xref: /openbmc/linux/drivers/infiniband/core/cma.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52 
53 static const char * const cma_events[] = {
54 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
55 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
56 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
57 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
58 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
59 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
61 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
62 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
63 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
64 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
65 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
66 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
67 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
68 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
69 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
70 };
71 
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 			      enum ib_gid_type gid_type);
74 
75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 	size_t index = event;
78 
79 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 			cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83 
84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 						int reason)
86 {
87 	if (rdma_ib_or_roce(id->device, id->port_num))
88 		return ibcm_reject_msg(reason);
89 
90 	if (rdma_protocol_iwarp(id->device, id->port_num))
91 		return iwcm_reject_msg(reason);
92 
93 	WARN_ON_ONCE(1);
94 	return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97 
98 /**
99  * rdma_is_consumer_reject - return true if the consumer rejected the connect
100  *                           request.
101  * @id: Communication identifier that received the REJECT event.
102  * @reason: Value returned in the REJECT event status field.
103  */
104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 	if (rdma_ib_or_roce(id->device, id->port_num))
107 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
108 
109 	if (rdma_protocol_iwarp(id->device, id->port_num))
110 		return reason == -ECONNREFUSED;
111 
112 	WARN_ON_ONCE(1);
113 	return false;
114 }
115 
116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 				      struct rdma_cm_event *ev, u8 *data_len)
118 {
119 	const void *p;
120 
121 	if (rdma_is_consumer_reject(id, ev->status)) {
122 		*data_len = ev->param.conn.private_data_len;
123 		p = ev->param.conn.private_data;
124 	} else {
125 		*data_len = 0;
126 		p = NULL;
127 	}
128 	return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131 
132 /**
133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134  * @id: Communication Identifier
135  */
136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 	struct rdma_id_private *id_priv;
139 
140 	id_priv = container_of(id, struct rdma_id_private, id);
141 	if (id->device->node_type == RDMA_NODE_RNIC)
142 		return id_priv->cm_id.iw;
143 	return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146 
147 /**
148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149  * @res: rdma resource tracking entry pointer
150  */
151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 	struct rdma_id_private *id_priv =
154 		container_of(res, struct rdma_id_private, res);
155 
156 	return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159 
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162 
163 static struct ib_client cma_client = {
164 	.name   = "cma",
165 	.add    = cma_add_one,
166 	.remove = cma_remove_one
167 };
168 
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178 
179 struct cma_pernet {
180 	struct xarray tcp_ps;
181 	struct xarray udp_ps;
182 	struct xarray ipoib_ps;
183 	struct xarray ib_ps;
184 };
185 
186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 	return net_generic(net, cma_pernet_id);
189 }
190 
191 static
192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 	struct cma_pernet *pernet = cma_pernet(net);
195 
196 	switch (ps) {
197 	case RDMA_PS_TCP:
198 		return &pernet->tcp_ps;
199 	case RDMA_PS_UDP:
200 		return &pernet->udp_ps;
201 	case RDMA_PS_IPOIB:
202 		return &pernet->ipoib_ps;
203 	case RDMA_PS_IB:
204 		return &pernet->ib_ps;
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 struct id_table_entry {
211 	struct list_head id_list;
212 	struct rb_node rb_node;
213 };
214 
215 struct cma_device {
216 	struct list_head	list;
217 	struct ib_device	*device;
218 	struct completion	comp;
219 	refcount_t refcount;
220 	struct list_head	id_list;
221 	enum ib_gid_type	*default_gid_type;
222 	u8			*default_roce_tos;
223 };
224 
225 struct rdma_bind_list {
226 	enum rdma_ucm_port_space ps;
227 	struct hlist_head	owners;
228 	unsigned short		port;
229 };
230 
231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 			struct rdma_bind_list *bind_list, int snum)
233 {
234 	struct xarray *xa = cma_pernet_xa(net, ps);
235 
236 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238 
239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 					  enum rdma_ucm_port_space ps, int snum)
241 {
242 	struct xarray *xa = cma_pernet_xa(net, ps);
243 
244 	return xa_load(xa, snum);
245 }
246 
247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 			  int snum)
249 {
250 	struct xarray *xa = cma_pernet_xa(net, ps);
251 
252 	xa_erase(xa, snum);
253 }
254 
255 enum {
256 	CMA_OPTION_AFONLY,
257 };
258 
259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 	refcount_inc(&cma_dev->refcount);
262 }
263 
264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 	if (refcount_dec_and_test(&cma_dev->refcount))
267 		complete(&cma_dev->comp);
268 }
269 
270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
271 					     void		*cookie)
272 {
273 	struct cma_device *cma_dev;
274 	struct cma_device *found_cma_dev = NULL;
275 
276 	mutex_lock(&lock);
277 
278 	list_for_each_entry(cma_dev, &dev_list, list)
279 		if (filter(cma_dev->device, cookie)) {
280 			found_cma_dev = cma_dev;
281 			break;
282 		}
283 
284 	if (found_cma_dev)
285 		cma_dev_get(found_cma_dev);
286 	mutex_unlock(&lock);
287 	return found_cma_dev;
288 }
289 
290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 			     u32 port)
292 {
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298 
299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 			     u32 port,
301 			     enum ib_gid_type default_gid_type)
302 {
303 	unsigned long supported_gids;
304 
305 	if (!rdma_is_port_valid(cma_dev->device, port))
306 		return -EINVAL;
307 
308 	if (default_gid_type == IB_GID_TYPE_IB &&
309 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 		default_gid_type = IB_GID_TYPE_ROCE;
311 
312 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313 
314 	if (!(supported_gids & 1 << default_gid_type))
315 		return -EINVAL;
316 
317 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 		default_gid_type;
319 
320 	return 0;
321 }
322 
323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 	if (!rdma_is_port_valid(cma_dev->device, port))
326 		return -EINVAL;
327 
328 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330 
331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 			     u8 default_roce_tos)
333 {
334 	if (!rdma_is_port_valid(cma_dev->device, port))
335 		return -EINVAL;
336 
337 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 		 default_roce_tos;
339 
340 	return 0;
341 }
342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 	return cma_dev->device;
345 }
346 
347 /*
348  * Device removal can occur at anytime, so we need extra handling to
349  * serialize notifying the user of device removal with other callbacks.
350  * We do this by disabling removal notification while a callback is in process,
351  * and reporting it after the callback completes.
352  */
353 
354 struct cma_multicast {
355 	struct rdma_id_private *id_priv;
356 	union {
357 		struct ib_sa_multicast *sa_mc;
358 		struct {
359 			struct work_struct work;
360 			struct rdma_cm_event event;
361 		} iboe_join;
362 	};
363 	struct list_head	list;
364 	void			*context;
365 	struct sockaddr_storage	addr;
366 	u8			join_state;
367 };
368 
369 struct cma_work {
370 	struct work_struct	work;
371 	struct rdma_id_private	*id;
372 	enum rdma_cm_state	old_state;
373 	enum rdma_cm_state	new_state;
374 	struct rdma_cm_event	event;
375 };
376 
377 union cma_ip_addr {
378 	struct in6_addr ip6;
379 	struct {
380 		__be32 pad[3];
381 		__be32 addr;
382 	} ip4;
383 };
384 
385 struct cma_hdr {
386 	u8 cma_version;
387 	u8 ip_version;	/* IP version: 7:4 */
388 	__be16 port;
389 	union cma_ip_addr src_addr;
390 	union cma_ip_addr dst_addr;
391 };
392 
393 #define CMA_VERSION 0x00
394 
395 struct cma_req_info {
396 	struct sockaddr_storage listen_addr_storage;
397 	struct sockaddr_storage src_addr_storage;
398 	struct ib_device *device;
399 	union ib_gid local_gid;
400 	__be64 service_id;
401 	int port;
402 	bool has_gid;
403 	u16 pkey;
404 };
405 
406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 	unsigned long flags;
410 	int ret;
411 
412 	/*
413 	 * The FSM uses a funny double locking where state is protected by both
414 	 * the handler_mutex and the spinlock. State is not allowed to change
415 	 * to/from a handler_mutex protected value without also holding
416 	 * handler_mutex.
