private *id_priv =
4612 		container_of(id, struct rdma_id_private, id);
4613 	int ret;
4614 
4615 	lockdep_assert_held(&id_priv->handler_mutex);
4616 
4617 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4618 		return -EINVAL;
4619 
4620 	if (!id->qp && conn_param) {
4621 		id_priv->qp_num = conn_param->qp_num;
4622 		id_priv->srq = conn_param->srq;
4623 	}
4624 
4625 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4626 		if (id->qp_type == IB_QPT_UD) {
4627 			if (conn_param)
4628 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4629 							conn_param->qkey,
4630 							conn_param->private_data,
4631 							conn_param->private_data_len);
4632 			else
4633 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4634 							0, NULL, 0);
4635 		} else {
4636 			if (conn_param)
4637 				ret = cma_accept_ib(id_priv, conn_param);
4638 			else
4639 				ret = cma_rep_recv(id_priv);
4640 		}
4641 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4642 		ret = cma_accept_iw(id_priv, conn_param);
4643 	} else {
4644 		ret = -ENOSYS;
4645 	}
4646 	if (ret)
4647 		goto reject;
4648 
4649 	return 0;
4650 reject:
4651 	cma_modify_qp_err(id_priv);
4652 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4653 	return ret;
4654 }
4655 EXPORT_SYMBOL(rdma_accept);
4656 
4657 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4658 		    struct rdma_ucm_ece *ece)
4659 {
4660 	struct rdma_id_private *id_priv =
4661 		container_of(id, struct rdma_id_private, id);
4662 
4663 	id_priv->ece.vendor_id = ece->vendor_id;
4664 	id_priv->ece.attr_mod = ece->attr_mod;
4665 
4666 	return rdma_accept(id, conn_param);
4667 }
4668 EXPORT_SYMBOL(rdma_accept_ece);
4669 
4670 void rdma_lock_handler(struct rdma_cm_id *id)
4671 {
4672 	struct rdma_id_private *id_priv =
4673 		container_of(id, struct rdma_id_private, id);
4674 
4675 	mutex_lock(&id_priv->handler_mutex);
4676 }
4677 EXPORT_SYMBOL(rdma_lock_handler);
4678 
4679 void rdma_unlock_handler(struct rdma_cm_id *id)
4680 {
4681 	struct rdma_id_private *id_priv =
4682 		container_of(id, struct rdma_id_private, id);
4683 
4684 	mutex_unlock(&id_priv->handler_mutex);
4685 }
4686 EXPORT_SYMBOL(rdma_unlock_handler);
4687 
4688 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4689 {
4690 	struct rdma_id_private *id_priv;
4691 	int ret;
4692 
4693 	id_priv = container_of(id, struct rdma_id_private, id);
4694 	if (!id_priv->cm_id.ib)
4695 		return -EINVAL;
4696 
4697 	switch (id->device->node_type) {
4698 	case RDMA_NODE_IB_CA:
4699 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4700 		break;
4701 	default:
4702 		ret = 0;
4703 		break;
4704 	}
4705 	return ret;
4706 }
4707 EXPORT_SYMBOL(rdma_notify);
4708 
4709 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4710 		u8 private_data_len, u8 reason)
4711 {
4712 	struct rdma_id_private *id_priv;
4713 	int ret;
4714 
4715 	id_priv = container_of(id, struct rdma_id_private, id);
4716 	if (!id_priv->cm_id.ib)
4717 		return -EINVAL;
4718 
4719 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4720 		if (id->qp_type == IB_QPT_UD) {
4721 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4722 						private_data, private_data_len);
4723 		} else {
4724 			trace_cm_send_rej(id_priv);
4725 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4726 					     private_data, private_data_len);
4727 		}
4728 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4729 		ret = iw_cm_reject(id_priv->cm_id.iw,
4730 				   private_data, private_data_len);
4731 	} else {
4732 		ret = -ENOSYS;
4733 	}
4734 
4735 	return ret;
4736 }
4737 EXPORT_SYMBOL(rdma_reject);
4738 
4739 int rdma_disconnect(struct rdma_cm_id *id)
4740 {
4741 	struct rdma_id_private *id_priv;
4742 	int ret;
4743 
4744 	id_priv = container_of(id, struct rdma_id_private, id);
4745 	if (!id_priv->cm_id.ib)
4746 		return -EINVAL;
4747 
4748 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4749 		ret = cma_modify_qp_err(id_priv);
4750 		if (ret)
4751 			goto out;
4752 		/* Initiate or respond to a disconnect. */
4753 		trace_cm_disconnect(id_priv);
4754 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4755 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4756 				trace_cm_sent_drep(id_priv);
4757 		} else {
4758 			trace_cm_sent_dreq(id_priv);
4759 		}
