1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 50 #define CMA_IBOE_PACKET_LIFETIME 16 51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 52 53 static const char * const cma_events[] = { 54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 62 [RDMA_CM_EVENT_REJECTED] = "rejected", 63 [RDMA_CM_EVENT_ESTABLISHED] = "established", 64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 70 }; 71 72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 73 enum ib_gid_type gid_type); 74 75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 76 { 77 size_t index = event; 78 79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 80 cma_events[index] : "unrecognized event"; 81 } 82 EXPORT_SYMBOL(rdma_event_msg); 83 84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 85 int reason) 86 { 87 if (rdma_ib_or_roce(id->device, id->port_num)) 88 return ibcm_reject_msg(reason); 89 90 if (rdma_protocol_iwarp(id->device, id->port_num)) 91 return iwcm_reject_msg(reason); 92 93 WARN_ON_ONCE(1); 94 return "unrecognized transport"; 95 } 96 EXPORT_SYMBOL(rdma_reject_msg); 97 98 /** 99 * rdma_is_consumer_reject - return true if the consumer rejected the connect 100 * request. 101 * @id: Communication identifier that received the REJECT event. 102 * @reason: Value returned in the REJECT event status field. 103 */ 104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 105 { 106 if (rdma_ib_or_roce(id->device, id->port_num)) 107 return reason == IB_CM_REJ_CONSUMER_DEFINED; 108 109 if (rdma_protocol_iwarp(id->device, id->port_num)) 110 return reason == -ECONNREFUSED; 111 112 WARN_ON_ONCE(1); 113 return false; 114 } 115 116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 117 struct rdma_cm_event *ev, u8 *data_len) 118 { 119 const void *p; 120 121 if (rdma_is_consumer_reject(id, ev->status)) { 122 *data_len = ev->param.conn.private_data_len; 123 p = ev->param.conn.private_data; 124 } else { 125 *data_len = 0; 126 p = NULL; 127 } 128 return p; 129 } 130 EXPORT_SYMBOL(rdma_consumer_reject_data); 131 132 /** 133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 134 * @id: Communication Identifier 135 */ 136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 137 { 138 struct rdma_id_private *id_priv; 139 140 id_priv = container_of(id, struct rdma_id_private, id); 141 if (id->device->node_type == RDMA_NODE_RNIC) 142 return id_priv->cm_id.iw; 143 return NULL; 144 } 145 EXPORT_SYMBOL(rdma_iw_cm_id); 146 147 /** 148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 149 * @res: rdma resource tracking entry pointer 150 */ 151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 152 { 153 struct rdma_id_private *id_priv = 154 container_of(res, struct rdma_id_private, res); 155 156 return &id_priv->id; 157 } 158 EXPORT_SYMBOL(rdma_res_to_id); 159 160 static int cma_add_one(struct ib_device *device); 161 static void cma_remove_one(struct ib_device *device, void *client_data); 162 163 static struct ib_client cma_client = { 164 .name = "cma", 165 .add = cma_add_one, 166 .remove = cma_remove_one 167 }; 168 169 static struct ib_sa_client sa_client; 170 static LIST_HEAD(dev_list); 171 static LIST_HEAD(listen_any_list); 172 static DEFINE_MUTEX(lock); 173 static struct rb_root id_table = RB_ROOT; 174 /* Serialize operations of id_table tree */ 175 static DEFINE_SPINLOCK(id_table_lock); 176 static struct workqueue_struct *cma_wq; 177 static unsigned int cma_pernet_id; 178 179 struct cma_pernet { 180 struct xarray tcp_ps; 181 struct xarray udp_ps; 182 struct xarray ipoib_ps; 183 struct xarray ib_ps; 184 }; 185 186 static struct cma_pernet *cma_pernet(struct net *net) 187 { 188 return net_generic(net, cma_pernet_id); 189 } 190 191 static 192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 193 { 194 struct cma_pernet *pernet = cma_pernet(net); 195 196 switch (ps) { 197 case RDMA_PS_TCP: 198 return &pernet->tcp_ps; 199 case RDMA_PS_UDP: 200 return &pernet->udp_ps; 201 case RDMA_PS_IPOIB: 202 return &pernet->ipoib_ps; 203 case RDMA_PS_IB: 204 return &pernet->ib_ps; 205 default: 206 return NULL; 207 } 208 } 209 210 struct id_table_entry { 211 struct list_head id_list; 212 struct rb_node rb_node; 213 }; 214 215 struct cma_device { 216 struct list_head list; 217 struct ib_device *device; 218 struct completion comp; 219 refcount_t refcount; 220 struct list_head id_list; 221 enum ib_gid_type *default_gid_type; 222 u8 *default_roce_tos; 223 }; 224 225 struct rdma_bind_list { 226 enum rdma_ucm_port_space ps; 227 struct hlist_head owners; 228 unsigned short port; 229 }; 230 231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 232 struct rdma_bind_list *bind_list, int snum) 233 { 234 struct xarray *xa = cma_pernet_xa(net, ps); 235 236 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 237 } 238 239 static struct rdma_bind_list *cma_ps_find(struct net *net, 240 enum rdma_ucm_port_space ps, int snum) 241 { 242 struct xarray *xa = cma_pernet_xa(net, ps); 243 244 return xa_load(xa, snum); 245 } 246 247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 248 int snum) 249 { 250 struct xarray *xa = cma_pernet_xa(net, ps); 251 252 xa_erase(xa, snum); 253 } 254 255 enum { 256 CMA_OPTION_AFONLY, 257 }; 258 259 void cma_dev_get(struct cma_device *cma_dev) 260 { 261 refcount_inc(&cma_dev->refcount); 262 } 263 264 void cma_dev_put(struct cma_device *cma_dev) 265 { 266 if (refcount_dec_and_test(&cma_dev->refcount)) 267 complete(&cma_dev->comp); 268 } 269 270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 271 void *cookie) 272 { 273 struct cma_device *cma_dev; 274 struct cma_device *found_cma_dev = NULL; 275 276 mutex_lock(&lock); 277 278 list_for_each_entry(cma_dev, &dev_list, list) 279 if (filter(cma_dev->device, cookie)) { 280 found_cma_dev = cma_dev; 281 break; 282 } 283 284 if (found_cma_dev) 285 cma_dev_get(found_cma_dev); 286 mutex_unlock(&lock); 287 return found_cma_dev; 288 } 289 290 int cma_get_default_gid_type(struct cma_device *cma_dev, 291 u32 port) 292 { 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 297 } 298 299 int cma_set_default_gid_type(struct cma_device *cma_dev, 300 u32 port, 301 enum ib_gid_type default_gid_type) 302 { 303 unsigned long supported_gids; 304 305 if (!rdma_is_port_valid(cma_dev->device, port)) 306 return -EINVAL; 307 308 if (default_gid_type == IB_GID_TYPE_IB && 309 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 310 default_gid_type = IB_GID_TYPE_ROCE; 311 312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 313 314 if (!(supported_gids & 1 << default_gid_type)) 315 return -EINVAL; 316 317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 318 default_gid_type; 319 320 return 0; 321 } 322 323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 324 { 325 if (!rdma_is_port_valid(cma_dev->device, port)) 326 return -EINVAL; 327 328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 329 } 330 331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 332 u8 default_roce_tos) 333 { 334 if (!rdma_is_port_valid(cma_dev->device, port)) 335 return -EINVAL; 336 337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 338 default_roce_tos; 339 340 return 0; 341 } 342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 343 { 344 return cma_dev->device; 345 } 346 347 /* 348 * Device removal can occur at anytime, so we need extra handling to 349 * serialize notifying the user of device removal with other callbacks. 350 * We do this by disabling removal notification while a callback is in process, 351 * and reporting it after the callback completes. 352 */ 353 354 struct cma_multicast { 355 struct rdma_id_private *id_priv; 356 union { 357 struct ib_sa_multicast *sa_mc; 358 struct { 359 struct work_struct work; 360 struct rdma_cm_event event; 361 } iboe_join; 362 }; 363 struct list_head list; 364 void *context; 365 struct sockaddr_storage addr; 366 u8 join_state; 367 }; 368 369 struct cma_work { 370 struct work_struct work; 371 struct rdma_id_private *id; 372 enum rdma_cm_state old_state; 373 enum rdma_cm_state new_state; 374 struct rdma_cm_event event; 375 }; 376 377 union cma_ip_addr { 378 struct in6_addr ip6; 379 struct { 380 __be32 pad[3]; 381 __be32 addr; 382 } ip4; 383 }; 384 385 struct cma_hdr { 386 u8 cma_version; 387 u8 ip_version; /* IP version: 7:4 */ 388 __be16 port; 389 union cma_ip_addr src_addr; 390 union cma_ip_addr dst_addr; 391 }; 392 393 #define CMA_VERSION 0x00 394 395 struct cma_req_info { 396 struct sockaddr_storage listen_addr_storage; 397 struct sockaddr_storage src_addr_storage; 398 struct ib_device *device; 399 union ib_gid local_gid; 400 __be64 service_id; 401 int port; 402 bool has_gid; 403 u16 pkey; 404 }; 405 406 static int cma_comp_exch(struct rdma_id_private *id_priv, 407 enum rdma_cm_state comp, enum rdma_cm_state exch) 408 { 409 unsigned long flags; 410 int ret; 411 412 /* 413 * The FSM uses a funny double locking where state is protected by both 414 * the handler_mutex and the spinlock. State is not allowed to change 415 * to/from a handler_mutex protected value without also holding 416 * handler_mutex. 417 */ 418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 419 lockdep_assert_held(&id_priv->handler_mutex); 420 421 spin_lock_irqsave(&id_priv->lock, flags); 422 if ((ret = (id_priv->state == comp))) 423 id_priv->state = exch; 424 spin_unlock_irqrestore(&id_priv->lock, flags); 425 return ret; 426 } 427 428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 429 { 430 return hdr->ip_version >> 4; 431 } 432 433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 434 { 435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 436 } 437 438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 439 { 440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 441 } 442 443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 444 { 445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 446 } 447 448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 449 { 450 struct in_device *in_dev = NULL; 451 452 if (ndev) { 453 rtnl_lock(); 454 in_dev = __in_dev_get_rtnl(ndev); 455 if (in_dev) { 456 if (join) 457 ip_mc_inc_group(in_dev, 458 *(__be32 *)(mgid->raw + 12)); 459 else 460 ip_mc_dec_group(in_dev, 461 *(__be32 *)(mgid->raw + 12)); 462 } 463 rtnl_unlock(); 464 } 465 return (in_dev) ? 0 : -ENODEV; 466 } 467 468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 469 struct id_table_entry *entry_b) 470 { 471 struct rdma_id_private *id_priv = list_first_entry( 472 &entry_b->id_list, struct rdma_id_private, id_list_entry); 473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 474 struct sockaddr *sb = cma_dst_addr(id_priv); 475 476 if (ifindex_a != ifindex_b) 477 return (ifindex_a > ifindex_b) ? 1 : -1; 478 479 if (sa->sa_family != sb->sa_family) 480 return sa->sa_family - sb->sa_family; 481 482 if (sa->sa_family == AF_INET && 483 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 484 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 485 &((struct sockaddr_in *)sb)->sin_addr, 486 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 487 } 488 489 if (sa->sa_family == AF_INET6 && 490 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 491 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 492 &((struct sockaddr_in6 *)sb)->sin6_addr); 493 } 494 495 return -1; 496 } 497 498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 499 { 500 struct rb_node **new, *parent = NULL; 501 struct id_table_entry *this, *node; 502 unsigned long flags; 503 int result; 504 505 node = kzalloc(sizeof(*node), GFP_KERNEL); 506 if (!node) 507 return -ENOMEM; 508 509 spin_lock_irqsave(&id_table_lock, flags); 510 new = &id_table.rb_node; 511 while (*new) { 512 this = container_of(*new, struct id_table_entry, rb_node); 513 result = compare_netdev_and_ip( 514 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 515 cma_dst_addr(node_id_priv), this); 516 517 parent = *new; 518 if (result < 0) 519 new = &((*new)->rb_left); 520 else if (result > 0) 521 new = &((*new)->rb_right); 522 else { 523 list_add_tail(&node_id_priv->id_list_entry, 524 &this->id_list); 525 kfree(node); 526 goto unlock; 527 } 528 } 529 530 INIT_LIST_HEAD(&node->id_list); 531 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 532 533 rb_link_node(&node->rb_node, parent, new); 534 rb_insert_color(&node->rb_node, &id_table); 535 536 unlock: 537 spin_unlock_irqrestore(&id_table_lock, flags); 538 return 0; 539 } 540 541 static struct id_table_entry * 542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 543 { 544 struct rb_node *node = root->rb_node; 545 struct id_table_entry *data; 546 int result; 547 548 while (node) { 549 data = container_of(node, struct id_table_entry, rb_node); 550 result = compare_netdev_and_ip(ifindex, sa, data); 551 if (result < 0) 552 node = node->rb_left; 553 else if (result > 0) 554 node = node->rb_right; 555 else 556 return data; 557 } 558 559 return NULL; 560 } 561 562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 563 { 564 struct id_table_entry *data; 565 unsigned long flags; 566 567 spin_lock_irqsave(&id_table_lock, flags); 568 if (list_empty(&id_priv->id_list_entry)) 569 goto out; 570 571 data = node_from_ndev_ip(&id_table, 572 id_priv->id.route.addr.dev_addr.bound_dev_if, 573 cma_dst_addr(id_priv)); 574 if (!data) 575 goto out; 576 577 list_del_init(&id_priv->id_list_entry); 578 if (list_empty(&data->id_list)) { 579 rb_erase(&data->rb_node, &id_table); 580 kfree(data); 581 } 582 out: 583 spin_unlock_irqrestore(&id_table_lock, flags); 584 } 585 586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 587 struct cma_device *cma_dev) 588 { 589 cma_dev_get(cma_dev); 590 id_priv->cma_dev = cma_dev; 591 id_priv->id.device = cma_dev->device; 592 id_priv->id.route.addr.dev_addr.transport = 593 rdma_node_get_transport(cma_dev->device->node_type); 594 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 595 596 trace_cm_id_attach(id_priv, cma_dev->device); 597 } 598 599 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 600 struct cma_device *cma_dev) 601 { 602 _cma_attach_to_dev(id_priv, cma_dev); 603 id_priv->gid_type = 604 cma_dev->default_gid_type[id_priv->id.port_num - 605 rdma_start_port(cma_dev->device)]; 606 } 607 608 static void cma_release_dev(struct rdma_id_private *id_priv) 609 { 610 mutex_lock(&lock); 611 list_del_init(&id_priv->device_item); 612 cma_dev_put(id_priv->cma_dev); 613 id_priv->cma_dev = NULL; 614 id_priv->id.device = NULL; 615 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 616 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 617 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 618 } 619 mutex_unlock(&lock); 620 } 621 622 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 623 { 624 return id_priv->id.route.addr.src_addr.ss_family; 625 } 626 627 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 628 { 629 struct ib_sa_mcmember_rec rec; 630 int ret = 0; 631 632 switch (id_priv->id.ps) { 633 case RDMA_PS_UDP: 634 case RDMA_PS_IB: 635 id_priv->qkey = RDMA_UDP_QKEY; 636 break; 637 case RDMA_PS_IPOIB: 638 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 639 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 640 id_priv->id.port_num, &rec.mgid, 641 &rec); 642 if (!ret) 643 id_priv->qkey = be32_to_cpu(rec.qkey); 644 break; 645 default: 646 break; 647 } 648 return ret; 649 } 650 651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 652 { 653 if (!qkey || 654 (id_priv->qkey && (id_priv->qkey != qkey))) 655 return -EINVAL; 656 657 id_priv->qkey = qkey; 658 return 0; 659 } 660 661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 662 { 663 dev_addr->dev_type = ARPHRD_INFINIBAND; 664 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 665 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 666 } 667 668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 669 { 670 int ret; 671 672 if (addr->sa_family != AF_IB) { 673 ret = rdma_translate_ip(addr, dev_addr); 674 } else { 675 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 676 ret = 0; 677 } 678 679 return ret; 680 } 681 682 static const struct ib_gid_attr * 683 cma_validate_port(struct ib_device *device, u32 port, 684 enum ib_gid_type gid_type, 685 union ib_gid *gid, 686 struct rdma_id_private *id_priv) 687 { 688 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 689 int bound_if_index = dev_addr->bound_dev_if; 690 const struct ib_gid_attr *sgid_attr; 691 int dev_type = dev_addr->dev_type; 692 struct net_device *ndev = NULL; 693 694 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 695 return ERR_PTR(-ENODEV); 696 697 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 698 return ERR_PTR(-ENODEV); 699 700 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 701 return ERR_PTR(-ENODEV); 702 703 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 704 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 705 if (!ndev) 706 return ERR_PTR(-ENODEV); 707 } else { 708 gid_type = IB_GID_TYPE_IB; 709 } 710 711 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 712 dev_put(ndev); 713 return sgid_attr; 714 } 715 716 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 717 const struct ib_gid_attr *sgid_attr) 718 { 719 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 720 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 721 } 722 723 /** 724 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 725 * based on source ip address. 726 * @id_priv: cm_id which should be bound to cma device 727 * 728 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 729 * based on source IP address. It returns 0 on success or error code otherwise. 730 * It is applicable to active and passive side cm_id. 731 */ 732 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 733 { 734 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 735 const struct ib_gid_attr *sgid_attr; 736 union ib_gid gid, iboe_gid, *gidp; 737 struct cma_device *cma_dev; 738 enum ib_gid_type gid_type; 739 int ret = -ENODEV; 740 u32 port; 741 742 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 743 id_priv->id.ps == RDMA_PS_IPOIB) 744 return -EINVAL; 745 746 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 747 &iboe_gid); 748 749 memcpy(&gid, dev_addr->src_dev_addr + 750 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 751 752 mutex_lock(&lock); 753 list_for_each_entry(cma_dev, &dev_list, list) { 754 rdma_for_each_port (cma_dev->device, port) { 755 gidp = rdma_protocol_roce(cma_dev->device, port) ? 756 &iboe_gid : &gid; 757 gid_type = cma_dev->default_gid_type[port - 1]; 758 sgid_attr = cma_validate_port(cma_dev->device, port, 759 gid_type, gidp, id_priv); 760 if (!IS_ERR(sgid_attr)) { 761 id_priv->id.port_num = port; 762 cma_bind_sgid_attr(id_priv, sgid_attr); 763 cma_attach_to_dev(id_priv, cma_dev); 764 ret = 0; 765 goto out; 766 } 767 } 768 } 769 out: 770 mutex_unlock(&lock); 771 return ret; 772 } 773 774 /** 775 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 776 * @id_priv: cm id to bind to cma device 777 * @listen_id_priv: listener cm id to match against 778 * @req: Pointer to req structure containaining incoming 779 * request information 780 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 781 * rdma device matches for listen_id and incoming request. It also verifies 782 * that a GID table entry is present for the source address. 783 * Returns 0 on success, or returns error code otherwise. 