1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 47 #define CMA_MAX_CM_RETRIES 15 48 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 49 #define CMA_IBOE_PACKET_LIFETIME 18 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 72 { 73 size_t index = event; 74 75 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 76 cma_events[index] : "unrecognized event"; 77 } 78 EXPORT_SYMBOL(rdma_event_msg); 79 80 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 81 int reason) 82 { 83 if (rdma_ib_or_roce(id->device, id->port_num)) 84 return ibcm_reject_msg(reason); 85 86 if (rdma_protocol_iwarp(id->device, id->port_num)) 87 return iwcm_reject_msg(reason); 88 89 WARN_ON_ONCE(1); 90 return "unrecognized transport"; 91 } 92 EXPORT_SYMBOL(rdma_reject_msg); 93 94 /** 95 * rdma_is_consumer_reject - return true if the consumer rejected the connect 96 * request. 97 * @id: Communication identifier that received the REJECT event. 98 * @reason: Value returned in the REJECT event status field. 99 */ 100 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 101 { 102 if (rdma_ib_or_roce(id->device, id->port_num)) 103 return reason == IB_CM_REJ_CONSUMER_DEFINED; 104 105 if (rdma_protocol_iwarp(id->device, id->port_num)) 106 return reason == -ECONNREFUSED; 107 108 WARN_ON_ONCE(1); 109 return false; 110 } 111 112 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 113 struct rdma_cm_event *ev, u8 *data_len) 114 { 115 const void *p; 116 117 if (rdma_is_consumer_reject(id, ev->status)) { 118 *data_len = ev->param.conn.private_data_len; 119 p = ev->param.conn.private_data; 120 } else { 121 *data_len = 0; 122 p = NULL; 123 } 124 return p; 125 } 126 EXPORT_SYMBOL(rdma_consumer_reject_data); 127 128 /** 129 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 130 * @id: Communication Identifier 131 */ 132 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 133 { 134 struct rdma_id_private *id_priv; 135 136 id_priv = container_of(id, struct rdma_id_private, id); 137 if (id->device->node_type == RDMA_NODE_RNIC) 138 return id_priv->cm_id.iw; 139 return NULL; 140 } 141 EXPORT_SYMBOL(rdma_iw_cm_id); 142 143 /** 144 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 145 * @res: rdma resource tracking entry pointer 146 */ 147 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 148 { 149 struct rdma_id_private *id_priv = 150 container_of(res, struct rdma_id_private, res); 151 152 return &id_priv->id; 153 } 154 EXPORT_SYMBOL(rdma_res_to_id); 155 156 static int cma_add_one(struct ib_device *device); 157 static void cma_remove_one(struct ib_device *device, void *client_data); 158 159 static struct ib_client cma_client = { 160 .name = "cma", 161 .add = cma_add_one, 162 .remove = cma_remove_one 163 }; 164 165 static struct ib_sa_client sa_client; 166 static LIST_HEAD(dev_list); 167 static LIST_HEAD(listen_any_list); 168 static DEFINE_MUTEX(lock); 169 static struct workqueue_struct *cma_wq; 170 static unsigned int cma_pernet_id; 171 172 struct cma_pernet { 173 struct xarray tcp_ps; 174 struct xarray udp_ps; 175 struct xarray ipoib_ps; 176 struct xarray ib_ps; 177 }; 178 179 static struct cma_pernet *cma_pernet(struct net *net) 180 { 181 return net_generic(net, cma_pernet_id); 182 } 183 184 static 185 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 186 { 187 struct cma_pernet *pernet = cma_pernet(net); 188 189 switch (ps) { 190 case RDMA_PS_TCP: 191 return &pernet->tcp_ps; 192 case RDMA_PS_UDP: 193 return &pernet->udp_ps; 194 case RDMA_PS_IPOIB: 195 return &pernet->ipoib_ps; 196 case RDMA_PS_IB: 197 return &pernet->ib_ps; 198 default: 199 return NULL; 200 } 201 } 202 203 struct cma_device { 204 struct list_head list; 205 struct ib_device *device; 206 struct completion comp; 207 refcount_t refcount; 208 struct list_head id_list; 209 enum ib_gid_type *default_gid_type; 210 u8 *default_roce_tos; 211 }; 212 213 struct rdma_bind_list { 214 enum rdma_ucm_port_space ps; 215 struct hlist_head owners; 216 unsigned short port; 217 }; 218 219 struct class_port_info_context { 220 struct ib_class_port_info *class_port_info; 221 struct ib_device *device; 222 struct completion done; 223 struct ib_sa_query *sa_query; 224 u8 port_num; 225 }; 226 227 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 228 struct rdma_bind_list *bind_list, int snum) 229 { 230 struct xarray *xa = cma_pernet_xa(net, ps); 231 232 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 233 } 234 235 static struct rdma_bind_list *cma_ps_find(struct net *net, 236 enum rdma_ucm_port_space ps, int snum) 237 { 238 struct xarray *xa = cma_pernet_xa(net, ps); 239 240 return xa_load(xa, snum); 241 } 242 243 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 244 int snum) 245 { 246 struct xarray *xa = cma_pernet_xa(net, ps); 247 248 xa_erase(xa, snum); 249 } 250 251 enum { 252 CMA_OPTION_AFONLY, 253 }; 254 255 void cma_dev_get(struct cma_device *cma_dev) 256 { 257 refcount_inc(&cma_dev->refcount); 258 } 259 260 void cma_dev_put(struct cma_device *cma_dev) 261 { 262 if (refcount_dec_and_test(&cma_dev->refcount)) 263 complete(&cma_dev->comp); 264 } 265 266 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 267 void *cookie) 268 { 269 struct cma_device *cma_dev; 270 struct cma_device *found_cma_dev = NULL; 271 272 mutex_lock(&lock); 273 274 list_for_each_entry(cma_dev, &dev_list, list) 275 if (filter(cma_dev->device, cookie)) { 276 found_cma_dev = cma_dev; 277 break; 278 } 279 280 if (found_cma_dev) 281 cma_dev_get(found_cma_dev); 282 mutex_unlock(&lock); 283 return found_cma_dev; 284 } 285 286 int cma_get_default_gid_type(struct cma_device *cma_dev, 287 unsigned int port) 288 { 289 if (!rdma_is_port_valid(cma_dev->device, port)) 290 return -EINVAL; 291 292 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 293 } 294 295 int cma_set_default_gid_type(struct cma_device *cma_dev, 296 unsigned int port, 297 enum ib_gid_type default_gid_type) 298 { 299 unsigned long supported_gids; 300 301 if (!rdma_is_port_valid(cma_dev->device, port)) 302 return -EINVAL; 303 304 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 305 306 if (!(supported_gids & 1 << default_gid_type)) 307 return -EINVAL; 308 309 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 310 default_gid_type; 311 312 return 0; 313 } 314 315 int cma_get_default_roce_tos(struct cma_device *cma_dev, unsigned int port) 316 { 317 if (!rdma_is_port_valid(cma_dev->device, port)) 318 return -EINVAL; 319 320 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 321 } 322 323 int cma_set_default_roce_tos(struct cma_device *cma_dev, unsigned int port, 324 u8 default_roce_tos) 325 { 326 if (!rdma_is_port_valid(cma_dev->device, port)) 327 return -EINVAL; 328 329 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 330 default_roce_tos; 331 332 return 0; 333 } 334 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 335 { 336 return cma_dev->device; 337 } 338 339 /* 340 * Device removal can occur at anytime, so we need extra handling to 341 * serialize notifying the user of device removal with other callbacks. 342 * We do this by disabling removal notification while a callback is in process, 343 * and reporting it after the callback completes. 344 */ 345 346 struct cma_multicast { 347 struct rdma_id_private *id_priv; 348 union { 349 struct ib_sa_multicast *ib; 350 } multicast; 351 struct list_head list; 352 void *context; 353 struct sockaddr_storage addr; 354 struct kref mcref; 355 u8 join_state; 356 }; 357 358 struct cma_work { 359 struct work_struct work; 360 struct rdma_id_private *id; 361 enum rdma_cm_state old_state; 362 enum rdma_cm_state new_state; 363 struct rdma_cm_event event; 364 }; 365 366 struct cma_ndev_work { 367 struct work_struct work; 368 struct rdma_id_private *id; 369 struct rdma_cm_event event; 370 }; 371 372 struct iboe_mcast_work { 373 struct work_struct work; 374 struct rdma_id_private *id; 375 struct cma_multicast *mc; 376 }; 377 378 union cma_ip_addr { 379 struct in6_addr ip6; 380 struct { 381 __be32 pad[3]; 382 __be32 addr; 383 } ip4; 384 }; 385 386 struct cma_hdr { 387 u8 cma_version; 388 u8 ip_version; /* IP version: 7:4 */ 389 __be16 port; 390 union cma_ip_addr src_addr; 391 union cma_ip_addr dst_addr; 392 }; 393 394 #define CMA_VERSION 0x00 395 396 struct cma_req_info { 397 struct sockaddr_storage listen_addr_storage; 398 struct sockaddr_storage src_addr_storage; 399 struct ib_device *device; 400 union ib_gid local_gid; 401 __be64 service_id; 402 int port; 403 bool has_gid; 404 u16 pkey; 405 }; 406 407 static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp) 408 { 409 unsigned long flags; 410 int ret; 411 412 spin_lock_irqsave(&id_priv->lock, flags); 413 ret = (id_priv->state == comp); 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static int cma_comp_exch(struct rdma_id_private *id_priv, 419 enum rdma_cm_state comp, enum rdma_cm_state exch) 420 { 421 unsigned long flags; 422 int ret; 423 424 spin_lock_irqsave(&id_priv->lock, flags); 425 if ((ret = (id_priv->state == comp))) 426 id_priv->state = exch; 427 spin_unlock_irqrestore(&id_priv->lock, flags); 428 return ret; 429 } 430 431 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 432 { 433 return hdr->ip_version >> 4; 434 } 435 436 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 437 { 438 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 439 } 440 441 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 442 { 443 struct in_device *in_dev = NULL; 444 445 if (ndev) { 446 rtnl_lock(); 447 in_dev = __in_dev_get_rtnl(ndev); 448 if (in_dev) { 449 if (join) 450 ip_mc_inc_group(in_dev, 451 *(__be32 *)(mgid->raw + 12)); 452 else 453 ip_mc_dec_group(in_dev, 454 *(__be32 *)(mgid->raw + 12)); 455 } 456 rtnl_unlock(); 457 } 458 return (in_dev) ? 0 : -ENODEV; 459 } 460 461 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 cma_dev_get(cma_dev); 465 id_priv->cma_dev = cma_dev; 466 id_priv->id.device = cma_dev->device; 467 id_priv->id.route.addr.dev_addr.transport = 468 rdma_node_get_transport(cma_dev->device->node_type); 469 list_add_tail(&id_priv->list, &cma_dev->id_list); 470 if (id_priv->res.kern_name) 471 rdma_restrack_kadd(&id_priv->res); 472 else 473 rdma_restrack_uadd(&id_priv->res); 474 trace_cm_id_attach(id_priv, cma_dev->device); 475 } 476 477 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 478 struct cma_device *cma_dev) 479 { 480 _cma_attach_to_dev(id_priv, cma_dev); 481 id_priv->gid_type = 482 cma_dev->default_gid_type[id_priv->id.port_num - 483 rdma_start_port(cma_dev->device)]; 484 } 485 486 static inline void release_mc(struct kref *kref) 487 { 488 struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref); 489 490 kfree(mc->multicast.ib); 491 kfree(mc); 492 } 493 494 static void cma_release_dev(struct rdma_id_private *id_priv) 495 { 496 mutex_lock(&lock); 497 list_del(&id_priv->list); 498 cma_dev_put(id_priv->cma_dev); 499 id_priv->cma_dev = NULL; 500 mutex_unlock(&lock); 501 } 502 503 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 504 { 505 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 506 } 507 508 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 509 { 510 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 511 } 512 513 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 514 { 515 return id_priv->id.route.addr.src_addr.ss_family; 516 } 517 518 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 519 { 520 struct ib_sa_mcmember_rec rec; 521 int ret = 0; 522 523 if (id_priv->qkey) { 524 if (qkey && id_priv->qkey != qkey) 525 return -EINVAL; 526 return 0; 527 } 528 529 if (qkey) { 530 id_priv->qkey = qkey; 531 return 0; 532 } 533 534 switch (id_priv->id.ps) { 535 case RDMA_PS_UDP: 536 case RDMA_PS_IB: 537 id_priv->qkey = RDMA_UDP_QKEY; 538 break; 539 case RDMA_PS_IPOIB: 540 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 541 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 542 id_priv->id.port_num, &rec.mgid, 543 &rec); 544 if (!ret) 545 id_priv->qkey = be32_to_cpu(rec.qkey); 546 break; 547 default: 548 break; 549 } 550 return ret; 551 } 552 553 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 554 { 555 dev_addr->dev_type = ARPHRD_INFINIBAND; 556 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 557 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 558 } 559 560 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 561 { 562 int ret; 563 564 if (addr->sa_family != AF_IB) { 565 ret = rdma_translate_ip(addr, dev_addr); 566 } else { 567 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 568 ret = 0; 569 } 570 571 return ret; 572 } 573 574 static const struct ib_gid_attr * 575 cma_validate_port(struct ib_device *device, u8 port, 576 enum ib_gid_type gid_type, 577 union ib_gid *gid, 578 struct rdma_id_private *id_priv) 579 { 580 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 581 int bound_if_index = dev_addr->bound_dev_if; 582 const struct ib_gid_attr *sgid_attr; 583 int dev_type = dev_addr->dev_type; 584 struct net_device *ndev = NULL; 585 586 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 587 return ERR_PTR(-ENODEV); 588 589 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 590 return ERR_PTR(-ENODEV); 591 592 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 593 return ERR_PTR(-ENODEV); 594 595 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 596 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 597 if (!ndev) 598 return ERR_PTR(-ENODEV); 599 } else { 600 gid_type = IB_GID_TYPE_IB; 601 } 602 603 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 604 if (ndev) 605 dev_put(ndev); 606 return sgid_attr; 607 } 608 609 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 610 const struct ib_gid_attr *sgid_attr) 611 { 612 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 613 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 614 } 615 616 /** 617 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 618 * based on source ip address. 619 * @id_priv: cm_id which should be bound to cma device 620 * 621 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 622 * based on source IP address. It returns 0 on success or error code otherwise. 623 * It is applicable to active and passive side cm_id. 624 */ 625 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 626 { 627 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 628 const struct ib_gid_attr *sgid_attr; 629 union ib_gid gid, iboe_gid, *gidp; 630 struct cma_device *cma_dev; 631 enum ib_gid_type gid_type; 632 int ret = -ENODEV; 633 unsigned int port; 634 635 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 636 id_priv->id.ps == RDMA_PS_IPOIB) 637 return -EINVAL; 638 639 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 640 &iboe_gid); 641 642 memcpy(&gid, dev_addr->src_dev_addr + 643 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 644 645 mutex_lock(&lock); 646 list_for_each_entry(cma_dev, &dev_list, list) { 647 rdma_for_each_port (cma_dev->device, port) { 648 gidp = rdma_protocol_roce(cma_dev->device, port) ? 649 &iboe_gid : &gid; 650 gid_type = cma_dev->default_gid_type[port - 1]; 651 sgid_attr = cma_validate_port(cma_dev->device, port, 652 gid_type, gidp, id_priv); 653 if (!IS_ERR(sgid_attr)) { 654 id_priv->id.port_num = port; 655 cma_bind_sgid_attr(id_priv, sgid_attr); 656 cma_attach_to_dev(id_priv, cma_dev); 657 ret = 0; 658 goto out; 659 } 660 } 661 } 662 out: 663 mutex_unlock(&lock); 664 return ret; 665 } 666 667 /** 668 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 669 * @id_priv: cm id to bind to cma device 670 * @listen_id_priv: listener cm id to match against 671 * @req: Pointer to req structure containaining incoming 672 * request information 673 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 674 * rdma device matches for listen_id and incoming request. It also verifies 675 * that a GID table entry is present for the source address. 676 * Returns 0 on success, or returns error code otherwise. 677 */ 678 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 679 const struct rdma_id_private *listen_id_priv, 680 struct cma_req_info *req) 681 { 682 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 683 const struct ib_gid_attr *sgid_attr; 684 enum ib_gid_type gid_type; 685 union ib_gid gid; 686 687 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 688 id_priv->id.ps == RDMA_PS_IPOIB) 689 return -EINVAL; 690 691 if (rdma_protocol_roce(req->device, req->port)) 692 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 693 &gid); 694 else 695 memcpy(&gid, dev_addr->src_dev_addr + 696 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 697 698 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 699 sgid_attr = cma_validate_port(req->device, req->port, 700 gid_type, &gid, id_priv); 701 if (IS_ERR(sgid_attr)) 702 return PTR_ERR(sgid_attr); 703 704 id_priv->id.port_num = req->port; 705 cma_bind_sgid_attr(id_priv, sgid_attr); 706 /* Need to acquire lock to protect against reader 707 * of cma_dev->id_list such as cma_netdev_callback() and 708 * cma_process_remove(). 