417 	 */
418 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 		lockdep_assert_held(&id_priv->handler_mutex);
420 
421 	spin_lock_irqsave(&id_priv->lock, flags);
422 	if ((ret = (id_priv->state == comp)))
423 		id_priv->state = exch;
424 	spin_unlock_irqrestore(&id_priv->lock, flags);
425 	return ret;
426 }
427 
428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 	return hdr->ip_version >> 4;
431 }
432 
433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437 
438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442 
443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447 
448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 	struct in_device *in_dev = NULL;
451 
452 	if (ndev) {
453 		rtnl_lock();
454 		in_dev = __in_dev_get_rtnl(ndev);
455 		if (in_dev) {
456 			if (join)
457 				ip_mc_inc_group(in_dev,
458 						*(__be32 *)(mgid->raw + 12));
459 			else
460 				ip_mc_dec_group(in_dev,
461 						*(__be32 *)(mgid->raw + 12));
462 		}
463 		rtnl_unlock();
464 	}
465 	return (in_dev) ? 0 : -ENODEV;
466 }
467 
468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 				 struct id_table_entry *entry_b)
470 {
471 	struct rdma_id_private *id_priv = list_first_entry(
472 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
473 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 	struct sockaddr *sb = cma_dst_addr(id_priv);
475 
476 	if (ifindex_a != ifindex_b)
477 		return (ifindex_a > ifindex_b) ? 1 : -1;
478 
479 	if (sa->sa_family != sb->sa_family)
480 		return sa->sa_family - sb->sa_family;
481 
482 	if (sa->sa_family == AF_INET &&
483 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 			      &((struct sockaddr_in *)sb)->sin_addr,
486 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 	}
488 
489 	if (sa->sa_family == AF_INET6 &&
490 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
493 	}
494 
495 	return -1;
496 }
497 
498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 	struct rb_node **new, *parent = NULL;
501 	struct id_table_entry *this, *node;
502 	unsigned long flags;
503 	int result;
504 
505 	node = kzalloc(sizeof(*node), GFP_KERNEL);
506 	if (!node)
507 		return -ENOMEM;
508 
509 	spin_lock_irqsave(&id_table_lock, flags);
510 	new = &id_table.rb_node;
511 	while (*new) {
512 		this = container_of(*new, struct id_table_entry, rb_node);
513 		result = compare_netdev_and_ip(
514 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 			cma_dst_addr(node_id_priv), this);
516 
517 		parent = *new;
518 		if (result < 0)
519 			new = &((*new)->rb_left);
520 		else if (result > 0)
521 			new = &((*new)->rb_right);
522 		else {
523 			list_add_tail(&node_id_priv->id_list_entry,
524 				      &this->id_list);
525 			kfree(node);
526 			goto unlock;
527 		}
528 	}
529 
530 	INIT_LIST_HEAD(&node->id_list);
531 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532 
533 	rb_link_node(&node->rb_node, parent, new);
534 	rb_insert_color(&node->rb_node, &id_table);
535 
536 unlock:
537 	spin_unlock_irqrestore(&id_table_lock, flags);
538 	return 0;
539 }
540 
541 static struct id_table_entry *
542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 	struct rb_node *node = root->rb_node;
545 	struct id_table_entry *data;
546 	int result;
547 
548 	while (node) {
549 		data = container_of(node, struct id_table_entry, rb_node);
550 		result = compare_netdev_and_ip(ifindex, sa, data);
551 		if (result < 0)
552 			node = node->rb_left;
553 		else if (result > 0)
554 			node = node->rb_right;
555 		else
556 			return data;
557 	}
558 
559 	return NULL;
560 }
561 
562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 	struct id_table_entry *data;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&id_table_lock, flags);
568 	if (list_empty(&id_priv->id_list_entry))
569 		goto out;
570 
571 	data = node_from_ndev_ip(&id_table,
572 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 				 cma_dst_addr(id_priv));
574 	if (!data)
575 		goto out;
576 
577 	list_del_init(&id_priv->id_list_entry);
578 	if (list_empty(&data->id_list)) {
579 		rb_erase(&data->rb_node, &id_table);
580 		kfree(data);
581 	}
582 out:
583 	spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585 
586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 			       struct cma_device *cma_dev)
588 {
589 	cma_dev_get(cma_dev);
590 	id_priv->cma_dev = cma_dev;
591 	id_priv->id.device = cma_dev->device;
592 	id_priv->id.route.addr.dev_addr.transport =
593 		rdma_node_get_transport(cma_dev->device->node_type);
594 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595 
596 	trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598 
599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 			      struct cma_device *cma_dev)
601 {
602 	_cma_attach_to_dev(id_priv, cma_dev);
603 	id_priv->gid_type =
604 		cma_dev->default_gid_type[id_priv->id.port_num -
605 					  rdma_start_port(cma_dev->device)];
606 }
607 
608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 	mutex_lock(&lock);
611 	list_del_init(&id_priv->device_item);
612 	cma_dev_put(id_priv->cma_dev);
613 	id_priv->cma_dev = NULL;
614 	id_priv->id.device = NULL;
615 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 	}
619 	mutex_unlock(&lock);
620 }
621 
622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 	return id_priv->id.route.addr.src_addr.ss_family;
625 }
626 
627 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
628 {
629 	struct ib_sa_mcmember_rec rec;
630 	int ret = 0;
631 
632 	if (id_priv->qkey) {
633 		if (qkey && id_priv->qkey != qkey)
634 			return -EINVAL;
635 		return 0;
636 	}
637 
638 	if (qkey) {
639 		id_priv->qkey = qkey;
640 		return 0;
641 	}
642 
643 	switch (id_priv->id.ps) {
644 	case RDMA_PS_UDP:
645 	case RDMA_PS_IB:
646 		id_priv->qkey = RDMA_UDP_QKEY;
647 		break;
648 	case RDMA_PS_IPOIB:
649 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
650 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
651 					     id_priv->id.port_num, &rec.mgid,
652 					     &rec);
653 		if (!ret)
654 			id_priv->qkey = be32_to_cpu(rec.qkey);
655 		break;
656 	default:
657 		break;
658 	}
659 	return ret;
660 }
661 
662 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
663 {
664 	dev_addr->dev_type = ARPHRD_INFINIBAND;
665 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
666 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
667 }
668 
669 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
670 {
671 	int ret;
672 
673 	if (addr->sa_family != AF_IB) {
674 		ret = rdma_translate_ip(addr, dev_addr);
675 	} else {
676 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
677 		ret = 0;
678 	}
679 
680 	return ret;
681 }
682 
683 static const struct ib_gid_attr *
684 cma_validate_port(struct ib_device *device, u32 port,
685 		  enum ib_gid_type gid_type,
686 		  union ib_gid *gid,
687 		  struct rdma_id_private *id_priv)
688 {
689 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
690 	int bound_if_index = dev_addr->bound_dev_if;
691 	const struct ib_gid_attr *sgid_attr;
692 	int dev_type = dev_addr->dev_type;
693 	struct net_device *ndev = NULL;
694 
695 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
696 		return ERR_PTR(-ENODEV);
697 
698 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
699 		return ERR_PTR(-ENODEV);
700 
701 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
702 		return ERR_PTR(-ENODEV);
703 
704 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
705 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
706 		if (!ndev)
707 			return ERR_PTR(-ENODEV);
708 	} else {
709 		gid_type = IB_GID_TYPE_IB;
710 	}
711 
712 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
713 	if (ndev)
714 		dev_put(ndev);
715 	return sgid_attr;
716 }
717 
718 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
719 			       const struct ib_gid_attr *sgid_attr)
720 {
721 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
722 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
723 }
724 
725 /**
726  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
727  * based on source ip address.
728  * @id_priv:	cm_id which should be bound to cma device
729  *
730  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
731  * based on source IP address. It returns 0 on success or error code otherwise.
732  * It is applicable to active and passive side cm_id.