784 */ 785 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 786 const struct rdma_id_private *listen_id_priv, 787 struct cma_req_info *req) 788 { 789 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 790 const struct ib_gid_attr *sgid_attr; 791 enum ib_gid_type gid_type; 792 union ib_gid gid; 793 794 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 795 id_priv->id.ps == RDMA_PS_IPOIB) 796 return -EINVAL; 797 798 if (rdma_protocol_roce(req->device, req->port)) 799 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 800 &gid); 801 else 802 memcpy(&gid, dev_addr->src_dev_addr + 803 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 804 805 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 806 sgid_attr = cma_validate_port(req->device, req->port, 807 gid_type, &gid, id_priv); 808 if (IS_ERR(sgid_attr)) 809 return PTR_ERR(sgid_attr); 810 811 id_priv->id.port_num = req->port; 812 cma_bind_sgid_attr(id_priv, sgid_attr); 813 /* Need to acquire lock to protect against reader 814 * of cma_dev->id_list such as cma_netdev_callback() and 815 * cma_process_remove(). 816 */ 817 mutex_lock(&lock); 818 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 819 mutex_unlock(&lock); 820 rdma_restrack_add(&id_priv->res); 821 return 0; 822 } 823 824 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 825 const struct rdma_id_private *listen_id_priv) 826 { 827 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 828 const struct ib_gid_attr *sgid_attr; 829 struct cma_device *cma_dev; 830 enum ib_gid_type gid_type; 831 int ret = -ENODEV; 832 union ib_gid gid; 833 u32 port; 834 835 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 836 id_priv->id.ps == RDMA_PS_IPOIB) 837 return -EINVAL; 838 839 memcpy(&gid, dev_addr->src_dev_addr + 840 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 841 842 mutex_lock(&lock); 843 844 cma_dev = listen_id_priv->cma_dev; 845 port = listen_id_priv->id.port_num; 846 gid_type = listen_id_priv->gid_type; 847 sgid_attr = cma_validate_port(cma_dev->device, port, 848 gid_type, &gid, id_priv); 849 if (!IS_ERR(sgid_attr)) { 850 id_priv->id.port_num = port; 851 cma_bind_sgid_attr(id_priv, sgid_attr); 852 ret = 0; 853 goto out; 854 } 855 856 list_for_each_entry(cma_dev, &dev_list, list) { 857 rdma_for_each_port (cma_dev->device, port) { 858 if (listen_id_priv->cma_dev == cma_dev && 859 listen_id_priv->id.port_num == port) 860 continue; 861 862 gid_type = cma_dev->default_gid_type[port - 1]; 863 sgid_attr = cma_validate_port(cma_dev->device, port, 864 gid_type, &gid, id_priv); 865 if (!IS_ERR(sgid_attr)) { 866 id_priv->id.port_num = port; 867 cma_bind_sgid_attr(id_priv, sgid_attr); 868 ret = 0; 869 goto out; 870 } 871 } 872 } 873 874 out: 875 if (!ret) { 876 cma_attach_to_dev(id_priv, cma_dev); 877 rdma_restrack_add(&id_priv->res); 878 } 879 880 mutex_unlock(&lock); 881 return ret; 882 } 883 884 /* 885 * Select the source IB device and address to reach the destination IB address. 886 */ 887 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 888 { 889 struct cma_device *cma_dev, *cur_dev; 890 struct sockaddr_ib *addr; 891 union ib_gid gid, sgid, *dgid; 892 unsigned int p; 893 u16 pkey, index; 894 enum ib_port_state port_state; 895 int ret; 896 int i; 897 898 cma_dev = NULL; 899 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 900 dgid = (union ib_gid *) &addr->sib_addr; 901 pkey = ntohs(addr->sib_pkey); 902 903 mutex_lock(&lock); 904 list_for_each_entry(cur_dev, &dev_list, list) { 905 rdma_for_each_port (cur_dev->device, p) { 906 if (!rdma_cap_af_ib(cur_dev->device, p)) 907 continue; 908 909 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 910 continue; 911 912 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 913 continue; 914 915 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 916 ++i) { 917 ret = rdma_query_gid(cur_dev->device, p, i, 918 &gid); 919 if (ret) 920 continue; 921 922 if (!memcmp(&gid, dgid, sizeof(gid))) { 923 cma_dev = cur_dev; 924 sgid = gid; 925 id_priv->id.port_num = p; 926 goto found; 927 } 928 929 if (!cma_dev && (gid.global.subnet_prefix == 930 dgid->global.subnet_prefix) && 931 port_state == IB_PORT_ACTIVE) { 932 cma_dev = cur_dev; 933 sgid = gid; 934 id_priv->id.port_num = p; 935 goto found; 936 } 937 } 938 } 939 } 940 mutex_unlock(&lock); 941 return -ENODEV; 942 943 found: 944 cma_attach_to_dev(id_priv, cma_dev); 945 rdma_restrack_add(&id_priv->res); 946 mutex_unlock(&lock); 947 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 948 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 949 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 950 return 0; 951 } 952 953 static void cma_id_get(struct rdma_id_private *id_priv) 954 { 955 refcount_inc(&id_priv->refcount); 956 } 957 958 static void cma_id_put(struct rdma_id_private *id_priv) 959 { 960 if (refcount_dec_and_test(&id_priv->refcount)) 961 complete(&id_priv->comp); 962 } 963 964 static struct rdma_id_private * 965 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 966 void *context, enum rdma_ucm_port_space ps, 967 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 968 { 969 struct rdma_id_private *id_priv; 970 971 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 972 if (!id_priv) 973 return ERR_PTR(-ENOMEM); 974 975 id_priv->state = RDMA_CM_IDLE; 976 id_priv->id.context = context; 977 id_priv->id.event_handler = event_handler; 978 id_priv->id.ps = ps; 979 id_priv->id.qp_type = qp_type; 980 id_priv->tos_set = false; 981 id_priv->timeout_set = false; 982 id_priv->min_rnr_timer_set = false; 983 id_priv->gid_type = IB_GID_TYPE_IB; 984 spin_lock_init(&id_priv->lock); 985 mutex_init(&id_priv->qp_mutex); 986 init_completion(&id_priv->comp); 987 refcount_set(&id_priv->refcount, 1); 988 mutex_init(&id_priv->handler_mutex); 989 INIT_LIST_HEAD(&id_priv->device_item); 990 INIT_LIST_HEAD(&id_priv->id_list_entry); 991 INIT_LIST_HEAD(&id_priv->listen_list); 992 INIT_LIST_HEAD(&id_priv->mc_list); 993 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 994 id_priv->id.route.addr.dev_addr.net = get_net(net); 995 id_priv->seq_num &= 0x00ffffff; 996 997 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 998 if (parent) 999 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1000 1001 return id_priv; 1002 } 1003 1004 struct rdma_cm_id * 1005 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1006 void *context, enum rdma_ucm_port_space ps, 1007 enum ib_qp_type qp_type, const char *caller) 1008 { 1009 struct rdma_id_private *ret; 1010 1011 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1012 if (IS_ERR(ret)) 1013 return ERR_CAST(ret); 1014 1015 rdma_restrack_set_name(&ret->res, caller); 1016 return &ret->id; 1017 } 1018 EXPORT_SYMBOL(__rdma_create_kernel_id); 1019 1020 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1021 void *context, 1022 enum rdma_ucm_port_space ps, 1023 enum ib_qp_type qp_type) 1024 { 1025 struct rdma_id_private *ret; 1026 1027 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1028 ps, qp_type, NULL); 1029 if (IS_ERR(ret)) 1030 return ERR_CAST(ret); 1031 1032 rdma_restrack_set_name(&ret->res, NULL); 1033 return &ret->id; 1034 } 1035 EXPORT_SYMBOL(rdma_create_user_id); 1036 1037 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 int qp_attr_mask, ret; 1041 1042 qp_attr.qp_state = IB_QPS_INIT; 1043 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1044 if (ret) 1045 return ret; 1046 1047 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1048 if (ret) 1049 return ret; 1050 1051 qp_attr.qp_state = IB_QPS_RTR; 1052 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1053 if (ret) 1054 return ret; 1055 1056 qp_attr.qp_state = IB_QPS_RTS; 1057 qp_attr.sq_psn = 0; 1058 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1059 1060 return ret; 1061 } 1062 1063 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1064 { 1065 struct ib_qp_attr qp_attr; 1066 int qp_attr_mask, ret; 1067 1068 qp_attr.qp_state = IB_QPS_INIT; 1069 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1070 if (ret) 1071 return ret; 1072 1073 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1074 } 1075 1076 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1077 struct ib_qp_init_attr *qp_init_attr) 1078 { 1079 struct rdma_id_private *id_priv; 1080 struct ib_qp *qp; 1081 int ret; 1082 1083 id_priv = container_of(id, struct rdma_id_private, id); 1084 if (id->device != pd->device) { 1085 ret = -EINVAL; 1086 goto out_err; 1087 } 1088 1089 qp_init_attr->port_num = id->port_num; 1090 qp = ib_create_qp(pd, qp_init_attr); 1091 if (IS_ERR(qp)) { 1092 ret = PTR_ERR(qp); 1093 goto out_err; 1094 } 1095 1096 if (id->qp_type == IB_QPT_UD) 1097 ret = cma_init_ud_qp(id_priv, qp); 1098 else 1099 ret = cma_init_conn_qp(id_priv, qp); 1100 if (ret) 1101 goto out_destroy; 1102 1103 id->qp = qp; 1104 id_priv->qp_num = qp->qp_num; 1105 id_priv->srq = (qp->srq != NULL); 1106 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1107 return 0; 1108 out_destroy: 1109 ib_destroy_qp(qp); 1110 out_err: 1111 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(rdma_create_qp); 1115 1116 void rdma_destroy_qp(struct rdma_cm_id *id) 1117 { 1118 struct rdma_id_private *id_priv; 1119 1120 id_priv = container_of(id, struct rdma_id_private, id); 1121 trace_cm_qp_destroy(id_priv); 1122 mutex_lock(&id_priv->qp_mutex); 1123 ib_destroy_qp(id_priv->id.qp); 1124 id_priv->id.qp = NULL; 1125 mutex_unlock(&id_priv->qp_mutex); 1126 } 1127 EXPORT_SYMBOL(rdma_destroy_qp); 1128 1129 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1130 struct rdma_conn_param *conn_param) 1131 { 1132 struct ib_qp_attr qp_attr; 1133 int qp_attr_mask, ret; 1134 1135 mutex_lock(&id_priv->qp_mutex); 1136 if (!id_priv->id.qp) { 1137 ret = 0; 1138 goto out; 1139 } 1140 1141 /* Need to update QP attributes from default values. */ 1142 qp_attr.qp_state = IB_QPS_INIT; 1143 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1144 if (ret) 1145 goto out; 1146 1147 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1148 if (ret) 1149 goto out; 1150 1151 qp_attr.qp_state = IB_QPS_RTR; 1152 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1153 if (ret) 1154 goto out; 1155 1156 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1157 1158 if (conn_param) 1159 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1160 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1161 out: 1162 mutex_unlock(&id_priv->qp_mutex); 1163 return ret; 1164 } 1165 1166 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1167 struct rdma_conn_param *conn_param) 1168 { 1169 struct ib_qp_attr qp_attr; 1170 int qp_attr_mask, ret; 1171 1172 mutex_lock(&id_priv->qp_mutex); 1173 if (!id_priv->id.qp) { 1174 ret = 0; 1175 goto out; 1176 } 1177 1178 qp_attr.qp_state = IB_QPS_RTS; 1179 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1180 if (ret) 1181 goto out; 1182 1183 if (conn_param) 1184 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1185 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1186 out: 1187 mutex_unlock(&id_priv->qp_mutex); 1188 return ret; 1189 } 1190 1191 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1192 { 1193 struct ib_qp_attr qp_attr; 1194 int ret; 1195 1196 mutex_lock(&id_priv->qp_mutex); 1197 if (!id_priv->id.qp) { 1198 ret = 0; 1199 goto out; 1200 } 1201 1202 qp_attr.qp_state = IB_QPS_ERR; 1203 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1204 out: 1205 mutex_unlock(&id_priv->qp_mutex); 1206 return ret; 1207 } 1208 1209 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1210 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1211 { 1212 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1213 int ret; 1214 u16 pkey; 1215 1216 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1217 pkey = 0xffff; 1218 else 1219 pkey = ib_addr_get_pkey(dev_addr); 1220 1221 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1222 pkey, &qp_attr->pkey_index); 1223 if (ret) 1224 return ret; 1225 1226 qp_attr->port_num = id_priv->id.port_num; 1227 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1228 1229 if (id_priv->id.qp_type == IB_QPT_UD) { 1230 ret = cma_set_default_qkey(id_priv); 1231 if (ret) 1232 return ret; 1233 1234 qp_attr->qkey = id_priv->qkey; 1235 *qp_attr_mask |= IB_QP_QKEY; 1236 } else { 1237 qp_attr->qp_access_flags = 0; 1238 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1239 } 1240 return 0; 1241 } 1242 1243 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1244 int *qp_attr_mask) 1245 { 1246 struct rdma_id_private *id_priv; 1247 int ret = 0; 1248 1249 id_priv = container_of(id, struct rdma_id_private, id); 1250 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1251 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1252 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1253 else 1254 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1255 qp_attr_mask); 1256 1257 if (qp_attr->qp_state == IB_QPS_RTR) 1258 qp_attr->rq_psn = id_priv->seq_num; 1259 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1260 if (!id_priv->cm_id.iw) { 1261 qp_attr->qp_access_flags = 0; 1262 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1263 } else 1264 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1265 qp_attr_mask); 1266 qp_attr->port_num = id_priv->id.port_num; 1267 *qp_attr_mask |= IB_QP_PORT; 1268 } else { 1269 ret = -ENOSYS; 1270 } 1271 1272 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1273 qp_attr->timeout = id_priv->timeout; 1274 1275 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1276 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1277 1278 return ret; 1279 } 1280 EXPORT_SYMBOL(rdma_init_qp_attr); 1281 1282 static inline bool cma_zero_addr(const struct sockaddr *addr) 1283 { 1284 switch (addr->sa_family) { 1285 case AF_INET: 1286 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1287 case AF_INET6: 1288 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1289 case AF_IB: 1290 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1291 default: 1292 return false; 1293 } 1294 } 1295 1296 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1297 { 1298 switch (addr->sa_family) { 1299 case AF_INET: 1300 return ipv4_is_loopback( 1301 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1302 case AF_INET6: 1303 return ipv6_addr_loopback( 1304 &((struct sockaddr_in6 *)addr)->sin6_addr); 1305 case AF_IB: 1306 return ib_addr_loopback( 1307 &((struct sockaddr_ib *)addr)->sib_addr); 1308 default: 1309 return false; 1310 } 1311 } 1312 1313 static inline bool cma_any_addr(const struct sockaddr *addr) 1314 { 1315 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1316 } 1317 1318 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1319 { 1320 if (src->sa_family != dst->sa_family) 1321 return -1; 1322 1323 switch (src->sa_family) { 1324 case AF_INET: 1325 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1326 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1327 case AF_INET6: { 1328 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1329 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1330 bool link_local; 1331 1332 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1333 &dst_addr6->sin6_addr)) 1334 return 1; 1335 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1336 IPV6_ADDR_LINKLOCAL; 1337 /* Link local must match their scope_ids */ 1338 return link_local ? (src_addr6->sin6_scope_id != 1339 dst_addr6->sin6_scope_id) : 1340 0; 1341 } 1342 1343 default: 1344 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1345 &((struct sockaddr_ib *) dst)->sib_addr); 1346 } 1347 } 1348 1349 static __be16 cma_port(const struct sockaddr *addr) 1350 { 1351 struct sockaddr_ib *sib; 1352 1353 switch (addr->sa_family) { 1354 case AF_INET: 1355 return ((struct sockaddr_in *) addr)->sin_port; 1356 case AF_INET6: 1357 return ((struct sockaddr_in6 *) addr)->sin6_port; 1358 case AF_IB: 1359 sib = (struct sockaddr_ib *) addr; 1360 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1361 be64_to_cpu(sib->sib_sid_mask))); 1362 default: 1363 return 0; 1364 } 1365 } 1366 1367 static inline int cma_any_port(const struct sockaddr *addr) 1368 { 1369 return !cma_port(addr); 1370 } 1371 1372 static void cma_save_ib_info(struct sockaddr *src_addr, 1373 struct sockaddr *dst_addr, 1374 const struct rdma_cm_id *listen_id, 1375 const struct sa_path_rec *path) 1376 { 1377 struct sockaddr_ib *listen_ib, *ib; 1378 1379 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1380 if (src_addr) { 1381 ib = (struct sockaddr_ib *)src_addr; 1382 ib->sib_family = AF_IB; 1383 if (path) { 1384 ib->sib_pkey = path->pkey; 1385 ib->sib_flowinfo = path->flow_label; 1386 memcpy(&ib->sib_addr, &path->sgid, 16); 1387 ib->sib_sid = path->service_id; 1388 ib->sib_scope_id = 0; 1389 } else { 1390 ib->sib_pkey = listen_ib->sib_pkey; 1391 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1392 ib->sib_addr = listen_ib->sib_addr; 1393 ib->sib_sid = listen_ib->sib_sid; 1394 ib->sib_scope_id = listen_ib->sib_scope_id; 1395 } 1396 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1397 } 1398 if (dst_addr) { 1399 ib = (struct sockaddr_ib *)dst_addr; 1400 ib->sib_family = AF_IB; 1401 if (path) { 1402 ib->sib_pkey = path->pkey; 1403 ib->sib_flowinfo = path->flow_label; 1404 memcpy(&ib->sib_addr, &path->dgid, 16); 1405 } 1406 } 1407 } 1408 1409 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1410 struct sockaddr_in *dst_addr, 1411 struct cma_hdr *hdr, 1412 __be16 local_port) 1413 { 1414 if (src_addr) { 1415 *src_addr = (struct sockaddr_in) { 1416 .sin_family = AF_INET, 1417 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1418 .sin_port = local_port, 1419 }; 1420 } 1421 1422 if (dst_addr) { 1423 *dst_addr = (struct sockaddr_in) { 1424 .sin_family = AF_INET, 1425 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1426 .sin_port = hdr->port, 1427 }; 1428 } 1429 } 1430 1431 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1432 struct sockaddr_in6 *dst_addr, 1433 struct cma_hdr *hdr, 1434 __be16 local_port) 1435 { 1436 if (src_addr) { 1437 *src_addr = (struct sockaddr_in6) { 1438 .sin6_family = AF_INET6, 1439 .sin6_addr = hdr->dst_addr.ip6, 1440 .sin6_port = local_port, 1441 }; 1442 } 1443 1444 if (dst_addr) { 1445 *dst_addr = (struct sockaddr_in6) { 1446 .sin6_family = AF_INET6, 1447 .sin6_addr = hdr->src_addr.ip6, 1448 .sin6_port = hdr->port, 1449 }; 1450 } 1451 } 1452 1453 static u16 cma_port_from_service_id(__be64 service_id) 1454 { 1455 return (u16)be64_to_cpu(service_id); 1456 } 1457 1458 static int cma_save_ip_info(struct sockaddr *src_addr, 1459 struct sockaddr *dst_addr, 1460 const struct ib_cm_event *ib_event, 1461 __be64 service_id) 1462 { 1463 struct cma_hdr *hdr; 1464 __be16 port; 1465 1466 hdr = ib_event->private_data; 1467 if (hdr->cma_version != CMA_VERSION) 1468 return -EINVAL; 1469 1470 port = htons(cma_port_from_service_id(service_id)); 1471 1472 switch (cma_get_ip_ver(hdr)) { 1473 case 4: 1474 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1475 (struct sockaddr_in *)dst_addr, hdr, port); 1476 break; 1477 case 6: 1478 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1479 (struct sockaddr_in6 *)dst_addr, hdr, port); 1480 break; 1481 default: 1482 return -EAFNOSUPPORT; 1483 } 1484 1485 return 0; 1486 } 1487 1488 static int cma_save_net_info(struct sockaddr *src_addr, 1489 struct sockaddr *dst_addr, 1490 const struct rdma_cm_id *listen_id, 1491 const struct ib_cm_event *ib_event, 1492 sa_family_t sa_family, __be64 service_id) 1493 { 1494 if (sa_family == AF_IB) { 1495 if (ib_event->event == IB_CM_REQ_RECEIVED) 1496 cma_save_ib_info(src_addr, dst_addr, listen_id, 1497 ib_event->param.req_rcvd.primary_path); 1498 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1499 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1500 return 0; 1501 } 1502 1503 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1504 } 1505 1506 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1507 struct cma_req_info *req) 1508 { 