709 */ 710 mutex_lock(&lock); 711 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 712 mutex_unlock(&lock); 713 return 0; 714 } 715 716 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 717 const struct rdma_id_private *listen_id_priv) 718 { 719 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 720 const struct ib_gid_attr *sgid_attr; 721 struct cma_device *cma_dev; 722 enum ib_gid_type gid_type; 723 int ret = -ENODEV; 724 unsigned int port; 725 union ib_gid gid; 726 727 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 728 id_priv->id.ps == RDMA_PS_IPOIB) 729 return -EINVAL; 730 731 memcpy(&gid, dev_addr->src_dev_addr + 732 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 733 734 mutex_lock(&lock); 735 736 cma_dev = listen_id_priv->cma_dev; 737 port = listen_id_priv->id.port_num; 738 gid_type = listen_id_priv->gid_type; 739 sgid_attr = cma_validate_port(cma_dev->device, port, 740 gid_type, &gid, id_priv); 741 if (!IS_ERR(sgid_attr)) { 742 id_priv->id.port_num = port; 743 cma_bind_sgid_attr(id_priv, sgid_attr); 744 ret = 0; 745 goto out; 746 } 747 748 list_for_each_entry(cma_dev, &dev_list, list) { 749 rdma_for_each_port (cma_dev->device, port) { 750 if (listen_id_priv->cma_dev == cma_dev && 751 listen_id_priv->id.port_num == port) 752 continue; 753 754 gid_type = cma_dev->default_gid_type[port - 1]; 755 sgid_attr = cma_validate_port(cma_dev->device, port, 756 gid_type, &gid, id_priv); 757 if (!IS_ERR(sgid_attr)) { 758 id_priv->id.port_num = port; 759 cma_bind_sgid_attr(id_priv, sgid_attr); 760 ret = 0; 761 goto out; 762 } 763 } 764 } 765 766 out: 767 if (!ret) 768 cma_attach_to_dev(id_priv, cma_dev); 769 770 mutex_unlock(&lock); 771 return ret; 772 } 773 774 /* 775 * Select the source IB device and address to reach the destination IB address. 776 */ 777 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 778 { 779 struct cma_device *cma_dev, *cur_dev; 780 struct sockaddr_ib *addr; 781 union ib_gid gid, sgid, *dgid; 782 unsigned int p; 783 u16 pkey, index; 784 enum ib_port_state port_state; 785 int i; 786 787 cma_dev = NULL; 788 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 789 dgid = (union ib_gid *) &addr->sib_addr; 790 pkey = ntohs(addr->sib_pkey); 791 792 mutex_lock(&lock); 793 list_for_each_entry(cur_dev, &dev_list, list) { 794 rdma_for_each_port (cur_dev->device, p) { 795 if (!rdma_cap_af_ib(cur_dev->device, p)) 796 continue; 797 798 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 799 continue; 800 801 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 802 continue; 803 for (i = 0; !rdma_query_gid(cur_dev->device, 804 p, i, &gid); 805 i++) { 806 if (!memcmp(&gid, dgid, sizeof(gid))) { 807 cma_dev = cur_dev; 808 sgid = gid; 809 id_priv->id.port_num = p; 810 goto found; 811 } 812 813 if (!cma_dev && (gid.global.subnet_prefix == 814 dgid->global.subnet_prefix) && 815 port_state == IB_PORT_ACTIVE) { 816 cma_dev = cur_dev; 817 sgid = gid; 818 id_priv->id.port_num = p; 819 goto found; 820 } 821 } 822 } 823 } 824 mutex_unlock(&lock); 825 return -ENODEV; 826 827 found: 828 cma_attach_to_dev(id_priv, cma_dev); 829 mutex_unlock(&lock); 830 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 831 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 832 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 833 return 0; 834 } 835 836 static void cma_id_get(struct rdma_id_private *id_priv) 837 { 838 refcount_inc(&id_priv->refcount); 839 } 840 841 static void cma_id_put(struct rdma_id_private *id_priv) 842 { 843 if (refcount_dec_and_test(&id_priv->refcount)) 844 complete(&id_priv->comp); 845 } 846 847 struct rdma_cm_id *__rdma_create_id(struct net *net, 848 rdma_cm_event_handler event_handler, 849 void *context, enum rdma_ucm_port_space ps, 850 enum ib_qp_type qp_type, const char *caller) 851 { 852 struct rdma_id_private *id_priv; 853 854 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 855 if (!id_priv) 856 return ERR_PTR(-ENOMEM); 857 858 rdma_restrack_set_task(&id_priv->res, caller); 859 id_priv->res.type = RDMA_RESTRACK_CM_ID; 860 id_priv->state = RDMA_CM_IDLE; 861 id_priv->id.context = context; 862 id_priv->id.event_handler = event_handler; 863 id_priv->id.ps = ps; 864 id_priv->id.qp_type = qp_type; 865 id_priv->tos_set = false; 866 id_priv->timeout_set = false; 867 id_priv->gid_type = IB_GID_TYPE_IB; 868 spin_lock_init(&id_priv->lock); 869 mutex_init(&id_priv->qp_mutex); 870 init_completion(&id_priv->comp); 871 refcount_set(&id_priv->refcount, 1); 872 mutex_init(&id_priv->handler_mutex); 873 INIT_LIST_HEAD(&id_priv->listen_list); 874 INIT_LIST_HEAD(&id_priv->mc_list); 875 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 876 id_priv->id.route.addr.dev_addr.net = get_net(net); 877 id_priv->seq_num &= 0x00ffffff; 878 879 return &id_priv->id; 880 } 881 EXPORT_SYMBOL(__rdma_create_id); 882 883 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 884 { 885 struct ib_qp_attr qp_attr; 886 int qp_attr_mask, ret; 887 888 qp_attr.qp_state = IB_QPS_INIT; 889 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 890 if (ret) 891 return ret; 892 893 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 894 if (ret) 895 return ret; 896 897 qp_attr.qp_state = IB_QPS_RTR; 898 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 899 if (ret) 900 return ret; 901 902 qp_attr.qp_state = IB_QPS_RTS; 903 qp_attr.sq_psn = 0; 904 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 905 906 return ret; 907 } 908 909 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 910 { 911 struct ib_qp_attr qp_attr; 912 int qp_attr_mask, ret; 913 914 qp_attr.qp_state = IB_QPS_INIT; 915 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 916 if (ret) 917 return ret; 918 919 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 920 } 921 922 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 923 struct ib_qp_init_attr *qp_init_attr) 924 { 925 struct rdma_id_private *id_priv; 926 struct ib_qp *qp; 927 int ret; 928 929 id_priv = container_of(id, struct rdma_id_private, id); 930 if (id->device != pd->device) { 931 ret = -EINVAL; 932 goto out_err; 933 } 934 935 qp_init_attr->port_num = id->port_num; 936 qp = ib_create_qp(pd, qp_init_attr); 937 if (IS_ERR(qp)) { 938 ret = PTR_ERR(qp); 939 goto out_err; 940 } 941 942 if (id->qp_type == IB_QPT_UD) 943 ret = cma_init_ud_qp(id_priv, qp); 944 else 945 ret = cma_init_conn_qp(id_priv, qp); 946 if (ret) 947 goto out_destroy; 948 949 id->qp = qp; 950 id_priv->qp_num = qp->qp_num; 951 id_priv->srq = (qp->srq != NULL); 952 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 953 return 0; 954 out_destroy: 955 ib_destroy_qp(qp); 956 out_err: 957 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 958 return ret; 959 } 960 EXPORT_SYMBOL(rdma_create_qp); 961 962 void rdma_destroy_qp(struct rdma_cm_id *id) 963 { 964 struct rdma_id_private *id_priv; 965 966 id_priv = container_of(id, struct rdma_id_private, id); 967 trace_cm_qp_destroy(id_priv); 968 mutex_lock(&id_priv->qp_mutex); 969 ib_destroy_qp(id_priv->id.qp); 970 id_priv->id.qp = NULL; 971 mutex_unlock(&id_priv->qp_mutex); 972 } 973 EXPORT_SYMBOL(rdma_destroy_qp); 974 975 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 976 struct rdma_conn_param *conn_param) 977 { 978 struct ib_qp_attr qp_attr; 979 int qp_attr_mask, ret; 980 981 mutex_lock(&id_priv->qp_mutex); 982 if (!id_priv->id.qp) { 983 ret = 0; 984 goto out; 985 } 986 987 /* Need to update QP attributes from default values. */ 988 qp_attr.qp_state = IB_QPS_INIT; 989 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 990 if (ret) 991 goto out; 992 993 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 994 if (ret) 995 goto out; 996 997 qp_attr.qp_state = IB_QPS_RTR; 998 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 999 if (ret) 1000 goto out; 1001 1002 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1003 1004 if (conn_param) 1005 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1006 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1007 out: 1008 mutex_unlock(&id_priv->qp_mutex); 1009 return ret; 1010 } 1011 1012 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1013 struct rdma_conn_param *conn_param) 1014 { 1015 struct ib_qp_attr qp_attr; 1016 int qp_attr_mask, ret; 1017 1018 mutex_lock(&id_priv->qp_mutex); 1019 if (!id_priv->id.qp) { 1020 ret = 0; 1021 goto out; 1022 } 1023 1024 qp_attr.qp_state = IB_QPS_RTS; 1025 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1026 if (ret) 1027 goto out; 1028 1029 if (conn_param) 1030 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1031 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1032 out: 1033 mutex_unlock(&id_priv->qp_mutex); 1034 return ret; 1035 } 1036 1037 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 int ret; 1041 1042 mutex_lock(&id_priv->qp_mutex); 1043 if (!id_priv->id.qp) { 1044 ret = 0; 1045 goto out; 1046 } 1047 1048 qp_attr.qp_state = IB_QPS_ERR; 1049 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1050 out: 1051 mutex_unlock(&id_priv->qp_mutex); 1052 return ret; 1053 } 1054 1055 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1056 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1057 { 1058 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1059 int ret; 1060 u16 pkey; 1061 1062 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1063 pkey = 0xffff; 1064 else 1065 pkey = ib_addr_get_pkey(dev_addr); 1066 1067 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1068 pkey, &qp_attr->pkey_index); 1069 if (ret) 1070 return ret; 1071 1072 qp_attr->port_num = id_priv->id.port_num; 1073 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1074 1075 if (id_priv->id.qp_type == IB_QPT_UD) { 1076 ret = cma_set_qkey(id_priv, 0); 1077 if (ret) 1078 return ret; 1079 1080 qp_attr->qkey = id_priv->qkey; 1081 *qp_attr_mask |= IB_QP_QKEY; 1082 } else { 1083 qp_attr->qp_access_flags = 0; 1084 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1085 } 1086 return 0; 1087 } 1088 1089 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1090 int *qp_attr_mask) 1091 { 1092 struct rdma_id_private *id_priv; 1093 int ret = 0; 1094 1095 id_priv = container_of(id, struct rdma_id_private, id); 1096 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1097 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1098 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1099 else 1100 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1101 qp_attr_mask); 1102 1103 if (qp_attr->qp_state == IB_QPS_RTR) 1104 qp_attr->rq_psn = id_priv->seq_num; 1105 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1106 if (!id_priv->cm_id.iw) { 1107 qp_attr->qp_access_flags = 0; 1108 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1109 } else 1110 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1111 qp_attr_mask); 1112 qp_attr->port_num = id_priv->id.port_num; 1113 *qp_attr_mask |= IB_QP_PORT; 1114 } else 1115 ret = -ENOSYS; 1116 1117 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1118 qp_attr->timeout = id_priv->timeout; 1119 1120 return ret; 1121 } 1122 EXPORT_SYMBOL(rdma_init_qp_attr); 1123 1124 static inline bool cma_zero_addr(const struct sockaddr *addr) 1125 { 1126 switch (addr->sa_family) { 1127 case AF_INET: 1128 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1129 case AF_INET6: 1130 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1131 case AF_IB: 1132 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1133 default: 1134 return false; 1135 } 1136 } 1137 1138 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1139 { 1140 switch (addr->sa_family) { 1141 case AF_INET: 1142 return ipv4_is_loopback( 1143 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1144 case AF_INET6: 1145 return ipv6_addr_loopback( 1146 &((struct sockaddr_in6 *)addr)->sin6_addr); 1147 case AF_IB: 1148 return ib_addr_loopback( 1149 &((struct sockaddr_ib *)addr)->sib_addr); 1150 default: 1151 return false; 1152 } 1153 } 1154 1155 static inline bool cma_any_addr(const struct sockaddr *addr) 1156 { 1157 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1158 } 1159 1160 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1161 { 1162 if (src->sa_family != dst->sa_family) 1163 return -1; 1164 1165 switch (src->sa_family) { 1166 case AF_INET: 1167 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1168 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1169 case AF_INET6: { 1170 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1171 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1172 bool link_local; 1173 1174 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1175 &dst_addr6->sin6_addr)) 1176 return 1; 1177 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1178 IPV6_ADDR_LINKLOCAL; 1179 /* Link local must match their scope_ids */ 1180 return link_local ? (src_addr6->sin6_scope_id != 1181 dst_addr6->sin6_scope_id) : 1182 0; 1183 } 1184 1185 default: 1186 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1187 &((struct sockaddr_ib *) dst)->sib_addr); 1188 } 1189 } 1190 1191 static __be16 cma_port(const struct sockaddr *addr) 1192 { 1193 struct sockaddr_ib *sib; 1194 1195 switch (addr->sa_family) { 1196 case AF_INET: 1197 return ((struct sockaddr_in *) addr)->sin_port; 1198 case AF_INET6: 1199 return ((struct sockaddr_in6 *) addr)->sin6_port; 1200 case AF_IB: 1201 sib = (struct sockaddr_ib *) addr; 1202 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1203 be64_to_cpu(sib->sib_sid_mask))); 1204 default: 1205 return 0; 1206 } 1207 } 1208 1209 static inline int cma_any_port(const struct sockaddr *addr) 1210 { 1211 return !cma_port(addr); 1212 } 1213 1214 static void cma_save_ib_info(struct sockaddr *src_addr, 1215 struct sockaddr *dst_addr, 1216 const struct rdma_cm_id *listen_id, 1217 const struct sa_path_rec *path) 1218 { 1219 struct sockaddr_ib *listen_ib, *ib; 1220 1221 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1222 if (src_addr) { 1223 ib = (struct sockaddr_ib *)src_addr; 1224 ib->sib_family = AF_IB; 1225 if (path) { 1226 ib->sib_pkey = path->pkey; 1227 ib->sib_flowinfo = path->flow_label; 1228 memcpy(&ib->sib_addr, &path->sgid, 16); 1229 ib->sib_sid = path->service_id; 1230 ib->sib_scope_id = 0; 1231 } else { 1232 ib->sib_pkey = listen_ib->sib_pkey; 1233 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1234 ib->sib_addr = listen_ib->sib_addr; 1235 ib->sib_sid = listen_ib->sib_sid; 1236 ib->sib_scope_id = listen_ib->sib_scope_id; 1237 } 1238 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1239 } 1240 if (dst_addr) { 1241 ib = (struct sockaddr_ib *)dst_addr; 1242 ib->sib_family = AF_IB; 1243 if (path) { 1244 ib->sib_pkey = path->pkey; 1245 ib->sib_flowinfo = path->flow_label; 1246 memcpy(&ib->sib_addr, &path->dgid, 16); 1247 } 1248 } 1249 } 1250 1251 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1252 struct sockaddr_in *dst_addr, 1253 struct cma_hdr *hdr, 1254 __be16 local_port) 1255 { 1256 if (src_addr) { 1257 *src_addr = (struct sockaddr_in) { 1258 .sin_family = AF_INET, 1259 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1260 .sin_port = local_port, 1261 }; 1262 } 1263 1264 if (dst_addr) { 1265 *dst_addr = (struct sockaddr_in) { 1266 .sin_family = AF_INET, 1267 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1268 .sin_port = hdr->port, 1269 }; 1270 } 1271 } 1272 1273 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1274 struct sockaddr_in6 *dst_addr, 1275 struct cma_hdr *hdr, 1276 __be16 local_port) 1277 { 1278 if (src_addr) { 1279 *src_addr = (struct sockaddr_in6) { 1280 .sin6_family = AF_INET6, 1281 .sin6_addr = hdr->dst_addr.ip6, 1282 .sin6_port = local_port, 1283 }; 1284 } 1285 1286 if (dst_addr) { 1287 *dst_addr = (struct sockaddr_in6) { 1288 .sin6_family = AF_INET6, 1289 .sin6_addr = hdr->src_addr.ip6, 1290 .sin6_port = hdr->port, 1291 }; 1292 } 1293 } 1294 1295 static u16 cma_port_from_service_id(__be64 service_id) 1296 { 1297 return (u16)be64_to_cpu(service_id); 1298 } 1299 1300 static int cma_save_ip_info(struct sockaddr *src_addr, 1301 struct sockaddr *dst_addr, 1302 const struct ib_cm_event *ib_event, 1303 __be64 service_id) 1304 { 1305 struct cma_hdr *hdr; 1306 __be16 port; 1307 1308 hdr = ib_event->private_data; 1309 if (hdr->cma_version != CMA_VERSION) 1310 return -EINVAL; 1311 1312 port = htons(cma_port_from_service_id(service_id)); 1313 1314 switch (cma_get_ip_ver(hdr)) { 1315 case 4: 1316 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1317 (struct sockaddr_in *)dst_addr, hdr, port); 1318 break; 1319 case 6: 1320 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1321 (struct sockaddr_in6 *)dst_addr, hdr, port); 1322 break; 1323 default: 1324 return -EAFNOSUPPORT; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static int cma_save_net_info(struct sockaddr *src_addr, 1331 struct sockaddr *dst_addr, 1332 const struct rdma_cm_id *listen_id, 1333 const struct ib_cm_event *ib_event, 1334 sa_family_t sa_family, __be64 service_id) 1335 { 1336 if (sa_family == AF_IB) { 1337 if (ib_event->event == IB_CM_REQ_RECEIVED) 1338 cma_save_ib_info(src_addr, dst_addr, listen_id, 1339 ib_event->param.req_rcvd.primary_path); 1340 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1341 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1342 return 0; 1343 } 1344 1345 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1346 } 1347 1348 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1349 struct cma_req_info *req) 1350 { 1351 const struct ib_cm_req_event_param *req_param = 1352 &ib_event->param.req_rcvd; 1353 const struct ib_cm_sidr_req_event_param *sidr_param = 1354 &ib_event->param.sidr_req_rcvd; 1355 1356 switch (ib_event->event) { 1357 case IB_CM_REQ_RECEIVED: 1358 req->device = req_param->listen_id->device; 1359 req->port = req_param->port; 1360 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1361 sizeof(req->local_gid)); 1362 req->has_gid = true; 1363 req->service_id = req_param->primary_path->service_id; 1364 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1365 if (req->pkey != req_param->bth_pkey) 1366 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1367 "RDMA