733  */
734 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
735 {
736 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
737 	const struct ib_gid_attr *sgid_attr;
738 	union ib_gid gid, iboe_gid, *gidp;
739 	struct cma_device *cma_dev;
740 	enum ib_gid_type gid_type;
741 	int ret = -ENODEV;
742 	u32 port;
743 
744 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
745 	    id_priv->id.ps == RDMA_PS_IPOIB)
746 		return -EINVAL;
747 
748 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
749 		    &iboe_gid);
750 
751 	memcpy(&gid, dev_addr->src_dev_addr +
752 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
753 
754 	mutex_lock(&lock);
755 	list_for_each_entry(cma_dev, &dev_list, list) {
756 		rdma_for_each_port (cma_dev->device, port) {
757 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
758 			       &iboe_gid : &gid;
759 			gid_type = cma_dev->default_gid_type[port - 1];
760 			sgid_attr = cma_validate_port(cma_dev->device, port,
761 						      gid_type, gidp, id_priv);
762 			if (!IS_ERR(sgid_attr)) {
763 				id_priv->id.port_num = port;
764 				cma_bind_sgid_attr(id_priv, sgid_attr);
765 				cma_attach_to_dev(id_priv, cma_dev);
766 				ret = 0;
767 				goto out;
768 			}
769 		}
770 	}
771 out:
772 	mutex_unlock(&lock);
773 	return ret;
774 }
775 
776 /**
777  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
778  * @id_priv:		cm id to bind to cma device
779  * @listen_id_priv:	listener cm id to match against
780  * @req:		Pointer to req structure containaining incoming
781  *			request information
782  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
783  * rdma device matches for listen_id and incoming request. It also verifies
784  * that a GID table entry is present for the source address.
785  * Returns 0 on success, or returns error code otherwise.
786  */
787 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
788 			      const struct rdma_id_private *listen_id_priv,
789 			      struct cma_req_info *req)
790 {
791 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
792 	const struct ib_gid_attr *sgid_attr;
793 	enum ib_gid_type gid_type;
794 	union ib_gid gid;
795 
796 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
797 	    id_priv->id.ps == RDMA_PS_IPOIB)
798 		return -EINVAL;
799 
800 	if (rdma_protocol_roce(req->device, req->port))
801 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
802 			    &gid);
803 	else
804 		memcpy(&gid, dev_addr->src_dev_addr +
805 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
806 
807 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
808 	sgid_attr = cma_validate_port(req->device, req->port,
809 				      gid_type, &gid, id_priv);
810 	if (IS_ERR(sgid_attr))
811 		return PTR_ERR(sgid_attr);
812 
813 	id_priv->id.port_num = req->port;
814 	cma_bind_sgid_attr(id_priv, sgid_attr);
815 	/* Need to acquire lock to protect against reader
816 	 * of cma_dev->id_list such as cma_netdev_callback() and
817 	 * cma_process_remove().
818 	 */
819 	mutex_lock(&lock);
820 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
821 	mutex_unlock(&lock);
822 	rdma_restrack_add(&id_priv->res);
823 	return 0;
824 }
825 
826 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
827 			      const struct rdma_id_private *listen_id_priv)
828 {
829 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
830 	const struct ib_gid_attr *sgid_attr;
831 	struct cma_device *cma_dev;
832 	enum ib_gid_type gid_type;
833 	int ret = -ENODEV;
834 	union ib_gid gid;
835 	u32 port;
836 
837 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
838 	    id_priv->id.ps == RDMA_PS_IPOIB)
839 		return -EINVAL;
840 
841 	memcpy(&gid, dev_addr->src_dev_addr +
842 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
843 
844 	mutex_lock(&lock);
845 
846 	cma_dev = listen_id_priv->cma_dev;
847 	port = listen_id_priv->id.port_num;
848 	gid_type = listen_id_priv->gid_type;
849 	sgid_attr = cma_validate_port(cma_dev->device, port,
850 				      gid_type, &gid, id_priv);
851 	if (!IS_ERR(sgid_attr)) {
852 		id_priv->id.port_num = port;
853 		cma_bind_sgid_attr(id_priv, sgid_attr);
854 		ret = 0;
855 		goto out;
856 	}
857 
858 	list_for_each_entry(cma_dev, &dev_list, list) {
859 		rdma_for_each_port (cma_dev->device, port) {
860 			if (listen_id_priv->cma_dev == cma_dev &&
861 			    listen_id_priv->id.port_num == port)
862 				continue;
863 
864 			gid_type = cma_dev->default_gid_type[port - 1];
865 			sgid_attr = cma_validate_port(cma_dev->device, port,
866 						      gid_type, &gid, id_priv);
867 			if (!IS_ERR(sgid_attr)) {
868 				id_priv->id.port_num = port;
869 				cma_bind_sgid_attr(id_priv, sgid_attr);
870 				ret = 0;
871 				goto out;
872 			}
873 		}
874 	}
875 
876 out:
877 	if (!ret) {
878 		cma_attach_to_dev(id_priv, cma_dev);
879 		rdma_restrack_add(&id_priv->res);
880 	}
881 
882 	mutex_unlock(&lock);
883 	return ret;
884 }
885 
886 /*
887  * Select the source IB device and address to reach the destination IB address.
888  */
889 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
890 {
891 	struct cma_device *cma_dev, *cur_dev;
892 	struct sockaddr_ib *addr;
893 	union ib_gid gid, sgid, *dgid;
894 	unsigned int p;
895 	u16 pkey, index;
896 	enum ib_port_state port_state;
897 	int ret;
898 	int i;
899 
900 	cma_dev = NULL;
901 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
902 	dgid = (union ib_gid *) &addr->sib_addr;
903 	pkey = ntohs(addr->sib_pkey);
904 
905 	mutex_lock(&lock);
906 	list_for_each_entry(cur_dev, &dev_list, list) {
907 		rdma_for_each_port (cur_dev->device, p) {
908 			if (!rdma_cap_af_ib(cur_dev->device, p))
909 				continue;
910 
911 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
912 				continue;
913 
914 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
915 				continue;
916 
917 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
918 			     ++i) {
919 				ret = rdma_query_gid(cur_dev->device, p, i,
920 						     &gid);
921 				if (ret)
922 					continue;
923 
924 				if (!memcmp(&gid, dgid, sizeof(gid))) {
925 					cma_dev = cur_dev;
926 					sgid = gid;
927 					id_priv->id.port_num = p;
928 					goto found;
929 				}
930 
931 				if (!cma_dev && (gid.global.subnet_prefix ==
932 				    dgid->global.subnet_prefix) &&
933 				    port_state == IB_PORT_ACTIVE) {
934 					cma_dev = cur_dev;
935 					sgid = gid;
936 					id_priv->id.port_num = p;
937 					goto found;
938 				}
939 			}
940 		}
941 	}
942 	mutex_unlock(&lock);
943 	return -ENODEV;
944 
945 found:
946 	cma_attach_to_dev(id_priv, cma_dev);
947 	rdma_restrack_add(&id_priv->res);
948 	mutex_unlock(&lock);
949 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
950 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
951 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
952 	return 0;
953 }
954 
955 static void cma_id_get(struct rdma_id_private *id_priv)
956 {
957 	refcount_inc(&id_priv->refcount);
958 }
959 
960 static void cma_id_put(struct rdma_id_private *id_priv)
961 {
962 	if (refcount_dec_and_test(&id_priv->refcount))
963 		complete(&id_priv->comp);
964 }
965 
966 static struct rdma_id_private *
967 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
968 		 void *context, enum rdma_ucm_port_space ps,
969 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
970 {
971 	struct rdma_id_private *id_priv;
972 
973 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
974 	if (!id_priv)
975 		return ERR_PTR(-ENOMEM);
976 
977 	id_priv->state = RDMA_CM_IDLE;
978 	id_priv->id.context = context;
979 	id_priv->id.event_handler = event_handler;
980 	id_priv->id.ps = ps;
981 	id_priv->id.qp_type = qp_type;
982 	id_priv->tos_set = false;
983 	id_priv->timeout_set = false;
984 	id_priv->min_rnr_timer_set = false;
985 	id_priv->gid_type = IB_GID_TYPE_IB;
986 	spin_lock_init(&id_priv->lock);
987 	mutex_init(&id_priv->qp_mutex);
988 	init_completion(&id_priv->comp);
989 	refcount_set(&id_priv->refcount, 1);
990 	mutex_init(&id_priv->handler_mutex);
991 	INIT_LIST_HEAD(&id_priv->device_item);
992 	INIT_LIST_HEAD(&id_priv->id_list_entry);
993 	INIT_LIST_HEAD(&id_priv->listen_list);
994 	INIT_LIST_HEAD(&id_priv->mc_list);
995 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
996 	id_priv->id.route.addr.dev_addr.net = get_net(net);
997 	id_priv->seq_num &= 0x00ffffff;
998 