1509 const struct ib_cm_req_event_param *req_param = 1510 &ib_event->param.req_rcvd; 1511 const struct ib_cm_sidr_req_event_param *sidr_param = 1512 &ib_event->param.sidr_req_rcvd; 1513 1514 switch (ib_event->event) { 1515 case IB_CM_REQ_RECEIVED: 1516 req->device = req_param->listen_id->device; 1517 req->port = req_param->port; 1518 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1519 sizeof(req->local_gid)); 1520 req->has_gid = true; 1521 req->service_id = req_param->primary_path->service_id; 1522 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1523 if (req->pkey != req_param->bth_pkey) 1524 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1525 "RDMA CMA: in the future this may cause the request to be dropped\n", 1526 req_param->bth_pkey, req->pkey); 1527 break; 1528 case IB_CM_SIDR_REQ_RECEIVED: 1529 req->device = sidr_param->listen_id->device; 1530 req->port = sidr_param->port; 1531 req->has_gid = false; 1532 req->service_id = sidr_param->service_id; 1533 req->pkey = sidr_param->pkey; 1534 if (req->pkey != sidr_param->bth_pkey) 1535 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1536 "RDMA CMA: in the future this may cause the request to be dropped\n", 1537 sidr_param->bth_pkey, req->pkey); 1538 break; 1539 default: 1540 return -EINVAL; 1541 } 1542 1543 return 0; 1544 } 1545 1546 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1547 const struct sockaddr_in *dst_addr, 1548 const struct sockaddr_in *src_addr) 1549 { 1550 __be32 daddr = dst_addr->sin_addr.s_addr, 1551 saddr = src_addr->sin_addr.s_addr; 1552 struct fib_result res; 1553 struct flowi4 fl4; 1554 int err; 1555 bool ret; 1556 1557 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1558 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1559 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1560 ipv4_is_loopback(saddr)) 1561 return false; 1562 1563 memset(&fl4, 0, sizeof(fl4)); 1564 fl4.flowi4_oif = net_dev->ifindex; 1565 fl4.daddr = daddr; 1566 fl4.saddr = saddr; 1567 1568 rcu_read_lock(); 1569 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1570 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1571 rcu_read_unlock(); 1572 1573 return ret; 1574 } 1575 1576 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1577 const struct sockaddr_in6 *dst_addr, 1578 const struct sockaddr_in6 *src_addr) 1579 { 1580 #if IS_ENABLED(CONFIG_IPV6) 1581 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1582 IPV6_ADDR_LINKLOCAL; 1583 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1584 &src_addr->sin6_addr, net_dev->ifindex, 1585 NULL, strict); 1586 bool ret; 1587 1588 if (!rt) 1589 return false; 1590 1591 ret = rt->rt6i_idev->dev == net_dev; 1592 ip6_rt_put(rt); 1593 1594 return ret; 1595 #else 1596 return false; 1597 #endif 1598 } 1599 1600 static bool validate_net_dev(struct net_device *net_dev, 1601 const struct sockaddr *daddr, 1602 const struct sockaddr *saddr) 1603 { 1604 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1605 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1606 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1607 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1608 1609 switch (daddr->sa_family) { 1610 case AF_INET: 1611 return saddr->sa_family == AF_INET && 1612 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1613 1614 case AF_INET6: 1615 return saddr->sa_family == AF_INET6 && 1616 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1617 1618 default: 1619 return false; 1620 } 1621 } 1622 1623 static struct net_device * 1624 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1625 { 1626 const struct ib_gid_attr *sgid_attr = NULL; 1627 struct net_device *ndev; 1628 1629 if (ib_event->event == IB_CM_REQ_RECEIVED) 1630 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1631 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1632 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1633 1634 if (!sgid_attr) 1635 return NULL; 1636 1637 rcu_read_lock(); 1638 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1639 if (IS_ERR(ndev)) 1640 ndev = NULL; 1641 else 1642 dev_hold(ndev); 1643 rcu_read_unlock(); 1644 return ndev; 1645 } 1646 1647 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1648 struct cma_req_info *req) 1649 { 1650 struct sockaddr *listen_addr = 1651 (struct sockaddr *)&req->listen_addr_storage; 1652 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1653 struct net_device *net_dev; 1654 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1655 int err; 1656 1657 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1658 req->service_id); 1659 if (err) 1660 return ERR_PTR(err); 1661 1662 if (rdma_protocol_roce(req->device, req->port)) 1663 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1664 else 1665 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1666 req->pkey, 1667 gid, listen_addr); 1668 if (!net_dev) 1669 return ERR_PTR(-ENODEV); 1670 1671 return net_dev; 1672 } 1673 1674 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1675 { 1676 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1677 } 1678 1679 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1680 const struct cma_hdr *hdr) 1681 { 1682 struct sockaddr *addr = cma_src_addr(id_priv); 1683 __be32 ip4_addr; 1684 struct in6_addr ip6_addr; 1685 1686 if (cma_any_addr(addr) && !id_priv->afonly) 1687 return true; 1688 1689 switch (addr->sa_family) { 1690 case AF_INET: 1691 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1692 if (cma_get_ip_ver(hdr) != 4) 1693 return false; 1694 if (!cma_any_addr(addr) && 1695 hdr->dst_addr.ip4.addr != ip4_addr) 1696 return false; 1697 break; 1698 case AF_INET6: 1699 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1700 if (cma_get_ip_ver(hdr) != 6) 1701 return false; 1702 if (!cma_any_addr(addr) && 1703 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1704 return false; 1705 break; 1706 case AF_IB: 1707 return true; 1708 default: 1709 return false; 1710 } 1711 1712 return true; 1713 } 1714 1715 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1716 { 1717 struct ib_device *device = id->device; 1718 const u32 port_num = id->port_num ?: rdma_start_port(device); 1719 1720 return rdma_protocol_roce(device, port_num); 1721 } 1722 1723 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1724 { 1725 const struct sockaddr *daddr = 1726 (const struct sockaddr *)&req->listen_addr_storage; 1727 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1728 1729 /* Returns true if the req is for IPv6 link local */ 1730 return (daddr->sa_family == AF_INET6 && 1731 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1732 } 1733 1734 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1735 const struct net_device *net_dev, 1736 const struct cma_req_info *req) 1737 { 1738 const struct rdma_addr *addr = &id->route.addr; 1739 1740 if (!net_dev) 1741 /* This request is an AF_IB request */ 1742 return (!id->port_num || id->port_num == req->port) && 1743 (addr->src_addr.ss_family == AF_IB); 1744 1745 /* 1746 * If the request is not for IPv6 link local, allow matching 1747 * request to any netdevice of the one or multiport rdma device. 1748 */ 1749 if (!cma_is_req_ipv6_ll(req)) 1750 return true; 1751 /* 1752 * Net namespaces must match, and if the listner is listening 1753 * on a specific netdevice than netdevice must match as well. 1754 */ 1755 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1756 (!!addr->dev_addr.bound_dev_if == 1757 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1758 return true; 1759 else 1760 return false; 1761 } 1762 1763 static struct rdma_id_private *cma_find_listener( 1764 const struct rdma_bind_list *bind_list, 1765 const struct ib_cm_id *cm_id, 1766 const struct ib_cm_event *ib_event, 1767 const struct cma_req_info *req, 1768 const struct net_device *net_dev) 1769 { 1770 struct rdma_id_private *id_priv, *id_priv_dev; 1771 1772 lockdep_assert_held(&lock); 1773 1774 if (!bind_list) 1775 return ERR_PTR(-EINVAL); 1776 1777 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1778 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1779 if (id_priv->id.device == cm_id->device && 1780 cma_match_net_dev(&id_priv->id, net_dev, req)) 1781 return id_priv; 1782 list_for_each_entry(id_priv_dev, 1783 &id_priv->listen_list, 1784 listen_item) { 1785 if (id_priv_dev->id.device == cm_id->device && 1786 cma_match_net_dev(&id_priv_dev->id, 1787 net_dev, req)) 1788 return id_priv_dev; 1789 } 1790 } 1791 } 1792 1793 return ERR_PTR(-EINVAL); 1794 } 1795 1796 static struct rdma_id_private * 1797 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1798 const struct ib_cm_event *ib_event, 1799 struct cma_req_info *req, 1800 struct net_device **net_dev) 1801 { 1802 struct rdma_bind_list *bind_list; 1803 struct rdma_id_private *id_priv; 1804 int err; 1805 1806 err = cma_save_req_info(ib_event, req); 1807 if (err) 1808 return ERR_PTR(err); 1809 1810 *net_dev = cma_get_net_dev(ib_event, req); 1811 if (IS_ERR(*net_dev)) { 1812 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1813 /* Assuming the protocol is AF_IB */ 1814 *net_dev = NULL; 1815 } else { 1816 return ERR_CAST(*net_dev); 1817 } 1818 } 1819 1820 mutex_lock(&lock); 1821 /* 1822 * Net namespace might be getting deleted while route lookup, 1823 * cm_id lookup is in progress. Therefore, perform netdevice 1824 * validation, cm_id lookup under rcu lock. 1825 * RCU lock along with netdevice state check, synchronizes with 1826 * netdevice migrating to different net namespace and also avoids 1827 * case where net namespace doesn't get deleted while lookup is in 1828 * progress. 1829 * If the device state is not IFF_UP, its properties such as ifindex 1830 * and nd_net cannot be trusted to remain valid without rcu lock. 1831 * net/core/dev.c change_net_namespace() ensures to synchronize with 1832 * ongoing operations on net device after device is closed using 1833 * synchronize_net(). 1834 */ 1835 rcu_read_lock(); 1836 if (*net_dev) { 1837 /* 1838 * If netdevice is down, it is likely that it is administratively 1839 * down or it might be migrating to different namespace. 1840 * In that case avoid further processing, as the net namespace 1841 * or ifindex may change. 1842 */ 1843 if (((*net_dev)->flags & IFF_UP) == 0) { 1844 id_priv = ERR_PTR(-EHOSTUNREACH); 1845 goto err; 1846 } 1847 1848 if (!validate_net_dev(*net_dev, 1849 (struct sockaddr *)&req->src_addr_storage, 1850 (struct sockaddr *)&req->listen_addr_storage)) { 1851 id_priv = ERR_PTR(-EHOSTUNREACH); 1852 goto err; 1853 } 1854 } 1855 1856 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1857 rdma_ps_from_service_id(req->service_id), 1858 cma_port_from_service_id(req->service_id)); 1859 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1860 err: 1861 rcu_read_unlock(); 1862 mutex_unlock(&lock); 1863 if (IS_ERR(id_priv) && *net_dev) { 1864 dev_put(*net_dev); 1865 *net_dev = NULL; 1866 } 1867 return id_priv; 1868 } 1869 1870 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1871 { 1872 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1873 } 1874 1875 static void cma_cancel_route(struct rdma_id_private *id_priv) 1876 { 1877 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1878 if (id_priv->query) 1879 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1880 } 1881 } 1882 1883 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1884 { 1885 struct rdma_id_private *dev_id_priv; 1886 1887 lockdep_assert_held(&lock); 1888 1889 /* 1890 * Remove from listen_any_list to prevent added devices from spawning 1891 * additional listen requests. 1892 */ 1893 list_del_init(&id_priv->listen_any_item); 1894 1895 while (!list_empty(&id_priv->listen_list)) { 1896 dev_id_priv = 1897 list_first_entry(&id_priv->listen_list, 1898 struct rdma_id_private, listen_item); 1899 /* sync with device removal to avoid duplicate destruction */ 1900 list_del_init(&dev_id_priv->device_item); 1901 list_del_init(&dev_id_priv->listen_item); 1902 mutex_unlock(&lock); 1903 1904 rdma_destroy_id(&dev_id_priv->id); 1905 mutex_lock(&lock); 1906 } 1907 } 1908 1909 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1910 { 1911 mutex_lock(&lock); 1912 _cma_cancel_listens(id_priv); 1913 mutex_unlock(&lock); 1914 } 1915 1916 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1917 enum rdma_cm_state state) 1918 { 1919 switch (state) { 1920 case RDMA_CM_ADDR_QUERY: 1921 /* 1922 * We can avoid doing the rdma_addr_cancel() based on state, 1923 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1924 * Notice that the addr_handler work could still be exiting 1925 * outside this state, however due to the interaction with the 1926 * handler_mutex the work is guaranteed not to touch id_priv 1927 * during exit. 1928 */ 1929 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1930 break; 1931 case RDMA_CM_ROUTE_QUERY: 1932 cma_cancel_route(id_priv); 1933 break; 1934 case RDMA_CM_LISTEN: 1935 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1936 cma_cancel_listens(id_priv); 1937 break; 1938 default: 1939 break; 1940 } 1941 } 1942 1943 static void cma_release_port(struct rdma_id_private *id_priv) 1944 { 1945 struct rdma_bind_list *bind_list = id_priv->bind_list; 1946 struct net *net = id_priv->id.route.addr.dev_addr.net; 1947 1948 if (!bind_list) 1949 return; 1950 1951 mutex_lock(&lock); 1952 hlist_del(&id_priv->node); 1953 if (hlist_empty(&bind_list->owners)) { 1954 cma_ps_remove(net, bind_list->ps, bind_list->port); 1955 kfree(bind_list); 1956 } 1957 mutex_unlock(&lock); 1958 } 1959 1960 static void destroy_mc(struct rdma_id_private *id_priv, 1961 struct cma_multicast *mc) 1962 { 1963 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1964 1965 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1966 ib_sa_free_multicast(mc->sa_mc); 1967 1968 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1969 struct rdma_dev_addr *dev_addr = 1970 &id_priv->id.route.addr.dev_addr; 1971 struct net_device *ndev = NULL; 1972 1973 if (dev_addr->bound_dev_if) 1974 ndev = dev_get_by_index(dev_addr->net, 1975 dev_addr->bound_dev_if); 1976 if (ndev && !send_only) { 1977 enum ib_gid_type gid_type; 1978 union ib_gid mgid; 1979 1980 gid_type = id_priv->cma_dev->default_gid_type 1981 [id_priv->id.port_num - 1982 rdma_start_port( 1983 id_priv->cma_dev->device)]; 1984 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 1985 gid_type); 1986 cma_igmp_send(ndev, &mgid, false); 1987 } 1988 dev_put(ndev); 1989 1990 cancel_work_sync(&mc->iboe_join.work); 1991 } 1992 kfree(mc); 1993 } 1994 1995 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1996 { 1997 struct cma_multicast *mc; 1998 1999 while (!list_empty(&id_priv->mc_list)) { 2000 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2001 list); 2002 list_del(&mc->list); 2003 destroy_mc(id_priv, mc); 2004 } 2005 } 2006 2007 static void _destroy_id(struct rdma_id_private *id_priv, 2008 enum rdma_cm_state state) 2009 { 2010 cma_cancel_operation(id_priv, state); 2011 2012 rdma_restrack_del(&id_priv->res); 2013 cma_remove_id_from_tree(id_priv); 2014 if (id_priv->cma_dev) { 2015 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2016 if (id_priv->cm_id.ib) 2017 ib_destroy_cm_id(id_priv->cm_id.ib); 2018 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2019 if (id_priv->cm_id.iw) 2020 iw_destroy_cm_id(id_priv->cm_id.iw); 2021 } 2022 cma_leave_mc_groups(id_priv); 2023 cma_release_dev(id_priv); 2024 } 2025 2026 cma_release_port(id_priv); 2027 cma_id_put(id_priv); 2028 wait_for_completion(&id_priv->comp); 2029 2030 if (id_priv->internal_id) 2031 cma_id_put(id_priv->id.context); 2032 2033 kfree(id_priv->id.route.path_rec); 2034 kfree(id_priv->id.route.path_rec_inbound); 2035 kfree(id_priv->id.route.path_rec_outbound); 2036 2037 put_net(id_priv->id.route.addr.dev_addr.net); 2038 kfree(id_priv); 2039 } 2040 2041 /* 2042 * destroy an ID from within the handler_mutex. This ensures that no other 2043 * handlers can start running concurrently. 2044 */ 2045 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2046 __releases(&idprv->handler_mutex) 2047 { 2048 enum rdma_cm_state state; 2049 unsigned long flags; 2050 2051 trace_cm_id_destroy(id_priv); 2052 2053 /* 2054 * Setting the state to destroyed under the handler mutex provides a 2055 * fence against calling handler callbacks. If this is invoked due to 2056 * the failure of a handler callback then it guarentees that no future 2057 * handlers will be called. 2058 */ 2059 lockdep_assert_held(&id_priv->handler_mutex); 2060 spin_lock_irqsave(&id_priv->lock, flags); 2061 state = id_priv->state; 2062 id_priv->state = RDMA_CM_DESTROYING; 2063 spin_unlock_irqrestore(&id_priv->lock, flags); 2064 mutex_unlock(&id_priv->handler_mutex); 2065 _destroy_id(id_priv, state); 2066 } 2067 2068 void rdma_destroy_id(struct rdma_cm_id *id) 2069 { 2070 struct rdma_id_private *id_priv = 2071 container_of(id, struct rdma_id_private, id); 2072 2073 mutex_lock(&id_priv->handler_mutex); 2074 destroy_id_handler_unlock(id_priv); 2075 } 2076 EXPORT_SYMBOL(rdma_destroy_id); 2077 2078 static int cma_rep_recv(struct rdma_id_private *id_priv) 2079 { 2080 int ret; 2081 2082 ret = cma_modify_qp_rtr(id_priv, NULL); 2083 if (ret) 2084 goto reject; 2085 2086 ret = cma_modify_qp_rts(id_priv, NULL); 2087 if (ret) 2088 goto reject; 2089 2090 trace_cm_send_rtu(id_priv); 2091 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2092 if (ret) 2093 goto reject; 2094 2095 return 0; 2096 reject: 2097 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2098 cma_modify_qp_err(id_priv); 2099 trace_cm_send_rej(id_priv); 2100 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2101 NULL, 0, NULL, 0); 2102 return ret; 2103 } 2104 2105 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2106 const struct ib_cm_rep_event_param *rep_data, 2107 void *private_data) 2108 { 2109 event->param.conn.private_data = private_data; 2110 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2111 event->param.conn.responder_resources = rep_data->responder_resources; 2112 event->param.conn.initiator_depth = rep_data->initiator_depth; 2113 event->param.conn.flow_control = rep_data->flow_control; 2114 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2115 event->param.conn.srq = rep_data->srq; 2116 event->param.conn.qp_num = rep_data->remote_qpn; 2117 2118 event->ece.vendor_id = rep_data->ece.vendor_id; 2119 event->ece.attr_mod = rep_data->ece.attr_mod; 2120 } 2121 2122 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2123 struct rdma_cm_event *event) 2124 { 2125 int ret; 2126 2127 lockdep_assert_held(&id_priv->handler_mutex); 2128 2129 trace_cm_event_handler(id_priv, event); 2130 ret = id_priv->id.event_handler(&id_priv->id, event); 2131 trace_cm_event_done(id_priv, event, ret); 2132 return ret; 2133 } 2134 2135 static int cma_ib_handler(struct ib_cm_id *cm_id, 2136 const struct ib_cm_event *ib_event) 2137 { 2138 struct rdma_id_private *id_priv = cm_id->context; 2139 struct rdma_cm_event event = {}; 2140 enum rdma_cm_state state; 2141 int ret; 2142 2143 mutex_lock(&id_priv->handler_mutex); 2144 state = READ_ONCE(id_priv->state); 2145 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2146 state != RDMA_CM_CONNECT) || 2147 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2148 state != RDMA_CM_DISCONNECT)) 2149 goto out; 2150 2151 switch (ib_event->event) { 2152 case IB_CM_REQ_ERROR: 2153 case IB_CM_REP_ERROR: 2154 event.event = RDMA_CM_EVENT_UNREACHABLE; 2155 event.status = -ETIMEDOUT; 2156 break; 2157 case IB_CM_REP_RECEIVED: 2158 if (state == RDMA_CM_CONNECT && 2159 (id_priv->id.qp_type != IB_QPT_UD)) { 2160 trace_cm_send_mra(id_priv); 2161 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2162 } 2163 if (id_priv->id.qp) { 2164 event.status = cma_rep_recv(id_priv); 2165 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2166 RDMA_CM_EVENT_ESTABLISHED; 2167 } else { 2168 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2169 } 2170 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2171 ib_event->private_data); 2172 break; 2173 case IB_CM_RTU_RECEIVED: 2174 case IB_CM_USER_ESTABLISHED: 2175 event.event = RDMA_CM_EVENT_ESTABLISHED; 2176 break; 2177 case IB_CM_DREQ_ERROR: 2178 event.status = -ETIMEDOUT; 2179 fallthrough; 2180 case IB_CM_DREQ_RECEIVED: 2181 case IB_CM_DREP_RECEIVED: 2182 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2183 RDMA_CM_DISCONNECT)) 2184 goto out; 2185 event.event = RDMA_CM_EVENT_DISCONNECTED; 2186 break; 2187 case IB_CM_TIMEWAIT_EXIT: 2188 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2189 break; 2190 case IB_CM_MRA_RECEIVED: 2191 /* ignore event */ 2192 goto out; 2193 case IB_CM_REJ_RECEIVED: 2194 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2195 ib_event->param.rej_rcvd.reason)); 2196 cma_modify_qp_err(id_priv); 2197 event.status = ib_event->param.rej_rcvd.reason; 2198 event.event = RDMA_CM_EVENT_REJECTED; 2199 event.param.conn.private_data = ib_event->private_data; 2200 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2201 break; 2202 default: 2203 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2204 ib_event->event); 2205 goto out; 2206 } 2207 2208 ret = cma_cm_event_handler(id_priv, &event); 2209 if (ret) { 2210 /* Destroy the CM ID by returning a non-zero value. */ 2211 id_priv->cm_id.ib = NULL; 2212 destroy_id_handler_unlock(id_priv); 2213 return ret; 2214 } 2215 out: 2216 mutex_unlock(&id_priv->handler_mutex); 2217 return 0; 2218 } 2219 2220 static struct rdma_id_private * 2221 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2222 const struct ib_cm_event *ib_event, 2223 struct net_device *net_dev) 2224 { 2225 struct rdma_id_private *listen_id_priv; 2226 struct rdma_id_private *id_priv; 2227 struct rdma_cm_id *id; 2228 struct rdma_route *rt; 2229 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2230 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2231 const __be64 service_id = 2232 ib_event->param.req_rcvd.primary_path->service_id; 2233 int ret; 2234 2235 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2236 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2237 listen_id->event_handler, listen_id->context, 2238 listen_id->ps, 2239 ib_event->param.req_rcvd.qp_type, 2240 listen_id_priv); 2241 if (IS_ERR(id_priv)) 2242 return NULL; 2243 2244 id = &id_priv->id; 2245 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2246 (struct sockaddr *)&id->route.addr.dst_addr, 2247 listen_id, ib_event, ss_family, service_id)) 2248 goto err; 2249 2250 rt = &id->route; 2251 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2252 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2253 sizeof(*rt->path_rec), GFP_KERNEL); 2254 if (!rt->path_rec) 2255 goto err; 2256 2257 rt->path_rec[0] = *path; 2258 if (rt->num_pri_alt_paths == 2) 2259 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2260 2261 if (net_dev) { 2262 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2263 } else { 2264 if (!cma_protocol_roce(listen_id) && 2265 cma_any_addr(cma_src_addr(id_priv))) { 2266 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2267 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2268 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2269 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2270 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2271 if (ret) 2272 goto err; 2273 } 2274 } 2275 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2276 2277 id_priv->state = RDMA_CM_CONNECT; 2278 return id_priv; 2279 2280 err: 2281 rdma_destroy_id(id); 2282 return NULL; 2283 } 2284 2285 static struct rdma_id_private * 2286 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2287 const struct ib_cm_event *ib_event, 2288 struct net_device *net_dev) 2289 { 2290 const struct rdma_id_private *listen_id_priv; 2291 struct rdma_id_private *id_priv; 2292 struct rdma_cm_id *id; 2293 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2294 struct net *net = listen_id->route.addr.dev_addr.net; 2295 int ret; 2296 2297 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2298 id_priv = __rdma_create_id(net, listen_id->event_handler, 2299 listen_id->context, listen_id->ps, IB_QPT_UD, 2300 listen_id_priv); 2301 if (IS_ERR(id_priv)) 2302 return NULL; 2303 2304 id = &id_priv->id; 2305 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2306 (struct sockaddr *)&id->route.addr.dst_addr, 2307 listen_id, ib_event, ss_family, 2308 ib_event->param.sidr_req_rcvd.service_id)) 2309 goto err; 2310 2311 if (net_dev) { 2312 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2313 } else { 2314 if (!cma_any_addr(cma_src_addr(id_priv))) { 2315 ret = cma_translate_addr(cma_src_addr(id_priv), 2316 &id->route.addr.dev_addr); 2317 if (ret) 2318 goto err; 2319 } 2320 } 2321 2322 id_priv->state = RDMA_CM_CONNECT; 2323 return id_priv; 2324 err: 2325 rdma_destroy_id(id); 2326 return NULL; 2327 } 2328 2329 static void cma_set_req_event_data(struct rdma_cm_event *event, 2330 const struct ib_cm_req_event_param *req_data, 2331 void *private_data, int offset) 2332 { 2333 event->param.conn.private_data = private_data + offset; 2334 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2335 event->param.conn.responder_resources = req_data->responder_resources; 2336 event->param.conn.initiator_depth = req_data->initiator_depth; 2337 event->param.conn.flow_control = req_data->flow_control; 2338 event->param.conn.retry_count = req_data->retry_count; 2339 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2340 event->param.conn.srq = req_data->srq; 2341 event->param.conn.qp_num = req_data->remote_qpn; 2342 2343 event->ece.vendor_id = req_data->ece.vendor_id; 2344 event->ece.attr_mod = req_data->ece.attr_mod; 2345 } 2346 2347 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2348 const struct ib_cm_event *ib_event) 2349 { 2350 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2351 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2352 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2353 (id->qp_type == IB_QPT_UD)) || 2354 (!id->qp_type)); 2355 } 2356 2357 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2358 const struct ib_cm_event *ib_event) 2359 { 2360 struct rdma_id_private *listen_id, *conn_id = NULL; 2361 struct rdma_cm_event event = {}; 2362 struct cma_req_info req = {}; 2363 struct net_device *net_dev; 2364 u8 offset; 2365 int ret; 2366 2367 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2368 if (IS_ERR(listen_id)) 2369 return PTR_ERR(listen_id); 2370 2371 trace_cm_req_handler(listen_id, ib_event->event); 2372 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2373 ret = -EINVAL; 2374 goto net_dev_put; 2375 } 2376 2377 mutex_lock(&listen_id->handler_mutex); 2378 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2379 ret = -ECONNABORTED; 2380 goto err_unlock; 2381 } 2382 2383 offset = cma_user_data_offset(listen_id); 2384 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2385 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2386 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2387 event.param.ud.private_data = ib_event->private_data + offset; 2388 event.param.ud.private_data_len = 2389 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2390 } else { 2391 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2392 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2393 ib_event->private_data, offset); 2394 } 2395 if (!conn_id) { 2396 ret = -ENOMEM; 2397 goto err_unlock; 2398 } 2399 2400 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2401 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2402 if (ret) { 2403 destroy_id_handler_unlock(conn_id); 2404 goto err_unlock; 2405 } 2406 2407 conn_id->cm_id.ib = cm_id; 2408 cm_id->context = conn_id; 2409 cm_id->cm_handler = cma_ib_handler; 2410 2411 ret = cma_cm_event_handler(conn_id, &event); 2412 if (ret) { 2413 /* Destroy the CM ID by returning a non-zero value. */ 2414 conn_id->cm_id.ib = NULL; 2415 mutex_unlock(&listen_id->handler_mutex); 2416 destroy_id_handler_unlock(conn_id); 2417 goto net_dev_put; 2418 } 2419 2420 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2421 conn_id->id.qp_type != IB_QPT_UD) { 2422 trace_cm_send_mra(cm_id->context); 2423 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2424 } 2425 mutex_unlock(&conn_id->handler_mutex); 2426 2427 err_unlock: 2428 mutex_unlock(&listen_id->handler_mutex); 2429 2430 net_dev_put: 2431 dev_put(net_dev); 2432 2433 return ret; 2434 } 2435 2436 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2437 { 2438 if (addr->sa_family == AF_IB) 2439 return ((struct sockaddr_ib *) addr)->sib_sid; 2440 2441 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2442 } 2443 EXPORT_SYMBOL(rdma_get_service_id); 2444 2445 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2446 union ib_gid *dgid) 2447 { 2448 struct rdma_addr *addr = &cm_id->route.addr; 2449 2450 if (!cm_id->device) { 2451 if (sgid) 2452 memset(sgid, 0, sizeof(*sgid)); 2453 if (dgid) 2454 memset(dgid, 0, sizeof(*dgid)); 2455 return; 2456 } 2457 2458 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2459 if (sgid) 2460 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2461 if (dgid) 2462 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2463 } else { 2464 if (sgid) 2465 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2466 if (dgid) 2467 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2468 } 2469 } 2470 EXPORT_SYMBOL(rdma_read_gids); 2471 2472 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2473 { 2474 struct rdma_id_private *id_priv = iw_id->context; 2475 struct rdma_cm_event event = {}; 2476 int ret = 0; 2477 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2478 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2479 2480 mutex_lock(&id_priv->handler_mutex); 2481 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2482 goto out; 2483 2484 switch (iw_event->event) { 2485 case IW_CM_EVENT_CLOSE: 2486 event.event = RDMA_CM_EVENT_DISCONNECTED; 2487 break; 2488 case IW_CM_EVENT_CONNECT_REPLY: 2489 memcpy(cma_src_addr(id_priv), laddr, 2490 rdma_addr_size(laddr)); 2491 memcpy(cma_dst_addr(id_priv), raddr, 2492 rdma_addr_size(raddr)); 2493 switch (iw_event->status) { 2494 case 0: 2495 event.event = RDMA_CM_EVENT_ESTABLISHED; 2496 event.param.conn.initiator_depth = iw_event->ird; 2497 event.param.conn.responder_resources = iw_event->ord; 2498 break; 2499 case -ECONNRESET: 2500 case -ECONNREFUSED: 2501 event.event = RDMA_CM_EVENT_REJECTED; 2502 break; 2503 case -ETIMEDOUT: 2504 event.event = RDMA_CM_EVENT_UNREACHABLE; 2505 break; 2506 default: 2507 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2508 break; 2509 } 2510 break; 2511 case IW_CM_EVENT_ESTABLISHED: 2512 event.event = RDMA_CM_EVENT_ESTABLISHED; 2513 event.param.conn.initiator_depth = iw_event->ird; 2514 event.param.conn.responder_resources = iw_event->ord; 2515 break; 2516 default: 2517 goto out; 2518 } 2519 2520 event.status = iw_event->status; 2521 event.param.conn.private_data = iw_event->private_data; 2522 event.param.conn.private_data_len = iw_event->private_data_len; 2523 ret = cma_cm_event_handler(id_priv, &event); 2524 if (ret) { 2525 /* Destroy the CM ID by returning a non-zero value. */ 2526 id_priv->cm_id.iw = NULL; 2527 destroy_id_handler_unlock(id_priv); 2528 return ret; 2529 } 2530 2531 out: 2532 mutex_unlock(&id_priv->handler_mutex); 2533 return ret; 2534 } 2535 2536 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2537 struct iw_cm_event *iw_event) 2538 { 2539 struct rdma_id_private *listen_id, *conn_id; 2540 struct rdma_cm_event event = {}; 2541 int ret = -ECONNABORTED; 2542 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2543 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2544 2545 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2546 event.param.conn.private_data = iw_event->private_data; 2547 event.param.conn.private_data_len = iw_event->private_data_len; 2548 event.param.conn.initiator_depth = iw_event->ird; 2549 event.param.conn.responder_resources = iw_event->ord; 2550 2551 listen_id = cm_id->context; 2552 2553 mutex_lock(&listen_id->handler_mutex); 2554 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2555 goto out; 2556 2557 /* Create a new RDMA id for the new IW CM ID */ 2558 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2559 listen_id->id.event_handler, 2560 listen_id->id.context, RDMA_PS_TCP, 2561 IB_QPT_RC, listen_id); 2562 if (IS_ERR(conn_id)) { 2563 ret = -ENOMEM; 2564 goto out; 2565 } 2566 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2567 conn_id->state = RDMA_CM_CONNECT; 2568 2569 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2570 if (ret) { 2571 mutex_unlock(&listen_id->handler_mutex); 2572 destroy_id_handler_unlock(conn_id); 2573 return ret; 2574 } 2575 2576 ret = cma_iw_acquire_dev(conn_id, listen_id); 2577 if (ret) { 2578 mutex_unlock(&listen_id->handler_mutex); 2579 destroy_id_handler_unlock(conn_id); 2580 return ret; 2581 } 2582 2583 conn_id->cm_id.iw = cm_id; 2584 cm_id->context = conn_id; 2585 cm_id->cm_handler = cma_iw_handler; 2586 2587 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2588 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2589 2590 ret = cma_cm_event_handler(conn_id, &event); 2591 if (ret) { 2592 /* User wants to destroy the CM ID */ 2593 conn_id->cm_id.iw = NULL; 2594 mutex_unlock(&listen_id->handler_mutex); 2595 destroy_id_handler_unlock(conn_id); 2596 return ret; 2597 } 2598 2599 mutex_unlock(&conn_id->handler_mutex); 2600 2601 out: 2602 mutex_unlock(&listen_id->handler_mutex); 2603 return ret; 2604 } 2605 2606 static int cma_ib_listen(struct rdma_id_private *id_priv) 2607 { 2608 struct sockaddr *addr; 2609 struct ib_cm_id *id; 2610 __be64 svc_id; 2611 2612 addr = cma_src_addr(id_priv); 2613 svc_id = rdma_get_service_id(&id_priv->id, addr); 2614 id = ib_cm_insert_listen(id_priv->id.device, 2615 cma_ib_req_handler, svc_id); 2616 if (IS_ERR(id)) 2617 return PTR_ERR(id); 2618 id_priv->cm_id.ib = id; 2619 2620 return 0; 2621 } 2622 2623 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2624 { 2625 int ret; 2626 struct iw_cm_id *id; 2627 2628 id = iw_create_cm_id(id_priv->id.device, 2629 iw_conn_req_handler, 2630 id_priv); 2631 if (IS_ERR(id)) 2632 return PTR_ERR(id); 2633 2634 mutex_lock(&id_priv->qp_mutex); 2635 id->tos = id_priv->tos; 2636 id->tos_set = id_priv->tos_set; 2637 mutex_unlock(&id_priv->qp_mutex); 2638 id->afonly = id_priv->afonly; 2639 id_priv->cm_id.iw = id; 2640 2641 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2642 rdma_addr_size(cma_src_addr(id_priv))); 2643 2644 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2645 2646 if (ret) { 2647 iw_destroy_cm_id(id_priv->cm_id.iw); 2648 id_priv->cm_id.iw = NULL; 2649 } 2650 2651 return ret; 2652 } 2653 2654 static int cma_listen_handler(struct rdma_cm_id *id, 2655 struct rdma_cm_event *event) 2656 { 2657 struct rdma_id_private *id_priv = id->context; 2658 2659 /* Listening IDs are always destroyed on removal */ 2660 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2661 return -1; 2662 2663 id->context = id_priv->id.context; 2664 id->event_handler = id_priv->id.event_handler; 2665 trace_cm_event_handler(id_priv, event); 2666 return id_priv->id.event_handler(id, event); 2667 } 2668 2669 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2670 struct cma_device *cma_dev, 2671 struct rdma_id_private **to_destroy) 2672 { 2673 struct rdma_id_private *dev_id_priv; 2674 struct net *net = id_priv->id.route.addr.dev_addr.net; 2675 int ret; 2676 2677 lockdep_assert_held(&lock); 2678 2679 *to_destroy = NULL; 2680 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2681 return 0; 2682 2683 dev_id_priv = 2684 __rdma_create_id(net, cma_listen_handler, id_priv, 2685 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2686 if (IS_ERR(dev_id_priv)) 2687 return PTR_ERR(dev_id_priv); 2688 2689 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2690 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2691 rdma_addr_size(cma_src_addr(id_priv))); 2692 2693 _cma_attach_to_dev(dev_id_priv, cma_dev); 2694 rdma_restrack_add(&dev_id_priv->res); 2695 cma_id_get(id_priv); 2696 dev_id_priv->internal_id = 1; 2697 dev_id_priv->afonly = id_priv->afonly; 2698 mutex_lock(&id_priv->qp_mutex); 2699 dev_id_priv->tos_set = id_priv->tos_set; 2700 dev_id_priv->tos = id_priv->tos; 2701 mutex_unlock(&id_priv->qp_mutex); 2702 2703 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2704 if (ret) 2705 goto err_listen; 2706 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2707 return 0; 2708 err_listen: 2709 /* Caller must destroy this after releasing lock */ 2710 *to_destroy = dev_id_priv; 2711 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2712 return ret; 2713 } 2714 2715 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2716 { 2717 struct rdma_id_private *to_destroy; 2718 struct cma_device *cma_dev; 2719 int ret; 2720 2721 mutex_lock(&lock); 2722 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2723 list_for_each_entry(cma_dev, &dev_list, list) { 2724 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2725 if (ret) { 2726 /* Prevent racing with cma_process_remove() */ 2727 if (to_destroy) 2728 list_del_init(&to_destroy->device_item); 2729 goto err_listen; 2730 } 2731 } 2732 mutex_unlock(&lock); 2733 return 0; 2734 2735 err_listen: 2736 _cma_cancel_listens(id_priv); 2737 mutex_unlock(&lock); 2738 if (to_destroy) 2739 rdma_destroy_id(&to_destroy->id); 2740 return ret; 2741 } 2742 2743 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2744 { 2745 struct rdma_id_private *id_priv; 2746 2747 id_priv = container_of(id, struct rdma_id_private, id); 2748 mutex_lock(&id_priv->qp_mutex); 2749 id_priv->tos = (u8) tos; 2750 id_priv->tos_set = true; 2751 mutex_unlock(&id_priv->qp_mutex); 2752 } 2753 EXPORT_SYMBOL(rdma_set_service_type); 2754 2755 /** 2756 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2757 * with a connection identifier. 2758 * @id: Communication identifier to associated with service type. 2759 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2760 * 2761 * This function should be called before rdma_connect() on active side, 2762 * and on passive side before rdma_accept(). It is applicable to primary 2763 * path only. The timeout will affect the local side of the QP, it is not 2764 * negotiated with remote side and zero disables the timer. In case it is 2765 * set before rdma_resolve_route, the value will also be used to determine 2766 * PacketLifeTime for RoCE. 2767 * 2768 * Return: 0 for success 2769 */ 2770 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2771 { 2772 struct rdma_id_private *id_priv; 2773 2774 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2775 return -EINVAL; 2776 2777 id_priv = container_of(id, struct rdma_id_private, id); 2778 mutex_lock(&id_priv->qp_mutex); 2779 id_priv->timeout = timeout; 2780 id_priv->timeout_set = true; 2781 mutex_unlock(&id_priv->qp_mutex); 2782 2783 return 0; 2784 } 2785 EXPORT_SYMBOL(rdma_set_ack_timeout); 2786 2787 /** 2788 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2789 * QP associated with a connection identifier. 2790 * @id: Communication identifier to associated with service type. 2791 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2792 * Timer Field" in the IBTA specification. 