4760 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4761 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4762 	} else
4763 		ret = -EINVAL;
4764 
4765 out:
4766 	return ret;
4767 }
4768 EXPORT_SYMBOL(rdma_disconnect);
4769 
4770 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4771 			      struct ib_sa_multicast *multicast,
4772 			      struct rdma_cm_event *event,
4773 			      struct cma_multicast *mc)
4774 {
4775 	struct rdma_dev_addr *dev_addr;
4776 	enum ib_gid_type gid_type;
4777 	struct net_device *ndev;
4778 
4779 	if (status)
4780 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4781 				     status);
4782 
4783 	event->status = status;
4784 	event->param.ud.private_data = mc->context;
4785 	if (status) {
4786 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4787 		return;
4788 	}
4789 
4790 	dev_addr = &id_priv->id.route.addr.dev_addr;
4791 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4792 	gid_type =
4793 		id_priv->cma_dev
4794 			->default_gid_type[id_priv->id.port_num -
4795 					   rdma_start_port(
4796 						   id_priv->cma_dev->device)];
4797 
4798 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4799 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4800 				     &multicast->rec, ndev, gid_type,
4801 				     &event->param.ud.ah_attr)) {
4802 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4803 		goto out;
4804 	}
4805 
4806 	event->param.ud.qp_num = 0xFFFFFF;
4807 	event->param.ud.qkey = id_priv->qkey;
4808 
4809 out:
4810 	dev_put(ndev);
4811 }
4812 
4813 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4814 {
4815 	struct cma_multicast *mc = multicast->context;
4816 	struct rdma_id_private *id_priv = mc->id_priv;
4817 	struct rdma_cm_event event = {};
4818 	int ret = 0;
4819 
4820 	mutex_lock(&id_priv->handler_mutex);
4821 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4822 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4823 		goto out;
4824 
4825 	ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4826 	if (!ret) {
4827 		cma_make_mc_event(status, id_priv, multicast, &event, mc);
4828 		ret = cma_cm_event_handler(id_priv, &event);
4829 	}
4830 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4831 	WARN_ON(ret);
4832 
4833 out:
4834 	mutex_unlock(&id_priv->handler_mutex);
4835 	return 0;
4836 }
4837 
4838 static void cma_set_mgid(struct rdma_id_private *id_priv,
4839 			 struct sockaddr *addr, union ib_gid *mgid)
4840 {
4841 	unsigned char mc_map[MAX_ADDR_LEN];
4842 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4843 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4844 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4845 
4846 	if (cma_any_addr(addr)) {
4847 		memset(mgid, 0, sizeof *mgid);
4848 	} else if ((addr->sa_family == AF_INET6) &&
4849 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4850 								 0xFF10A01B)) {
4851 		/* IPv6 address is an SA assigned MGID. */
4852 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4853 	} else if (addr->sa_family == AF_IB) {
4854 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4855 	} else if (addr->sa_family == AF_INET6) {
4856 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4857 		if (id_priv->id.ps == RDMA_PS_UDP)
4858 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4859 		*mgid = *(union ib_gid *) (mc_map + 4);
4860 	} else {
4861 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4862 		if (id_priv->id.ps == RDMA_PS_UDP)
4863 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4864 		*mgid = *(union ib_gid *) (mc_map + 4);
4865 	}
4866 }
4867 
4868 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4869 				 struct cma_multicast *mc)
4870 {
4871 	struct ib_sa_mcmember_rec rec;
4872 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4873 	ib_sa_comp_mask comp_mask;
4874 	int ret;
4875 
4876 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4877 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4878 				     &rec.mgid, &rec);
4879 	if (ret)
4880 		return ret;
4881 
4882 	if (!id_priv->qkey) {
4883 		ret = cma_set_default_qkey(id_priv);
4884 		if (ret)
4885 			return ret;
4886 	}
4887 
4888 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4889 	rec.qkey = cpu_to_be32(id_priv->qkey);
4890 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4891 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4892 	rec.join_state = mc->join_state;