999 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1000 	if (parent)
1001 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1002 
1003 	return id_priv;
1004 }
1005 
1006 struct rdma_cm_id *
1007 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1008 			void *context, enum rdma_ucm_port_space ps,
1009 			enum ib_qp_type qp_type, const char *caller)
1010 {
1011 	struct rdma_id_private *ret;
1012 
1013 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1014 	if (IS_ERR(ret))
1015 		return ERR_CAST(ret);
1016 
1017 	rdma_restrack_set_name(&ret->res, caller);
1018 	return &ret->id;
1019 }
1020 EXPORT_SYMBOL(__rdma_create_kernel_id);
1021 
1022 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1023 				       void *context,
1024 				       enum rdma_ucm_port_space ps,
1025 				       enum ib_qp_type qp_type)
1026 {
1027 	struct rdma_id_private *ret;
1028 
1029 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1030 			       ps, qp_type, NULL);
1031 	if (IS_ERR(ret))
1032 		return ERR_CAST(ret);
1033 
1034 	rdma_restrack_set_name(&ret->res, NULL);
1035 	return &ret->id;
1036 }
1037 EXPORT_SYMBOL(rdma_create_user_id);
1038 
1039 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1040 {
1041 	struct ib_qp_attr qp_attr;
1042 	int qp_attr_mask, ret;
1043 
1044 	qp_attr.qp_state = IB_QPS_INIT;
1045 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1046 	if (ret)
1047 		return ret;
1048 
1049 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1050 	if (ret)
1051 		return ret;
1052 
1053 	qp_attr.qp_state = IB_QPS_RTR;
1054 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1055 	if (ret)
1056 		return ret;
1057 
1058 	qp_attr.qp_state = IB_QPS_RTS;
1059 	qp_attr.sq_psn = 0;
1060 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1061 
1062 	return ret;
1063 }
1064 
1065 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1066 {
1067 	struct ib_qp_attr qp_attr;
1068 	int qp_attr_mask, ret;
1069 
1070 	qp_attr.qp_state = IB_QPS_INIT;
1071 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1072 	if (ret)
1073 		return ret;
1074 
1075 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1076 }
1077 
1078 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1079 		   struct ib_qp_init_attr *qp_init_attr)
1080 {
1081 	struct rdma_id_private *id_priv;
1082 	struct ib_qp *qp;
1083 	int ret;
1084 
1085 	id_priv = container_of(id, struct rdma_id_private, id);
1086 	if (id->device != pd->device) {
1087 		ret = -EINVAL;
1088 		goto out_err;
1089 	}
1090 
1091 	qp_init_attr->port_num = id->port_num;
1092 	qp = ib_create_qp(pd, qp_init_attr);
1093 	if (IS_ERR(qp)) {
1094 		ret = PTR_ERR(qp);
1095 		goto out_err;
1096 	}
1097 
1098 	if (id->qp_type == IB_QPT_UD)
1099 		ret = cma_init_ud_qp(id_priv, qp);
1100 	else
1101 		ret = cma_init_conn_qp(id_priv, qp);
1102 	if (ret)
1103 		goto out_destroy;
1104 
1105 	id->qp = qp;
1106 	id_priv->qp_num = qp->qp_num;
1107 	id_priv->srq = (qp->srq != NULL);
1108 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1109 	return 0;
1110 out_destroy:
1111 	ib_destroy_qp(qp);
1112 out_err:
1113 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1114 	return ret;
1115 }
1116 EXPORT_SYMBOL(rdma_create_qp);
1117 
1118 void rdma_destroy_qp(struct rdma_cm_id *id)
1119 {
1120 	struct rdma_id_private *id_priv;
1121 
1122 	id_priv = container_of(id, struct rdma_id_private, id);
1123 	trace_cm_qp_destroy(id_priv);
1124 	mutex_lock(&id_priv->qp_mutex);
1125 	ib_destroy_qp(id_priv->id.qp);
1126 	id_priv->id.qp = NULL;
1127 	mutex_unlock(&id_priv->qp_mutex);
1128 }
1129 EXPORT_SYMBOL(rdma_destroy_qp);
1130 
1131 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1132 			     struct rdma_conn_param *conn_param)
1133 {
1134 	struct ib_qp_attr qp_attr;
1135 	int qp_attr_mask, ret;
1136 
1137 	mutex_lock(&id_priv->qp_mutex);
1138 	if (!id_priv->id.qp) {
1139 		ret = 0;
1140 		goto out;
1141 	}
1142 
1143 	/* Need to update QP attributes from default values. */
1144 	qp_attr.qp_state = IB_QPS_INIT;
1145 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1146 	if (ret)
1147 		goto out;
1148 
1149 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1150 	if (ret)
1151 		goto out;
1152 
1153 	qp_attr.qp_state = IB_QPS_RTR;
1154 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1155 	if (ret)
1156 		goto out;
1157 
1158 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1159 
1160 	if (conn_param)
1161 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1162 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1163 out:
1164 	mutex_unlock(&id_priv->qp_mutex);
1165 	return ret;
1166 }
1167 
1168 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1169 			     struct rdma_conn_param *conn_param)
1170 {
1171 	struct ib_qp_attr qp_attr;
1172 	int qp_attr_mask, ret;
1173 
1174 	mutex_lock(&id_priv->qp_mutex);
1175 	if (!id_priv->id.qp) {
1176 		ret = 0;
1177 		goto out;
1178 	}
1179 
1180 	qp_attr.qp_state = IB_QPS_RTS;
1181 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1182 	if (ret)
1183 		goto out;
1184 
1185 	if (conn_param)
1186 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1187 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1188 out:
1189 	mutex_unlock(&id_priv->qp_mutex);
1190 	return ret;
1191 }
1192 
1193 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1194 {
1195 	struct ib_qp_attr qp_attr;
1196 	int ret;
1197 
1198 	mutex_lock(&id_priv->qp_mutex);
1199 	if (!id_priv->id.qp) {
1200 		ret = 0;
1201 		goto out;
1202 	}
1203 
1204 	qp_attr.qp_state = IB_QPS_ERR;
1205 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1206 out:
1207 	mutex_unlock(&id_priv->qp_mutex);
1208 	return ret;
1209 }
1210 
1211 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1212 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1213 {
1214 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1215 	int ret;
1216 	u16 pkey;
1217 
1218 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1219 		pkey = 0xffff;
1220 	else
1221 		pkey = ib_addr_get_pkey(dev_addr);
1222 
1223 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1224 				  pkey, &qp_attr->pkey_index);
1225 	if (ret)
1226 		return ret;
1227 
1228 	qp_attr->port_num = id_priv->id.port_num;
1229 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1230 
1231 	if (id_priv->id.qp_type == IB_QPT_UD) {
1232 		ret = cma_set_qkey(id_priv, 0);
1233 		if (ret)
1234 			return ret;
1235 
1236 		qp_attr->qkey = id_priv->qkey;
1237 		*qp_attr_mask |= IB_QP_QKEY;
1238 	} else {
1239 		qp_attr->qp_access_flags = 0;
1240 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1241 	}
1242 	return 0;
1243 }
1244 
1245 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1246 		       int *qp_attr_mask)
1247 {
1248 	struct rdma_id_private *id_priv;
1249 	int ret = 0;
1250 
1251 	id_priv = container_of(id, struct rdma_id_private, id);
1252 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1253 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1254 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1255 		else
1256 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1257 						 qp_attr_mask);
1258 
1259 		if (qp_attr->qp_state == IB_QPS_RTR)
1260 			qp_attr->rq_psn = id_priv->seq_num;
1261 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1262 		if (!id_priv->cm_id.iw) {
1263 			qp_attr->qp_access_flags = 0;
1264 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1265 		} else
1266 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1267 						 qp_attr_mask);
1268 		qp_attr->port_num = id_priv->id.port_num;
1269 		*qp_attr_mask |= IB_QP_PORT;
1270 	} else {
1271 		ret = -ENOSYS;
1272 	}
1273 
1274 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1275 		qp_attr->timeout = id_priv->timeout;
1276 
1277 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1278 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1279 
1280 	return ret;
1281 }
1282 EXPORT_SYMBOL(rdma_init_qp_attr);
1283 
1284 static inline bool cma_zero_addr(const struct sockaddr *addr)
1285 {
1286 	switch (addr->sa_family) {
1287 	case AF_INET:
1288 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1289 	case AF_INET6:
1290 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1291 	case AF_IB:
1292 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1293 	default:
1294 		return false;
1295 	}
1296 }
1297 