CMA: in the future this may cause the request to be dropped\n", 1368 req_param->bth_pkey, req->pkey); 1369 break; 1370 case IB_CM_SIDR_REQ_RECEIVED: 1371 req->device = sidr_param->listen_id->device; 1372 req->port = sidr_param->port; 1373 req->has_gid = false; 1374 req->service_id = sidr_param->service_id; 1375 req->pkey = sidr_param->pkey; 1376 if (req->pkey != sidr_param->bth_pkey) 1377 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1378 "RDMA CMA: in the future this may cause the request to be dropped\n", 1379 sidr_param->bth_pkey, req->pkey); 1380 break; 1381 default: 1382 return -EINVAL; 1383 } 1384 1385 return 0; 1386 } 1387 1388 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1389 const struct sockaddr_in *dst_addr, 1390 const struct sockaddr_in *src_addr) 1391 { 1392 __be32 daddr = dst_addr->sin_addr.s_addr, 1393 saddr = src_addr->sin_addr.s_addr; 1394 struct fib_result res; 1395 struct flowi4 fl4; 1396 int err; 1397 bool ret; 1398 1399 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1400 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1401 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1402 ipv4_is_loopback(saddr)) 1403 return false; 1404 1405 memset(&fl4, 0, sizeof(fl4)); 1406 fl4.flowi4_iif = net_dev->ifindex; 1407 fl4.daddr = daddr; 1408 fl4.saddr = saddr; 1409 1410 rcu_read_lock(); 1411 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1412 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1413 rcu_read_unlock(); 1414 1415 return ret; 1416 } 1417 1418 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1419 const struct sockaddr_in6 *dst_addr, 1420 const struct sockaddr_in6 *src_addr) 1421 { 1422 #if IS_ENABLED(CONFIG_IPV6) 1423 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1424 IPV6_ADDR_LINKLOCAL; 1425 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1426 &src_addr->sin6_addr, net_dev->ifindex, 1427 NULL, strict); 1428 bool ret; 1429 1430 if (!rt) 1431 return false; 1432 1433 ret = rt->rt6i_idev->dev == net_dev; 1434 ip6_rt_put(rt); 1435 1436 return ret; 1437 #else 1438 return false; 1439 #endif 1440 } 1441 1442 static bool validate_net_dev(struct net_device *net_dev, 1443 const struct sockaddr *daddr, 1444 const struct sockaddr *saddr) 1445 { 1446 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1447 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1448 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1449 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1450 1451 switch (daddr->sa_family) { 1452 case AF_INET: 1453 return saddr->sa_family == AF_INET && 1454 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1455 1456 case AF_INET6: 1457 return saddr->sa_family == AF_INET6 && 1458 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1459 1460 default: 1461 return false; 1462 } 1463 } 1464 1465 static struct net_device * 1466 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1467 { 1468 const struct ib_gid_attr *sgid_attr = NULL; 1469 struct net_device *ndev; 1470 1471 if (ib_event->event == IB_CM_REQ_RECEIVED) 1472 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1473 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1474 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1475 1476 if (!sgid_attr) 1477 return NULL; 1478 1479 rcu_read_lock(); 1480 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1481 if (IS_ERR(ndev)) 1482 ndev = NULL; 1483 else 1484 dev_hold(ndev); 1485 rcu_read_unlock(); 1486 return ndev; 1487 } 1488 1489 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1490 struct cma_req_info *req) 1491 { 1492 struct sockaddr *listen_addr = 1493 (struct sockaddr *)&req->listen_addr_storage; 1494 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1495 struct net_device *net_dev; 1496 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1497 int err; 1498 1499 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1500 req->service_id); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 if (rdma_protocol_roce(req->device, req->port)) 1505 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1506 else 1507 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1508 req->pkey, 1509 gid, listen_addr); 1510 if (!net_dev) 1511 return ERR_PTR(-ENODEV); 1512 1513 return net_dev; 1514 } 1515 1516 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1517 { 1518 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1519 } 1520 1521 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1522 const struct cma_hdr *hdr) 1523 { 1524 struct sockaddr *addr = cma_src_addr(id_priv); 1525 __be32 ip4_addr; 1526 struct in6_addr ip6_addr; 1527 1528 if (cma_any_addr(addr) && !id_priv->afonly) 1529 return true; 1530 1531 switch (addr->sa_family) { 1532 case AF_INET: 1533 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1534 if (cma_get_ip_ver(hdr) != 4) 1535 return false; 1536 if (!cma_any_addr(addr) && 1537 hdr->dst_addr.ip4.addr != ip4_addr) 1538 return false; 1539 break; 1540 case AF_INET6: 1541 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1542 if (cma_get_ip_ver(hdr) != 6) 1543 return false; 1544 if (!cma_any_addr(addr) && 1545 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1546 return false; 1547 break; 1548 case AF_IB: 1549 return true; 1550 default: 1551 return false; 1552 } 1553 1554 return true; 1555 } 1556 1557 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1558 { 1559 struct ib_device *device = id->device; 1560 const int port_num = id->port_num ?: rdma_start_port(device); 1561 1562 return rdma_protocol_roce(device, port_num); 1563 } 1564 1565 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1566 { 1567 const struct sockaddr *daddr = 1568 (const struct sockaddr *)&req->listen_addr_storage; 1569 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1570 1571 /* Returns true if the req is for IPv6 link local */ 1572 return (daddr->sa_family == AF_INET6 && 1573 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1574 } 1575 1576 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1577 const struct net_device *net_dev, 1578 const struct cma_req_info *req) 1579 { 1580 const struct rdma_addr *addr = &id->route.addr; 1581 1582 if (!net_dev) 1583 /* This request is an AF_IB request */ 1584 return (!id->port_num || id->port_num == req->port) && 1585 (addr->src_addr.ss_family == AF_IB); 1586 1587 /* 1588 * If the request is not for IPv6 link local, allow matching 1589 * request to any netdevice of the one or multiport rdma device. 1590 */ 1591 if (!cma_is_req_ipv6_ll(req)) 1592 return true; 1593 /* 1594 * Net namespaces must match, and if the listner is listening 1595 * on a specific netdevice than netdevice must match as well. 1596 */ 1597 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1598 (!!addr->dev_addr.bound_dev_if == 1599 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1600 return true; 1601 else 1602 return false; 1603 } 1604 1605 static struct rdma_id_private *cma_find_listener( 1606 const struct rdma_bind_list *bind_list, 1607 const struct ib_cm_id *cm_id, 1608 const struct ib_cm_event *ib_event, 1609 const struct cma_req_info *req, 1610 const struct net_device *net_dev) 1611 { 1612 struct rdma_id_private *id_priv, *id_priv_dev; 1613 1614 lockdep_assert_held(&lock); 1615 1616 if (!bind_list) 1617 return ERR_PTR(-EINVAL); 1618 1619 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1620 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1621 if (id_priv->id.device == cm_id->device && 1622 cma_match_net_dev(&id_priv->id, net_dev, req)) 1623 return id_priv; 1624 list_for_each_entry(id_priv_dev, 1625 &id_priv->listen_list, 1626 listen_list) { 1627 if (id_priv_dev->id.device == cm_id->device && 1628 cma_match_net_dev(&id_priv_dev->id, 1629 net_dev, req)) 1630 return id_priv_dev; 1631 } 1632 } 1633 } 1634 1635 return ERR_PTR(-EINVAL); 1636 } 1637 1638 static struct rdma_id_private * 1639 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1640 const struct ib_cm_event *ib_event, 1641 struct cma_req_info *req, 1642 struct net_device **net_dev) 1643 { 1644 struct rdma_bind_list *bind_list; 1645 struct rdma_id_private *id_priv; 1646 int err; 1647 1648 err = cma_save_req_info(ib_event, req); 1649 if (err) 1650 return ERR_PTR(err); 1651 1652 *net_dev = cma_get_net_dev(ib_event, req); 1653 if (IS_ERR(*net_dev)) { 1654 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1655 /* Assuming the protocol is AF_IB */ 1656 *net_dev = NULL; 1657 } else { 1658 return ERR_CAST(*net_dev); 1659 } 1660 } 1661 1662 mutex_lock(&lock); 1663 /* 1664 * Net namespace might be getting deleted while route lookup, 1665 * cm_id lookup is in progress. Therefore, perform netdevice 1666 * validation, cm_id lookup under rcu lock. 1667 * RCU lock along with netdevice state check, synchronizes with 1668 * netdevice migrating to different net namespace and also avoids 1669 * case where net namespace doesn't get deleted while lookup is in 1670 * progress. 1671 * If the device state is not IFF_UP, its properties such as ifindex 1672 * and nd_net cannot be trusted to remain valid without rcu lock. 1673 * net/core/dev.c change_net_namespace() ensures to synchronize with 1674 * ongoing operations on net device after device is closed using 1675 * synchronize_net(). 1676 */ 1677 rcu_read_lock(); 1678 if (*net_dev) { 1679 /* 1680 * If netdevice is down, it is likely that it is administratively 1681 * down or it might be migrating to different namespace. 1682 * In that case avoid further processing, as the net namespace 1683 * or ifindex may change. 1684 */ 1685 if (((*net_dev)->flags & IFF_UP) == 0) { 1686 id_priv = ERR_PTR(-EHOSTUNREACH); 1687 goto err; 1688 } 1689 1690 if (!validate_net_dev(*net_dev, 1691 (struct sockaddr *)&req->listen_addr_storage, 1692 (struct sockaddr *)&req->src_addr_storage)) { 1693 id_priv = ERR_PTR(-EHOSTUNREACH); 1694 goto err; 1695 } 1696 } 1697 1698 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1699 rdma_ps_from_service_id(req->service_id), 1700 cma_port_from_service_id(req->service_id)); 1701 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1702 err: 1703 rcu_read_unlock(); 1704 mutex_unlock(&lock); 1705 if (IS_ERR(id_priv) && *net_dev) { 1706 dev_put(*net_dev); 1707 *net_dev = NULL; 1708 } 1709 return id_priv; 1710 } 1711 1712 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1713 { 1714 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1715 } 1716 1717 static void cma_cancel_route(struct rdma_id_private *id_priv) 1718 { 1719 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1720 if (id_priv->query) 1721 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1722 } 1723 } 1724 1725 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1726 { 1727 struct rdma_id_private *dev_id_priv; 1728 1729 /* 1730 * Remove from listen_any_list to prevent added devices from spawning 1731 * additional listen requests. 1732 */ 1733 mutex_lock(&lock); 1734 list_del(&id_priv->list); 1735 1736 while (!list_empty(&id_priv->listen_list)) { 1737 dev_id_priv = list_entry(id_priv->listen_list.next, 1738 struct rdma_id_private, listen_list); 1739 /* sync with device removal to avoid duplicate destruction */ 1740 list_del_init(&dev_id_priv->list); 1741 list_del(&dev_id_priv->listen_list); 1742 mutex_unlock(&lock); 1743 1744 rdma_destroy_id(&dev_id_priv->id); 1745 mutex_lock(&lock); 1746 } 1747 mutex_unlock(&lock); 1748 } 1749 1750 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1751 enum rdma_cm_state state) 1752 { 1753 switch (state) { 1754 case RDMA_CM_ADDR_QUERY: 1755 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1756 break; 1757 case RDMA_CM_ROUTE_QUERY: 1758 cma_cancel_route(id_priv); 1759 break; 1760 case RDMA_CM_LISTEN: 1761 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1762 cma_cancel_listens(id_priv); 1763 break; 1764 default: 1765 break; 1766 } 1767 } 1768 1769 static void cma_release_port(struct rdma_id_private *id_priv) 1770 { 1771 struct rdma_bind_list *bind_list = id_priv->bind_list; 1772 struct net *net = id_priv->id.route.addr.dev_addr.net; 1773 1774 if (!bind_list) 1775 return; 1776 1777 mutex_lock(&lock); 1778 hlist_del(&id_priv->node); 1779 if (hlist_empty(&bind_list->owners)) { 1780 cma_ps_remove(net, bind_list->ps, bind_list->port); 1781 kfree(bind_list); 1782 } 1783 mutex_unlock(&lock); 1784 } 1785 1786 static void cma_leave_roce_mc_group(struct rdma_id_private *id_priv, 1787 struct cma_multicast *mc) 1788 { 1789 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1790 struct net_device *ndev = NULL; 1791 1792 if (dev_addr->bound_dev_if) 1793 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 1794 if (ndev) { 1795 cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, false); 1796 dev_put(ndev); 1797 } 1798 kref_put(&mc->mcref, release_mc); 1799 } 1800 1801 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1802 { 1803 struct cma_multicast *mc; 1804 1805 while (!list_empty(&id_priv->mc_list)) { 1806 mc = container_of(id_priv->mc_list.next, 1807 struct cma_multicast, list); 1808 list_del(&mc->list); 1809 if (rdma_cap_ib_mcast(id_priv->cma_dev->device, 1810 id_priv->id.port_num)) { 1811 ib_sa_free_multicast(mc->multicast.ib); 1812 kfree(mc); 1813 } else { 1814 cma_leave_roce_mc_group(id_priv, mc); 1815 } 1816 } 1817 } 1818 1819 static void _destroy_id(struct rdma_id_private *id_priv, 1820 enum rdma_cm_state state) 1821 { 1822 cma_cancel_operation(id_priv, state); 1823 1824 rdma_restrack_del(&id_priv->res); 1825 if (id_priv->cma_dev) { 1826 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1827 if (id_priv->cm_id.ib) 1828 ib_destroy_cm_id(id_priv->cm_id.ib); 1829 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1830 if (id_priv->cm_id.iw) 1831 iw_destroy_cm_id(id_priv->cm_id.iw); 1832 } 1833 cma_leave_mc_groups(id_priv); 1834 cma_release_dev(id_priv); 1835 } 1836 1837 cma_release_port(id_priv); 1838 cma_id_put(id_priv); 1839 wait_for_completion(&id_priv->comp); 1840 1841 if (id_priv->internal_id) 1842 cma_id_put(id_priv->id.context); 1843 1844 kfree(id_priv->id.route.path_rec); 1845 1846 if (id_priv->id.route.addr.dev_addr.sgid_attr) 1847 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 1848 1849 put_net(id_priv->id.route.addr.dev_addr.net); 1850 kfree(id_priv); 1851 } 1852 1853 /* 1854 * destroy an ID from within the handler_mutex. This ensures that no other 1855 * handlers can start running concurrently. 1856 */ 1857 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1858 __releases(&idprv->handler_mutex) 1859 { 1860 enum rdma_cm_state state; 1861 unsigned long flags; 1862 1863 trace_cm_id_destroy(id_priv); 1864 1865 /* 1866 * Setting the state to destroyed under the handler mutex provides a 1867 * fence against calling handler callbacks. If this is invoked due to 1868 * the failure of a handler callback then it guarentees that no future 1869 * handlers will be called. 1870 */ 1871 lockdep_assert_held(&id_priv->handler_mutex); 1872 spin_lock_irqsave(&id_priv->lock, flags); 1873 state = id_priv->state; 1874 id_priv->state = RDMA_CM_DESTROYING; 1875 spin_unlock_irqrestore(&id_priv->lock, flags); 1876 mutex_unlock(&id_priv->handler_mutex); 1877 _destroy_id(id_priv, state); 1878 } 1879 1880 void rdma_destroy_id(struct rdma_cm_id *id) 1881 { 1882 struct rdma_id_private *id_priv = 1883 container_of(id, struct rdma_id_private, id); 1884 1885 mutex_lock(&id_priv->handler_mutex); 1886 destroy_id_handler_unlock(id_priv); 1887 } 1888 EXPORT_SYMBOL(rdma_destroy_id); 1889 1890 static int cma_rep_recv(struct rdma_id_private *id_priv) 1891 { 1892 int ret; 1893 1894 ret = cma_modify_qp_rtr(id_priv, NULL); 1895 if (ret) 1896 goto reject; 1897 1898 ret = cma_modify_qp_rts(id_priv, NULL); 1899 if (ret) 1900 goto reject; 1901 1902 trace_cm_send_rtu(id_priv); 1903 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1904 if (ret) 1905 goto reject; 1906 1907 return 0; 1908 reject: 1909 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1910 cma_modify_qp_err(id_priv); 1911 trace_cm_send_rej(id_priv); 1912 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1913 NULL, 0, NULL, 0); 1914 return ret; 1915 } 1916 1917 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1918 const struct ib_cm_rep_event_param *rep_data, 1919 void *private_data) 1920 { 1921 event->param.conn.private_data = private_data; 1922 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1923 event->param.conn.responder_resources = rep_data->responder_resources; 1924 event->param.conn.initiator_depth = rep_data->initiator_depth; 1925 event->param.conn.flow_control = rep_data->flow_control; 1926 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1927 event->param.conn.srq = rep_data->srq; 1928 event->param.conn.qp_num = rep_data->remote_qpn; 1929 1930 event->ece.vendor_id = rep_data->ece.vendor_id; 1931 event->ece.attr_mod = rep_data->ece.attr_mod; 1932 } 1933 1934 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1935 struct rdma_cm_event *event) 1936 { 1937 int ret; 1938 1939 lockdep_assert_held(&id_priv->handler_mutex); 1940 1941 trace_cm_event_handler(id_priv, event); 1942 ret = id_priv->id.event_handler(&id_priv->id, event); 1943 trace_cm_event_done(id_priv, event, ret); 1944 return ret; 1945 } 1946 1947 static int cma_ib_handler(struct ib_cm_id *cm_id, 1948 const struct ib_cm_event *ib_event) 1949 { 1950 struct rdma_id_private *id_priv = cm_id->context; 1951 struct rdma_cm_event event = {}; 1952 int ret; 1953 1954 mutex_lock(&id_priv->handler_mutex); 1955 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1956 id_priv->state != RDMA_CM_CONNECT) || 1957 