4893 
4894 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4895 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4896 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4897 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4898 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4899 
4900 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4901 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4902 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4903 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4904 			     IB_SA_MCMEMBER_REC_MTU |
4905 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4906 
4907 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4908 					 id_priv->id.port_num, &rec, comp_mask,
4909 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4910 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4911 }
4912 
4913 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4914 			      enum ib_gid_type gid_type)
4915 {
4916 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4917 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4918 
4919 	if (cma_any_addr(addr)) {
4920 		memset(mgid, 0, sizeof *mgid);
4921 	} else if (addr->sa_family == AF_INET6) {
4922 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4923 	} else {
4924 		mgid->raw[0] =
4925 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4926 		mgid->raw[1] =
4927 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4928 		mgid->raw[2] = 0;
4929 		mgid->raw[3] = 0;
4930 		mgid->raw[4] = 0;
4931 		mgid->raw[5] = 0;
4932 		mgid->raw[6] = 0;
4933 		mgid->raw[7] = 0;
4934 		mgid->raw[8] = 0;
4935 		mgid->raw[9] = 0;
4936 		mgid->raw[10] = 0xff;
4937 		mgid->raw[11] = 0xff;
4938 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4939 	}
4940 }
4941 
4942 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4943 				   struct cma_multicast *mc)
4944 {
4945 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4946 	int err = 0;
4947 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4948 	struct net_device *ndev = NULL;
4949 	struct ib_sa_multicast ib;
4950 	enum ib_gid_type gid_type;
4951 	bool send_only;
4952 
4953 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4954 
4955 	if (cma_zero_addr(addr))
4956 		return -EINVAL;
4957 
4958 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4959 		   rdma_start_port(id_priv->cma_dev->device)];
4960 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4961 
4962 	ib.rec.pkey = cpu_to_be16(0xffff);
4963 	if (dev_addr->bound_dev_if)
4964 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4965 	if (!ndev)
4966 		return -ENODEV;
4967 
4968 	ib.rec.rate = IB_RATE_PORT_CURRENT;
4969 	ib.rec.hop_limit = 1;
4970 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4971 
4972 	if (addr->sa_family == AF_INET) {
4973 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4974 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4975 			if (!send_only) {
4976 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4977 						    true);
4978 			}
4979 		}
4980 	} else {
4981 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4982 			err = -ENOTSUPP;
4983 	}
4984 	dev_put(ndev);
4985 	if (err || !ib.rec.mtu)
4986 		return err ?: -EINVAL;
4987 
4988 	if (!id_priv->qkey)
4989 		cma_set_default_qkey(id_priv);
4990 
4991 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4992 		    &ib.rec.port_gid);
4993 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4994 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4995 	queue_work(cma_wq, &mc->iboe_join.work);
4996 	return 0;
4997 }
4998 
4999 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5000 			u8 join_state, void *context)
5001 {
5002 	struct rdma_id_private *id_priv =
5003 		container_of(id, struct rdma_id_private, id);
5004 	struct cma_multicast *mc;
5005 	int ret;
5006 
5007 	/* Not supported for kernel QPs */
5008 	if (WARN_ON(id->qp))
5009 		return -EINVAL;
5010 
5011 	/* ULP is calling this wrong. */
5012 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5013 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5014 		return -EINVAL;
5015 
5016 	if (id_priv->id.qp_type != IB_QPT_UD)
5017 		return -EINVAL;
5018 
5019 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5020 	if (!mc)