1298 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1299 {
1300 	switch (addr->sa_family) {
1301 	case AF_INET:
1302 		return ipv4_is_loopback(
1303 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1304 	case AF_INET6:
1305 		return ipv6_addr_loopback(
1306 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1307 	case AF_IB:
1308 		return ib_addr_loopback(
1309 			&((struct sockaddr_ib *)addr)->sib_addr);
1310 	default:
1311 		return false;
1312 	}
1313 }
1314 
1315 static inline bool cma_any_addr(const struct sockaddr *addr)
1316 {
1317 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1318 }
1319 
1320 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1321 {
1322 	if (src->sa_family != dst->sa_family)
1323 		return -1;
1324 
1325 	switch (src->sa_family) {
1326 	case AF_INET:
1327 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1328 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1329 	case AF_INET6: {
1330 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1331 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1332 		bool link_local;
1333 
1334 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1335 					  &dst_addr6->sin6_addr))
1336 			return 1;
1337 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1338 			     IPV6_ADDR_LINKLOCAL;
1339 		/* Link local must match their scope_ids */
1340 		return link_local ? (src_addr6->sin6_scope_id !=
1341 				     dst_addr6->sin6_scope_id) :
1342 				    0;
1343 	}
1344 
1345 	default:
1346 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1347 				   &((struct sockaddr_ib *) dst)->sib_addr);
1348 	}
1349 }
1350 
1351 static __be16 cma_port(const struct sockaddr *addr)
1352 {
1353 	struct sockaddr_ib *sib;
1354 
1355 	switch (addr->sa_family) {
1356 	case AF_INET:
1357 		return ((struct sockaddr_in *) addr)->sin_port;
1358 	case AF_INET6:
1359 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1360 	case AF_IB:
1361 		sib = (struct sockaddr_ib *) addr;
1362 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1363 				    be64_to_cpu(sib->sib_sid_mask)));
1364 	default:
1365 		return 0;
1366 	}
1367 }
1368 
1369 static inline int cma_any_port(const struct sockaddr *addr)
1370 {
1371 	return !cma_port(addr);
1372 }
1373 
1374 static void cma_save_ib_info(struct sockaddr *src_addr,
1375 			     struct sockaddr *dst_addr,
1376 			     const struct rdma_cm_id *listen_id,
1377 			     const struct sa_path_rec *path)
1378 {
1379 	struct sockaddr_ib *listen_ib, *ib;
1380 
1381 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1382 	if (src_addr) {
1383 		ib = (struct sockaddr_ib *)src_addr;
1384 		ib->sib_family = AF_IB;
1385 		if (path) {
1386 			ib->sib_pkey = path->pkey;
1387 			ib->sib_flowinfo = path->flow_label;
1388 			memcpy(&ib->sib_addr, &path->sgid, 16);
1389 			ib->sib_sid = path->service_id;
1390 			ib->sib_scope_id = 0;
1391 		} else {
1392 			ib->sib_pkey = listen_ib->sib_pkey;
1393 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1394 			ib->sib_addr = listen_ib->sib_addr;
1395 			ib->sib_sid = listen_ib->sib_sid;
1396 			ib->sib_scope_id = listen_ib->sib_scope_id;
1397 		}
1398 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1399 	}
1400 	if (dst_addr) {
1401 		ib = (struct sockaddr_ib *)dst_addr;
1402 		ib->sib_family = AF_IB;
1403 		if (path) {
1404 			ib->sib_pkey = path->pkey;
1405 			ib->sib_flowinfo = path->flow_label;
1406 			memcpy(&ib->sib_addr, &path->dgid, 16);
1407 		}
1408 	}
1409 }
1410 
1411 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1412 			      struct sockaddr_in *dst_addr,
1413 			      struct cma_hdr *hdr,
1414 			      __be16 local_port)
1415 {
1416 	if (src_addr) {
1417 		*src_addr = (struct sockaddr_in) {
1418 			.sin_family = AF_INET,
1419 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1420 			.sin_port = local_port,
1421 		};
1422 	}
1423 
1424 	if (dst_addr) {
1425 		*dst_addr = (struct sockaddr_in) {
1426 			.sin_family = AF_INET,
1427 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1428 			.sin_port = hdr->port,
1429 		};
1430 	}
1431 }
1432 
1433 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1434 			      struct sockaddr_in6 *dst_addr,
1435 			      struct cma_hdr *hdr,
1436 			      __be16 local_port)
1437 {
1438 	if (src_addr) {
1439 		*src_addr = (struct sockaddr_in6) {
1440 			.sin6_family = AF_INET6,
1441 			.sin6_addr = hdr->dst_addr.ip6,
1442 			.sin6_port = local_port,
1443 		};
1444 	}
1445 
1446 	if (dst_addr) {
1447 		*dst_addr = (struct sockaddr_in6) {
1448 			.sin6_family = AF_INET6,
1449 			.sin6_addr = hdr->src_addr.ip6,
1450 			.sin6_port = hdr->port,
1451 		};
1452 	}
1453 }
1454 
1455 static u16 cma_port_from_service_id(__be64 service_id)
1456 {
1457 	return (u16)be64_to_cpu(service_id);
1458 }
1459 
1460 static int cma_save_ip_info(struct sockaddr *src_addr,
1461 			    struct sockaddr *dst_addr,
1462 			    const struct ib_cm_event *ib_event,
1463 			    __be64 service_id)
1464 {
1465 	struct cma_hdr *hdr;
1466 	__be16 port;
1467 
1468 	hdr = ib_event->private_data;
1469 	if (hdr->cma_version != CMA_VERSION)
1470 		return -EINVAL;
1471 
1472 	port = htons(cma_port_from_service_id(service_id));
1473 
1474 	switch (cma_get_ip_ver(hdr)) {
1475 	case 4:
1476 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1477 				  (struct sockaddr_in *)dst_addr, hdr, port);
1478 		break;
1479 	case 6:
1480 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1481 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1482 		break;
1483 	default:
1484 		return -EAFNOSUPPORT;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int cma_save_net_info(struct sockaddr *src_addr,
1491 			     struct sockaddr *dst_addr,
1492 			     const struct rdma_cm_id *listen_id,
1493 			     const struct ib_cm_event *ib_event,
1494 			     sa_family_t sa_family, __be64 service_id)
1495 {
1496 	if (sa_family == AF_IB) {
1497 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1498 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1499 					 ib_event->param.req_rcvd.primary_path);
1500 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1501 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1502 		return 0;
1503 	}
1504 
1505 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1506 }
1507 
1508 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1509 			     struct cma_req_info *req)
1510 {
1511 	const struct ib_cm_req_event_param *req_param =
1512 		&ib_event->param.req_rcvd;
1513 	const struct ib_cm_sidr_req_event_param *sidr_param =
1514 		&ib_event->param.sidr_req_rcvd;
1515 
1516 	switch (ib_event->event) {
1517 	case IB_CM_REQ_RECEIVED:
1518 		req->device	= req_param->listen_id->device;
1519 		req->port	= req_param->port;
1520 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1521 		       sizeof(req->local_gid));
1522 		req->has_gid	= true;
1523 		req->service_id = req_param->primary_path->service_id;
1524 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1525 		if (req->pkey != req_param->bth_pkey)
1526 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1527 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1528 					    req_param->bth_pkey, req->pkey);
1529 		break;
1530 	case IB_CM_SIDR_REQ_RECEIVED:
1531 		req->device	= sidr_param->listen_id->device;
1532 		req->port	= sidr_param->port;
1533 		req->has_gid	= false;
1534 		req->service_id	= sidr_param->service_id;
1535 		req->pkey	= sidr_param->pkey;
1536 		if (req->pkey != sidr_param->bth_pkey)
1537 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1538 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1539 					    sidr_param->bth_pkey, req->pkey);
1540 		break;
1541 	default:
1542 		return -EINVAL;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1549 				  const struct sockaddr_in *dst_addr,
1550 				  const struct sockaddr_in *src_addr)
1551 {
1552 	__be32 daddr = dst_addr->sin_addr.s_addr,
1553 	       saddr = src_addr->sin_addr.s_addr;
1554 	struct fib_result res;
1555 	struct flowi4 fl4;
1556 	int err;
1557 	bool ret;
1558 
1559 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1560 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1561 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1562 	    ipv4_is_loopback(saddr))
1563 		return false;
1564 
1565 	memset(&fl4, 0, sizeof(fl4));
1566 	fl4.flowi4_oif = net_dev->ifindex;
1567 	fl4.daddr = daddr;