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1958 id_priv->state != RDMA_CM_DISCONNECT)) 1959 goto out; 1960 1961 switch (ib_event->event) { 1962 case IB_CM_REQ_ERROR: 1963 case IB_CM_REP_ERROR: 1964 event.event = RDMA_CM_EVENT_UNREACHABLE; 1965 event.status = -ETIMEDOUT; 1966 break; 1967 case IB_CM_REP_RECEIVED: 1968 if (cma_comp(id_priv, RDMA_CM_CONNECT) && 1969 (id_priv->id.qp_type != IB_QPT_UD)) { 1970 trace_cm_send_mra(id_priv); 1971 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 1972 } 1973 if (id_priv->id.qp) { 1974 event.status = cma_rep_recv(id_priv); 1975 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 1976 RDMA_CM_EVENT_ESTABLISHED; 1977 } else { 1978 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 1979 } 1980 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 1981 ib_event->private_data); 1982 break; 1983 case IB_CM_RTU_RECEIVED: 1984 case IB_CM_USER_ESTABLISHED: 1985 event.event = RDMA_CM_EVENT_ESTABLISHED; 1986 break; 1987 case IB_CM_DREQ_ERROR: 1988 event.status = -ETIMEDOUT; /* fall through */ 1989 case IB_CM_DREQ_RECEIVED: 1990 case IB_CM_DREP_RECEIVED: 1991 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 1992 RDMA_CM_DISCONNECT)) 1993 goto out; 1994 event.event = RDMA_CM_EVENT_DISCONNECTED; 1995 break; 1996 case IB_CM_TIMEWAIT_EXIT: 1997 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 1998 break; 1999 case IB_CM_MRA_RECEIVED: 2000 /* ignore event */ 2001 goto out; 2002 case IB_CM_REJ_RECEIVED: 2003 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2004 ib_event->param.rej_rcvd.reason)); 2005 cma_modify_qp_err(id_priv); 2006 event.status = ib_event->param.rej_rcvd.reason; 2007 event.event = RDMA_CM_EVENT_REJECTED; 2008 event.param.conn.private_data = ib_event->private_data; 2009 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2010 break; 2011 default: 2012 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2013 ib_event->event); 2014 goto out; 2015 } 2016 2017 ret = cma_cm_event_handler(id_priv, &event); 2018 if (ret) { 2019 /* Destroy the CM ID by returning a non-zero value. */ 2020 id_priv->cm_id.ib = NULL; 2021 destroy_id_handler_unlock(id_priv); 2022 return ret; 2023 } 2024 out: 2025 mutex_unlock(&id_priv->handler_mutex); 2026 return 0; 2027 } 2028 2029 static struct rdma_id_private * 2030 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2031 const struct ib_cm_event *ib_event, 2032 struct net_device *net_dev) 2033 { 2034 struct rdma_id_private *listen_id_priv; 2035 struct rdma_id_private *id_priv; 2036 struct rdma_cm_id *id; 2037 struct rdma_route *rt; 2038 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2039 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2040 const __be64 service_id = 2041 ib_event->param.req_rcvd.primary_path->service_id; 2042 int ret; 2043 2044 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2045 id = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2046 listen_id->event_handler, listen_id->context, 2047 listen_id->ps, ib_event->param.req_rcvd.qp_type, 2048 listen_id_priv->res.kern_name); 2049 if (IS_ERR(id)) 2050 return NULL; 2051 2052 id_priv = container_of(id, struct rdma_id_private, id); 2053 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2054 (struct sockaddr *)&id->route.addr.dst_addr, 2055 listen_id, ib_event, ss_family, service_id)) 2056 goto err; 2057 2058 rt = &id->route; 2059 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2060 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2061 GFP_KERNEL); 2062 if (!rt->path_rec) 2063 goto err; 2064 2065 rt->path_rec[0] = *path; 2066 if (rt->num_paths == 2) 2067 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2068 2069 if (net_dev) { 2070 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2071 } else { 2072 if (!cma_protocol_roce(listen_id) && 2073 cma_any_addr(cma_src_addr(id_priv))) { 2074 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2075 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2076 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2077 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2078 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2079 if (ret) 2080 goto err; 2081 } 2082 } 2083 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2084 2085 id_priv->state = RDMA_CM_CONNECT; 2086 return id_priv; 2087 2088 err: 2089 rdma_destroy_id(id); 2090 return NULL; 2091 } 2092 2093 static struct rdma_id_private * 2094 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2095 const struct ib_cm_event *ib_event, 2096 struct net_device *net_dev) 2097 { 2098 const struct rdma_id_private *listen_id_priv; 2099 struct rdma_id_private *id_priv; 2100 struct rdma_cm_id *id; 2101 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2102 struct net *net = listen_id->route.addr.dev_addr.net; 2103 int ret; 2104 2105 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2106 id = __rdma_create_id(net, listen_id->event_handler, listen_id->context, 2107 listen_id->ps, IB_QPT_UD, 2108 listen_id_priv->res.kern_name); 2109 if (IS_ERR(id)) 2110 return NULL; 2111 2112 id_priv = container_of(id, struct rdma_id_private, id); 2113 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2114 (struct sockaddr *)&id->route.addr.dst_addr, 2115 listen_id, ib_event, ss_family, 2116 ib_event->param.sidr_req_rcvd.service_id)) 2117 goto err; 2118 2119 if (net_dev) { 2120 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2121 } else { 2122 if (!cma_any_addr(cma_src_addr(id_priv))) { 2123 ret = cma_translate_addr(cma_src_addr(id_priv), 2124 &id->route.addr.dev_addr); 2125 if (ret) 2126 goto err; 2127 } 2128 } 2129 2130 id_priv->state = RDMA_CM_CONNECT; 2131 return id_priv; 2132 err: 2133 rdma_destroy_id(id); 2134 return NULL; 2135 } 2136 2137 static void cma_set_req_event_data(struct rdma_cm_event *event, 2138 const struct ib_cm_req_event_param *req_data, 2139 void *private_data, int offset) 2140 { 2141 event->param.conn.private_data = private_data + offset; 2142 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2143 event->param.conn.responder_resources = req_data->responder_resources; 2144 event->param.conn.initiator_depth = req_data->initiator_depth; 2145 event->param.conn.flow_control = req_data->flow_control; 2146 event->param.conn.retry_count = req_data->retry_count; 2147 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2148 event->param.conn.srq = req_data->srq; 2149 event->param.conn.qp_num = req_data->remote_qpn; 2150 2151 event->ece.vendor_id = req_data->ece.vendor_id; 2152 event->ece.attr_mod = req_data->ece.attr_mod; 2153 } 2154 2155 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2156 const struct ib_cm_event *ib_event) 2157 { 2158 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2159 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2160 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2161 (id->qp_type == IB_QPT_UD)) || 2162 (!id->qp_type)); 2163 } 2164 2165 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2166 const struct ib_cm_event *ib_event) 2167 { 2168 struct rdma_id_private *listen_id, *conn_id = NULL; 2169 struct rdma_cm_event event = {}; 2170 struct cma_req_info req = {}; 2171 struct net_device *net_dev; 2172 u8 offset; 2173 int ret; 2174 2175 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2176 if (IS_ERR(listen_id)) 2177 return PTR_ERR(listen_id); 2178 2179 trace_cm_req_handler(listen_id, ib_event->event); 2180 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2181 ret = -EINVAL; 2182 goto net_dev_put; 2183 } 2184 2185 mutex_lock(&listen_id->handler_mutex); 2186 if (listen_id->state != RDMA_CM_LISTEN) { 2187 ret = -ECONNABORTED; 2188 goto err_unlock; 2189 } 2190 2191 offset = cma_user_data_offset(listen_id); 2192 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2193 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2194 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2195 event.param.ud.private_data = ib_event->private_data + offset; 2196 event.param.ud.private_data_len = 2197 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2198 } else { 2199 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2200 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2201 ib_event->private_data, offset); 2202 } 2203 if (!conn_id) { 2204 ret = -ENOMEM; 2205 goto err_unlock; 2206 } 2207 2208 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2209 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2210 if (ret) { 2211 destroy_id_handler_unlock(conn_id); 2212 goto err_unlock; 2213 } 2214 2215 conn_id->cm_id.ib = cm_id; 2216 cm_id->context = conn_id; 2217 cm_id->cm_handler = cma_ib_handler; 2218 2219 ret = cma_cm_event_handler(conn_id, &event); 2220 if (ret) { 2221 /* Destroy the CM ID by returning a non-zero value. */ 2222 conn_id->cm_id.ib = NULL; 2223 mutex_unlock(&listen_id->handler_mutex); 2224 destroy_id_handler_unlock(conn_id); 2225 goto net_dev_put; 2226 } 2227 2228 if (cma_comp(conn_id, RDMA_CM_CONNECT) && 2229 (conn_id->id.qp_type != IB_QPT_UD)) { 2230 trace_cm_send_mra(cm_id->context); 2231 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2232 } 2233 mutex_unlock(&conn_id->handler_mutex); 2234 2235 err_unlock: 2236 mutex_unlock(&listen_id->handler_mutex); 2237 2238 net_dev_put: 2239 if (net_dev) 2240 dev_put(net_dev); 2241 2242 return ret; 2243 } 2244 2245 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2246 { 2247 if (addr->sa_family == AF_IB) 2248 return ((struct sockaddr_ib *) addr)->sib_sid; 2249 2250 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2251 } 2252 EXPORT_SYMBOL(rdma_get_service_id); 2253 2254 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2255 union ib_gid *dgid) 2256 { 2257 struct rdma_addr *addr = &cm_id->route.addr; 2258 2259 if (!cm_id->device) { 2260 if (sgid) 2261 memset(sgid, 0, sizeof(*sgid)); 2262 if (dgid) 2263 memset(dgid, 0, sizeof(*dgid)); 2264 return; 2265 } 2266 2267 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2268 if (sgid) 2269 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2270 if (dgid) 2271 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2272 } else { 2273 if (sgid) 2274 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2275 if (dgid) 2276 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2277 } 2278 } 2279 EXPORT_SYMBOL(rdma_read_gids); 2280 2281 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2282 { 2283 struct rdma_id_private *id_priv = iw_id->context; 2284 struct rdma_cm_event event = {}; 2285 int ret = 0; 2286 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2287 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2288 2289 mutex_lock(&id_priv->handler_mutex); 2290 if (id_priv->state != RDMA_CM_CONNECT) 2291 goto out; 2292 2293 switch (iw_event->event) { 2294 case IW_CM_EVENT_CLOSE: 2295 event.event = RDMA_CM_EVENT_DISCONNECTED; 2296 break; 2297 case IW_CM_EVENT_CONNECT_REPLY: 2298 memcpy(cma_src_addr(id_priv), laddr, 2299 rdma_addr_size(laddr)); 2300 memcpy(cma_dst_addr(id_priv), raddr, 2301 rdma_addr_size(raddr)); 2302 switch (iw_event->status) { 2303 case 0: 2304 event.event = RDMA_CM_EVENT_ESTABLISHED; 2305 event.param.conn.initiator_depth = iw_event->ird; 2306 event.param.conn.responder_resources = iw_event->ord; 2307 break; 2308 case -ECONNRESET: 2309 case -ECONNREFUSED: 2310 event.event = RDMA_CM_EVENT_REJECTED; 2311 break; 2312 case -ETIMEDOUT: 2313 event.event = RDMA_CM_EVENT_UNREACHABLE; 2314 break; 2315 default: 2316 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2317 break; 2318 } 2319 break; 2320 case IW_CM_EVENT_ESTABLISHED: 2321 event.event = RDMA_CM_EVENT_ESTABLISHED; 2322 event.param.conn.initiator_depth = iw_event->ird; 2323 event.param.conn.responder_resources = iw_event->ord; 2324 break; 2325 default: 2326 goto out; 2327 } 2328 2329 event.status = iw_event->status; 2330 event.param.conn.private_data = iw_event->private_data; 2331 event.param.conn.private_data_len = iw_event->private_data_len; 2332 ret = cma_cm_event_handler(id_priv, &event); 2333 if (ret) { 2334 /* Destroy the CM ID by returning a non-zero value. */ 2335 id_priv->cm_id.iw = NULL; 2336 destroy_id_handler_unlock(id_priv); 2337 return ret; 2338 } 2339 2340 out: 2341 mutex_unlock(&id_priv->handler_mutex); 2342 return ret; 2343 } 2344 2345 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2346 struct iw_cm_event *iw_event) 2347 { 2348 struct rdma_cm_id *new_cm_id; 2349 struct rdma_id_private *listen_id, *conn_id; 2350 struct rdma_cm_event event = {}; 2351 int ret = -ECONNABORTED; 2352 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2353 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2354 2355 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2356 event.param.conn.private_data = iw_event->private_data; 2357 event.param.conn.private_data_len = iw_event->private_data_len; 2358 event.param.conn.initiator_depth = iw_event->ird; 2359 event.param.conn.responder_resources = iw_event->ord; 2360 2361 listen_id = cm_id->context; 2362 2363 mutex_lock(&listen_id->handler_mutex); 2364 if (listen_id->state != RDMA_CM_LISTEN) 2365 goto out; 2366 2367 /* Create a new RDMA id for the new IW CM ID */ 2368 new_cm_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2369 listen_id->id.event_handler, 2370 listen_id->id.context, 2371 RDMA_PS_TCP, IB_QPT_RC, 2372 listen_id->res.kern_name); 2373 if (IS_ERR(new_cm_id)) { 2374 ret = -ENOMEM; 2375 goto out; 2376 } 2377 conn_id = container_of(new_cm_id, struct rdma_id_private, id); 2378 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2379 conn_id->state = RDMA_CM_CONNECT; 2380 2381 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2382 if (ret) { 2383 mutex_unlock(&listen_id->handler_mutex); 2384 destroy_id_handler_unlock(conn_id); 2385 return ret; 2386 } 2387 2388 ret = cma_iw_acquire_dev(conn_id, listen_id); 2389 if (ret) { 2390 mutex_unlock(&listen_id->handler_mutex); 2391 destroy_id_handler_unlock(conn_id); 2392 return ret; 2393 } 2394 2395 conn_id->cm_id.iw = cm_id; 2396 cm_id->context = conn_id; 2397 cm_id->cm_handler = cma_iw_handler; 2398 2399 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2400 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2401 2402 ret = cma_cm_event_handler(conn_id, &event); 2403 if (ret) { 2404 /* User wants to destroy the CM ID */ 2405 conn_id->cm_id.iw = NULL; 2406 mutex_unlock(&listen_id->handler_mutex); 2407 destroy_id_handler_unlock(conn_id); 2408 return ret; 2409 } 2410 2411 mutex_unlock(&conn_id->handler_mutex); 2412 2413 out: 2414 mutex_unlock(&listen_id->handler_mutex); 2415 return ret; 2416 } 2417 2418 static int cma_ib_listen(struct rdma_id_private *id_priv) 2419 { 2420 struct sockaddr *addr; 2421 struct ib_cm_id *id; 2422 __be64 svc_id; 2423 2424 addr = cma_src_addr(id_priv); 2425 svc_id = rdma_get_service_id(&id_priv->id, addr); 2426 id = ib_cm_insert_listen(id_priv->id.device, 2427 cma_ib_req_handler, svc_id); 2428 if (IS_ERR(id)) 2429 return PTR_ERR(id); 2430 id_priv->cm_id.ib = id; 2431 2432 return 0; 2433 } 2434 2435 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2436 { 2437 int ret; 2438 struct iw_cm_id *id; 2439 2440 id = iw_create_cm_id(id_priv->id.device, 2441 iw_conn_req_handler, 2442 id_priv); 2443 if (IS_ERR(id)) 2444 return PTR_ERR(id); 2445 2446 id->tos = id_priv->tos; 2447 id->tos_set = id_priv->tos_set; 2448 id_priv->cm_id.iw = id; 2449 2450 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2451 rdma_addr_size(cma_src_addr(id_priv))); 2452 2453 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2454 2455 if (ret) { 2456 iw_destroy_cm_id(id_priv->cm_id.iw); 2457 id_priv->cm_id.iw = NULL; 2458 } 2459 2460 return ret; 2461 } 2462 2463 static int cma_listen_handler(struct rdma_cm_id *id, 2464 struct rdma_cm_event *event) 2465 { 2466 struct rdma_id_private *id_priv = id->context; 2467 2468 /* Listening IDs are always destroyed on removal */ 2469 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2470 return -1; 2471 2472 id->context = id_priv->id.context; 2473 id->event_handler = id_priv->id.event_handler; 2474 trace_cm_event_handler(id_priv, event); 2475 return id_priv->id.event_handler(id, event); 2476 } 2477 2478 static void cma_listen_on_dev(struct rdma_id_private *id_priv, 2479 struct cma_device *cma_dev) 2480 { 2481 struct rdma_id_private *dev_id_priv; 2482 struct rdma_cm_id *id; 2483 struct net *net = id_priv->id.route.addr.dev_addr.net; 2484 int ret; 2485 2486 lockdep_assert_held(&lock); 2487 2488 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2489 return; 2490 2491 id = __rdma_create_id(net, cma_listen_handler, id_priv, id_priv->id.ps, 2492 id_priv->id.qp_type, id_priv->res.kern_name); 2493 if (IS_ERR(id)) 2494 return; 2495 2496 dev_id_priv = container_of(id, struct rdma_id_private, id); 2497 2498 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2499 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2500 rdma_addr_size(cma_src_addr(id_priv))); 2501 2502 _cma_attach_to_dev(dev_id_priv, cma_dev); 2503 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2504 cma_id_get(id_priv); 2505 dev_id_priv->internal_id = 1; 2506 dev_id_priv->afonly = id_priv->afonly; 2507 dev_id_priv->tos_set = id_priv->tos_set; 2508 dev_id_priv->tos = id_priv->tos; 2509 2510 ret = rdma_listen(id, id_priv->backlog); 2511 if (ret) 2512 dev_warn(&cma_dev->device->dev, 2513 "RDMA CMA: cma_listen_on_dev, error %d\n", ret); 2514 } 2515 2516 static void cma_listen_on_all(struct rdma_id_private *id_priv) 2517 { 2518 struct cma_device *cma_dev; 2519 2520 mutex_lock(&lock); 2521 list_add_tail(&id_priv->list, &listen_any_list); 2522 list_for_each_entry(cma_dev, &dev_list, list) 2523 cma_listen_on_dev(id_priv, cma_dev); 2524 mutex_unlock(&lock); 2525 } 2526 2527 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2528 { 2529 struct rdma_id_private *id_priv; 2530 2531 id_priv = container_of(id, struct rdma_id_private, id); 2532 id_priv->tos = (u8) tos; 2533 id_priv->tos_set = true; 2534 } 2535 EXPORT_SYMBOL(rdma_set_service_type); 2536 2537 /** 2538 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2539 * with a connection identifier. 