5021 		return -ENOMEM;
5022 
5023 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5024 	mc->context = context;
5025 	mc->id_priv = id_priv;
5026 	mc->join_state = join_state;
5027 
5028 	if (rdma_protocol_roce(id->device, id->port_num)) {
5029 		ret = cma_iboe_join_multicast(id_priv, mc);
5030 		if (ret)
5031 			goto out_err;
5032 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5033 		ret = cma_join_ib_multicast(id_priv, mc);
5034 		if (ret)
5035 			goto out_err;
5036 	} else {
5037 		ret = -ENOSYS;
5038 		goto out_err;
5039 	}
5040 
5041 	spin_lock(&id_priv->lock);
5042 	list_add(&mc->list, &id_priv->mc_list);
5043 	spin_unlock(&id_priv->lock);
5044 
5045 	return 0;
5046 out_err:
5047 	kfree(mc);
5048 	return ret;
5049 }
5050 EXPORT_SYMBOL(rdma_join_multicast);
5051 
5052 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5053 {
5054 	struct rdma_id_private *id_priv;
5055 	struct cma_multicast *mc;
5056 
5057 	id_priv = container_of(id, struct rdma_id_private, id);
5058 	spin_lock_irq(&id_priv->lock);
5059 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5060 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5061 			continue;
5062 		list_del(&mc->list);
5063 		spin_unlock_irq(&id_priv->lock);
5064 
5065 		WARN_ON(id_priv->cma_dev->device != id->device);
5066 		destroy_mc(id_priv, mc);
5067 		return;
5068 	}
5069 	spin_unlock_irq(&id_priv->lock);
5070 }
5071 EXPORT_SYMBOL(rdma_leave_multicast);
5072 
5073 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5074 {
5075 	struct rdma_dev_addr *dev_addr;
5076 	struct cma_work *work;
5077 
5078 	dev_addr = &id_priv->id.route.addr.dev_addr;
5079 
5080 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5081 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5082 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5083 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5084 			ndev->name, &id_priv->id);
5085 		work = kzalloc(sizeof *work, GFP_KERNEL);
5086 		if (!work)
5087 			return -ENOMEM;
5088 
5089 		INIT_WORK(&work->work, cma_work_handler);
5090 		work->id = id_priv;
5091 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5092 		cma_id_get(id_priv);
5093 		queue_work(cma_wq, &work->work);
5094 	}
5095 
5096 	return 0;
5097 }
5098 
5099 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5100 			       void *ptr)
5101 {
5102 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5103 	struct cma_device *cma_dev;
5104 	struct rdma_id_private *id_priv;
5105 	int ret = NOTIFY_DONE;
5106 
5107 	if (event != NETDEV_BONDING_FAILOVER)
5108 		return NOTIFY_DONE;
5109 
5110 	if (!netif_is_bond_master(ndev))
5111 		return NOTIFY_DONE;
5112 
5113 	mutex_lock(&lock);
5114 	list_for_each_entry(cma_dev, &dev_list, list)
5115 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5116 			ret = cma_netdev_change(ndev, id_priv);
5117 			if (ret)
5118 				goto out;
5119 		}
5120 
5121 out:
5122 	mutex_unlock(&lock);
5123 	return ret;
5124 }
5125 
5126 static void cma_netevent_work_handler(struct work_struct *_work)
5127 {
5128 	struct rdma_id_private *id_priv =
5129 		container_of(_work, struct rdma_id_private, id.net_work);
5130 	struct rdma_cm_event event = {};
5131 
5132 	mutex_lock(&id_priv->handler_mutex);
5133 
5134 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5135 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5136 		goto out_unlock;
5137 
5138 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5139 	event.status = -ETIMEDOUT;
5140 
5141 	if (cma_cm_event_handler(id_priv, &event)) {
5142 		__acquire(&id_priv->handler_mutex);
5143 		id_priv->cm_id.ib = NULL;
5144 		cma_id_put(id_priv);
5145 		destroy_id_handler_unlock(id_priv);
5146 		return;
5147 	}
5148 
5149 out_unlock:
5150 	mutex_unlock(&id_priv->handler_mutex);
5151 	cma_id_put(id_priv);
5152 }
5153 
5154 static int cma_netevent_callback(struct notifier_block *self,
5155 				 unsigned long event, void *ctx)
5156 {
5157 	struct id_table_entry *ips_node = NULL;
5158 	struct rdma_id_private *current_id;
5159 	struct neighbour *neigh = ctx;
5160 	unsigned long flags;
5161 
5162 	if (event != NETEVENT_NEIGH_UPDATE)
5163 		return NOTIFY_DONE;
5164 
5165 	spin_lock_irqsave(&id_table_lock, flags);
5166 	if (neigh->tbl->family == AF_INET6) {
5167 		struct sockaddr_in6 neigh_sock_6;
5168 
5169 		neigh_sock_6.sin6_family = AF_INET6;