1568 	fl4.saddr = saddr;
1569 
1570 	rcu_read_lock();
1571 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1572 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1573 	rcu_read_unlock();
1574 
1575 	return ret;
1576 }
1577 
1578 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1579 				  const struct sockaddr_in6 *dst_addr,
1580 				  const struct sockaddr_in6 *src_addr)
1581 {
1582 #if IS_ENABLED(CONFIG_IPV6)
1583 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1584 			   IPV6_ADDR_LINKLOCAL;
1585 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1586 					 &src_addr->sin6_addr, net_dev->ifindex,
1587 					 NULL, strict);
1588 	bool ret;
1589 
1590 	if (!rt)
1591 		return false;
1592 
1593 	ret = rt->rt6i_idev->dev == net_dev;
1594 	ip6_rt_put(rt);
1595 
1596 	return ret;
1597 #else
1598 	return false;
1599 #endif
1600 }
1601 
1602 static bool validate_net_dev(struct net_device *net_dev,
1603 			     const struct sockaddr *daddr,
1604 			     const struct sockaddr *saddr)
1605 {
1606 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1607 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1608 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1609 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1610 
1611 	switch (daddr->sa_family) {
1612 	case AF_INET:
1613 		return saddr->sa_family == AF_INET &&
1614 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1615 
1616 	case AF_INET6:
1617 		return saddr->sa_family == AF_INET6 &&
1618 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1619 
1620 	default:
1621 		return false;
1622 	}
1623 }
1624 
1625 static struct net_device *
1626 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1627 {
1628 	const struct ib_gid_attr *sgid_attr = NULL;
1629 	struct net_device *ndev;
1630 
1631 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1632 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1633 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1634 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1635 
1636 	if (!sgid_attr)
1637 		return NULL;
1638 
1639 	rcu_read_lock();
1640 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1641 	if (IS_ERR(ndev))
1642 		ndev = NULL;
1643 	else
1644 		dev_hold(ndev);
1645 	rcu_read_unlock();
1646 	return ndev;
1647 }
1648 
1649 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1650 					  struct cma_req_info *req)
1651 {
1652 	struct sockaddr *listen_addr =
1653 			(struct sockaddr *)&req->listen_addr_storage;
1654 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1655 	struct net_device *net_dev;
1656 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1657 	int err;
1658 
1659 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1660 			       req->service_id);
1661 	if (err)
1662 		return ERR_PTR(err);
1663 
1664 	if (rdma_protocol_roce(req->device, req->port))
1665 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1666 	else
1667 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1668 						   req->pkey,
1669 						   gid, listen_addr);
1670 	if (!net_dev)
1671 		return ERR_PTR(-ENODEV);
1672 
1673 	return net_dev;
1674 }
1675 
1676 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1677 {
1678 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1679 }
1680 
1681 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1682 				   const struct cma_hdr *hdr)
1683 {
1684 	struct sockaddr *addr = cma_src_addr(id_priv);
1685 	__be32 ip4_addr;
1686 	struct in6_addr ip6_addr;
1687 
1688 	if (cma_any_addr(addr) && !id_priv->afonly)
1689 		return true;
1690 
1691 	switch (addr->sa_family) {
1692 	case AF_INET:
1693 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1694 		if (cma_get_ip_ver(hdr) != 4)
1695 			return false;
1696 		if (!cma_any_addr(addr) &&
1697 		    hdr->dst_addr.ip4.addr != ip4_addr)
1698 			return false;
1699 		break;
1700 	case AF_INET6:
1701 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1702 		if (cma_get_ip_ver(hdr) != 6)
1703 			return false;
1704 		if (!cma_any_addr(addr) &&
1705 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1706 			return false;
1707 		break;
1708 	case AF_IB:
1709 		return true;
1710 	default:
1711 		return false;
1712 	}
1713 
1714 	return true;
1715 }
1716 
1717 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1718 {
1719 	struct ib_device *device = id->device;
1720 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1721 
1722 	return rdma_protocol_roce(device, port_num);
1723 }
1724 
1725 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1726 {
1727 	const struct sockaddr *daddr =
1728 			(const struct sockaddr *)&req->listen_addr_storage;
1729 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1730 
1731 	/* Returns true if the req is for IPv6 link local */
1732 	return (daddr->sa_family == AF_INET6 &&
1733 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1734 }
1735 
1736 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1737 			      const struct net_device *net_dev,
1738 			      const struct cma_req_info *req)
1739 {
1740 	const struct rdma_addr *addr = &id->route.addr;
1741 
1742 	if (!net_dev)
1743 		/* This request is an AF_IB request */
1744 		return (!id->port_num || id->port_num == req->port) &&
1745 		       (addr->src_addr.ss_family == AF_IB);
1746 
1747 	/*
1748 	 * If the request is not for IPv6 link local, allow matching
1749 	 * request to any netdevice of the one or multiport rdma device.
1750 	 */
1751 	if (!cma_is_req_ipv6_ll(req))
1752 		return true;
1753 	/*
1754 	 * Net namespaces must match, and if the listner is listening
1755 	 * on a specific netdevice than netdevice must match as well.
1756 	 */
1757 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1758 	    (!!addr->dev_addr.bound_dev_if ==
1759 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1760 		return true;
1761 	else
1762 		return false;
1763 }
1764 
1765 static struct rdma_id_private *cma_find_listener(
1766 		const struct rdma_bind_list *bind_list,
1767 		const struct ib_cm_id *cm_id,
1768 		const struct ib_cm_event *ib_event,
1769 		const struct cma_req_info *req,
1770 		const struct net_device *net_dev)
1771 {
1772 	struct rdma_id_private *id_priv, *id_priv_dev;
1773 
1774 	lockdep_assert_held(&lock);
1775 
1776 	if (!bind_list)
1777 		return ERR_PTR(-EINVAL);
1778 
1779 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1780 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1781 			if (id_priv->id.device == cm_id->device &&
1782 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1783 				return id_priv;
1784 			list_for_each_entry(id_priv_dev,
1785 					    &id_priv->listen_list,
1786 					    listen_item) {
1787 				if (id_priv_dev->id.device == cm_id->device &&
1788 				    cma_match_net_dev(&id_priv_dev->id,
1789 						      net_dev, req))
1790 					return id_priv_dev;
1791 			}
1792 		}
1793 	}
1794 
1795 	return ERR_PTR(-EINVAL);
1796 }
1797 
1798 static struct rdma_id_private *
1799 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1800 		     const struct ib_cm_event *ib_event,
1801 		     struct cma_req_info *req,
1802 		     struct net_device **net_dev)
1803 {
1804 	struct rdma_bind_list *bind_list;
1805 	struct rdma_id_private *id_priv;
1806 	int err;
1807 
1808 	err = cma_save_req_info(ib_event, req);
1809 	if (err)
1810 		return ERR_PTR(err);
1811 
1812 	*net_dev = cma_get_net_dev(ib_event, req);
1813 	if (IS_ERR(*net_dev)) {
1814 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1815 			/* Assuming the protocol is AF_IB */
1816 			*net_dev = NULL;
1817 		} else {
1818 			return ERR_CAST(*net_dev);
1819 		}
1820 	}
1821 
1822 	mutex_lock(&lock);
1823 	/*
1824 	 * Net namespace might be getting deleted while route lookup,
1825 	 * cm_id lookup is in progress. Therefore, perform netdevice
1826 	 * validation, cm_id lookup under rcu lock.
1827 	 * RCU lock along with netdevice state check, synchronizes with
1828 	 * netdevice migrating to different net namespace and also avoids
1829 	 * case where net namespace doesn't get deleted while lookup is in
1830 	 * progress.
1831 	 * If the device state is not IFF_UP, its properties such as ifindex
1832 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1833 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1834 	 * ongoing operations on net device after device is closed using
1835 	 * synchronize_net().