2540 * @id: Communication identifier to associated with service type. 2541 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2542 * 2543 * This function should be called before rdma_connect() on active side, 2544 * and on passive side before rdma_accept(). It is applicable to primary 2545 * path only. The timeout will affect the local side of the QP, it is not 2546 * negotiated with remote side and zero disables the timer. In case it is 2547 * set before rdma_resolve_route, the value will also be used to determine 2548 * PacketLifeTime for RoCE. 2549 * 2550 * Return: 0 for success 2551 */ 2552 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2553 { 2554 struct rdma_id_private *id_priv; 2555 2556 if (id->qp_type != IB_QPT_RC) 2557 return -EINVAL; 2558 2559 id_priv = container_of(id, struct rdma_id_private, id); 2560 id_priv->timeout = timeout; 2561 id_priv->timeout_set = true; 2562 2563 return 0; 2564 } 2565 EXPORT_SYMBOL(rdma_set_ack_timeout); 2566 2567 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2568 void *context) 2569 { 2570 struct cma_work *work = context; 2571 struct rdma_route *route; 2572 2573 route = &work->id->id.route; 2574 2575 if (!status) { 2576 route->num_paths = 1; 2577 *route->path_rec = *path_rec; 2578 } else { 2579 work->old_state = RDMA_CM_ROUTE_QUERY; 2580 work->new_state = RDMA_CM_ADDR_RESOLVED; 2581 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2582 work->event.status = status; 2583 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2584 status); 2585 } 2586 2587 queue_work(cma_wq, &work->work); 2588 } 2589 2590 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2591 unsigned long timeout_ms, struct cma_work *work) 2592 { 2593 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2594 struct sa_path_rec path_rec; 2595 ib_sa_comp_mask comp_mask; 2596 struct sockaddr_in6 *sin6; 2597 struct sockaddr_ib *sib; 2598 2599 memset(&path_rec, 0, sizeof path_rec); 2600 2601 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2602 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2603 else 2604 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2605 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2606 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2607 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2608 path_rec.numb_path = 1; 2609 path_rec.reversible = 1; 2610 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2611 cma_dst_addr(id_priv)); 2612 2613 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2614 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2615 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2616 2617 switch (cma_family(id_priv)) { 2618 case AF_INET: 2619 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2620 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2621 break; 2622 case AF_INET6: 2623 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2624 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2625 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2626 break; 2627 case AF_IB: 2628 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2629 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2630 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2631 break; 2632 } 2633 2634 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2635 id_priv->id.port_num, &path_rec, 2636 comp_mask, timeout_ms, 2637 GFP_KERNEL, cma_query_handler, 2638 work, &id_priv->query); 2639 2640 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2641 } 2642 2643 static void cma_work_handler(struct work_struct *_work) 2644 { 2645 struct cma_work *work = container_of(_work, struct cma_work, work); 2646 struct rdma_id_private *id_priv = work->id; 2647 2648 mutex_lock(&id_priv->handler_mutex); 2649 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2650 goto out_unlock; 2651 2652 if (cma_cm_event_handler(id_priv, &work->event)) { 2653 cma_id_put(id_priv); 2654 destroy_id_handler_unlock(id_priv); 2655 goto out_free; 2656 } 2657 2658 out_unlock: 2659 mutex_unlock(&id_priv->handler_mutex); 2660 cma_id_put(id_priv); 2661 out_free: 2662 kfree(work); 2663 } 2664 2665 static void cma_ndev_work_handler(struct work_struct *_work) 2666 { 2667 struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work); 2668 struct rdma_id_private *id_priv = work->id; 2669 2670 mutex_lock(&id_priv->handler_mutex); 2671 if (id_priv->state == RDMA_CM_DESTROYING || 2672 id_priv->state == RDMA_CM_DEVICE_REMOVAL) 2673 goto out_unlock; 2674 2675 if (cma_cm_event_handler(id_priv, &work->event)) { 2676 cma_id_put(id_priv); 2677 destroy_id_handler_unlock(id_priv); 2678 goto out_free; 2679 } 2680 2681 out_unlock: 2682 mutex_unlock(&id_priv->handler_mutex); 2683 cma_id_put(id_priv); 2684 out_free: 2685 kfree(work); 2686 } 2687 2688 static void cma_init_resolve_route_work(struct cma_work *work, 2689 struct rdma_id_private *id_priv) 2690 { 2691 work->id = id_priv; 2692 INIT_WORK(&work->work, cma_work_handler); 2693 work->old_state = RDMA_CM_ROUTE_QUERY; 2694 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2695 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2696 } 2697 2698 static void enqueue_resolve_addr_work(struct cma_work *work, 2699 struct rdma_id_private *id_priv) 2700 { 2701 /* Balances with cma_id_put() in cma_work_handler */ 2702 cma_id_get(id_priv); 2703 2704 work->id = id_priv; 2705 INIT_WORK(&work->work, cma_work_handler); 2706 work->old_state = RDMA_CM_ADDR_QUERY; 2707 work->new_state = RDMA_CM_ADDR_RESOLVED; 2708 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2709 2710 queue_work(cma_wq, &work->work); 2711 } 2712 2713 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2714 unsigned long timeout_ms) 2715 { 2716 struct rdma_route *route = &id_priv->id.route; 2717 struct cma_work *work; 2718 int ret; 2719 2720 work = kzalloc(sizeof *work, GFP_KERNEL); 2721 if (!work) 2722 return -ENOMEM; 2723 2724 cma_init_resolve_route_work(work, id_priv); 2725 2726 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2727 if (!route->path_rec) { 2728 ret = -ENOMEM; 2729 goto err1; 2730 } 2731 2732 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2733 if (ret) 2734 goto err2; 2735 2736 return 0; 2737 err2: 2738 kfree(route->path_rec); 2739 route->path_rec = NULL; 2740 err1: 2741 kfree(work); 2742 return ret; 2743 } 2744 2745 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2746 unsigned long supported_gids, 2747 enum ib_gid_type default_gid) 2748 { 2749 if ((network_type == RDMA_NETWORK_IPV4 || 2750 network_type == RDMA_NETWORK_IPV6) && 2751 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2752 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2753 2754 return default_gid; 2755 } 2756 2757 /* 2758 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2759 * path record type based on GID type. 2760 * It also sets up other L2 fields which includes destination mac address 2761 * netdev ifindex, of the path record. 2762 * It returns the netdev of the bound interface for this path record entry. 2763 */ 2764 static struct net_device * 2765 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2766 { 2767 struct rdma_route *route = &id_priv->id.route; 2768 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2769 struct rdma_addr *addr = &route->addr; 2770 unsigned long supported_gids; 2771 struct net_device *ndev; 2772 2773 if (!addr->dev_addr.bound_dev_if) 2774 return NULL; 2775 2776 ndev = dev_get_by_index(addr->dev_addr.net, 2777 addr->dev_addr.bound_dev_if); 2778 if (!ndev) 2779 return NULL; 2780 2781 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2782 id_priv->id.port_num); 2783 gid_type = cma_route_gid_type(addr->dev_addr.network, 2784 supported_gids, 2785 id_priv->gid_type); 2786 /* Use the hint from IP Stack to select GID Type */ 2787 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2788 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2789 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2790 2791 route->path_rec->roce.route_resolved = true; 2792 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2793 return ndev; 2794 } 2795 2796 int rdma_set_ib_path(struct rdma_cm_id *id, 2797 struct sa_path_rec *path_rec) 2798 { 2799 struct rdma_id_private *id_priv; 2800 struct net_device *ndev; 2801 int ret; 2802 2803 id_priv = container_of(id, struct rdma_id_private, id); 2804 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2805 RDMA_CM_ROUTE_RESOLVED)) 2806 return -EINVAL; 2807 2808 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2809 GFP_KERNEL); 2810 if (!id->route.path_rec) { 2811 ret = -ENOMEM; 2812 goto err; 2813 } 2814 2815 if (rdma_protocol_roce(id->device, id->port_num)) { 2816 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2817 if (!ndev) { 2818 ret = -ENODEV; 2819 goto err_free; 2820 } 2821 dev_put(ndev); 2822 } 2823 2824 id->route.num_paths = 1; 2825 return 0; 2826 2827 err_free: 2828 kfree(id->route.path_rec); 2829 id->route.path_rec = NULL; 2830 err: 2831 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2832 return ret; 2833 } 2834 EXPORT_SYMBOL(rdma_set_ib_path); 2835 2836 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2837 { 2838 struct cma_work *work; 2839 2840 work = kzalloc(sizeof *work, GFP_KERNEL); 2841 if (!work) 2842 return -ENOMEM; 2843 2844 cma_init_resolve_route_work(work, id_priv); 2845 queue_work(cma_wq, &work->work); 2846 return 0; 2847 } 2848 2849 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2850 { 2851 struct net_device *dev; 2852 2853 dev = vlan_dev_real_dev(vlan_ndev); 2854 if (dev->num_tc) 2855 return netdev_get_prio_tc_map(dev, prio); 2856 2857 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2858 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2859 } 2860 2861 struct iboe_prio_tc_map { 2862 int input_prio; 2863 int output_tc; 2864 bool found; 2865 }; 2866 2867 static int get_lower_vlan_dev_tc(struct net_device *dev, void *data) 2868 { 2869 struct iboe_prio_tc_map *map = data; 2870 2871 if (is_vlan_dev(dev)) 2872 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2873 else if (dev->num_tc) 2874 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2875 else 2876 map->output_tc = 0; 2877 /* We are interested only in first level VLAN device, so always 2878 * return 1 to stop iterating over next level devices. 2879 */ 2880 map->found = true; 2881 return 1; 2882 } 2883 2884 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2885 { 2886 struct iboe_prio_tc_map prio_tc_map = {}; 2887 int prio = rt_tos2priority(tos); 2888 2889 /* If VLAN device, get it directly from the VLAN netdev */ 2890 if (is_vlan_dev(ndev)) 2891 return get_vlan_ndev_tc(ndev, prio); 2892 2893 prio_tc_map.input_prio = prio; 2894 rcu_read_lock(); 2895 netdev_walk_all_lower_dev_rcu(ndev, 2896 get_lower_vlan_dev_tc, 2897 &prio_tc_map); 2898 rcu_read_unlock(); 2899 /* If map is found from lower device, use it; Otherwise 2900 * continue with the current netdevice to get priority to tc map. 2901 */ 2902 if (prio_tc_map.found) 2903 return prio_tc_map.output_tc; 2904 else if (ndev->num_tc) 2905 return netdev_get_prio_tc_map(ndev, prio); 2906 else 2907 return 0; 2908 } 2909 2910 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 2911 { 2912 struct sockaddr_in6 *addr6; 2913 u16 dport, sport; 2914 u32 hash, fl; 2915 2916 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 2917 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 2918 if ((cma_family(id_priv) != AF_INET6) || !fl) { 2919 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 2920 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 2921 hash = (u32)sport * 31 + dport; 2922 fl = hash & IB_GRH_FLOWLABEL_MASK; 2923 } 2924 2925 return cpu_to_be32(fl); 2926 } 2927 2928 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 2929 { 2930 struct rdma_route *route = &id_priv->id.route; 2931 struct rdma_addr *addr = &route->addr; 2932 struct cma_work *work; 2933 int ret; 2934 struct net_device *ndev; 2935 2936 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 2937 rdma_start_port(id_priv->cma_dev->device)]; 2938 u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 2939 2940 2941 work = kzalloc(sizeof *work, GFP_KERNEL); 2942 if (!work) 2943 return -ENOMEM; 2944 2945 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 2946 if (!route->path_rec) { 2947 ret = -ENOMEM; 2948 goto err1; 2949 } 2950 2951 route->num_paths = 1; 2952 2953 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2954 if (!ndev) { 2955 ret = -ENODEV; 2956 goto err2; 2957 } 2958 2959 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 2960 &route->path_rec->sgid); 2961 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 2962 &route->path_rec->dgid); 2963 2964 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 2965 /* TODO: get the hoplimit from the inet/inet6 device */ 2966 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 2967 else 2968 route->path_rec->hop_limit = 1; 2969 route->path_rec->reversible = 1; 2970 route->path_rec->pkey = cpu_to_be16(0xffff); 2971 route->path_rec->mtu_selector = IB_SA_EQ; 2972 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 2973 route->path_rec->traffic_class = tos; 2974 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 2975 route->path_rec->rate_selector = IB_SA_EQ; 2976 route->path_rec->rate = iboe_get_rate(ndev); 2977 dev_put(ndev); 2978 route->path_rec->packet_life_time_selector = IB_SA_EQ; 2979 /* In case ACK timeout is set, use this value to calculate 2980 * PacketLifeTime. As per IBTA 12.7.34, 2981 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 2982 * Assuming a negligible local ACK delay, we can use 2983 * PacketLifeTime = local ACK timeout/2 2984 * as a reasonable approximation for RoCE networks. 2985 */ 2986 route->path_rec->packet_life_time = id_priv->timeout_set ? 2987 id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME; 2988 2989 if (!route->path_rec->mtu) { 2990 ret = -EINVAL; 2991 goto err2; 2992 } 2993 2994 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 2995 id_priv->id.port_num)) 2996 route->path_rec->flow_label = 2997 cma_get_roce_udp_flow_label(id_priv); 2998 2999 cma_init_resolve_route_work(work, id_priv); 3000 queue_work(cma_wq, &work->work); 3001 3002 return 0; 3003 3004 err2: 3005 kfree(route->path_rec); 3006 route->path_rec = NULL; 3007 route->num_paths = 0; 3008 err1: 3009 kfree(work); 3010 return ret; 3011 } 3012 3013 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3014 { 3015 struct rdma_id_private *id_priv; 3016 int ret; 3017 3018 id_priv = container_of(id, struct rdma_id_private, id); 3019 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3020 return -EINVAL; 3021 3022 cma_id_get(id_priv); 3023 if (rdma_cap_ib_sa(id->device, id->port_num)) 3024 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3025 else if (rdma_protocol_roce(id->device, id->port_num)) 3026 ret = cma_resolve_iboe_route(id_priv); 3027 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3028 ret = cma_resolve_iw_route(id_priv); 3029 else 3030 ret = -ENOSYS; 3031 3032 if (ret) 3033 goto err; 3034 3035 return 0; 3036 err: 3037 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3038 cma_id_put(id_priv); 3039 return ret; 3040 } 3041 EXPORT_SYMBOL(rdma_resolve_route); 3042 3043 static void cma_set_loopback(struct sockaddr *addr) 3044 { 3045 switch (addr->sa_family) { 3046 case AF_INET: 3047 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3048 break; 3049 case AF_INET6: 3050 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3051 0, 0, 0, htonl(1)); 3052 break; 3053 default: 3054 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3055 0, 0, 0, htonl(1)); 3056 break; 3057 } 3058 } 3059 3060 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3061 { 3062 struct cma_device *cma_dev, *cur_dev; 3063 union ib_gid gid; 3064 enum ib_port_state port_state; 3065 unsigned int p; 3066 u16 pkey; 3067 int ret; 3068 3069 cma_dev = NULL; 3070 mutex_lock(&lock); 3071 list_for_each_entry(cur_dev, &dev_list, list) { 3072 if (cma_family(id_priv) == AF_IB && 3073 !rdma_cap_ib_cm(cur_dev->device, 1)) 3074 continue; 3075 3076 if (!cma_dev) 3077 cma_dev = cur_dev; 3078 3079 rdma_for_each_port (cur_dev->device, p) { 3080 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3081 port_state == IB_PORT_ACTIVE) { 3082 cma_dev = cur_dev; 3083 goto port_found; 3084 } 3085 } 3086 } 3087 3088 if (!cma_dev) { 3089 ret = -ENODEV; 3090 goto out; 3091 } 3092 3093 p = 1; 3094 3095 port_found: 3096 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3097 if (ret) 3098 goto out; 3099 3100 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3101 if (ret) 3102 goto out; 3103 3104 id_priv->id.route.addr.dev_addr.dev_type = 3105 (rdma_protocol_ib(cma_dev->device, p)) ? 