2793 * 2794 * This function should be called before rdma_connect() on active 2795 * side, and on passive side before rdma_accept(). The timer value 2796 * will be associated with the local QP. When it receives a send it is 2797 * not read to handle, typically if the receive queue is empty, an RNR 2798 * Retry NAK is returned to the requester with the min_rnr_timer 2799 * encoded. The requester will then wait at least the time specified 2800 * in the NAK before retrying. The default is zero, which translates 2801 * to a minimum RNR Timer value of 655 ms. 2802 * 2803 * Return: 0 for success 2804 */ 2805 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2806 { 2807 struct rdma_id_private *id_priv; 2808 2809 /* It is a five-bit value */ 2810 if (min_rnr_timer & 0xe0) 2811 return -EINVAL; 2812 2813 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2814 return -EINVAL; 2815 2816 id_priv = container_of(id, struct rdma_id_private, id); 2817 mutex_lock(&id_priv->qp_mutex); 2818 id_priv->min_rnr_timer = min_rnr_timer; 2819 id_priv->min_rnr_timer_set = true; 2820 mutex_unlock(&id_priv->qp_mutex); 2821 2822 return 0; 2823 } 2824 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2825 2826 static int route_set_path_rec_inbound(struct cma_work *work, 2827 struct sa_path_rec *path_rec) 2828 { 2829 struct rdma_route *route = &work->id->id.route; 2830 2831 if (!route->path_rec_inbound) { 2832 route->path_rec_inbound = 2833 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2834 if (!route->path_rec_inbound) 2835 return -ENOMEM; 2836 } 2837 2838 *route->path_rec_inbound = *path_rec; 2839 return 0; 2840 } 2841 2842 static int route_set_path_rec_outbound(struct cma_work *work, 2843 struct sa_path_rec *path_rec) 2844 { 2845 struct rdma_route *route = &work->id->id.route; 2846 2847 if (!route->path_rec_outbound) { 2848 route->path_rec_outbound = 2849 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2850 if (!route->path_rec_outbound) 2851 return -ENOMEM; 2852 } 2853 2854 *route->path_rec_outbound = *path_rec; 2855 return 0; 2856 } 2857 2858 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2859 unsigned int num_prs, void *context) 2860 { 2861 struct cma_work *work = context; 2862 struct rdma_route *route; 2863 int i; 2864 2865 route = &work->id->id.route; 2866 2867 if (status) 2868 goto fail; 2869 2870 for (i = 0; i < num_prs; i++) { 2871 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2872 *route->path_rec = path_rec[i]; 2873 else if (path_rec[i].flags & IB_PATH_INBOUND) 2874 status = route_set_path_rec_inbound(work, &path_rec[i]); 2875 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2876 status = route_set_path_rec_outbound(work, 2877 &path_rec[i]); 2878 else 2879 status = -EINVAL; 2880 2881 if (status) 2882 goto fail; 2883 } 2884 2885 route->num_pri_alt_paths = 1; 2886 queue_work(cma_wq, &work->work); 2887 return; 2888 2889 fail: 2890 work->old_state = RDMA_CM_ROUTE_QUERY; 2891 work->new_state = RDMA_CM_ADDR_RESOLVED; 2892 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2893 work->event.status = status; 2894 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2895 status); 2896 queue_work(cma_wq, &work->work); 2897 } 2898 2899 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2900 unsigned long timeout_ms, struct cma_work *work) 2901 { 2902 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2903 struct sa_path_rec path_rec; 2904 ib_sa_comp_mask comp_mask; 2905 struct sockaddr_in6 *sin6; 2906 struct sockaddr_ib *sib; 2907 2908 memset(&path_rec, 0, sizeof path_rec); 2909 2910 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2911 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2912 else 2913 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2914 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2915 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2916 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2917 path_rec.numb_path = 1; 2918 path_rec.reversible = 1; 2919 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2920 cma_dst_addr(id_priv)); 2921 2922 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2923 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2924 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2925 2926 switch (cma_family(id_priv)) { 2927 case AF_INET: 2928 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2929 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2930 break; 2931 case AF_INET6: 2932 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2933 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2934 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2935 break; 2936 case AF_IB: 2937 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2938 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2939 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2940 break; 2941 } 2942 2943 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2944 id_priv->id.port_num, &path_rec, 2945 comp_mask, timeout_ms, 2946 GFP_KERNEL, cma_query_handler, 2947 work, &id_priv->query); 2948 2949 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2950 } 2951 2952 static void cma_iboe_join_work_handler(struct work_struct *work) 2953 { 2954 struct cma_multicast *mc = 2955 container_of(work, struct cma_multicast, iboe_join.work); 2956 struct rdma_cm_event *event = &mc->iboe_join.event; 2957 struct rdma_id_private *id_priv = mc->id_priv; 2958 int ret; 2959 2960 mutex_lock(&id_priv->handler_mutex); 2961 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2962 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2963 goto out_unlock; 2964 2965 ret = cma_cm_event_handler(id_priv, event); 2966 WARN_ON(ret); 2967 2968 out_unlock: 2969 mutex_unlock(&id_priv->handler_mutex); 2970 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2971 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2972 } 2973 2974 static void cma_work_handler(struct work_struct *_work) 2975 { 2976 struct cma_work *work = container_of(_work, struct cma_work, work); 2977 struct rdma_id_private *id_priv = work->id; 2978 2979 mutex_lock(&id_priv->handler_mutex); 2980 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2981 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2982 goto out_unlock; 2983 if (work->old_state != 0 || work->new_state != 0) { 2984 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2985 goto out_unlock; 2986 } 2987 2988 if (cma_cm_event_handler(id_priv, &work->event)) { 2989 cma_id_put(id_priv); 2990 destroy_id_handler_unlock(id_priv); 2991 goto out_free; 2992 } 2993 2994 out_unlock: 2995 mutex_unlock(&id_priv->handler_mutex); 2996 cma_id_put(id_priv); 2997 out_free: 2998 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2999 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3000 kfree(work); 3001 } 3002 3003 static void cma_init_resolve_route_work(struct cma_work *work, 3004 struct rdma_id_private *id_priv) 3005 { 3006 work->id = id_priv; 3007 INIT_WORK(&work->work, cma_work_handler); 3008 work->old_state = RDMA_CM_ROUTE_QUERY; 3009 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3010 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3011 } 3012 3013 static void enqueue_resolve_addr_work(struct cma_work *work, 3014 struct rdma_id_private *id_priv) 3015 { 3016 /* Balances with cma_id_put() in cma_work_handler */ 3017 cma_id_get(id_priv); 3018 3019 work->id = id_priv; 3020 INIT_WORK(&work->work, cma_work_handler); 3021 work->old_state = RDMA_CM_ADDR_QUERY; 3022 work->new_state = RDMA_CM_ADDR_RESOLVED; 3023 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3024 3025 queue_work(cma_wq, &work->work); 3026 } 3027 3028 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3029 unsigned long timeout_ms) 3030 { 3031 struct rdma_route *route = &id_priv->id.route; 3032 struct cma_work *work; 3033 int ret; 3034 3035 work = kzalloc(sizeof *work, GFP_KERNEL); 3036 if (!work) 3037 return -ENOMEM; 3038 3039 cma_init_resolve_route_work(work, id_priv); 3040 3041 if (!route->path_rec) 3042 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3043 if (!route->path_rec) { 3044 ret = -ENOMEM; 3045 goto err1; 3046 } 3047 3048 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3049 if (ret) 3050 goto err2; 3051 3052 return 0; 3053 err2: 3054 kfree(route->path_rec); 3055 route->path_rec = NULL; 3056 err1: 3057 kfree(work); 3058 return ret; 3059 } 3060 3061 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3062 unsigned long supported_gids, 3063 enum ib_gid_type default_gid) 3064 { 3065 if ((network_type == RDMA_NETWORK_IPV4 || 3066 network_type == RDMA_NETWORK_IPV6) && 3067 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3068 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3069 3070 return default_gid; 3071 } 3072 3073 /* 3074 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3075 * path record type based on GID type. 3076 * It also sets up other L2 fields which includes destination mac address 3077 * netdev ifindex, of the path record. 3078 * It returns the netdev of the bound interface for this path record entry. 3079 */ 3080 static struct net_device * 3081 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3082 { 3083 struct rdma_route *route = &id_priv->id.route; 3084 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3085 struct rdma_addr *addr = &route->addr; 3086 unsigned long supported_gids; 3087 struct net_device *ndev; 3088 3089 if (!addr->dev_addr.bound_dev_if) 3090 return NULL; 3091 3092 ndev = dev_get_by_index(addr->dev_addr.net, 3093 addr->dev_addr.bound_dev_if); 3094 if (!ndev) 3095 return NULL; 3096 3097 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3098 id_priv->id.port_num); 3099 gid_type = cma_route_gid_type(addr->dev_addr.network, 3100 supported_gids, 3101 id_priv->gid_type); 3102 /* Use the hint from IP Stack to select GID Type */ 3103 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3104 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3105 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3106 3107 route->path_rec->roce.route_resolved = true; 3108 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3109 return ndev; 3110 } 3111 3112 int rdma_set_ib_path(struct rdma_cm_id *id, 3113 struct sa_path_rec *path_rec) 3114 { 3115 struct rdma_id_private *id_priv; 3116 struct net_device *ndev; 3117 int ret; 3118 3119 id_priv = container_of(id, struct rdma_id_private, id); 3120 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3121 RDMA_CM_ROUTE_RESOLVED)) 3122 return -EINVAL; 3123 3124 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3125 GFP_KERNEL); 3126 if (!id->route.path_rec) { 3127 ret = -ENOMEM; 3128 goto err; 3129 } 3130 3131 if (rdma_protocol_roce(id->device, id->port_num)) { 3132 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3133 if (!ndev) { 3134 ret = -ENODEV; 3135 goto err_free; 3136 } 3137 dev_put(ndev); 3138 } 3139 3140 id->route.num_pri_alt_paths = 1; 3141 return 0; 3142 3143 err_free: 3144 kfree(id->route.path_rec); 3145 id->route.path_rec = NULL; 3146 err: 3147 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3148 return ret; 3149 } 3150 EXPORT_SYMBOL(rdma_set_ib_path); 3151 3152 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3153 { 3154 struct cma_work *work; 3155 3156 work = kzalloc(sizeof *work, GFP_KERNEL); 3157 if (!work) 3158 return -ENOMEM; 3159 3160 cma_init_resolve_route_work(work, id_priv); 3161 queue_work(cma_wq, &work->work); 3162 return 0; 3163 } 3164 3165 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3166 { 3167 struct net_device *dev; 3168 3169 dev = vlan_dev_real_dev(vlan_ndev); 3170 if (dev->num_tc) 3171 return netdev_get_prio_tc_map(dev, prio); 3172 3173 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3174 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3175 } 3176 3177 struct iboe_prio_tc_map { 3178 int input_prio; 3179 int output_tc; 3180 bool found; 3181 }; 3182 3183 static int get_lower_vlan_dev_tc(struct net_device *dev, 3184 struct netdev_nested_priv *priv) 3185 { 3186 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3187 3188 if (is_vlan_dev(dev)) 3189 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3190 else if (dev->num_tc) 3191 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3192 else 3193 map->output_tc = 0; 3194 /* We are interested only in first level VLAN device, so always 3195 * return 1 to stop iterating over next level devices. 3196 */ 3197 map->found = true; 3198 return 1; 3199 } 3200 3201 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3202 { 3203 struct iboe_prio_tc_map prio_tc_map = {}; 3204 int prio = rt_tos2priority(tos); 3205 struct netdev_nested_priv priv; 3206 3207 /* If VLAN device, get it directly from the VLAN netdev */ 3208 if (is_vlan_dev(ndev)) 3209 return get_vlan_ndev_tc(ndev, prio); 3210 3211 prio_tc_map.input_prio = prio; 3212 priv.data = (void *)&prio_tc_map; 3213 rcu_read_lock(); 3214 netdev_walk_all_lower_dev_rcu(ndev, 3215 get_lower_vlan_dev_tc, 3216 &priv); 3217 rcu_read_unlock(); 3218 /* If map is found from lower device, use it; Otherwise 3219 * continue with the current netdevice to get priority to tc map. 3220 */ 3221 if (prio_tc_map.found) 3222 return prio_tc_map.output_tc; 3223 else if (ndev->num_tc) 3224 return netdev_get_prio_tc_map(ndev, prio); 3225 else 3226 return 0; 3227 } 3228 3229 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3230 { 3231 struct sockaddr_in6 *addr6; 3232 u16 dport, sport; 3233 u32 hash, fl; 3234 3235 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3236 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3237 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3238 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3239 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3240 hash = (u32)sport * 31 + dport; 3241 fl = hash & IB_GRH_FLOWLABEL_MASK; 3242 } 3243 3244 return cpu_to_be32(fl); 3245 } 3246 3247 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3248 { 3249 struct rdma_route *route = &id_priv->id.route; 3250 struct rdma_addr *addr = &route->addr; 3251 struct cma_work *work; 3252 int ret; 3253 struct net_device *ndev; 3254 3255 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3256 rdma_start_port(id_priv->cma_dev->device)]; 3257 u8 tos; 3258 3259 mutex_lock(&id_priv->qp_mutex); 3260 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3261 mutex_unlock(&id_priv->qp_mutex); 3262 3263 work = kzalloc(sizeof *work, GFP_KERNEL); 3264 if (!work) 3265 return -ENOMEM; 3266 3267 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3268 if (!route->path_rec) { 3269 ret = -ENOMEM; 3270 goto err1; 3271 } 3272 3273 route->num_pri_alt_paths = 1; 3274 3275 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3276 if (!ndev) { 3277 ret = -ENODEV; 3278 goto err2; 3279 } 3280 3281 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3282 &route->path_rec->sgid); 3283 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3284 &route->path_rec->dgid); 3285 3286 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3287 /* TODO: get the hoplimit from the inet/inet6 device */ 3288 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3289 else 3290 route->path_rec->hop_limit = 1; 3291 route->path_rec->reversible = 1; 3292 route->path_rec->pkey = cpu_to_be16(0xffff); 3293 route->path_rec->mtu_selector = IB_SA_EQ; 3294 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3295 route->path_rec->traffic_class = tos; 3296 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3297 route->path_rec->rate_selector = IB_SA_EQ; 3298 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3299 dev_put(ndev); 3300 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3301 /* In case ACK timeout is set, use this value to calculate 3302 * PacketLifeTime. As per IBTA 12.7.34, 3303 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3304 * Assuming a negligible local ACK delay, we can use 3305 * PacketLifeTime = local ACK timeout/2 3306 * as a reasonable approximation for RoCE networks. 3307 */ 3308 mutex_lock(&id_priv->qp_mutex); 3309 if (id_priv->timeout_set && id_priv->timeout) 3310 route->path_rec->packet_life_time = id_priv->timeout - 1; 3311 else 3312 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3313 mutex_unlock(&id_priv->qp_mutex); 3314 3315 if (!route->path_rec->mtu) { 3316 ret = -EINVAL; 3317 goto err2; 3318 } 3319 3320 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3321 id_priv->id.port_num)) 3322 route->path_rec->flow_label = 3323 cma_get_roce_udp_flow_label(id_priv); 3324 3325 cma_init_resolve_route_work(work, id_priv); 3326 queue_work(cma_wq, &work->work); 3327 3328 return 0; 3329 3330 err2: 3331 kfree(route->path_rec); 3332 route->path_rec = NULL; 3333 route->num_pri_alt_paths = 0; 3334 err1: 3335 kfree(work); 3336 return ret; 3337 } 3338 3339 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3340 { 3341 struct rdma_id_private *id_priv; 3342 int ret; 3343 3344 if (!timeout_ms) 3345 return -EINVAL; 3346 3347 id_priv = container_of(id, struct rdma_id_private, id); 3348 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3349 return -EINVAL; 3350 3351 cma_id_get(id_priv); 3352 if (rdma_cap_ib_sa(id->device, id->port_num)) 3353 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3354 else if (rdma_protocol_roce(id->device, id->port_num)) { 3355 ret = cma_resolve_iboe_route(id_priv); 3356 if (!ret) 3357 cma_add_id_to_tree(id_priv); 3358 } 3359 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3360 ret = cma_resolve_iw_route(id_priv); 3361 else 3362 ret = -ENOSYS; 3363 3364 if (ret) 3365 goto err; 3366 3367 return 0; 3368 err: 3369 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3370 cma_id_put(id_priv); 3371 return ret; 3372 } 3373 EXPORT_SYMBOL(rdma_resolve_route); 3374 3375 static void cma_set_loopback(struct sockaddr *addr) 3376 { 3377 switch (addr->sa_family) { 3378 case AF_INET: 3379 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3380 break; 3381 case AF_INET6: 3382 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3383 0, 0, 0, htonl(1)); 3384 break; 3385 default: 3386 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3387 0, 0, 0, htonl(1)); 3388 break; 3389 } 3390 } 3391 3392 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3393 { 3394 struct cma_device *cma_dev, *cur_dev; 3395 union ib_gid gid; 3396 enum ib_port_state port_state; 3397 unsigned int p; 3398 u16 pkey; 3399 int ret; 3400 3401 cma_dev = NULL; 3402 mutex_lock(&lock); 3403 list_for_each_entry(cur_dev, &dev_list, list) { 3404 if (cma_family(id_priv) == AF_IB && 3405 !rdma_cap_ib_cm(cur_dev->device, 1)) 3406 continue; 3407 3408 if (!cma_dev) 3409 cma_dev = cur_dev; 3410 3411 rdma_for_each_port (cur_dev->device, p) { 3412 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3413 port_state == IB_PORT_ACTIVE) { 3414 cma_dev = cur_dev; 3415 goto port_found; 3416 } 3417 } 3418 } 3419 3420 if (!cma_dev) { 3421 ret = -ENODEV; 3422 goto out; 3423 } 3424 3425 p = 1; 3426 3427 port_found: 3428 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3429 if (ret) 3430 goto out; 3431 3432 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3433 if (ret) 3434 goto out; 3435 3436 id_priv->id.route.addr.dev_addr.dev_type = 3437 (rdma_protocol_ib(cma_dev->device, p)) ? 