1836 	 */
1837 	rcu_read_lock();
1838 	if (*net_dev) {
1839 		/*
1840 		 * If netdevice is down, it is likely that it is administratively
1841 		 * down or it might be migrating to different namespace.
1842 		 * In that case avoid further processing, as the net namespace
1843 		 * or ifindex may change.
1844 		 */
1845 		if (((*net_dev)->flags & IFF_UP) == 0) {
1846 			id_priv = ERR_PTR(-EHOSTUNREACH);
1847 			goto err;
1848 		}
1849 
1850 		if (!validate_net_dev(*net_dev,
1851 				 (struct sockaddr *)&req->src_addr_storage,
1852 				 (struct sockaddr *)&req->listen_addr_storage)) {
1853 			id_priv = ERR_PTR(-EHOSTUNREACH);
1854 			goto err;
1855 		}
1856 	}
1857 
1858 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1859 				rdma_ps_from_service_id(req->service_id),
1860 				cma_port_from_service_id(req->service_id));
1861 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1862 err:
1863 	rcu_read_unlock();
1864 	mutex_unlock(&lock);
1865 	if (IS_ERR(id_priv) && *net_dev) {
1866 		dev_put(*net_dev);
1867 		*net_dev = NULL;
1868 	}
1869 	return id_priv;
1870 }
1871 
1872 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1873 {
1874 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1875 }
1876 
1877 static void cma_cancel_route(struct rdma_id_private *id_priv)
1878 {
1879 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1880 		if (id_priv->query)
1881 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1882 	}
1883 }
1884 
1885 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1886 {
1887 	struct rdma_id_private *dev_id_priv;
1888 
1889 	lockdep_assert_held(&lock);
1890 
1891 	/*
1892 	 * Remove from listen_any_list to prevent added devices from spawning
1893 	 * additional listen requests.
1894 	 */
1895 	list_del_init(&id_priv->listen_any_item);
1896 
1897 	while (!list_empty(&id_priv->listen_list)) {
1898 		dev_id_priv =
1899 			list_first_entry(&id_priv->listen_list,
1900 					 struct rdma_id_private, listen_item);
1901 		/* sync with device removal to avoid duplicate destruction */
1902 		list_del_init(&dev_id_priv->device_item);
1903 		list_del_init(&dev_id_priv->listen_item);
1904 		mutex_unlock(&lock);
1905 
1906 		rdma_destroy_id(&dev_id_priv->id);
1907 		mutex_lock(&lock);
1908 	}
1909 }
1910 
1911 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1912 {
1913 	mutex_lock(&lock);
1914 	_cma_cancel_listens(id_priv);
1915 	mutex_unlock(&lock);
1916 }
1917 
1918 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1919 				 enum rdma_cm_state state)
1920 {
1921 	switch (state) {
1922 	case RDMA_CM_ADDR_QUERY:
1923 		/*
1924 		 * We can avoid doing the rdma_addr_cancel() based on state,
1925 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1926 		 * Notice that the addr_handler work could still be exiting
1927 		 * outside this state, however due to the interaction with the
1928 		 * handler_mutex the work is guaranteed not to touch id_priv
1929 		 * during exit.
1930 		 */
1931 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1932 		break;
1933 	case RDMA_CM_ROUTE_QUERY:
1934 		cma_cancel_route(id_priv);
1935 		break;
1936 	case RDMA_CM_LISTEN:
1937 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1938 			cma_cancel_listens(id_priv);
1939 		break;
1940 	default:
1941 		break;
1942 	}
1943 }
1944 
1945 static void cma_release_port(struct rdma_id_private *id_priv)
1946 {
1947 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1948 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1949 
1950 	if (!bind_list)
1951 		return;
1952 
1953 	mutex_lock(&lock);
1954 	hlist_del(&id_priv->node);
1955 	if (hlist_empty(&bind_list->owners)) {
1956 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1957 		kfree(bind_list);
1958 	}
1959 	mutex_unlock(&lock);
1960 }
1961 
1962 static void destroy_mc(struct rdma_id_private *id_priv,
1963 		       struct cma_multicast *mc)
1964 {
1965 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1966 
1967 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1968 		ib_sa_free_multicast(mc->sa_mc);
1969 
1970 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1971 		struct rdma_dev_addr *dev_addr =
1972 			&id_priv->id.route.addr.dev_addr;
1973 		struct net_device *ndev = NULL;
1974 
1975 		if (dev_addr->bound_dev_if)
1976 			ndev = dev_get_by_index(dev_addr->net,
1977 						dev_addr->bound_dev_if);
1978 		if (ndev && !send_only) {
1979 			enum ib_gid_type gid_type;
1980 			union ib_gid mgid;
1981 
1982 			gid_type = id_priv->cma_dev->default_gid_type
1983 					   [id_priv->id.port_num -
1984 					    rdma_start_port(
1985 						    id_priv->cma_dev->device)];
1986 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
1987 					  gid_type);
1988 			cma_igmp_send(ndev, &mgid, false);
1989 		}
1990 		dev_put(ndev);
1991 
1992 		cancel_work_sync(&mc->iboe_join.work);
1993 	}
1994 	kfree(mc);
1995 }
1996 
1997 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1998 {
1999 	struct cma_multicast *mc;
2000 
2001 	while (!list_empty(&id_priv->mc_list)) {
2002 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2003 				      list);
2004 		list_del(&mc->list);
2005 		destroy_mc(id_priv, mc);
2006 	}
2007 }
2008 
2009 static void _destroy_id(struct rdma_id_private *id_priv,
2010 			enum rdma_cm_state state)
2011 {
2012 	cma_cancel_operation(id_priv, state);
2013 
2014 	rdma_restrack_del(&id_priv->res);
2015 	cma_remove_id_from_tree(id_priv);
2016 	if (id_priv->cma_dev) {
2017 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2018 			if (id_priv->cm_id.ib)
2019 				ib_destroy_cm_id(id_priv->cm_id.ib);
2020 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2021 			if (id_priv->cm_id.iw)
2022 				iw_destroy_cm_id(id_priv->cm_id.iw);
2023 		}
2024 		cma_leave_mc_groups(id_priv);
2025 		cma_release_dev(id_priv);
2026 	}
2027 
2028 	cma_release_port(id_priv);
2029 	cma_id_put(id_priv);
2030 	wait_for_completion(&id_priv->comp);
2031 
2032 	if (id_priv->internal_id)
2033 		cma_id_put(id_priv->id.context);
2034 
2035 	kfree(id_priv->id.route.path_rec);
2036 	kfree(id_priv->id.route.path_rec_inbound);
2037 	kfree(id_priv->id.route.path_rec_outbound);
2038 
2039 	put_net(id_priv->id.route.addr.dev_addr.net);
2040 	kfree(id_priv);
2041 }
2042 
2043 /*
2044  * destroy an ID from within the handler_mutex. This ensures that no other
2045  * handlers can start running concurrently.
2046  */
2047 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2048 	__releases(&idprv->handler_mutex)
2049 {
2050 	enum rdma_cm_state state;
2051 	unsigned long flags;
2052 
2053 	trace_cm_id_destroy(id_priv);
2054 
2055 	/*
2056 	 * Setting the state to destroyed under the handler mutex provides a
2057 	 * fence against calling handler callbacks. If this is invoked due to
2058 	 * the failure of a handler callback then it guarentees that no future
2059 	 * handlers will be called.