3106 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3107 3108 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3109 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3110 id_priv->id.port_num = p; 3111 cma_attach_to_dev(id_priv, cma_dev); 3112 cma_set_loopback(cma_src_addr(id_priv)); 3113 out: 3114 mutex_unlock(&lock); 3115 return ret; 3116 } 3117 3118 static void addr_handler(int status, struct sockaddr *src_addr, 3119 struct rdma_dev_addr *dev_addr, void *context) 3120 { 3121 struct rdma_id_private *id_priv = context; 3122 struct rdma_cm_event event = {}; 3123 struct sockaddr *addr; 3124 struct sockaddr_storage old_addr; 3125 3126 mutex_lock(&id_priv->handler_mutex); 3127 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3128 RDMA_CM_ADDR_RESOLVED)) 3129 goto out; 3130 3131 /* 3132 * Store the previous src address, so that if we fail to acquire 3133 * matching rdma device, old address can be restored back, which helps 3134 * to cancel the cma listen operation correctly. 3135 */ 3136 addr = cma_src_addr(id_priv); 3137 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3138 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3139 if (!status && !id_priv->cma_dev) { 3140 status = cma_acquire_dev_by_src_ip(id_priv); 3141 if (status) 3142 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3143 status); 3144 } else if (status) { 3145 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3146 } 3147 3148 if (status) { 3149 memcpy(addr, &old_addr, 3150 rdma_addr_size((struct sockaddr *)&old_addr)); 3151 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3152 RDMA_CM_ADDR_BOUND)) 3153 goto out; 3154 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3155 event.status = status; 3156 } else 3157 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3158 3159 if (cma_cm_event_handler(id_priv, &event)) { 3160 destroy_id_handler_unlock(id_priv); 3161 return; 3162 } 3163 out: 3164 mutex_unlock(&id_priv->handler_mutex); 3165 } 3166 3167 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3168 { 3169 struct cma_work *work; 3170 union ib_gid gid; 3171 int ret; 3172 3173 work = kzalloc(sizeof *work, GFP_KERNEL); 3174 if (!work) 3175 return -ENOMEM; 3176 3177 if (!id_priv->cma_dev) { 3178 ret = cma_bind_loopback(id_priv); 3179 if (ret) 3180 goto err; 3181 } 3182 3183 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3184 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3185 3186 enqueue_resolve_addr_work(work, id_priv); 3187 return 0; 3188 err: 3189 kfree(work); 3190 return ret; 3191 } 3192 3193 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3194 { 3195 struct cma_work *work; 3196 int ret; 3197 3198 work = kzalloc(sizeof *work, GFP_KERNEL); 3199 if (!work) 3200 return -ENOMEM; 3201 3202 if (!id_priv->cma_dev) { 3203 ret = cma_resolve_ib_dev(id_priv); 3204 if (ret) 3205 goto err; 3206 } 3207 3208 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3209 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3210 3211 enqueue_resolve_addr_work(work, id_priv); 3212 return 0; 3213 err: 3214 kfree(work); 3215 return ret; 3216 } 3217 3218 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3219 const struct sockaddr *dst_addr) 3220 { 3221 if (!src_addr || !src_addr->sa_family) { 3222 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3223 src_addr->sa_family = dst_addr->sa_family; 3224 if (IS_ENABLED(CONFIG_IPV6) && 3225 dst_addr->sa_family == AF_INET6) { 3226 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3227 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3228 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3229 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3230 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3231 } else if (dst_addr->sa_family == AF_IB) { 3232 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3233 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3234 } 3235 } 3236 return rdma_bind_addr(id, src_addr); 3237 } 3238 3239 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3240 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3241 { 3242 struct rdma_id_private *id_priv; 3243 int ret; 3244 3245 id_priv = container_of(id, struct rdma_id_private, id); 3246 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3247 if (id_priv->state == RDMA_CM_IDLE) { 3248 ret = cma_bind_addr(id, src_addr, dst_addr); 3249 if (ret) { 3250 memset(cma_dst_addr(id_priv), 0, 3251 rdma_addr_size(dst_addr)); 3252 return ret; 3253 } 3254 } 3255 3256 if (cma_family(id_priv) != dst_addr->sa_family) { 3257 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3258 return -EINVAL; 3259 } 3260 3261 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3262 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3263 return -EINVAL; 3264 } 3265 3266 if (cma_any_addr(dst_addr)) { 3267 ret = cma_resolve_loopback(id_priv); 3268 } else { 3269 if (dst_addr->sa_family == AF_IB) { 3270 ret = cma_resolve_ib_addr(id_priv); 3271 } else { 3272 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3273 &id->route.addr.dev_addr, 3274 timeout_ms, addr_handler, 3275 false, id_priv); 3276 } 3277 } 3278 if (ret) 3279 goto err; 3280 3281 return 0; 3282 err: 3283 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3284 return ret; 3285 } 3286 EXPORT_SYMBOL(rdma_resolve_addr); 3287 3288 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3289 { 3290 struct rdma_id_private *id_priv; 3291 unsigned long flags; 3292 int ret; 3293 3294 id_priv = container_of(id, struct rdma_id_private, id); 3295 spin_lock_irqsave(&id_priv->lock, flags); 3296 if (reuse || id_priv->state == RDMA_CM_IDLE) { 3297 id_priv->reuseaddr = reuse; 3298 ret = 0; 3299 } else { 3300 ret = -EINVAL; 3301 } 3302 spin_unlock_irqrestore(&id_priv->lock, flags); 3303 return ret; 3304 } 3305 EXPORT_SYMBOL(rdma_set_reuseaddr); 3306 3307 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3308 { 3309 struct rdma_id_private *id_priv; 3310 unsigned long flags; 3311 int ret; 3312 3313 id_priv = container_of(id, struct rdma_id_private, id); 3314 spin_lock_irqsave(&id_priv->lock, flags); 3315 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3316 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3317 id_priv->afonly = afonly; 3318 ret = 0; 3319 } else { 3320 ret = -EINVAL; 3321 } 3322 spin_unlock_irqrestore(&id_priv->lock, flags); 3323 return ret; 3324 } 3325 EXPORT_SYMBOL(rdma_set_afonly); 3326 3327 static void cma_bind_port(struct rdma_bind_list *bind_list, 3328 struct rdma_id_private *id_priv) 3329 { 3330 struct sockaddr *addr; 3331 struct sockaddr_ib *sib; 3332 u64 sid, mask; 3333 __be16 port; 3334 3335 lockdep_assert_held(&lock); 3336 3337 addr = cma_src_addr(id_priv); 3338 port = htons(bind_list->port); 3339 3340 switch (addr->sa_family) { 3341 case AF_INET: 3342 ((struct sockaddr_in *) addr)->sin_port = port; 3343 break; 3344 case AF_INET6: 3345 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3346 break; 3347 case AF_IB: 3348 sib = (struct sockaddr_ib *) addr; 3349 sid = be64_to_cpu(sib->sib_sid); 3350 mask = be64_to_cpu(sib->sib_sid_mask); 3351 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3352 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3353 break; 3354 } 3355 id_priv->bind_list = bind_list; 3356 hlist_add_head(&id_priv->node, &bind_list->owners); 3357 } 3358 3359 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3360 struct rdma_id_private *id_priv, unsigned short snum) 3361 { 3362 struct rdma_bind_list *bind_list; 3363 int ret; 3364 3365 lockdep_assert_held(&lock); 3366 3367 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3368 if (!bind_list) 3369 return -ENOMEM; 3370 3371 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3372 snum); 3373 if (ret < 0) 3374 goto err; 3375 3376 bind_list->ps = ps; 3377 bind_list->port = snum; 3378 cma_bind_port(bind_list, id_priv); 3379 return 0; 3380 err: 3381 kfree(bind_list); 3382 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3383 } 3384 3385 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3386 struct rdma_id_private *id_priv) 3387 { 3388 struct rdma_id_private *cur_id; 3389 struct sockaddr *daddr = cma_dst_addr(id_priv); 3390 struct sockaddr *saddr = cma_src_addr(id_priv); 3391 __be16 dport = cma_port(daddr); 3392 3393 lockdep_assert_held(&lock); 3394 3395 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3396 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3397 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3398 __be16 cur_dport = cma_port(cur_daddr); 3399 3400 if (id_priv == cur_id) 3401 continue; 3402 3403 /* different dest port -> unique */ 3404 if (!cma_any_port(daddr) && 3405 !cma_any_port(cur_daddr) && 3406 (dport != cur_dport)) 3407 continue; 3408 3409 /* different src address -> unique */ 3410 if (!cma_any_addr(saddr) && 3411 !cma_any_addr(cur_saddr) && 3412 cma_addr_cmp(saddr, cur_saddr)) 3413 continue; 3414 3415 /* different dst address -> unique */ 3416 if (!cma_any_addr(daddr) && 3417 !cma_any_addr(cur_daddr) && 3418 cma_addr_cmp(daddr, cur_daddr)) 3419 continue; 3420 3421 return -EADDRNOTAVAIL; 3422 } 3423 return 0; 3424 } 3425 3426 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3427 struct rdma_id_private *id_priv) 3428 { 3429 static unsigned int last_used_port; 3430 int low, high, remaining; 3431 unsigned int rover; 3432 struct net *net = id_priv->id.route.addr.dev_addr.net; 3433 3434 lockdep_assert_held(&lock); 3435 3436 inet_get_local_port_range(net, &low, &high); 3437 remaining = (high - low) + 1; 3438 rover = prandom_u32() % remaining + low; 3439 retry: 3440 if (last_used_port != rover) { 3441 struct rdma_bind_list *bind_list; 3442 int ret; 3443 3444 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3445 3446 if (!bind_list) { 3447 ret = cma_alloc_port(ps, id_priv, rover); 3448 } else { 3449 ret = cma_port_is_unique(bind_list, id_priv); 3450 if (!ret) 3451 cma_bind_port(bind_list, id_priv); 3452 } 3453 /* 3454 * Remember previously used port number in order to avoid 3455 * re-using same port immediately after it is closed. 3456 */ 3457 if (!ret) 3458 last_used_port = rover; 3459 if (ret != -EADDRNOTAVAIL) 3460 return ret; 3461 } 3462 if (--remaining) { 3463 rover++; 3464 if ((rover < low) || (rover > high)) 3465 rover = low; 3466 goto retry; 3467 } 3468 return -EADDRNOTAVAIL; 3469 } 3470 3471 /* 3472 * Check that the requested port is available. This is called when trying to 3473 * bind to a specific port, or when trying to listen on a bound port. In 3474 * the latter case, the provided id_priv may already be on the bind_list, but 3475 * we still need to check that it's okay to start listening. 3476 */ 3477 static int cma_check_port(struct rdma_bind_list *bind_list, 3478 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3479 { 3480 struct rdma_id_private *cur_id; 3481 struct sockaddr *addr, *cur_addr; 3482 3483 lockdep_assert_held(&lock); 3484 3485 addr = cma_src_addr(id_priv); 3486 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3487 if (id_priv == cur_id) 3488 continue; 3489 3490 if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr && 3491 cur_id->reuseaddr) 3492 continue; 3493 3494 cur_addr = cma_src_addr(cur_id); 3495 if (id_priv->afonly && cur_id->afonly && 3496 (addr->sa_family != cur_addr->sa_family)) 3497 continue; 3498 3499 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3500 return -EADDRNOTAVAIL; 3501 3502 if (!cma_addr_cmp(addr, cur_addr)) 3503 return -EADDRINUSE; 3504 } 3505 return 0; 3506 } 3507 3508 static int cma_use_port(enum rdma_ucm_port_space ps, 3509 struct rdma_id_private *id_priv) 3510 { 3511 struct rdma_bind_list *bind_list; 3512 unsigned short snum; 3513 int ret; 3514 3515 lockdep_assert_held(&lock); 3516 3517 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3518 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3519 return -EACCES; 3520 3521 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3522 if (!bind_list) { 3523 ret = cma_alloc_port(ps, id_priv, snum); 3524 } else { 3525 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3526 if (!ret) 3527 cma_bind_port(bind_list, id_priv); 3528 } 3529 return ret; 3530 } 3531 3532 static int cma_bind_listen(struct rdma_id_private *id_priv) 3533 { 3534 struct rdma_bind_list *bind_list = id_priv->bind_list; 3535 int ret = 0; 3536 3537 mutex_lock(&lock); 3538 if (bind_list->owners.first->next) 3539 ret = cma_check_port(bind_list, id_priv, 0); 3540 mutex_unlock(&lock); 3541 return ret; 3542 } 3543 3544 static enum rdma_ucm_port_space 3545 cma_select_inet_ps(struct rdma_id_private *id_priv) 3546 { 3547 switch (id_priv->id.ps) { 3548 case RDMA_PS_TCP: 3549 case RDMA_PS_UDP: 3550 case RDMA_PS_IPOIB: 3551 case RDMA_PS_IB: 3552 return id_priv->id.ps; 3553 default: 3554 3555 return 0; 3556 } 3557 } 3558 3559 static enum rdma_ucm_port_space 3560 cma_select_ib_ps(struct rdma_id_private *id_priv) 3561 { 3562 enum rdma_ucm_port_space ps = 0; 3563 struct sockaddr_ib *sib; 3564 u64 sid_ps, mask, sid; 3565 3566 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3567 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3568 sid = be64_to_cpu(sib->sib_sid) & mask; 3569 3570 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3571 sid_ps = RDMA_IB_IP_PS_IB; 3572 ps = RDMA_PS_IB; 3573 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3574 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3575 sid_ps = RDMA_IB_IP_PS_TCP; 3576 ps = RDMA_PS_TCP; 3577 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3578 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3579 sid_ps = RDMA_IB_IP_PS_UDP; 3580 ps = RDMA_PS_UDP; 3581 } 3582 3583 if (ps) { 3584 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3585 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3586 be64_to_cpu(sib->sib_sid_mask)); 3587 } 3588 return ps; 3589 } 3590 3591 static int cma_get_port(struct rdma_id_private *id_priv) 3592 { 3593 enum rdma_ucm_port_space ps; 3594 int ret; 3595 3596 if (cma_family(id_priv) != AF_IB) 3597 ps = cma_select_inet_ps(id_priv); 3598 else 3599 ps = cma_select_ib_ps(id_priv); 3600 if (!ps) 3601 return -EPROTONOSUPPORT; 3602 3603 mutex_lock(&lock); 3604 if (cma_any_port(cma_src_addr(id_priv))) 3605 ret = cma_alloc_any_port(ps, id_priv); 3606 else 3607 ret = cma_use_port(ps, id_priv); 3608 mutex_unlock(&lock); 3609 3610 return ret; 3611 } 3612 3613 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3614 struct sockaddr *addr) 3615 { 3616 #if IS_ENABLED(CONFIG_IPV6) 3617 struct sockaddr_in6 *sin6; 3618 3619 if (addr->sa_family != AF_INET6) 3620 return 0; 3621 3622 sin6 = (struct sockaddr_in6 *) addr; 3623 3624 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3625 return 0; 3626 3627 if (!sin6->sin6_scope_id) 3628 return -EINVAL; 3629 3630 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3631 #endif 3632 return 0; 3633 } 3634 3635 int rdma_listen(struct rdma_cm_id *id, int backlog) 3636 { 3637 struct rdma_id_private *id_priv; 3638 int ret; 3639 3640 id_priv = container_of(id, struct rdma_id_private, id); 3641 if (id_priv->state == RDMA_CM_IDLE) { 3642 id->route.addr.src_addr.ss_family = AF_INET; 3643 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3644 if (ret) 3645 return ret; 3646 } 3647 3648 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) 3649 return -EINVAL; 3650 3651 if (id_priv->reuseaddr) { 3652 ret = cma_bind_listen(id_priv); 3653 if (ret) 3654 goto err; 3655 } 3656 3657 id_priv->backlog = backlog; 3658 if (id->device) { 3659 if (rdma_cap_ib_cm(id->device, 1)) { 3660 ret = cma_ib_listen(id_priv); 3661 if (ret) 3662 goto err; 3663 } else if (rdma_cap_iw_cm(id->device, 1)) { 3664 ret = cma_iw_listen(id_priv, backlog); 3665 if (ret) 3666 goto err; 3667 } else { 3668 ret = -ENOSYS; 3669 goto err; 3670 } 3671 } else 3672 cma_listen_on_all(id_priv); 3673 3674 return 0; 3675 err: 3676 id_priv->backlog = 0; 3677 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3678 return ret; 3679 } 3680 EXPORT_SYMBOL(rdma_listen); 3681 3682 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3683 { 3684 struct rdma_id_private *id_priv; 3685 int ret; 3686 struct sockaddr *daddr; 3687 3688 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3689 addr->sa_family != AF_IB) 3690 return -EAFNOSUPPORT; 3691 3692 id_priv = container_of(id, struct rdma_id_private, id); 3693 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3694 return -EINVAL; 3695 3696 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3697 if (ret) 3698 goto err1; 3699 3700 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3701 if (!cma_any_addr(addr)) { 3702 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3703 if (ret) 3704 goto err1; 3705 3706 ret = cma_acquire_dev_by_src_ip(id_priv); 3707 if (ret) 3708 goto err1; 3709 } 3710 3711 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3712 if (addr->sa_family == AF_INET) 3713 id_priv->afonly = 1; 3714 #if IS_ENABLED(CONFIG_IPV6) 3715 else if (addr->sa_family == AF_INET6) { 3716 struct net *net = id_priv->id.route.addr.dev_addr.net; 3717 3718 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3719 } 3720 #endif 3721 } 3722 daddr = cma_dst_addr(id_priv); 3723 daddr->sa_family = addr->sa_family; 3724 3725 ret = cma_get_port(id_priv); 3726 if (ret) 3727 goto err2; 3728 3729 return 0; 3730 err2: 3731 rdma_restrack_del(&id_priv->res); 3732 if (id_priv->cma_dev) 3733 cma_release_dev(id_priv); 3734 err1: 3735 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3736 return ret; 3737 } 3738 EXPORT_SYMBOL(rdma_bind_addr); 3739 3740 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3741 { 3742 struct cma_hdr *cma_hdr; 3743 3744 cma_hdr = hdr; 3745 cma_hdr->cma_version = CMA_VERSION; 3746 if (cma_family(id_priv) == AF_INET) { 3747 struct sockaddr_in *src4, *dst4; 3748 3749 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3750 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3751 3752 cma_set_ip_ver(cma_hdr, 4); 3753 