5170 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5171 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5172 					     (struct sockaddr *)&neigh_sock_6);
5173 	} else if (neigh->tbl->family == AF_INET) {
5174 		struct sockaddr_in neigh_sock_4;
5175 
5176 		neigh_sock_4.sin_family = AF_INET;
5177 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5178 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5179 					     (struct sockaddr *)&neigh_sock_4);
5180 	} else
5181 		goto out;
5182 
5183 	if (!ips_node)
5184 		goto out;
5185 
5186 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5187 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5188 			   neigh->ha, ETH_ALEN))
5189 			continue;
5190 		INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5191 		cma_id_get(current_id);
5192 		queue_work(cma_wq, &current_id->id.net_work);
5193 	}
5194 out:
5195 	spin_unlock_irqrestore(&id_table_lock, flags);
5196 	return NOTIFY_DONE;
5197 }
5198 
5199 static struct notifier_block cma_nb = {
5200 	.notifier_call = cma_netdev_callback
5201 };
5202 
5203 static struct notifier_block cma_netevent_cb = {
5204 	.notifier_call = cma_netevent_callback
5205 };
5206 
5207 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5208 {
5209 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5210 	enum rdma_cm_state state;
5211 	unsigned long flags;
5212 
5213 	mutex_lock(&id_priv->handler_mutex);
5214 	/* Record that we want to remove the device */
5215 	spin_lock_irqsave(&id_priv->lock, flags);
5216 	state = id_priv->state;
5217 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5218 		spin_unlock_irqrestore(&id_priv->lock, flags);
5219 		mutex_unlock(&id_priv->handler_mutex);
5220 		cma_id_put(id_priv);
5221 		return;
5222 	}
5223 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5224 	spin_unlock_irqrestore(&id_priv->lock, flags);
5225 
5226 	if (cma_cm_event_handler(id_priv, &event)) {
5227 		/*
5228 		 * At this point the ULP promises it won't call
5229 		 * rdma_destroy_id() concurrently
5230 		 */
5231 		cma_id_put(id_priv);
5232 		mutex_unlock(&id_priv->handler_mutex);
5233 		trace_cm_id_destroy(id_priv);
5234 		_destroy_id(id_priv, state);
5235 		return;
5236 	}
5237 	mutex_unlock(&id_priv->handler_mutex);
5238 
5239 	/*
5240 	 * If this races with destroy then the thread that first assigns state
5241 	 * to a destroying does the cancel.
5242 	 */
5243 	cma_cancel_operation(id_priv, state);
5244 	cma_id_put(id_priv);
5245 }
5246 
5247 static void cma_process_remove(struct cma_device *cma_dev)
5248 {
5249 	mutex_lock(&lock);
5250 	while (!list_empty(&cma_dev->id_list)) {
5251 		struct rdma_id_private *id_priv = list_first_entry(
5252 			&cma_dev->id_list, struct rdma_id_private, device_item);
5253 
5254 		list_del_init(&id_priv->listen_item);
5255 		list_del_init(&id_priv->device_item);
5256 		cma_id_get(id_priv);
5257 		mutex_unlock(&lock);
5258 
5259 		cma_send_device_removal_put(id_priv);
5260 
5261 		mutex_lock(&lock);
5262 	}
5263 	mutex_unlock(&lock);
5264 
5265 	cma_dev_put(cma_dev);
5266 	wait_for_completion(&cma_dev->comp);
5267 }
5268 
5269 static bool cma_supported(struct ib_device *device)
5270 {
5271 	u32 i;
5272 
5273 	rdma_for_each_port(device, i) {
5274 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5275 			return true;
5276 	}
5277 	return false;
5278 }
5279 
5280 static int cma_add_one(struct ib_device *device)
5281 {
5282 	struct rdma_id_private *to_destroy;
5283 	struct cma_device *cma_dev;
5284 	struct rdma_id_private *id_priv;
5285 	unsigned long supported_gids = 0;
5286 	int ret;
5287 	u32 i;
5288 
5289 	if (!cma_supported(device))
5290 		return -EOPNOTSUPP;
5291 
5292 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5293 	if (!cma_dev)
5294 		return -ENOMEM;
5295 
5296 	cma_dev->device = device;
5297 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5298 					    sizeof(*cma_dev->default_gid_type),
5299 					    GFP_KERNEL);
5300 	if (!cma_dev->default_gid_type) {
5301 		ret = -ENOMEM;
5302 		goto free_cma_dev;
5303 	}
5304 
5305 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5306 					    sizeof(*cma_dev->default_roce_tos),
5307 					    GFP_KERNEL);
5308 	if (!cma_dev->default_roce_tos) {
5309 		ret = -ENOMEM;
5310 		goto free_gid_type;
5311 	}
5312 
5313 	rdma_for_each_port (device, i) {