3438 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3439 3440 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3441 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3442 id_priv->id.port_num = p; 3443 cma_attach_to_dev(id_priv, cma_dev); 3444 rdma_restrack_add(&id_priv->res); 3445 cma_set_loopback(cma_src_addr(id_priv)); 3446 out: 3447 mutex_unlock(&lock); 3448 return ret; 3449 } 3450 3451 static void addr_handler(int status, struct sockaddr *src_addr, 3452 struct rdma_dev_addr *dev_addr, void *context) 3453 { 3454 struct rdma_id_private *id_priv = context; 3455 struct rdma_cm_event event = {}; 3456 struct sockaddr *addr; 3457 struct sockaddr_storage old_addr; 3458 3459 mutex_lock(&id_priv->handler_mutex); 3460 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3461 RDMA_CM_ADDR_RESOLVED)) 3462 goto out; 3463 3464 /* 3465 * Store the previous src address, so that if we fail to acquire 3466 * matching rdma device, old address can be restored back, which helps 3467 * to cancel the cma listen operation correctly. 3468 */ 3469 addr = cma_src_addr(id_priv); 3470 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3471 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3472 if (!status && !id_priv->cma_dev) { 3473 status = cma_acquire_dev_by_src_ip(id_priv); 3474 if (status) 3475 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3476 status); 3477 rdma_restrack_add(&id_priv->res); 3478 } else if (status) { 3479 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3480 } 3481 3482 if (status) { 3483 memcpy(addr, &old_addr, 3484 rdma_addr_size((struct sockaddr *)&old_addr)); 3485 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3486 RDMA_CM_ADDR_BOUND)) 3487 goto out; 3488 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3489 event.status = status; 3490 } else 3491 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3492 3493 if (cma_cm_event_handler(id_priv, &event)) { 3494 destroy_id_handler_unlock(id_priv); 3495 return; 3496 } 3497 out: 3498 mutex_unlock(&id_priv->handler_mutex); 3499 } 3500 3501 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3502 { 3503 struct cma_work *work; 3504 union ib_gid gid; 3505 int ret; 3506 3507 work = kzalloc(sizeof *work, GFP_KERNEL); 3508 if (!work) 3509 return -ENOMEM; 3510 3511 if (!id_priv->cma_dev) { 3512 ret = cma_bind_loopback(id_priv); 3513 if (ret) 3514 goto err; 3515 } 3516 3517 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3518 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3519 3520 enqueue_resolve_addr_work(work, id_priv); 3521 return 0; 3522 err: 3523 kfree(work); 3524 return ret; 3525 } 3526 3527 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3528 { 3529 struct cma_work *work; 3530 int ret; 3531 3532 work = kzalloc(sizeof *work, GFP_KERNEL); 3533 if (!work) 3534 return -ENOMEM; 3535 3536 if (!id_priv->cma_dev) { 3537 ret = cma_resolve_ib_dev(id_priv); 3538 if (ret) 3539 goto err; 3540 } 3541 3542 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3543 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3544 3545 enqueue_resolve_addr_work(work, id_priv); 3546 return 0; 3547 err: 3548 kfree(work); 3549 return ret; 3550 } 3551 3552 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3553 { 3554 struct rdma_id_private *id_priv; 3555 unsigned long flags; 3556 int ret; 3557 3558 id_priv = container_of(id, struct rdma_id_private, id); 3559 spin_lock_irqsave(&id_priv->lock, flags); 3560 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3561 id_priv->state == RDMA_CM_IDLE) { 3562 id_priv->reuseaddr = reuse; 3563 ret = 0; 3564 } else { 3565 ret = -EINVAL; 3566 } 3567 spin_unlock_irqrestore(&id_priv->lock, flags); 3568 return ret; 3569 } 3570 EXPORT_SYMBOL(rdma_set_reuseaddr); 3571 3572 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3573 { 3574 struct rdma_id_private *id_priv; 3575 unsigned long flags; 3576 int ret; 3577 3578 id_priv = container_of(id, struct rdma_id_private, id); 3579 spin_lock_irqsave(&id_priv->lock, flags); 3580 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3581 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3582 id_priv->afonly = afonly; 3583 ret = 0; 3584 } else { 3585 ret = -EINVAL; 3586 } 3587 spin_unlock_irqrestore(&id_priv->lock, flags); 3588 return ret; 3589 } 3590 EXPORT_SYMBOL(rdma_set_afonly); 3591 3592 static void cma_bind_port(struct rdma_bind_list *bind_list, 3593 struct rdma_id_private *id_priv) 3594 { 3595 struct sockaddr *addr; 3596 struct sockaddr_ib *sib; 3597 u64 sid, mask; 3598 __be16 port; 3599 3600 lockdep_assert_held(&lock); 3601 3602 addr = cma_src_addr(id_priv); 3603 port = htons(bind_list->port); 3604 3605 switch (addr->sa_family) { 3606 case AF_INET: 3607 ((struct sockaddr_in *) addr)->sin_port = port; 3608 break; 3609 case AF_INET6: 3610 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3611 break; 3612 case AF_IB: 3613 sib = (struct sockaddr_ib *) addr; 3614 sid = be64_to_cpu(sib->sib_sid); 3615 mask = be64_to_cpu(sib->sib_sid_mask); 3616 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3617 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3618 break; 3619 } 3620 id_priv->bind_list = bind_list; 3621 hlist_add_head(&id_priv->node, &bind_list->owners); 3622 } 3623 3624 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3625 struct rdma_id_private *id_priv, unsigned short snum) 3626 { 3627 struct rdma_bind_list *bind_list; 3628 int ret; 3629 3630 lockdep_assert_held(&lock); 3631 3632 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3633 if (!bind_list) 3634 return -ENOMEM; 3635 3636 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3637 snum); 3638 if (ret < 0) 3639 goto err; 3640 3641 bind_list->ps = ps; 3642 bind_list->port = snum; 3643 cma_bind_port(bind_list, id_priv); 3644 return 0; 3645 err: 3646 kfree(bind_list); 3647 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3648 } 3649 3650 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3651 struct rdma_id_private *id_priv) 3652 { 3653 struct rdma_id_private *cur_id; 3654 struct sockaddr *daddr = cma_dst_addr(id_priv); 3655 struct sockaddr *saddr = cma_src_addr(id_priv); 3656 __be16 dport = cma_port(daddr); 3657 3658 lockdep_assert_held(&lock); 3659 3660 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3661 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3662 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3663 __be16 cur_dport = cma_port(cur_daddr); 3664 3665 if (id_priv == cur_id) 3666 continue; 3667 3668 /* different dest port -> unique */ 3669 if (!cma_any_port(daddr) && 3670 !cma_any_port(cur_daddr) && 3671 (dport != cur_dport)) 3672 continue; 3673 3674 /* different src address -> unique */ 3675 if (!cma_any_addr(saddr) && 3676 !cma_any_addr(cur_saddr) && 3677 cma_addr_cmp(saddr, cur_saddr)) 3678 continue; 3679 3680 /* different dst address -> unique */ 3681 if (!cma_any_addr(daddr) && 3682 !cma_any_addr(cur_daddr) && 3683 cma_addr_cmp(daddr, cur_daddr)) 3684 continue; 3685 3686 return -EADDRNOTAVAIL; 3687 } 3688 return 0; 3689 } 3690 3691 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3692 struct rdma_id_private *id_priv) 3693 { 3694 static unsigned int last_used_port; 3695 int low, high, remaining; 3696 unsigned int rover; 3697 struct net *net = id_priv->id.route.addr.dev_addr.net; 3698 3699 lockdep_assert_held(&lock); 3700 3701 inet_get_local_port_range(net, &low, &high); 3702 remaining = (high - low) + 1; 3703 rover = get_random_u32_inclusive(low, remaining + low - 1); 3704 retry: 3705 if (last_used_port != rover) { 3706 struct rdma_bind_list *bind_list; 3707 int ret; 3708 3709 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3710 3711 if (!bind_list) { 3712 ret = cma_alloc_port(ps, id_priv, rover); 3713 } else { 3714 ret = cma_port_is_unique(bind_list, id_priv); 3715 if (!ret) 3716 cma_bind_port(bind_list, id_priv); 3717 } 3718 /* 3719 * Remember previously used port number in order to avoid 3720 * re-using same port immediately after it is closed. 3721 */ 3722 if (!ret) 3723 last_used_port = rover; 3724 if (ret != -EADDRNOTAVAIL) 3725 return ret; 3726 } 3727 if (--remaining) { 3728 rover++; 3729 if ((rover < low) || (rover > high)) 3730 rover = low; 3731 goto retry; 3732 } 3733 return -EADDRNOTAVAIL; 3734 } 3735 3736 /* 3737 * Check that the requested port is available. This is called when trying to 3738 * bind to a specific port, or when trying to listen on a bound port. In 3739 * the latter case, the provided id_priv may already be on the bind_list, but 3740 * we still need to check that it's okay to start listening. 3741 */ 3742 static int cma_check_port(struct rdma_bind_list *bind_list, 3743 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3744 { 3745 struct rdma_id_private *cur_id; 3746 struct sockaddr *addr, *cur_addr; 3747 3748 lockdep_assert_held(&lock); 3749 3750 addr = cma_src_addr(id_priv); 3751 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3752 if (id_priv == cur_id) 3753 continue; 3754 3755 if (reuseaddr && cur_id->reuseaddr) 3756 continue; 3757 3758 cur_addr = cma_src_addr(cur_id); 3759 if (id_priv->afonly && cur_id->afonly && 3760 (addr->sa_family != cur_addr->sa_family)) 3761 continue; 3762 3763 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3764 return -EADDRNOTAVAIL; 3765 3766 if (!cma_addr_cmp(addr, cur_addr)) 3767 return -EADDRINUSE; 3768 } 3769 return 0; 3770 } 3771 3772 static int cma_use_port(enum rdma_ucm_port_space ps, 3773 struct rdma_id_private *id_priv) 3774 { 3775 struct rdma_bind_list *bind_list; 3776 unsigned short snum; 3777 int ret; 3778 3779 lockdep_assert_held(&lock); 3780 3781 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3782 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3783 return -EACCES; 3784 3785 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3786 if (!bind_list) { 3787 ret = cma_alloc_port(ps, id_priv, snum); 3788 } else { 3789 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3790 if (!ret) 3791 cma_bind_port(bind_list, id_priv); 3792 } 3793 return ret; 3794 } 3795 3796 static enum rdma_ucm_port_space 3797 cma_select_inet_ps(struct rdma_id_private *id_priv) 3798 { 3799 switch (id_priv->id.ps) { 3800 case RDMA_PS_TCP: 3801 case RDMA_PS_UDP: 3802 case RDMA_PS_IPOIB: 3803 case RDMA_PS_IB: 3804 return id_priv->id.ps; 3805 default: 3806 3807 return 0; 3808 } 3809 } 3810 3811 static enum rdma_ucm_port_space 3812 cma_select_ib_ps(struct rdma_id_private *id_priv) 3813 { 3814 enum rdma_ucm_port_space ps = 0; 3815 struct sockaddr_ib *sib; 3816 u64 sid_ps, mask, sid; 3817 3818 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3819 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3820 sid = be64_to_cpu(sib->sib_sid) & mask; 3821 3822 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3823 sid_ps = RDMA_IB_IP_PS_IB; 3824 ps = RDMA_PS_IB; 3825 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3826 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3827 sid_ps = RDMA_IB_IP_PS_TCP; 3828 ps = RDMA_PS_TCP; 3829 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3830 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3831 sid_ps = RDMA_IB_IP_PS_UDP; 3832 ps = RDMA_PS_UDP; 3833 } 3834 3835 if (ps) { 3836 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3837 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3838 be64_to_cpu(sib->sib_sid_mask)); 3839 } 3840 return ps; 3841 } 3842 3843 static int cma_get_port(struct rdma_id_private *id_priv) 3844 { 3845 enum rdma_ucm_port_space ps; 3846 int ret; 3847 3848 if (cma_family(id_priv) != AF_IB) 3849 ps = cma_select_inet_ps(id_priv); 3850 else 3851 ps = cma_select_ib_ps(id_priv); 3852 if (!ps) 3853 return -EPROTONOSUPPORT; 3854 3855 mutex_lock(&lock); 3856 if (cma_any_port(cma_src_addr(id_priv))) 3857 ret = cma_alloc_any_port(ps, id_priv); 3858 else 3859 ret = cma_use_port(ps, id_priv); 3860 mutex_unlock(&lock); 3861 3862 return ret; 3863 } 3864 3865 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3866 struct sockaddr *addr) 3867 { 3868 #if IS_ENABLED(CONFIG_IPV6) 3869 struct sockaddr_in6 *sin6; 3870 3871 if (addr->sa_family != AF_INET6) 3872 return 0; 3873 3874 sin6 = (struct sockaddr_in6 *) addr; 3875 3876 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3877 return 0; 3878 3879 if (!sin6->sin6_scope_id) 3880 return -EINVAL; 3881 3882 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3883 #endif 3884 return 0; 3885 } 3886 3887 int rdma_listen(struct rdma_cm_id *id, int backlog) 3888 { 3889 struct rdma_id_private *id_priv = 3890 container_of(id, struct rdma_id_private, id); 3891 int ret; 3892 3893 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3894 struct sockaddr_in any_in = { 3895 .sin_family = AF_INET, 3896 .sin_addr.s_addr = htonl(INADDR_ANY), 3897 }; 3898 3899 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3900 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3901 if (ret) 3902 return ret; 3903 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3904 RDMA_CM_LISTEN))) 3905 return -EINVAL; 3906 } 3907 3908 /* 3909 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3910 * any more, and has to be unique in the bind list. 3911 */ 3912 if (id_priv->reuseaddr) { 3913 mutex_lock(&lock); 3914 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3915 if (!ret) 3916 id_priv->reuseaddr = 0; 3917 mutex_unlock(&lock); 3918 if (ret) 3919 goto err; 3920 } 3921 3922 id_priv->backlog = backlog; 3923 if (id_priv->cma_dev) { 3924 if (rdma_cap_ib_cm(id->device, 1)) { 3925 ret = cma_ib_listen(id_priv); 3926 if (ret) 3927 goto err; 3928 } else if (rdma_cap_iw_cm(id->device, 1)) { 3929 ret = cma_iw_listen(id_priv, backlog); 3930 if (ret) 3931 goto err; 3932 } else { 3933 ret = -ENOSYS; 3934 goto err; 3935 } 3936 } else { 3937 ret = cma_listen_on_all(id_priv); 3938 if (ret) 3939 goto err; 3940 } 3941 3942 return 0; 3943 err: 3944 id_priv->backlog = 0; 3945 /* 3946 * All the failure paths that lead here will not allow the req_handler's 3947 * to have run. 3948 */ 3949 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3950 return ret; 3951 } 3952 EXPORT_SYMBOL(rdma_listen); 3953 3954 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 3955 struct sockaddr *addr, const struct sockaddr *daddr) 3956 { 3957 struct sockaddr *id_daddr; 3958 int ret; 3959 3960 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3961 addr->sa_family != AF_IB) 3962 return -EAFNOSUPPORT; 3963 3964 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3965 return -EINVAL; 3966 3967 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 3968 if (ret) 3969 goto err1; 3970 3971 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3972 if (!cma_any_addr(addr)) { 3973 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 3974 if (ret) 3975 goto err1; 3976 3977 ret = cma_acquire_dev_by_src_ip(id_priv); 3978 if (ret) 3979 goto err1; 3980 } 3981 3982 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3983 if (addr->sa_family == AF_INET) 3984 id_priv->afonly = 1; 3985 #if IS_ENABLED(CONFIG_IPV6) 3986 else if (addr->sa_family == AF_INET6) { 3987 struct net *net = id_priv->id.route.addr.dev_addr.net; 3988 3989 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3990 } 3991 #endif 3992 } 3993 id_daddr = cma_dst_addr(id_priv); 3994 if (daddr != id_daddr) 3995 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 3996 id_daddr->sa_family = addr->sa_family; 3997 3998 ret = cma_get_port(id_priv); 3999 if (ret) 4000 goto err2; 4001 4002 if (!cma_any_addr(addr)) 4003 rdma_restrack_add(&id_priv->res); 4004 return 0; 4005 err2: 4006 if (id_priv->cma_dev) 4007 cma_release_dev(id_priv); 4008 err1: 4009 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4010 return ret; 4011 } 4012 4013 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4014 const struct sockaddr *dst_addr) 4015 { 4016 struct rdma_id_private *id_priv = 4017 container_of(id, struct rdma_id_private, id); 4018 struct sockaddr_storage zero_sock = {}; 4019 4020 if (src_addr && src_addr->sa_family) 4021 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4022 4023 /* 4024 * When the src_addr is not specified, automatically supply an any addr 4025 */ 4026 zero_sock.ss_family = dst_addr->sa_family; 4027 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4028 struct sockaddr_in6 *src_addr6 = 4029 (struct sockaddr_in6 *)&zero_sock; 4030 struct sockaddr_in6 *dst_addr6 = 4031 (struct sockaddr_in6 *)dst_addr; 4032 4033 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4034 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4035 id->route.addr.dev_addr.bound_dev_if = 4036 dst_addr6->sin6_scope_id; 4037 } else if (dst_addr->sa_family == AF_IB) { 4038 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4039 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4040 } 4041 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4042 } 4043 4044 /* 4045 * If required, resolve the source address for bind and leave the id_priv in 4046 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4047 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4048 * ignored. 4049 */ 4050 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4051 struct sockaddr *src_addr, 4052 const struct sockaddr *dst_addr) 4053 { 4054 int ret; 4055 4056 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4057 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4058 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4059 if (ret) 4060 return ret; 4061 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4062 RDMA_CM_ADDR_QUERY))) 4063 return -EINVAL; 4064 4065 } else { 4066 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4067 } 4068 4069 if (cma_family(id_priv) != dst_addr->sa_family) { 4070 ret = -EINVAL; 4071 goto err_state; 4072 } 4073 return 0; 4074 4075 err_state: 4076 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4077 return ret; 4078 } 4079 4080 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4081 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4082 { 4083 struct rdma_id_private *id_priv = 4084 container_of(id, struct rdma_id_private, id); 4085 int ret; 4086 4087 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4088 if (ret) 4089 return ret; 4090 4091 if (cma_any_addr(dst_addr)) { 4092 ret = cma_resolve_loopback(id_priv); 4093 } else { 4094 if (dst_addr->sa_family == AF_IB) { 4095 ret = cma_resolve_ib_addr(id_priv); 4096 } else { 4097 /* 4098 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4099 * rdma_resolve_ip() is called, eg through the error 4100 * path in addr_handler(). If this happens the existing 4101 * request must be canceled before issuing a new one. 4102 * Since canceling a request is a bit slow and this 4103 * oddball path is rare, keep track once a request has 4104 * been issued. The track turns out to be a permanent 4105 * state since this is the only cancel as it is 4106 * immediately before rdma_resolve_ip(). 