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3754 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3755 cma_hdr->port = src4->sin_port; 3756 } else if (cma_family(id_priv) == AF_INET6) { 3757 struct sockaddr_in6 *src6, *dst6; 3758 3759 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3760 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3761 3762 cma_set_ip_ver(cma_hdr, 6); 3763 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3764 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3765 cma_hdr->port = src6->sin6_port; 3766 } 3767 return 0; 3768 } 3769 3770 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3771 const struct ib_cm_event *ib_event) 3772 { 3773 struct rdma_id_private *id_priv = cm_id->context; 3774 struct rdma_cm_event event = {}; 3775 const struct ib_cm_sidr_rep_event_param *rep = 3776 &ib_event->param.sidr_rep_rcvd; 3777 int ret; 3778 3779 mutex_lock(&id_priv->handler_mutex); 3780 if (id_priv->state != RDMA_CM_CONNECT) 3781 goto out; 3782 3783 switch (ib_event->event) { 3784 case IB_CM_SIDR_REQ_ERROR: 3785 event.event = RDMA_CM_EVENT_UNREACHABLE; 3786 event.status = -ETIMEDOUT; 3787 break; 3788 case IB_CM_SIDR_REP_RECEIVED: 3789 event.param.ud.private_data = ib_event->private_data; 3790 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3791 if (rep->status != IB_SIDR_SUCCESS) { 3792 event.event = RDMA_CM_EVENT_UNREACHABLE; 3793 event.status = ib_event->param.sidr_rep_rcvd.status; 3794 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3795 event.status); 3796 break; 3797 } 3798 ret = cma_set_qkey(id_priv, rep->qkey); 3799 if (ret) { 3800 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3801 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3802 event.status = ret; 3803 break; 3804 } 3805 ib_init_ah_attr_from_path(id_priv->id.device, 3806 id_priv->id.port_num, 3807 id_priv->id.route.path_rec, 3808 &event.param.ud.ah_attr, 3809 rep->sgid_attr); 3810 event.param.ud.qp_num = rep->qpn; 3811 event.param.ud.qkey = rep->qkey; 3812 event.event = RDMA_CM_EVENT_ESTABLISHED; 3813 event.status = 0; 3814 break; 3815 default: 3816 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3817 ib_event->event); 3818 goto out; 3819 } 3820 3821 ret = cma_cm_event_handler(id_priv, &event); 3822 3823 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3824 if (ret) { 3825 /* Destroy the CM ID by returning a non-zero value. */ 3826 id_priv->cm_id.ib = NULL; 3827 destroy_id_handler_unlock(id_priv); 3828 return ret; 3829 } 3830 out: 3831 mutex_unlock(&id_priv->handler_mutex); 3832 return 0; 3833 } 3834 3835 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3836 struct rdma_conn_param *conn_param) 3837 { 3838 struct ib_cm_sidr_req_param req; 3839 struct ib_cm_id *id; 3840 void *private_data; 3841 u8 offset; 3842 int ret; 3843 3844 memset(&req, 0, sizeof req); 3845 offset = cma_user_data_offset(id_priv); 3846 req.private_data_len = offset + conn_param->private_data_len; 3847 if (req.private_data_len < conn_param->private_data_len) 3848 return -EINVAL; 3849 3850 if (req.private_data_len) { 3851 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3852 if (!private_data) 3853 return -ENOMEM; 3854 } else { 3855 private_data = NULL; 3856 } 3857 3858 if (conn_param->private_data && conn_param->private_data_len) 3859 memcpy(private_data + offset, conn_param->private_data, 3860 conn_param->private_data_len); 3861 3862 if (private_data) { 3863 ret = cma_format_hdr(private_data, id_priv); 3864 if (ret) 3865 goto out; 3866 req.private_data = private_data; 3867 } 3868 3869 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 3870 id_priv); 3871 if (IS_ERR(id)) { 3872 ret = PTR_ERR(id); 3873 goto out; 3874 } 3875 id_priv->cm_id.ib = id; 3876 3877 req.path = id_priv->id.route.path_rec; 3878 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3879 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3880 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 3881 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3882 3883 trace_cm_send_sidr_req(id_priv); 3884 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 3885 if (ret) { 3886 ib_destroy_cm_id(id_priv->cm_id.ib); 3887 id_priv->cm_id.ib = NULL; 3888 } 3889 out: 3890 kfree(private_data); 3891 return ret; 3892 } 3893 3894 static int cma_connect_ib(struct rdma_id_private *id_priv, 3895 struct rdma_conn_param *conn_param) 3896 { 3897 struct ib_cm_req_param req; 3898 struct rdma_route *route; 3899 void *private_data; 3900 struct ib_cm_id *id; 3901 u8 offset; 3902 int ret; 3903 3904 memset(&req, 0, sizeof req); 3905 offset = cma_user_data_offset(id_priv); 3906 req.private_data_len = offset + conn_param->private_data_len; 3907 if (req.private_data_len < conn_param->private_data_len) 3908 return -EINVAL; 3909 3910 if (req.private_data_len) { 3911 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3912 if (!private_data) 3913 return -ENOMEM; 3914 } else { 3915 private_data = NULL; 3916 } 3917 3918 if (conn_param->private_data && conn_param->private_data_len) 3919 memcpy(private_data + offset, conn_param->private_data, 3920 conn_param->private_data_len); 3921 3922 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 3923 if (IS_ERR(id)) { 3924 ret = PTR_ERR(id); 3925 goto out; 3926 } 3927 id_priv->cm_id.ib = id; 3928 3929 route = &id_priv->id.route; 3930 if (private_data) { 3931 ret = cma_format_hdr(private_data, id_priv); 3932 if (ret) 3933 goto out; 3934 req.private_data = private_data; 3935 } 3936 3937 req.primary_path = &route->path_rec[0]; 3938 if (route->num_paths == 2) 3939 req.alternate_path = &route->path_rec[1]; 3940 3941 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 3942 /* Alternate path SGID attribute currently unsupported */ 3943 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 3944 req.qp_num = id_priv->qp_num; 3945 req.qp_type = id_priv->id.qp_type; 3946 req.starting_psn = id_priv->seq_num; 3947 req.responder_resources = conn_param->responder_resources; 3948 req.initiator_depth = conn_param->initiator_depth; 3949 req.flow_control = conn_param->flow_control; 3950 req.retry_count = min_t(u8, 7, conn_param->retry_count); 3951 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 3952 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 3953 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 3954 req.max_cm_retries = CMA_MAX_CM_RETRIES; 3955 req.srq = id_priv->srq ? 1 : 0; 3956 req.ece.vendor_id = id_priv->ece.vendor_id; 3957 req.ece.attr_mod = id_priv->ece.attr_mod; 3958 3959 trace_cm_send_req(id_priv); 3960 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 3961 out: 3962 if (ret && !IS_ERR(id)) { 3963 ib_destroy_cm_id(id); 3964 id_priv->cm_id.ib = NULL; 3965 } 3966 3967 kfree(private_data); 3968 return ret; 3969 } 3970 3971 static int cma_connect_iw(struct rdma_id_private *id_priv, 3972 struct rdma_conn_param *conn_param) 3973 { 3974 struct iw_cm_id *cm_id; 3975 int ret; 3976 struct iw_cm_conn_param iw_param; 3977 3978 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 3979 if (IS_ERR(cm_id)) 3980 return PTR_ERR(cm_id); 3981 3982 cm_id->tos = id_priv->tos; 3983 cm_id->tos_set = id_priv->tos_set; 3984 id_priv->cm_id.iw = cm_id; 3985 3986 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 3987 rdma_addr_size(cma_src_addr(id_priv))); 3988 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 3989 rdma_addr_size(cma_dst_addr(id_priv))); 3990 3991 ret = cma_modify_qp_rtr(id_priv, conn_param); 3992 if (ret) 3993 goto out; 3994 3995 if (conn_param) { 3996 iw_param.ord = conn_param->initiator_depth; 3997 iw_param.ird = conn_param->responder_resources; 3998 iw_param.private_data = conn_param->private_data; 3999 iw_param.private_data_len = conn_param->private_data_len; 4000 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4001 } else { 4002 memset(&iw_param, 0, sizeof iw_param); 4003 iw_param.qpn = id_priv->qp_num; 4004 } 4005 ret = iw_cm_connect(cm_id, &iw_param); 4006 out: 4007 if (ret) { 4008 iw_destroy_cm_id(cm_id); 4009 id_priv->cm_id.iw = NULL; 4010 } 4011 return ret; 4012 } 4013 4014 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4015 { 4016 struct rdma_id_private *id_priv; 4017 int ret; 4018 4019 id_priv = container_of(id, struct rdma_id_private, id); 4020 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4021 return -EINVAL; 4022 4023 if (!id->qp) { 4024 id_priv->qp_num = conn_param->qp_num; 4025 id_priv->srq = conn_param->srq; 4026 } 4027 4028 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4029 if (id->qp_type == IB_QPT_UD) 4030 ret = cma_resolve_ib_udp(id_priv, conn_param); 4031 else 4032 ret = cma_connect_ib(id_priv, conn_param); 4033 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4034 ret = cma_connect_iw(id_priv, conn_param); 4035 else 4036 ret = -ENOSYS; 4037 if (ret) 4038 goto err; 4039 4040 return 0; 4041 err: 4042 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4043 return ret; 4044 } 4045 EXPORT_SYMBOL(rdma_connect); 4046 4047 /** 4048 * rdma_connect_ece - Initiate an active connection request with ECE data. 4049 * @id: Connection identifier to connect. 4050 * @conn_param: Connection information used for connected QPs. 4051 * @ece: ECE parameters 4052 * 4053 * See rdma_connect() explanation. 4054 */ 4055 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4056 struct rdma_ucm_ece *ece) 4057 { 4058 struct rdma_id_private *id_priv = 4059 container_of(id, struct rdma_id_private, id); 4060 4061 id_priv->ece.vendor_id = ece->vendor_id; 4062 id_priv->ece.attr_mod = ece->attr_mod; 4063 4064 return rdma_connect(id, conn_param); 4065 } 4066 EXPORT_SYMBOL(rdma_connect_ece); 4067 4068 static int cma_accept_ib(struct rdma_id_private *id_priv, 4069 struct rdma_conn_param *conn_param) 4070 { 4071 struct ib_cm_rep_param rep; 4072 int ret; 4073 4074 ret = cma_modify_qp_rtr(id_priv, conn_param); 4075 if (ret) 4076 goto out; 4077 4078 ret = cma_modify_qp_rts(id_priv, conn_param); 4079 if (ret) 4080 goto out; 4081 4082 memset(&rep, 0, sizeof rep); 4083 rep.qp_num = id_priv->qp_num; 4084 rep.starting_psn = id_priv->seq_num; 4085 rep.private_data = conn_param->private_data; 4086 rep.private_data_len = conn_param->private_data_len; 4087 rep.responder_resources = conn_param->responder_resources; 4088 rep.initiator_depth = conn_param->initiator_depth; 4089 rep.failover_accepted = 0; 4090 rep.flow_control = conn_param->flow_control; 4091 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4092 rep.srq = id_priv->srq ? 1 : 0; 4093 rep.ece.vendor_id = id_priv->ece.vendor_id; 4094 rep.ece.attr_mod = id_priv->ece.attr_mod; 4095 4096 trace_cm_send_rep(id_priv); 4097 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4098 out: 4099 return ret; 4100 } 4101 4102 static int cma_accept_iw(struct rdma_id_private *id_priv, 4103 struct rdma_conn_param *conn_param) 4104 { 4105 struct iw_cm_conn_param iw_param; 4106 int ret; 4107 4108 if (!conn_param) 4109 return -EINVAL; 4110 4111 ret = cma_modify_qp_rtr(id_priv, conn_param); 4112 if (ret) 4113 return ret; 4114 4115 iw_param.ord = conn_param->initiator_depth; 4116 iw_param.ird = conn_param->responder_resources; 4117 iw_param.private_data = conn_param->private_data; 4118 iw_param.private_data_len = conn_param->private_data_len; 4119 if (id_priv->id.qp) { 4120 iw_param.qpn = id_priv->qp_num; 4121 } else 4122 iw_param.qpn = conn_param->qp_num; 4123 4124 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4125 } 4126 4127 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4128 enum ib_cm_sidr_status status, u32 qkey, 4129 const void *private_data, int private_data_len) 4130 { 4131 struct ib_cm_sidr_rep_param rep; 4132 int ret; 4133 4134 memset(&rep, 0, sizeof rep); 4135 rep.status = status; 4136 if (status == IB_SIDR_SUCCESS) { 4137 ret = cma_set_qkey(id_priv, qkey); 4138 if (ret) 4139 return ret; 4140 rep.qp_num = id_priv->qp_num; 4141 rep.qkey = id_priv->qkey; 4142 4143 rep.ece.vendor_id = id_priv->ece.vendor_id; 4144 rep.ece.attr_mod = id_priv->ece.attr_mod; 4145 } 4146 4147 rep.private_data = private_data; 4148 rep.private_data_len = private_data_len; 4149 4150 trace_cm_send_sidr_rep(id_priv); 4151 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4152 } 4153 4154 int __rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4155 const char *caller) 4156 { 4157 struct rdma_id_private *id_priv; 4158 int ret; 4159 4160 id_priv = container_of(id, struct rdma_id_private, id); 4161 4162 rdma_restrack_set_task(&id_priv->res, caller); 4163 4164 if (!cma_comp(id_priv, RDMA_CM_CONNECT)) 4165 return -EINVAL; 4166 4167 if (!id->qp && conn_param) { 4168 id_priv->qp_num = conn_param->qp_num; 4169 id_priv->srq = conn_param->srq; 4170 } 4171 4172 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4173 if (id->qp_type == IB_QPT_UD) { 4174 if (conn_param) 4175 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4176 conn_param->qkey, 4177 conn_param->private_data, 4178 conn_param->private_data_len); 4179 else 4180 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4181 0, NULL, 0); 4182 } else { 4183 if (conn_param) 4184 ret = cma_accept_ib(id_priv, conn_param); 4185 else 4186 ret = cma_rep_recv(id_priv); 4187 } 4188 } else if (rdma_cap_iw_cm(id->device, id->port_num)) 4189 ret = cma_accept_iw(id_priv, conn_param); 4190 else 4191 ret = -ENOSYS; 4192 4193 if (ret) 4194 goto reject; 4195 4196 return 0; 4197 reject: 4198 cma_modify_qp_err(id_priv); 4199 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4200 return ret; 4201 } 4202 EXPORT_SYMBOL(__rdma_accept); 4203 4204 int __rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4205 const char *caller, struct rdma_ucm_ece *ece) 4206 { 4207 struct rdma_id_private *id_priv = 4208 container_of(id, struct rdma_id_private, id); 4209 4210 id_priv->ece.vendor_id = ece->vendor_id; 4211 id_priv->ece.attr_mod = ece->attr_mod; 4212 4213 return __rdma_accept(id, conn_param, caller); 4214 } 4215 EXPORT_SYMBOL(__rdma_accept_ece); 4216 4217 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4218 { 4219 struct rdma_id_private *id_priv; 4220 int ret; 4221 4222 id_priv = container_of(id, struct rdma_id_private, id); 4223 if (!id_priv->cm_id.ib) 4224 return -EINVAL; 4225 4226 switch (id->device->node_type) { 4227 case RDMA_NODE_IB_CA: 4228 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4229 break; 4230 default: 4231 ret = 0; 4232 break; 4233 } 4234 return ret; 4235 } 4236 EXPORT_SYMBOL(rdma_notify); 4237 4238 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4239 u8 private_data_len, u8 reason) 4240 { 4241 struct rdma_id_private *id_priv; 4242 int ret; 4243 4244 id_priv = container_of(id, struct rdma_id_private, id); 4245 if (!id_priv->cm_id.ib) 4246 return -EINVAL; 4247 4248 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4249 if (id->qp_type == IB_QPT_UD) { 4250 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4251 private_data, private_data_len); 4252 } else { 4253 trace_cm_send_rej(id_priv); 4254 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4255 private_data, private_data_len); 4256 } 4257 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4258 ret = iw_cm_reject(id_priv->cm_id.iw, 4259 private_data, private_data_len); 4260 } else 4261 ret = -ENOSYS; 4262 4263 return ret; 4264 } 4265 EXPORT_SYMBOL(rdma_reject); 4266 4267 int rdma_disconnect(struct rdma_cm_id *id) 4268 { 4269 struct rdma_id_private *id_priv; 4270 int ret; 4271 4272 id_priv = container_of(id, struct rdma_id_private, id); 4273 if (!id_priv->cm_id.ib) 4274 return -EINVAL; 4275 4276 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4277 ret = cma_modify_qp_err(id_priv); 4278 if (ret) 4279 goto out; 4280 /* Initiate or respond to a disconnect. */ 4281 trace_cm_disconnect(id_priv); 4282 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4283 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4284 trace_cm_sent_drep(id_priv); 4285 } else { 4286 trace_cm_sent_dreq(id_priv); 4287 } 4288 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4289 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4290 } else 4291 ret = -EINVAL; 4292 4293 out: 4294 return ret; 4295 } 4296 EXPORT_SYMBOL(rdma_disconnect); 4297 4298 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4299 { 4300 struct rdma_id_private *id_priv; 4301 struct cma_multicast *mc = multicast->context; 4302 struct rdma_cm_event event = {}; 4303 int ret = 0; 4304 4305 id_priv = mc->id_priv; 4306 mutex_lock(&id_priv->handler_mutex); 4307 if (id_priv->state != RDMA_CM_ADDR_BOUND && 4308 id_priv->state != RDMA_CM_ADDR_RESOLVED) 4309 goto out; 4310 4311 if (!status) 4312 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4313 else 4314 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4315 status); 4316 mutex_lock(&id_priv->qp_mutex); 4317 if (!status && id_priv->id.qp) { 4318 status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid, 4319 be16_to_cpu(multicast->rec.mlid)); 4320 if (status) 4321 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to attach QP. status %d\n", 4322 status); 4323 } 4324 mutex_unlock(&id_priv->qp_mutex); 4325 4326 event.status = status; 4327 event.param.ud.private_data = mc->context; 4328 if (!status) { 4329 struct rdma_dev_addr *dev_addr = 4330 &id_priv->id.route.addr.dev_addr; 4331 struct net_device *ndev = 4332 dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4333 enum ib_gid_type gid_type = 4334 id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4335 rdma_start_port(id_priv->cma_dev->device)]; 4336 4337 event.event = RDMA_CM_EVENT_MULTICAST_JOIN; 4338 ret = ib_init_ah_from_mcmember(id_priv->id.device, 4339 