5314 		supported_gids = roce_gid_type_mask_support(device, i);
5315 		WARN_ON(!supported_gids);
5316 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5317 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5318 				CMA_PREFERRED_ROCE_GID_TYPE;
5319 		else
5320 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5321 				find_first_bit(&supported_gids, BITS_PER_LONG);
5322 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5323 	}
5324 
5325 	init_completion(&cma_dev->comp);
5326 	refcount_set(&cma_dev->refcount, 1);
5327 	INIT_LIST_HEAD(&cma_dev->id_list);
5328 	ib_set_client_data(device, &cma_client, cma_dev);
5329 
5330 	mutex_lock(&lock);
5331 	list_add_tail(&cma_dev->list, &dev_list);
5332 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5333 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5334 		if (ret)
5335 			goto free_listen;
5336 	}
5337 	mutex_unlock(&lock);
5338 
5339 	trace_cm_add_one(device);
5340 	return 0;
5341 
5342 free_listen:
5343 	list_del(&cma_dev->list);
5344 	mutex_unlock(&lock);
5345 
5346 	/* cma_process_remove() will delete to_destroy */
5347 	cma_process_remove(cma_dev);
5348 	kfree(cma_dev->default_roce_tos);
5349 free_gid_type:
5350 	kfree(cma_dev->default_gid_type);
5351 
5352 free_cma_dev:
5353 	kfree(cma_dev);
5354 	return ret;
5355 }
5356 
5357 static void cma_remove_one(struct ib_device *device, void *client_data)
5358 {
5359 	struct cma_device *cma_dev = client_data;
5360 
5361 	trace_cm_remove_one(device);
5362 
5363 	mutex_lock(&lock);
5364 	list_del(&cma_dev->list);
5365 	mutex_unlock(&lock);
5366 
5367 	cma_process_remove(cma_dev);
5368 	kfree(cma_dev->default_roce_tos);
5369 	kfree(cma_dev->default_gid_type);
5370 	kfree(cma_dev);
5371 }
5372 
5373 static int cma_init_net(struct net *net)
5374 {
5375 	struct cma_pernet *pernet = cma_pernet(net);
5376 
5377 	xa_init(&pernet->tcp_ps);
5378 	xa_init(&pernet->udp_ps);
5379 	xa_init(&pernet->ipoib_ps);
5380 	xa_init(&pernet->ib_ps);
5381 
5382 	return 0;
5383 }
5384 
5385 static void cma_exit_net(struct net *net)
5386 {
5387 	struct cma_pernet *pernet = cma_pernet(net);
5388 
5389 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5390 	WARN_ON(!xa_empty(&pernet->udp_ps));
5391 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5392 	WARN_ON(!xa_empty(&pernet->ib_ps));
5393 }
5394 
5395 static struct pernet_operations cma_pernet_operations = {
5396 	.init = cma_init_net,
5397 	.exit = cma_exit_net,
5398 	.id = &cma_pernet_id,
5399 	.size = sizeof(struct cma_pernet),
5400 };
5401 
5402 static int __init cma_init(void)
5403 {
5404 	int ret;
5405 
5406 	/*
5407 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5408 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5409 	 * must never be nested under lock so it can find these without having
5410 	 * to test with bonding.
5411 	 */
5412 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5413 		rtnl_lock();
5414 		mutex_lock(&lock);
5415 		mutex_unlock(&lock);
5416 		rtnl_unlock();
5417 	}
5418 
5419 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5420 	if (!cma_wq)
5421 		return -ENOMEM;
5422 
5423 	ret = register_pernet_subsys(&cma_pernet_operations);
5424 	if (ret)
5425 		goto err_wq;
5426 
5427 	ib_sa_register_client(&sa_client);
5428 	register_netdevice_notifier(&cma_nb);
5429 	register_netevent_notifier(&cma_netevent_cb);
5430 
5431 	ret = ib_register_client(&cma_client);
5432 	if (ret)
5433 		goto err;
5434 
5435 	ret = cma_configfs_init();
5436 	if (ret)
5437 		goto err_ib;
5438 
5439 	return 0;
5440 
5441 err_ib:
5442 	ib_unregister_client(&cma_client);
5443 err:
5444 	unregister_netevent_notifier(&cma_netevent_cb);
5445 	unregister_netdevice_notifier(&cma_nb);
5446 	ib_sa_unregister_client(&sa_client);
5447 	unregister_pernet_subsys(&cma_pernet_operations);
5448 err_wq:
5449 	destroy_workqueue(cma_wq);
5450 	return ret;
5451 }
5452 
5453 static void __exit cma_cleanup(void)
5454 {
5455 	cma_configfs_exit();
5456 	ib_unregister_client(&cma_client);
5457 	unregister_netevent_notifier(&cma_netevent_cb);
5458 	unregister_netdevice_notifier(&cma_nb);
5459 	ib_sa_unregister_client(&sa_client);
5460 	unregister_pernet_subsys(&cma_pernet_operations);
5461 	destroy_workqueue(cma_wq);
5462 }
5463 
5464 module_init(cma_init);
5465 module_exit(cma_cleanup);
5466