4107 */ 4108 if (id_priv->used_resolve_ip) 4109 rdma_addr_cancel(&id->route.addr.dev_addr); 4110 else 4111 id_priv->used_resolve_ip = 1; 4112 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4113 &id->route.addr.dev_addr, 4114 timeout_ms, addr_handler, 4115 false, id_priv); 4116 } 4117 } 4118 if (ret) 4119 goto err; 4120 4121 return 0; 4122 err: 4123 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4124 return ret; 4125 } 4126 EXPORT_SYMBOL(rdma_resolve_addr); 4127 4128 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4129 { 4130 struct rdma_id_private *id_priv = 4131 container_of(id, struct rdma_id_private, id); 4132 4133 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4134 } 4135 EXPORT_SYMBOL(rdma_bind_addr); 4136 4137 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4138 { 4139 struct cma_hdr *cma_hdr; 4140 4141 cma_hdr = hdr; 4142 cma_hdr->cma_version = CMA_VERSION; 4143 if (cma_family(id_priv) == AF_INET) { 4144 struct sockaddr_in *src4, *dst4; 4145 4146 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4147 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4148 4149 cma_set_ip_ver(cma_hdr, 4); 4150 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4151 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4152 cma_hdr->port = src4->sin_port; 4153 } else if (cma_family(id_priv) == AF_INET6) { 4154 struct sockaddr_in6 *src6, *dst6; 4155 4156 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4157 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4158 4159 cma_set_ip_ver(cma_hdr, 6); 4160 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4161 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4162 cma_hdr->port = src6->sin6_port; 4163 } 4164 return 0; 4165 } 4166 4167 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4168 const struct ib_cm_event *ib_event) 4169 { 4170 struct rdma_id_private *id_priv = cm_id->context; 4171 struct rdma_cm_event event = {}; 4172 const struct ib_cm_sidr_rep_event_param *rep = 4173 &ib_event->param.sidr_rep_rcvd; 4174 int ret; 4175 4176 mutex_lock(&id_priv->handler_mutex); 4177 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4178 goto out; 4179 4180 switch (ib_event->event) { 4181 case IB_CM_SIDR_REQ_ERROR: 4182 event.event = RDMA_CM_EVENT_UNREACHABLE; 4183 event.status = -ETIMEDOUT; 4184 break; 4185 case IB_CM_SIDR_REP_RECEIVED: 4186 event.param.ud.private_data = ib_event->private_data; 4187 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4188 if (rep->status != IB_SIDR_SUCCESS) { 4189 event.event = RDMA_CM_EVENT_UNREACHABLE; 4190 event.status = ib_event->param.sidr_rep_rcvd.status; 4191 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4192 event.status); 4193 break; 4194 } 4195 ret = cma_set_qkey(id_priv, rep->qkey); 4196 if (ret) { 4197 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4198 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4199 event.status = ret; 4200 break; 4201 } 4202 ib_init_ah_attr_from_path(id_priv->id.device, 4203 id_priv->id.port_num, 4204 id_priv->id.route.path_rec, 4205 &event.param.ud.ah_attr, 4206 rep->sgid_attr); 4207 event.param.ud.qp_num = rep->qpn; 4208 event.param.ud.qkey = rep->qkey; 4209 event.event = RDMA_CM_EVENT_ESTABLISHED; 4210 event.status = 0; 4211 break; 4212 default: 4213 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4214 ib_event->event); 4215 goto out; 4216 } 4217 4218 ret = cma_cm_event_handler(id_priv, &event); 4219 4220 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4221 if (ret) { 4222 /* Destroy the CM ID by returning a non-zero value. */ 4223 id_priv->cm_id.ib = NULL; 4224 destroy_id_handler_unlock(id_priv); 4225 return ret; 4226 } 4227 out: 4228 mutex_unlock(&id_priv->handler_mutex); 4229 return 0; 4230 } 4231 4232 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4233 struct rdma_conn_param *conn_param) 4234 { 4235 struct ib_cm_sidr_req_param req; 4236 struct ib_cm_id *id; 4237 void *private_data; 4238 u8 offset; 4239 int ret; 4240 4241 memset(&req, 0, sizeof req); 4242 offset = cma_user_data_offset(id_priv); 4243 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4244 return -EINVAL; 4245 4246 if (req.private_data_len) { 4247 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4248 if (!private_data) 4249 return -ENOMEM; 4250 } else { 4251 private_data = NULL; 4252 } 4253 4254 if (conn_param->private_data && conn_param->private_data_len) 4255 memcpy(private_data + offset, conn_param->private_data, 4256 conn_param->private_data_len); 4257 4258 if (private_data) { 4259 ret = cma_format_hdr(private_data, id_priv); 4260 if (ret) 4261 goto out; 4262 req.private_data = private_data; 4263 } 4264 4265 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4266 id_priv); 4267 if (IS_ERR(id)) { 4268 ret = PTR_ERR(id); 4269 goto out; 4270 } 4271 id_priv->cm_id.ib = id; 4272 4273 req.path = id_priv->id.route.path_rec; 4274 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4275 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4276 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4277 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4278 4279 trace_cm_send_sidr_req(id_priv); 4280 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4281 if (ret) { 4282 ib_destroy_cm_id(id_priv->cm_id.ib); 4283 id_priv->cm_id.ib = NULL; 4284 } 4285 out: 4286 kfree(private_data); 4287 return ret; 4288 } 4289 4290 static int cma_connect_ib(struct rdma_id_private *id_priv, 4291 struct rdma_conn_param *conn_param) 4292 { 4293 struct ib_cm_req_param req; 4294 struct rdma_route *route; 4295 void *private_data; 4296 struct ib_cm_id *id; 4297 u8 offset; 4298 int ret; 4299 4300 memset(&req, 0, sizeof req); 4301 offset = cma_user_data_offset(id_priv); 4302 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4303 return -EINVAL; 4304 4305 if (req.private_data_len) { 4306 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4307 if (!private_data) 4308 return -ENOMEM; 4309 } else { 4310 private_data = NULL; 4311 } 4312 4313 if (conn_param->private_data && conn_param->private_data_len) 4314 memcpy(private_data + offset, conn_param->private_data, 4315 conn_param->private_data_len); 4316 4317 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4318 if (IS_ERR(id)) { 4319 ret = PTR_ERR(id); 4320 goto out; 4321 } 4322 id_priv->cm_id.ib = id; 4323 4324 route = &id_priv->id.route; 4325 if (private_data) { 4326 ret = cma_format_hdr(private_data, id_priv); 4327 if (ret) 4328 goto out; 4329 req.private_data = private_data; 4330 } 4331 4332 req.primary_path = &route->path_rec[0]; 4333 req.primary_path_inbound = route->path_rec_inbound; 4334 req.primary_path_outbound = route->path_rec_outbound; 4335 if (route->num_pri_alt_paths == 2) 4336 req.alternate_path = &route->path_rec[1]; 4337 4338 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4339 /* Alternate path SGID attribute currently unsupported */ 4340 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4341 req.qp_num = id_priv->qp_num; 4342 req.qp_type = id_priv->id.qp_type; 4343 req.starting_psn = id_priv->seq_num; 4344 req.responder_resources = conn_param->responder_resources; 4345 req.initiator_depth = conn_param->initiator_depth; 4346 req.flow_control = conn_param->flow_control; 4347 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4348 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4349 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4350 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4351 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4352 req.srq = id_priv->srq ? 1 : 0; 4353 req.ece.vendor_id = id_priv->ece.vendor_id; 4354 req.ece.attr_mod = id_priv->ece.attr_mod; 4355 4356 trace_cm_send_req(id_priv); 4357 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4358 out: 4359 if (ret && !IS_ERR(id)) { 4360 ib_destroy_cm_id(id); 4361 id_priv->cm_id.ib = NULL; 4362 } 4363 4364 kfree(private_data); 4365 return ret; 4366 } 4367 4368 static int cma_connect_iw(struct rdma_id_private *id_priv, 4369 struct rdma_conn_param *conn_param) 4370 { 4371 struct iw_cm_id *cm_id; 4372 int ret; 4373 struct iw_cm_conn_param iw_param; 4374 4375 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4376 if (IS_ERR(cm_id)) 4377 return PTR_ERR(cm_id); 4378 4379 mutex_lock(&id_priv->qp_mutex); 4380 cm_id->tos = id_priv->tos; 4381 cm_id->tos_set = id_priv->tos_set; 4382 mutex_unlock(&id_priv->qp_mutex); 4383 4384 id_priv->cm_id.iw = cm_id; 4385 4386 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4387 rdma_addr_size(cma_src_addr(id_priv))); 4388 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4389 rdma_addr_size(cma_dst_addr(id_priv))); 4390 4391 ret = cma_modify_qp_rtr(id_priv, conn_param); 4392 if (ret) 4393 goto out; 4394 4395 if (conn_param) { 4396 iw_param.ord = conn_param->initiator_depth; 4397 iw_param.ird = conn_param->responder_resources; 4398 iw_param.private_data = conn_param->private_data; 4399 iw_param.private_data_len = conn_param->private_data_len; 4400 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4401 } else { 4402 memset(&iw_param, 0, sizeof iw_param); 4403 iw_param.qpn = id_priv->qp_num; 4404 } 4405 ret = iw_cm_connect(cm_id, &iw_param); 4406 out: 4407 if (ret) { 4408 iw_destroy_cm_id(cm_id); 4409 id_priv->cm_id.iw = NULL; 4410 } 4411 return ret; 4412 } 4413 4414 /** 4415 * rdma_connect_locked - Initiate an active connection request. 4416 * @id: Connection identifier to connect. 4417 * @conn_param: Connection information used for connected QPs. 4418 * 4419 * Same as rdma_connect() but can only be called from the 4420 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4421 */ 4422 int rdma_connect_locked(struct rdma_cm_id *id, 4423 struct rdma_conn_param *conn_param) 4424 { 4425 struct rdma_id_private *id_priv = 4426 container_of(id, struct rdma_id_private, id); 4427 int ret; 4428 4429 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4430 return -EINVAL; 4431 4432 if (!id->qp) { 4433 id_priv->qp_num = conn_param->qp_num; 4434 id_priv->srq = conn_param->srq; 4435 } 4436 4437 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4438 if (id->qp_type == IB_QPT_UD) 4439 ret = cma_resolve_ib_udp(id_priv, conn_param); 4440 else 4441 ret = cma_connect_ib(id_priv, conn_param); 4442 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4443 ret = cma_connect_iw(id_priv, conn_param); 4444 } else { 4445 ret = -ENOSYS; 4446 } 4447 if (ret) 4448 goto err_state; 4449 return 0; 4450 err_state: 4451 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4452 return ret; 4453 } 4454 EXPORT_SYMBOL(rdma_connect_locked); 4455 4456 /** 4457 * rdma_connect - Initiate an active connection request. 4458 * @id: Connection identifier to connect. 4459 * @conn_param: Connection information used for connected QPs. 4460 * 4461 * Users must have resolved a route for the rdma_cm_id to connect with by having 4462 * called rdma_resolve_route before calling this routine. 4463 * 4464 * This call will either connect to a remote QP or obtain remote QP information 4465 * for unconnected rdma_cm_id's. The actual operation is based on the 4466 * rdma_cm_id's port space. 4467 */ 4468 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4469 { 4470 struct rdma_id_private *id_priv = 4471 container_of(id, struct rdma_id_private, id); 4472 int ret; 4473 4474 mutex_lock(&id_priv->handler_mutex); 4475 ret = rdma_connect_locked(id, conn_param); 4476 mutex_unlock(&id_priv->handler_mutex); 4477 return ret; 4478 } 4479 EXPORT_SYMBOL(rdma_connect); 4480 4481 /** 4482 * rdma_connect_ece - Initiate an active connection request with ECE data. 4483 * @id: Connection identifier to connect. 4484 * @conn_param: Connection information used for connected QPs. 4485 * @ece: ECE parameters 4486 * 4487 * See rdma_connect() explanation. 4488 */ 4489 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4490 struct rdma_ucm_ece *ece) 4491 { 4492 struct rdma_id_private *id_priv = 4493 container_of(id, struct rdma_id_private, id); 4494 4495 id_priv->ece.vendor_id = ece->vendor_id; 4496 id_priv->ece.attr_mod = ece->attr_mod; 4497 4498 return rdma_connect(id, conn_param); 4499 } 4500 EXPORT_SYMBOL(rdma_connect_ece); 4501 4502 static int cma_accept_ib(struct rdma_id_private *id_priv, 4503 struct rdma_conn_param *conn_param) 4504 { 4505 struct ib_cm_rep_param rep; 4506 int ret; 4507 4508 ret = cma_modify_qp_rtr(id_priv, conn_param); 4509 if (ret) 4510 goto out; 4511 4512 ret = cma_modify_qp_rts(id_priv, conn_param); 4513 if (ret) 4514 goto out; 4515 4516 memset(&rep, 0, sizeof rep); 4517 rep.qp_num = id_priv->qp_num; 4518 rep.starting_psn = id_priv->seq_num; 4519 rep.private_data = conn_param->private_data; 4520 rep.private_data_len = conn_param->private_data_len; 4521 rep.responder_resources = conn_param->responder_resources; 4522 rep.initiator_depth = conn_param->initiator_depth; 4523 rep.failover_accepted = 0; 4524 rep.flow_control = conn_param->flow_control; 4525 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4526 rep.srq = id_priv->srq ? 1 : 0; 4527 rep.ece.vendor_id = id_priv->ece.vendor_id; 4528 rep.ece.attr_mod = id_priv->ece.attr_mod; 4529 4530 trace_cm_send_rep(id_priv); 4531 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4532 out: 4533 return ret; 4534 } 4535 4536 static int cma_accept_iw(struct rdma_id_private *id_priv, 4537 struct rdma_conn_param *conn_param) 4538 { 4539 struct iw_cm_conn_param iw_param; 4540 int ret; 4541 4542 if (!conn_param) 4543 return -EINVAL; 4544 4545 ret = cma_modify_qp_rtr(id_priv, conn_param); 4546 if (ret) 4547 return ret; 4548 4549 iw_param.ord = conn_param->initiator_depth; 4550 iw_param.ird = conn_param->responder_resources; 4551 iw_param.private_data = conn_param->private_data; 4552 iw_param.private_data_len = conn_param->private_data_len; 4553 if (id_priv->id.qp) 4554 iw_param.qpn = id_priv->qp_num; 4555 else 4556 iw_param.qpn = conn_param->qp_num; 4557 4558 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4559 } 4560 4561 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4562 enum ib_cm_sidr_status status, u32 qkey, 4563 const void *private_data, int private_data_len) 4564 { 4565 struct ib_cm_sidr_rep_param rep; 4566 int ret; 4567 4568 memset(&rep, 0, sizeof rep); 4569 rep.status = status; 4570 if (status == IB_SIDR_SUCCESS) { 4571 if (qkey) 4572 ret = cma_set_qkey(id_priv, qkey); 4573 else 4574 ret = cma_set_default_qkey(id_priv); 4575 if (ret) 4576 return ret; 4577 rep.qp_num = id_priv->qp_num; 4578 rep.qkey = id_priv->qkey; 4579 4580 rep.ece.vendor_id = id_priv->ece.vendor_id; 4581 rep.ece.attr_mod = id_priv->ece.attr_mod; 4582 } 4583 4584 rep.private_data = private_data; 4585 rep.private_data_len = private_data_len; 4586 4587 trace_cm_send_sidr_rep(id_priv); 4588 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4589 } 4590 4591 /** 4592 * rdma_accept - Called to accept a connection request or response. 4593 * @id: Connection identifier associated with the request. 4594 * @conn_param: Information needed to establish the connection. This must be 4595 * provided if accepting a connection request. If accepting a connection 4596 * response, this parameter must be NULL. 4597 * 4598 * Typically, this routine is only called by the listener to accept a connection 4599 * request. It must also be called on the active side of a connection if the 4600 * user is performing their own QP transitions. 4601 * 4602 * In the case of error, a reject message is sent to the remote side and the 4603 * state of the qp associated with the id is modified to error, such that any 4604 * previously posted receive buffers would be flushed. 4605 * 4606 * This function is for use by kernel ULPs and must be called from under the 4607 * handler callback. 4608 */ 4609 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4610 { 4611 struct rdma_id_private *id_priv = 4612 container_of(id, struct rdma_id_private, id); 4613 int ret; 4614 4615 lockdep_assert_held(&id_priv->handler_mutex); 4616 4617 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4618 return -EINVAL; 4619 4620 if (!id->qp && conn_param) { 4621 id_priv->qp_num = conn_param->qp_num; 4622 id_priv->srq = conn_param->srq; 4623 } 4624 4625 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4626 if (id->qp_type == IB_QPT_UD) { 4627 if (conn_param) 4628 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4629 conn_param->qkey, 4630 conn_param->private_data, 4631 conn_param->private_data_len); 4632 else 4633 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4634 0, NULL, 0); 4635 } else { 4636 if (conn_param) 4637 ret = cma_accept_ib(id_priv, conn_param); 4638 else 4639 ret = cma_rep_recv(id_priv); 4640 } 4641 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4642 ret = cma_accept_iw(id_priv, conn_param); 4643 } else { 4644 ret = -ENOSYS; 4645 } 4646 if (ret) 4647 goto reject; 4648 4649 return 0; 4650 reject: 4651 cma_modify_qp_err(id_priv); 4652 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4653 return ret; 4654 } 4655 EXPORT_SYMBOL(rdma_accept); 4656 4657 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4658 struct rdma_ucm_ece *ece) 4659 { 4660 struct rdma_id_private *id_priv = 4661 container_of(id, struct rdma_id_private, id); 4662 4663 id_priv->ece.vendor_id = ece->vendor_id; 4664 id_priv->ece.attr_mod = ece->attr_mod; 4665 4666 return rdma_accept(id, conn_param); 4667 } 4668 EXPORT_SYMBOL(rdma_accept_ece); 4669 4670 void rdma_lock_handler(struct rdma_cm_id *id) 4671 { 4672 struct rdma_id_private *id_priv = 4673 container_of(id, struct rdma_id_private, id); 4674 4675 mutex_lock(&id_priv->handler_mutex); 4676 } 4677 EXPORT_SYMBOL(rdma_lock_handler); 4678 4679 void rdma_unlock_handler(struct rdma_cm_id *id) 4680 { 4681 struct rdma_id_private *id_priv = 4682 container_of(id, struct rdma_id_private, id); 4683 4684 mutex_unlock(&id_priv->handler_mutex); 4685 } 4686 EXPORT_SYMBOL(rdma_unlock_handler); 4687 4688 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4689 { 4690 struct rdma_id_private *id_priv; 4691 int ret; 4692 4693 id_priv = container_of(id, struct rdma_id_private, id); 4694 if (!id_priv->cm_id.ib) 4695 return -EINVAL; 4696 4697 switch (id->device->node_type) { 4698 case RDMA_NODE_IB_CA: 4699 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4700 break; 4701 default: 4702 ret = 0; 4703 break; 4704 } 4705 return ret; 4706 } 4707 EXPORT_SYMBOL(rdma_notify); 4708 4709 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4710 u8 private_data_len, u8 reason) 4711 { 4712 struct rdma_id_private *id_priv; 4713 int ret; 4714 4715 id_priv = container_of(id, struct rdma_id_private, id); 4716 if (!id_priv->cm_id.ib) 4717 return -EINVAL; 4718 4719 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4720 if (id->qp_type == IB_QPT_UD) { 4721 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4722 private_data, private_data_len); 4723 } else { 4724 trace_cm_send_rej(id_priv); 4725 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4726 private_data, private_data_len); 4727 } 4728 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4729 ret = iw_cm_reject(id_priv->cm_id.iw, 4730 private_data, private_data_len); 4731 } else { 4732 ret = -ENOSYS; 4733 } 4734 4735 return ret; 4736 } 4737 EXPORT_SYMBOL(rdma_reject); 4738 4739 int rdma_disconnect(struct rdma_cm_id *id) 4740 { 4741 struct rdma_id_private *id_priv; 4742 int ret; 4743 4744 id_priv = container_of(id, struct rdma_id_private, id); 4745 if (!id_priv->cm_id.ib) 4746 return -EINVAL; 4747 4748 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4749 ret = cma_modify_qp_err(id_priv); 4750 if (ret) 4751 goto out; 4752 /* Initiate or respond to a disconnect. */ 4753 trace_cm_disconnect(id_priv); 4754 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4755 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4756 trace_cm_sent_drep(id_priv); 4757 } else { 4758 trace_cm_sent_dreq(id_priv); 4759 } 4760 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4761 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4762 } else 4763 ret = -EINVAL; 4764 4765 out: 4766 return ret; 4767 } 4768 EXPORT_SYMBOL(rdma_disconnect); 4769 4770 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4771 struct ib_sa_multicast *multicast, 4772 struct rdma_cm_event *event, 4773 struct cma_multicast *mc) 4774 { 4775 struct rdma_dev_addr *dev_addr; 4776 enum ib_gid_type gid_type; 4777 struct net_device *ndev; 4778 4779 if (status) 4780 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4781 status); 4782 4783 event->status = status; 4784 event->param.ud.private_data = mc->context; 4785 if (status) { 4786 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4787 return; 4788 } 4789 4790 dev_addr = &id_priv->id.route.addr.dev_addr; 4791 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4792 gid_type = 4793 id_priv->cma_dev 4794 ->default_gid_type[id_priv->id.port_num - 4795 rdma_start_port( 4796 id_priv->cma_dev->device)]; 4797 4798 