id_priv->id.port_num, 4340 &multicast->rec, 4341 ndev, gid_type, 4342 &event.param.ud.ah_attr); 4343 if (ret) 4344 event.event = RDMA_CM_EVENT_MULTICAST_ERROR; 4345 4346 event.param.ud.qp_num = 0xFFFFFF; 4347 event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4348 if (ndev) 4349 dev_put(ndev); 4350 } else 4351 event.event = RDMA_CM_EVENT_MULTICAST_ERROR; 4352 4353 ret = cma_cm_event_handler(id_priv, &event); 4354 4355 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4356 if (ret) { 4357 destroy_id_handler_unlock(id_priv); 4358 return 0; 4359 } 4360 4361 out: 4362 mutex_unlock(&id_priv->handler_mutex); 4363 return 0; 4364 } 4365 4366 static void cma_set_mgid(struct rdma_id_private *id_priv, 4367 struct sockaddr *addr, union ib_gid *mgid) 4368 { 4369 unsigned char mc_map[MAX_ADDR_LEN]; 4370 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4371 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4372 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4373 4374 if (cma_any_addr(addr)) { 4375 memset(mgid, 0, sizeof *mgid); 4376 } else if ((addr->sa_family == AF_INET6) && 4377 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4378 0xFF10A01B)) { 4379 /* IPv6 address is an SA assigned MGID. */ 4380 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4381 } else if (addr->sa_family == AF_IB) { 4382 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4383 } else if (addr->sa_family == AF_INET6) { 4384 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4385 if (id_priv->id.ps == RDMA_PS_UDP) 4386 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4387 *mgid = *(union ib_gid *) (mc_map + 4); 4388 } else { 4389 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4390 if (id_priv->id.ps == RDMA_PS_UDP) 4391 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4392 *mgid = *(union ib_gid *) (mc_map + 4); 4393 } 4394 } 4395 4396 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4397 struct cma_multicast *mc) 4398 { 4399 struct ib_sa_mcmember_rec rec; 4400 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4401 ib_sa_comp_mask comp_mask; 4402 int ret; 4403 4404 ib_addr_get_mgid(dev_addr, &rec.mgid); 4405 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4406 &rec.mgid, &rec); 4407 if (ret) 4408 return ret; 4409 4410 ret = cma_set_qkey(id_priv, 0); 4411 if (ret) 4412 return ret; 4413 4414 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4415 rec.qkey = cpu_to_be32(id_priv->qkey); 4416 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4417 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4418 rec.join_state = mc->join_state; 4419 4420 if ((rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) && 4421 (!ib_sa_sendonly_fullmem_support(&sa_client, 4422 id_priv->id.device, 4423 id_priv->id.port_num))) { 4424 dev_warn( 4425 &id_priv->id.device->dev, 4426 "RDMA CM: port %u Unable to multicast join: SM doesn't support Send Only Full Member option\n", 4427 id_priv->id.port_num); 4428 return -EOPNOTSUPP; 4429 } 4430 4431 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4432 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4433 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4434 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4435 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4436 4437 if (id_priv->id.ps == RDMA_PS_IPOIB) 4438 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4439 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4440 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4441 IB_SA_MCMEMBER_REC_MTU | 4442 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4443 4444 mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4445 id_priv->id.port_num, &rec, 4446 comp_mask, GFP_KERNEL, 4447 cma_ib_mc_handler, mc); 4448 return PTR_ERR_OR_ZERO(mc->multicast.ib); 4449 } 4450 4451 static void iboe_mcast_work_handler(struct work_struct *work) 4452 { 4453 struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work); 4454 struct cma_multicast *mc = mw->mc; 4455 struct ib_sa_multicast *m = mc->multicast.ib; 4456 4457 mc->multicast.ib->context = mc; 4458 cma_ib_mc_handler(0, m); 4459 kref_put(&mc->mcref, release_mc); 4460 kfree(mw); 4461 } 4462 4463 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4464 enum ib_gid_type gid_type) 4465 { 4466 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4467 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4468 4469 if (cma_any_addr(addr)) { 4470 memset(mgid, 0, sizeof *mgid); 4471 } else if (addr->sa_family == AF_INET6) { 4472 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4473 } else { 4474 mgid->raw[0] = 4475 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4476 mgid->raw[1] = 4477 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4478 mgid->raw[2] = 0; 4479 mgid->raw[3] = 0; 4480 mgid->raw[4] = 0; 4481 mgid->raw[5] = 0; 4482 mgid->raw[6] = 0; 4483 mgid->raw[7] = 0; 4484 mgid->raw[8] = 0; 4485 mgid->raw[9] = 0; 4486 mgid->raw[10] = 0xff; 4487 mgid->raw[11] = 0xff; 4488 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4489 } 4490 } 4491 4492 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4493 struct cma_multicast *mc) 4494 { 4495 struct iboe_mcast_work *work; 4496 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4497 int err = 0; 4498 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4499 struct net_device *ndev = NULL; 4500 enum ib_gid_type gid_type; 4501 bool send_only; 4502 4503 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4504 4505 if (cma_zero_addr((struct sockaddr *)&mc->addr)) 4506 return -EINVAL; 4507 4508 work = kzalloc(sizeof *work, GFP_KERNEL); 4509 if (!work) 4510 return -ENOMEM; 4511 4512 mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL); 4513 if (!mc->multicast.ib) { 4514 err = -ENOMEM; 4515 goto out1; 4516 } 4517 4518 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4519 rdma_start_port(id_priv->cma_dev->device)]; 4520 cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid, gid_type); 4521 4522 mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff); 4523 if (id_priv->id.ps == RDMA_PS_UDP) 4524 mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4525 4526 if (dev_addr->bound_dev_if) 4527 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4528 if (!ndev) { 4529 err = -ENODEV; 4530 goto out2; 4531 } 4532 mc->multicast.ib->rec.rate = iboe_get_rate(ndev); 4533 mc->multicast.ib->rec.hop_limit = 1; 4534 mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu); 4535 4536 if (addr->sa_family == AF_INET) { 4537 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4538 mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4539 if (!send_only) { 4540 err = cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, 4541 true); 4542 } 4543 } 4544 } else { 4545 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4546 err = -ENOTSUPP; 4547 } 4548 dev_put(ndev); 4549 if (err || !mc->multicast.ib->rec.mtu) { 4550 if (!err) 4551 err = -EINVAL; 4552 goto out2; 4553 } 4554 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4555 &mc->multicast.ib->rec.port_gid); 4556 work->id = id_priv; 4557 work->mc = mc; 4558 INIT_WORK(&work->work, iboe_mcast_work_handler); 4559 kref_get(&mc->mcref); 4560 queue_work(cma_wq, &work->work); 4561 4562 return 0; 4563 4564 out2: 4565 kfree(mc->multicast.ib); 4566 out1: 4567 kfree(work); 4568 return err; 4569 } 4570 4571 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4572 u8 join_state, void *context) 4573 { 4574 struct rdma_id_private *id_priv; 4575 struct cma_multicast *mc; 4576 int ret; 4577 4578 if (!id->device) 4579 return -EINVAL; 4580 4581 id_priv = container_of(id, struct rdma_id_private, id); 4582 if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) && 4583 !cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED)) 4584 return -EINVAL; 4585 4586 mc = kmalloc(sizeof *mc, GFP_KERNEL); 4587 if (!mc) 4588 return -ENOMEM; 4589 4590 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4591 mc->context = context; 4592 mc->id_priv = id_priv; 4593 mc->join_state = join_state; 4594 4595 if (rdma_protocol_roce(id->device, id->port_num)) { 4596 kref_init(&mc->mcref); 4597 ret = cma_iboe_join_multicast(id_priv, mc); 4598 if (ret) 4599 goto out_err; 4600 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4601 ret = cma_join_ib_multicast(id_priv, mc); 4602 if (ret) 4603 goto out_err; 4604 } else { 4605 ret = -ENOSYS; 4606 goto out_err; 4607 } 4608 4609 spin_lock(&id_priv->lock); 4610 list_add(&mc->list, &id_priv->mc_list); 4611 spin_unlock(&id_priv->lock); 4612 4613 return 0; 4614 out_err: 4615 kfree(mc); 4616 return ret; 4617 } 4618 EXPORT_SYMBOL(rdma_join_multicast); 4619 4620 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4621 { 4622 struct rdma_id_private *id_priv; 4623 struct cma_multicast *mc; 4624 4625 id_priv = container_of(id, struct rdma_id_private, id); 4626 spin_lock_irq(&id_priv->lock); 4627 list_for_each_entry(mc, &id_priv->mc_list, list) { 4628 if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) { 4629 list_del(&mc->list); 4630 spin_unlock_irq(&id_priv->lock); 4631 4632 if (id->qp) 4633 ib_detach_mcast(id->qp, 4634 &mc->multicast.ib->rec.mgid, 4635 be16_to_cpu(mc->multicast.ib->rec.mlid)); 4636 4637 BUG_ON(id_priv->cma_dev->device != id->device); 4638 4639 if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4640 ib_sa_free_multicast(mc->multicast.ib); 4641 kfree(mc); 4642 } else if (rdma_protocol_roce(id->device, id->port_num)) { 4643 cma_leave_roce_mc_group(id_priv, mc); 4644 } 4645 return; 4646 } 4647 } 4648 spin_unlock_irq(&id_priv->lock); 4649 } 4650 EXPORT_SYMBOL(rdma_leave_multicast); 4651 4652 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4653 { 4654 struct rdma_dev_addr *dev_addr; 4655 struct cma_ndev_work *work; 4656 4657 dev_addr = &id_priv->id.route.addr.dev_addr; 4658 4659 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4660 (net_eq(dev_net(ndev), dev_addr->net)) && 4661 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4662 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4663 ndev->name, &id_priv->id); 4664 work = kzalloc(sizeof *work, GFP_KERNEL); 4665 if (!work) 4666 return -ENOMEM; 4667 4668 INIT_WORK(&work->work, cma_ndev_work_handler); 4669 work->id = id_priv; 4670 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4671 cma_id_get(id_priv); 4672 queue_work(cma_wq, &work->work); 4673 } 4674 4675 return 0; 4676 } 4677 4678 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4679 void *ptr) 4680 { 4681 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4682 struct cma_device *cma_dev; 4683 struct rdma_id_private *id_priv; 4684 int ret = NOTIFY_DONE; 4685 4686 if (event != NETDEV_BONDING_FAILOVER) 4687 return NOTIFY_DONE; 4688 4689 if (!netif_is_bond_master(ndev)) 4690 return NOTIFY_DONE; 4691 4692 mutex_lock(&lock); 4693 list_for_each_entry(cma_dev, &dev_list, list) 4694 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4695 ret = cma_netdev_change(ndev, id_priv); 4696 if (ret) 4697 goto out; 4698 } 4699 4700 out: 4701 mutex_unlock(&lock); 4702 return ret; 4703 } 4704 4705 static struct notifier_block cma_nb = { 4706 .notifier_call = cma_netdev_callback 4707 }; 4708 4709 static int cma_add_one(struct ib_device *device) 4710 { 4711 struct cma_device *cma_dev; 4712 struct rdma_id_private *id_priv; 4713 unsigned int i; 4714 unsigned long supported_gids = 0; 4715 int ret; 4716 4717 cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); 4718 if (!cma_dev) 4719 return -ENOMEM; 4720 4721 cma_dev->device = device; 4722 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4723 sizeof(*cma_dev->default_gid_type), 4724 GFP_KERNEL); 4725 if (!cma_dev->default_gid_type) { 4726 ret = -ENOMEM; 4727 goto free_cma_dev; 4728 } 4729 4730 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4731 sizeof(*cma_dev->default_roce_tos), 4732 GFP_KERNEL); 4733 if (!cma_dev->default_roce_tos) { 4734 ret = -ENOMEM; 4735 goto free_gid_type; 4736 } 4737 4738 rdma_for_each_port (device, i) { 4739 supported_gids = roce_gid_type_mask_support(device, i); 4740 WARN_ON(!supported_gids); 4741 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4742 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4743 CMA_PREFERRED_ROCE_GID_TYPE; 4744 else 4745 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4746 find_first_bit(&supported_gids, BITS_PER_LONG); 4747 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4748 } 4749 4750 init_completion(&cma_dev->comp); 4751 refcount_set(&cma_dev->refcount, 1); 4752 INIT_LIST_HEAD(&cma_dev->id_list); 4753 ib_set_client_data(device, &cma_client, cma_dev); 4754 4755 mutex_lock(&lock); 4756 list_add_tail(&cma_dev->list, &dev_list); 4757 list_for_each_entry(id_priv, &listen_any_list, list) 4758 cma_listen_on_dev(id_priv, cma_dev); 4759 mutex_unlock(&lock); 4760 4761 trace_cm_add_one(device); 4762 return 0; 4763 4764 free_gid_type: 4765 kfree(cma_dev->default_gid_type); 4766 4767 free_cma_dev: 4768 kfree(cma_dev); 4769 return ret; 4770 } 4771 4772 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4773 { 4774 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4775 enum rdma_cm_state state; 4776 unsigned long flags; 4777 4778 mutex_lock(&id_priv->handler_mutex); 4779 /* Record that we want to remove the device */ 4780 spin_lock_irqsave(&id_priv->lock, flags); 4781 state = id_priv->state; 4782 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4783 spin_unlock_irqrestore(&id_priv->lock, flags); 4784 mutex_unlock(&id_priv->handler_mutex); 4785 cma_id_put(id_priv); 4786 return; 4787 } 4788 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4789 spin_unlock_irqrestore(&id_priv->lock, flags); 4790 4791 if (cma_cm_event_handler(id_priv, &event)) { 4792 /* 4793 * At this point the ULP promises it won't call 4794 * rdma_destroy_id() concurrently 4795 */ 4796 cma_id_put(id_priv); 4797 mutex_unlock(&id_priv->handler_mutex); 4798 trace_cm_id_destroy(id_priv); 4799 _destroy_id(id_priv, state); 4800 return; 4801 } 4802 mutex_unlock(&id_priv->handler_mutex); 4803 4804 /* 4805 * If this races with destroy then the thread that first assigns state 4806 * to a destroying does the cancel. 4807 */ 4808 cma_cancel_operation(id_priv, state); 4809 cma_id_put(id_priv); 4810 } 4811 4812 static void cma_process_remove(struct cma_device *cma_dev) 4813 { 4814 mutex_lock(&lock); 4815 while (!list_empty(&cma_dev->id_list)) { 4816 struct rdma_id_private *id_priv = list_first_entry( 4817 &cma_dev->id_list, struct rdma_id_private, list); 4818 4819 list_del(&id_priv->listen_list); 4820 list_del_init(&id_priv->list); 4821 cma_id_get(id_priv); 4822 mutex_unlock(&lock); 4823 4824 cma_send_device_removal_put(id_priv); 4825 4826 mutex_lock(&lock); 4827 } 4828 mutex_unlock(&lock); 4829 4830 cma_dev_put(cma_dev); 4831 wait_for_completion(&cma_dev->comp); 4832 } 4833 4834 static void cma_remove_one(struct ib_device *device, void *client_data) 4835 { 4836 struct cma_device *cma_dev = client_data; 4837 4838 trace_cm_remove_one(device); 4839 4840 mutex_lock(&lock); 4841 list_del(&cma_dev->list); 4842 mutex_unlock(&lock); 4843 4844 cma_process_remove(cma_dev); 4845 kfree(cma_dev->default_roce_tos); 4846 kfree(cma_dev->default_gid_type); 4847 kfree(cma_dev); 4848 } 4849 4850 static int cma_init_net(struct net *net) 4851 { 4852 struct cma_pernet *pernet = cma_pernet(net); 4853 4854 xa_init(&pernet->tcp_ps); 4855 xa_init(&pernet->udp_ps); 4856 xa_init(&pernet->ipoib_ps); 4857 xa_init(&pernet->ib_ps); 4858 4859 return 0; 4860 } 4861 4862 static void cma_exit_net(struct net *net) 4863 { 4864 struct cma_pernet *pernet = cma_pernet(net); 4865 4866 WARN_ON(!xa_empty(&pernet->tcp_ps)); 4867 WARN_ON(!xa_empty(&pernet->udp_ps)); 4868 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 4869 WARN_ON(!xa_empty(&pernet->ib_ps)); 4870 } 4871 4872 static struct pernet_operations cma_pernet_operations = { 4873 .init = cma_init_net, 4874 .exit = cma_exit_net, 4875 .id = &cma_pernet_id, 4876 .size = sizeof(struct cma_pernet), 4877 }; 4878 4879 static int __init cma_init(void) 4880 { 4881 int ret; 4882 4883 /* 4884 * There is a rare lock ordering dependency in cma_netdev_callback() 4885 * that only happens when bonding is enabled. Teach lockdep that rtnl 4886 * must never be nested under lock so it can find these without having 4887 * to test with bonding. 4888 */ 4889 if (IS_ENABLED(CONFIG_LOCKDEP)) { 4890 rtnl_lock(); 4891 mutex_lock(&lock); 4892 mutex_unlock(&lock); 4893 rtnl_unlock(); 4894 } 4895 4896 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 4897 if (!cma_wq) 4898 return -ENOMEM; 4899 4900 ret = register_pernet_subsys(&cma_pernet_operations); 4901 if (ret) 4902 goto err_wq; 4903 4904 ib_sa_register_client(&sa_client); 4905 register_netdevice_notifier(&cma_nb); 4906 4907 ret = ib_register_client(&cma_client); 4908 if (ret) 4909 goto err; 4910 4911 ret = cma_configfs_init(); 4912 if (ret) 4913 goto err_ib; 4914 4915 return 0; 4916 4917 err_ib: 4918 ib_unregister_client(&cma_client); 4919 err: 4920 unregister_netdevice_notifier(&cma_nb); 4921 ib_sa_unregister_client(&sa_client); 4922 unregister_pernet_subsys(&cma_pernet_operations); 4923 err_wq: 4924 destroy_workqueue(cma_wq); 4925 return ret; 4926 } 4927 4928 static void __exit cma_cleanup(void) 4929 { 4930 cma_configfs_exit(); 4931 ib_unregister_client(&cma_client); 4932 unregister_netdevice_notifier(&cma_nb); 4933 ib_sa_unregister_client(&sa_client); 4934 unregister_pernet_subsys(&cma_pernet_operations); 4935 destroy_workqueue(cma_wq); 4936 } 4937 4938 module_init(cma_init); 4939 module_exit(cma_cleanup); 4940