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4799 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4800 &multicast->rec, ndev, gid_type, 4801 &event->param.ud.ah_attr)) { 4802 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4803 goto out; 4804 } 4805 4806 event->param.ud.qp_num = 0xFFFFFF; 4807 event->param.ud.qkey = id_priv->qkey; 4808 4809 out: 4810 dev_put(ndev); 4811 } 4812 4813 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4814 { 4815 struct cma_multicast *mc = multicast->context; 4816 struct rdma_id_private *id_priv = mc->id_priv; 4817 struct rdma_cm_event event = {}; 4818 int ret = 0; 4819 4820 mutex_lock(&id_priv->handler_mutex); 4821 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4822 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4823 goto out; 4824 4825 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4826 if (!ret) { 4827 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4828 ret = cma_cm_event_handler(id_priv, &event); 4829 } 4830 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4831 WARN_ON(ret); 4832 4833 out: 4834 mutex_unlock(&id_priv->handler_mutex); 4835 return 0; 4836 } 4837 4838 static void cma_set_mgid(struct rdma_id_private *id_priv, 4839 struct sockaddr *addr, union ib_gid *mgid) 4840 { 4841 unsigned char mc_map[MAX_ADDR_LEN]; 4842 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4843 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4844 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4845 4846 if (cma_any_addr(addr)) { 4847 memset(mgid, 0, sizeof *mgid); 4848 } else if ((addr->sa_family == AF_INET6) && 4849 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4850 0xFF10A01B)) { 4851 /* IPv6 address is an SA assigned MGID. */ 4852 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4853 } else if (addr->sa_family == AF_IB) { 4854 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4855 } else if (addr->sa_family == AF_INET6) { 4856 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4857 if (id_priv->id.ps == RDMA_PS_UDP) 4858 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4859 *mgid = *(union ib_gid *) (mc_map + 4); 4860 } else { 4861 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4862 if (id_priv->id.ps == RDMA_PS_UDP) 4863 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4864 *mgid = *(union ib_gid *) (mc_map + 4); 4865 } 4866 } 4867 4868 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4869 struct cma_multicast *mc) 4870 { 4871 struct ib_sa_mcmember_rec rec; 4872 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4873 ib_sa_comp_mask comp_mask; 4874 int ret; 4875 4876 ib_addr_get_mgid(dev_addr, &rec.mgid); 4877 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4878 &rec.mgid, &rec); 4879 if (ret) 4880 return ret; 4881 4882 if (!id_priv->qkey) { 4883 ret = cma_set_default_qkey(id_priv); 4884 if (ret) 4885 return ret; 4886 } 4887 4888 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4889 rec.qkey = cpu_to_be32(id_priv->qkey); 4890 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4891 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4892 rec.join_state = mc->join_state; 4893 4894 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4895 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4896 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4897 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4898 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4899 4900 if (id_priv->id.ps == RDMA_PS_IPOIB) 4901 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4902 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4903 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4904 IB_SA_MCMEMBER_REC_MTU | 4905 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4906 4907 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4908 id_priv->id.port_num, &rec, comp_mask, 4909 GFP_KERNEL, cma_ib_mc_handler, mc); 4910 return PTR_ERR_OR_ZERO(mc->sa_mc); 4911 } 4912 4913 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4914 enum ib_gid_type gid_type) 4915 { 4916 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4917 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4918 4919 if (cma_any_addr(addr)) { 4920 memset(mgid, 0, sizeof *mgid); 4921 } else if (addr->sa_family == AF_INET6) { 4922 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4923 } else { 4924 mgid->raw[0] = 4925 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4926 mgid->raw[1] = 4927 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4928 mgid->raw[2] = 0; 4929 mgid->raw[3] = 0; 4930 mgid->raw[4] = 0; 4931 mgid->raw[5] = 0; 4932 mgid->raw[6] = 0; 4933 mgid->raw[7] = 0; 4934 mgid->raw[8] = 0; 4935 mgid->raw[9] = 0; 4936 mgid->raw[10] = 0xff; 4937 mgid->raw[11] = 0xff; 4938 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4939 } 4940 } 4941 4942 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4943 struct cma_multicast *mc) 4944 { 4945 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4946 int err = 0; 4947 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4948 struct net_device *ndev = NULL; 4949 struct ib_sa_multicast ib; 4950 enum ib_gid_type gid_type; 4951 bool send_only; 4952 4953 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4954 4955 if (cma_zero_addr(addr)) 4956 return -EINVAL; 4957 4958 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4959 rdma_start_port(id_priv->cma_dev->device)]; 4960 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4961 4962 ib.rec.pkey = cpu_to_be16(0xffff); 4963 if (dev_addr->bound_dev_if) 4964 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4965 if (!ndev) 4966 return -ENODEV; 4967 4968 ib.rec.rate = IB_RATE_PORT_CURRENT; 4969 ib.rec.hop_limit = 1; 4970 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4971 4972 if (addr->sa_family == AF_INET) { 4973 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4974 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4975 if (!send_only) { 4976 err = cma_igmp_send(ndev, &ib.rec.mgid, 4977 true); 4978 } 4979 } 4980 } else { 4981 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4982 err = -ENOTSUPP; 4983 } 4984 dev_put(ndev); 4985 if (err || !ib.rec.mtu) 4986 return err ?: -EINVAL; 4987 4988 if (!id_priv->qkey) 4989 cma_set_default_qkey(id_priv); 4990 4991 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4992 &ib.rec.port_gid); 4993 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4994 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4995 queue_work(cma_wq, &mc->iboe_join.work); 4996 return 0; 4997 } 4998 4999 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5000 u8 join_state, void *context) 5001 { 5002 struct rdma_id_private *id_priv = 5003 container_of(id, struct rdma_id_private, id); 5004 struct cma_multicast *mc; 5005 int ret; 5006 5007 /* Not supported for kernel QPs */ 5008 if (WARN_ON(id->qp)) 5009 return -EINVAL; 5010 5011 /* ULP is calling this wrong. */ 5012 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5013 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5014 return -EINVAL; 5015 5016 if (id_priv->id.qp_type != IB_QPT_UD) 5017 return -EINVAL; 5018 5019 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5020 if (!mc) 5021 return -ENOMEM; 5022 5023 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5024 mc->context = context; 5025 mc->id_priv = id_priv; 5026 mc->join_state = join_state; 5027 5028 if (rdma_protocol_roce(id->device, id->port_num)) { 5029 ret = cma_iboe_join_multicast(id_priv, mc); 5030 if (ret) 5031 goto out_err; 5032 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5033 ret = cma_join_ib_multicast(id_priv, mc); 5034 if (ret) 5035 goto out_err; 5036 } else { 5037 ret = -ENOSYS; 5038 goto out_err; 5039 } 5040 5041 spin_lock(&id_priv->lock); 5042 list_add(&mc->list, &id_priv->mc_list); 5043 spin_unlock(&id_priv->lock); 5044 5045 return 0; 5046 out_err: 5047 kfree(mc); 5048 return ret; 5049 } 5050 EXPORT_SYMBOL(rdma_join_multicast); 5051 5052 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5053 { 5054 struct rdma_id_private *id_priv; 5055 struct cma_multicast *mc; 5056 5057 id_priv = container_of(id, struct rdma_id_private, id); 5058 spin_lock_irq(&id_priv->lock); 5059 list_for_each_entry(mc, &id_priv->mc_list, list) { 5060 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5061 continue; 5062 list_del(&mc->list); 5063 spin_unlock_irq(&id_priv->lock); 5064 5065 WARN_ON(id_priv->cma_dev->device != id->device); 5066 destroy_mc(id_priv, mc); 5067 return; 5068 } 5069 spin_unlock_irq(&id_priv->lock); 5070 } 5071 EXPORT_SYMBOL(rdma_leave_multicast); 5072 5073 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5074 { 5075 struct rdma_dev_addr *dev_addr; 5076 struct cma_work *work; 5077 5078 dev_addr = &id_priv->id.route.addr.dev_addr; 5079 5080 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5081 (net_eq(dev_net(ndev), dev_addr->net)) && 5082 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5083 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5084 ndev->name, &id_priv->id); 5085 work = kzalloc(sizeof *work, GFP_KERNEL); 5086 if (!work) 5087 return -ENOMEM; 5088 5089 INIT_WORK(&work->work, cma_work_handler); 5090 work->id = id_priv; 5091 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5092 cma_id_get(id_priv); 5093 queue_work(cma_wq, &work->work); 5094 } 5095 5096 return 0; 5097 } 5098 5099 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5100 void *ptr) 5101 { 5102 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5103 struct cma_device *cma_dev; 5104 struct rdma_id_private *id_priv; 5105 int ret = NOTIFY_DONE; 5106 5107 if (event != NETDEV_BONDING_FAILOVER) 5108 return NOTIFY_DONE; 5109 5110 if (!netif_is_bond_master(ndev)) 5111 return NOTIFY_DONE; 5112 5113 mutex_lock(&lock); 5114 list_for_each_entry(cma_dev, &dev_list, list) 5115 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5116 ret = cma_netdev_change(ndev, id_priv); 5117 if (ret) 5118 goto out; 5119 } 5120 5121 out: 5122 mutex_unlock(&lock); 5123 return ret; 5124 } 5125 5126 static void cma_netevent_work_handler(struct work_struct *_work) 5127 { 5128 struct rdma_id_private *id_priv = 5129 container_of(_work, struct rdma_id_private, id.net_work); 5130 struct rdma_cm_event event = {}; 5131 5132 mutex_lock(&id_priv->handler_mutex); 5133 5134 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5135 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5136 goto out_unlock; 5137 5138 event.event = RDMA_CM_EVENT_UNREACHABLE; 5139 event.status = -ETIMEDOUT; 5140 5141 if (cma_cm_event_handler(id_priv, &event)) { 5142 __acquire(&id_priv->handler_mutex); 5143 id_priv->cm_id.ib = NULL; 5144 cma_id_put(id_priv); 5145 destroy_id_handler_unlock(id_priv); 5146 return; 5147 } 5148 5149 out_unlock: 5150 mutex_unlock(&id_priv->handler_mutex); 5151 cma_id_put(id_priv); 5152 } 5153 5154 static int cma_netevent_callback(struct notifier_block *self, 5155 unsigned long event, void *ctx) 5156 { 5157 struct id_table_entry *ips_node = NULL; 5158 struct rdma_id_private *current_id; 5159 struct neighbour *neigh = ctx; 5160 unsigned long flags; 5161 5162 if (event != NETEVENT_NEIGH_UPDATE) 5163 return NOTIFY_DONE; 5164 5165 spin_lock_irqsave(&id_table_lock, flags); 5166 if (neigh->tbl->family == AF_INET6) { 5167 struct sockaddr_in6 neigh_sock_6; 5168 5169 neigh_sock_6.sin6_family = AF_INET6; 5170 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5171 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5172 (struct sockaddr *)&neigh_sock_6); 5173 } else if (neigh->tbl->family == AF_INET) { 5174 struct sockaddr_in neigh_sock_4; 5175 5176 neigh_sock_4.sin_family = AF_INET; 5177 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5178 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5179 (struct sockaddr *)&neigh_sock_4); 5180 } else 5181 goto out; 5182 5183 if (!ips_node) 5184 goto out; 5185 5186 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5187 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5188 neigh->ha, ETH_ALEN)) 5189 continue; 5190 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); 5191 cma_id_get(current_id); 5192 queue_work(cma_wq, ¤t_id->id.net_work); 5193 } 5194 out: 5195 spin_unlock_irqrestore(&id_table_lock, flags); 5196 return NOTIFY_DONE; 5197 } 5198 5199 static struct notifier_block cma_nb = { 5200 .notifier_call = cma_netdev_callback 5201 }; 5202 5203 static struct notifier_block cma_netevent_cb = { 5204 .notifier_call = cma_netevent_callback 5205 }; 5206 5207 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5208 { 5209 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5210 enum rdma_cm_state state; 5211 unsigned long flags; 5212 5213 mutex_lock(&id_priv->handler_mutex); 5214 /* Record that we want to remove the device */ 5215 spin_lock_irqsave(&id_priv->lock, flags); 5216 state = id_priv->state; 5217 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5218 spin_unlock_irqrestore(&id_priv->lock, flags); 5219 mutex_unlock(&id_priv->handler_mutex); 5220 cma_id_put(id_priv); 5221 return; 5222 } 5223 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5224 spin_unlock_irqrestore(&id_priv->lock, flags); 5225 5226 if (cma_cm_event_handler(id_priv, &event)) { 5227 /* 5228 * At this point the ULP promises it won't call 5229 * rdma_destroy_id() concurrently 5230 */ 5231 cma_id_put(id_priv); 5232 mutex_unlock(&id_priv->handler_mutex); 5233 trace_cm_id_destroy(id_priv); 5234 _destroy_id(id_priv, state); 5235 return; 5236 } 5237 mutex_unlock(&id_priv->handler_mutex); 5238 5239 /* 5240 * If this races with destroy then the thread that first assigns state 5241 * to a destroying does the cancel. 5242 */ 5243 cma_cancel_operation(id_priv, state); 5244 cma_id_put(id_priv); 5245 } 5246 5247 static void cma_process_remove(struct cma_device *cma_dev) 5248 { 5249 mutex_lock(&lock); 5250 while (!list_empty(&cma_dev->id_list)) { 5251 struct rdma_id_private *id_priv = list_first_entry( 5252 &cma_dev->id_list, struct rdma_id_private, device_item); 5253 5254 list_del_init(&id_priv->listen_item); 5255 list_del_init(&id_priv->device_item); 5256 cma_id_get(id_priv); 5257 mutex_unlock(&lock); 5258 5259 cma_send_device_removal_put(id_priv); 5260 5261 mutex_lock(&lock); 5262 } 5263 mutex_unlock(&lock); 5264 5265 cma_dev_put(cma_dev); 5266 wait_for_completion(&cma_dev->comp); 5267 } 5268 5269 static bool cma_supported(struct ib_device *device) 5270 { 5271 u32 i; 5272 5273 rdma_for_each_port(device, i) { 5274 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5275 return true; 5276 } 5277 return false; 5278 } 5279 5280 static int cma_add_one(struct ib_device *device) 5281 { 5282 struct rdma_id_private *to_destroy; 5283 struct cma_device *cma_dev; 5284 struct rdma_id_private *id_priv; 5285 unsigned long supported_gids = 0; 5286 int ret; 5287 u32 i; 5288 5289 if (!cma_supported(device)) 5290 return -EOPNOTSUPP; 5291 5292 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5293 if (!cma_dev) 5294 return -ENOMEM; 5295 5296 cma_dev->device = device; 5297 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5298 sizeof(*cma_dev->default_gid_type), 5299 GFP_KERNEL); 5300 if (!cma_dev->default_gid_type) { 5301 ret = -ENOMEM; 5302 goto free_cma_dev; 5303 } 5304 5305 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5306 sizeof(*cma_dev->default_roce_tos), 5307 GFP_KERNEL); 5308 if (!cma_dev->default_roce_tos) { 5309 ret = -ENOMEM; 5310 goto free_gid_type; 5311 } 5312 5313 rdma_for_each_port (device, i) { 5314 supported_gids = roce_gid_type_mask_support(device, i); 5315 WARN_ON(!supported_gids); 5316 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5317 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5318 CMA_PREFERRED_ROCE_GID_TYPE; 5319 else 5320 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5321 find_first_bit(&supported_gids, BITS_PER_LONG); 5322 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5323 } 5324 5325 init_completion(&cma_dev->comp); 5326 refcount_set(&cma_dev->refcount, 1); 5327 INIT_LIST_HEAD(&cma_dev->id_list); 5328 ib_set_client_data(device, &cma_client, cma_dev); 5329 5330 mutex_lock(&lock); 5331 list_add_tail(&cma_dev->list, &dev_list); 5332 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5333 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5334 if (ret) 5335 goto free_listen; 5336 } 5337 mutex_unlock(&lock); 5338 5339 trace_cm_add_one(device); 5340 return 0; 5341 5342 free_listen: 5343 list_del(&cma_dev->list); 5344 mutex_unlock(&lock); 5345 5346 /* cma_process_remove() will delete to_destroy */ 5347 cma_process_remove(cma_dev); 5348 kfree(cma_dev->default_roce_tos); 5349 free_gid_type: 5350 kfree(cma_dev->default_gid_type); 5351 5352 free_cma_dev: 5353 kfree(cma_dev); 5354 return ret; 5355 } 5356 5357 static void cma_remove_one(struct ib_device *device, void *client_data) 5358 { 5359 struct cma_device *cma_dev = client_data; 5360 5361 trace_cm_remove_one(device); 5362 5363 mutex_lock(&lock); 5364 list_del(&cma_dev->list); 5365 mutex_unlock(&lock); 5366 5367 cma_process_remove(cma_dev); 5368 kfree(cma_dev->default_roce_tos); 5369 kfree(cma_dev->default_gid_type); 5370 kfree(cma_dev); 5371 } 5372 5373 static int cma_init_net(struct net *net) 5374 { 5375 struct cma_pernet *pernet = cma_pernet(net); 5376 5377 xa_init(&pernet->tcp_ps); 5378 xa_init(&pernet->udp_ps); 5379 xa_init(&pernet->ipoib_ps); 5380 xa_init(&pernet->ib_ps); 5381 5382 return 0; 5383 } 5384 5385 static void cma_exit_net(struct net *net) 5386 { 5387 struct cma_pernet *pernet = cma_pernet(net); 5388 5389 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5390 WARN_ON(!xa_empty(&pernet->udp_ps)); 5391 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5392 WARN_ON(!xa_empty(&pernet->ib_ps)); 5393 } 5394 5395 static struct pernet_operations cma_pernet_operations = { 5396 .init = cma_init_net, 5397 .exit = cma_exit_net, 5398 .id = &cma_pernet_id, 5399 .size = sizeof(struct cma_pernet), 5400 }; 5401 5402 static int __init cma_init(void) 5403 { 5404 int ret; 5405 5406 /* 5407 * There is a rare lock ordering dependency in cma_netdev_callback() 5408 * that only happens when bonding is enabled. Teach lockdep that rtnl 5409 * must never be nested under lock so it can find these without having 5410 * to test with bonding. 5411 */ 5412 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5413 rtnl_lock(); 5414 mutex_lock(&lock); 5415 mutex_unlock(&lock); 5416 rtnl_unlock(); 5417 } 5418 5419 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5420 if (!cma_wq) 5421 return -ENOMEM; 5422 5423 ret = register_pernet_subsys(&cma_pernet_operations); 5424 if (ret) 5425 goto err_wq; 5426 5427 ib_sa_register_client(&sa_client); 5428 register_netdevice_notifier(&cma_nb); 5429 register_netevent_notifier(&cma_netevent_cb); 5430 5431 ret = ib_register_client(&cma_client); 5432 if (ret) 5433 goto err; 5434 5435 ret = cma_configfs_init(); 5436 if (ret) 5437 goto err_ib; 5438 5439 return 0; 5440 5441 err_ib: 5442 ib_unregister_client(&cma_client); 5443 err: 5444 unregister_netevent_notifier(&cma_netevent_cb); 5445 unregister_netdevice_notifier(&cma_nb); 5446 ib_sa_unregister_client(&sa_client); 5447 unregister_pernet_subsys(&cma_pernet_operations); 5448 err_wq: 5449 destroy_workqueue(cma_wq); 5450 return ret; 5451 } 5452 5453 static void __exit cma_cleanup(void) 5454 { 5455 cma_configfs_exit(); 5456 ib_unregister_client(&cma_client); 5457 unregister_netevent_notifier(&cma_netevent_cb); 5458 unregister_netdevice_notifier(&cma_nb); 5459 ib_sa_unregister_client(&sa_client); 5460 unregister_pernet_subsys(&cma_pernet_operations); 5461 destroy_workqueue(cma_wq); 5462 } 5463 5464 module_init(cma_init); 5465 module_exit(cma_cleanup); 5466