2060 	 */
2061 	lockdep_assert_held(&id_priv->handler_mutex);
2062 	spin_lock_irqsave(&id_priv->lock, flags);
2063 	state = id_priv->state;
2064 	id_priv->state = RDMA_CM_DESTROYING;
2065 	spin_unlock_irqrestore(&id_priv->lock, flags);
2066 	mutex_unlock(&id_priv->handler_mutex);
2067 	_destroy_id(id_priv, state);
2068 }
2069 
2070 void rdma_destroy_id(struct rdma_cm_id *id)
2071 {
2072 	struct rdma_id_private *id_priv =
2073 		container_of(id, struct rdma_id_private, id);
2074 
2075 	mutex_lock(&id_priv->handler_mutex);
2076 	destroy_id_handler_unlock(id_priv);
2077 }
2078 EXPORT_SYMBOL(rdma_destroy_id);
2079 
2080 static int cma_rep_recv(struct rdma_id_private *id_priv)
2081 {
2082 	int ret;
2083 
2084 	ret = cma_modify_qp_rtr(id_priv, NULL);
2085 	if (ret)
2086 		goto reject;
2087 
2088 	ret = cma_modify_qp_rts(id_priv, NULL);
2089 	if (ret)
2090 		goto reject;
2091 
2092 	trace_cm_send_rtu(id_priv);
2093 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2094 	if (ret)
2095 		goto reject;
2096 
2097 	return 0;
2098 reject:
2099 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2100 	cma_modify_qp_err(id_priv);
2101 	trace_cm_send_rej(id_priv);
2102 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2103 		       NULL, 0, NULL, 0);
2104 	return ret;
2105 }
2106 
2107 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2108 				   const struct ib_cm_rep_event_param *rep_data,
2109 				   void *private_data)
2110 {
2111 	event->param.conn.private_data = private_data;
2112 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2113 	event->param.conn.responder_resources = rep_data->responder_resources;
2114 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2115 	event->param.conn.flow_control = rep_data->flow_control;
2116 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2117 	event->param.conn.srq = rep_data->srq;
2118 	event->param.conn.qp_num = rep_data->remote_qpn;
2119 
2120 	event->ece.vendor_id = rep_data->ece.vendor_id;
2121 	event->ece.attr_mod = rep_data->ece.attr_mod;
2122 }
2123 
2124 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2125 				struct rdma_cm_event *event)
2126 {
2127 	int ret;
2128 
2129 	lockdep_assert_held(&id_priv->handler_mutex);
2130 
2131 	trace_cm_event_handler(id_priv, event);
2132 	ret = id_priv->id.event_handler(&id_priv->id, event);
2133 	trace_cm_event_done(id_priv, event, ret);
2134 	return ret;
2135 }
2136 
2137 static int cma_ib_handler(struct ib_cm_id *cm_id,
2138 			  const struct ib_cm_event *ib_event)
2139 {
2140 	struct rdma_id_private *id_priv = cm_id->context;
2141 	struct rdma_cm_event event = {};
2142 	enum rdma_cm_state state;
2143 	int ret;
2144 
2145 	mutex_lock(&id_priv->handler_mutex);
2146 	state = READ_ONCE(id_priv->state);
2147 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2148 	     state != RDMA_CM_CONNECT) ||
2149 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2150 	     state != RDMA_CM_DISCONNECT))
2151 		goto out;
2152 
2153 	switch (ib_event->event) {
2154 	case IB_CM_REQ_ERROR:
2155 	case IB_CM_REP_ERROR:
2156 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2157 		event.status = -ETIMEDOUT;
2158 		break;
2159 	case IB_CM_REP_RECEIVED:
2160 		if (state == RDMA_CM_CONNECT &&
2161 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2162 			trace_cm_send_mra(id_priv);
2163 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2164 		}
2165 		if (id_priv->id.qp) {
2166 			event.status = cma_rep_recv(id_priv);
2167 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2168 						     RDMA_CM_EVENT_ESTABLISHED;
2169 		} else {
2170 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2171 		}
2172 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2173 				       ib_event->private_data);
2174 		break;
2175 	case IB_CM_RTU_RECEIVED:
2176 	case IB_CM_USER_ESTABLISHED:
2177 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2178 		break;
2179 	case IB_CM_DREQ_ERROR:
2180 		event.status = -ETIMEDOUT;
2181 		fallthrough;
2182 	case IB_CM_DREQ_RECEIVED:
2183 	case IB_CM_DREP_RECEIVED:
2184 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2185 				   RDMA_CM_DISCONNECT))
2186 			goto out;
2187 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2188 		break;
2189 	case IB_CM_TIMEWAIT_EXIT:
2190 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2191 		break;
2192 	case IB_CM_MRA_RECEIVED:
2193 		/* ignore event */
2194 		goto out;
2195 	case IB_CM_REJ_RECEIVED:
2196 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2197 										ib_event->param.rej_rcvd.reason));
2198 		cma_modify_qp_err(id_priv);
2199 		event.status = ib_event->param.rej_rcvd.reason;
2200 		event.event = RDMA_CM_EVENT_REJECTED;
2201 		event.param.conn.private_data = ib_event->private_data;
2202 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2203 		break;
2204 	default:
2205 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2206 		       ib_event->event);
2207 		goto out;
2208 	}
2209 
2210 	ret = cma_cm_event_handler(id_priv, &event);
2211 	if (ret) {
2212 		/* Destroy the CM ID by returning a non-zero value. */
2213 		id_priv->cm_id.ib = NULL;
2214 		destroy_id_handler_unlock(id_priv);
2215 		return ret;
2216 	}
2217 out:
2218 	mutex_unlock(&id_priv->handler_mutex);
2219 	return 0;
2220 }
2221 
2222 static struct rdma_id_private *
2223 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2224 		   const struct ib_cm_event *ib_event,
2225 		   struct net_device *net_dev)
2226 {
2227 	struct rdma_id_private *listen_id_priv;
2228 	struct rdma_id_private *id_priv;
2229 	struct rdma_cm_id *id;
2230 	struct rdma_route *rt;
2231 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2232 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2233 	const __be64 service_id =
2234 		ib_event->param.req_rcvd.primary_path->service_id;
2235 	int ret;
2236 
2237 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2238 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2239 				   listen_id->event_handler, listen_id->context,
2240 				   listen_id->ps,
2241 				   ib_event->param.req_rcvd.qp_type,
2242 				   listen_id_priv);
2243 	if (IS_ERR(id_priv))
2244 		return NULL;
2245 
2246 	id = &id_priv->id;
2247 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2248 			      (struct sockaddr *)&id->route.addr.dst_addr,
2249 			      listen_id, ib_event, ss_family, service_id))
2250 		goto err;
2251 
2252 	rt = &id->route;
2253 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2254 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2255 				     sizeof(*rt->path_rec), GFP_KERNEL);
2256 	if (!rt->path_rec)
2257 		goto err;
2258 
2259 	rt->path_rec[0] = *path;
2260 	if (rt->num_pri_alt_paths == 2)
2261 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2262 
2263 	if (net_dev) {
2264 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2265 	} else {
2266 		if (!cma_protocol_roce(listen_id) &&
2267 		    cma_any_addr(cma_src_addr(id_priv))) {
2268 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2269 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2270 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2271 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2272 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2273 			if (ret)
2274 				goto err;
2275 		}
2276 	}
2277 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2278 
2279 	id_priv->state = RDMA_CM_CONNECT;
2280 	return id_priv;
2281 
2282 err:
2283 	rdma_destroy_id(id);
2284 	return NULL;
2285 }
2286 
2287 static struct rdma_id_private *
2288 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2289 		  const struct ib_cm_event *ib_event,
2290 		  struct net_device *net_dev)
2291 {
2292 	const struct rdma_id_private *listen_id_priv;
2293 	struct rdma_id_private *id_priv;
2294 	struct rdma_cm_id *id;
2295 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2296 	struct net *net = listen_id->route.addr.dev_addr.net;
2297 	int ret;
2298 
2299 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2300 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2301 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2302 				   listen_id_priv);
2303 	if (IS_ERR(id_priv))
2304 		return NULL;
2305 
2306 	id = &id_priv->id;
2307 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2308 			      (struct sockaddr *)&id->route.addr.dst_addr,
2309 			      listen_id, ib_event, ss_family,
2310 			      ib_event->param.sidr_req_rcvd.service_id))
2311 		goto err;
2312 
2313 	if (net_dev) {
2314 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2315 	} else {
2316 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2317 			ret = cma_translate_addr(cma_src_addr(id_priv),
2318 						 &id->route.addr.dev_addr);
2319 			if (ret)
2320 				goto err;
2321 		}
2322 	}
2323 
2324 	id_priv->state = RDMA_CM_CONNECT;
2325 	return id_priv;
2326 err:
2327 	rdma_destroy_id(id);
2328 	return NULL;
2329 }
2330 
2331 static void cma_set_req_event_data(struct rdma_cm_event *event,
2332 				   const struct ib_cm_req_event_param *req_data,
2333 				   void *private_data, int offset)
2334 {
2335 	event->param.conn.private_data = private_data + offset;
2336 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2337 	event->param.conn.responder_resources = req_data->responder_resources;
2338 	event->param.conn.initiator_depth = req_data->initiator_depth;
2339 	event->param.conn.flow_control = req_data->flow_control;
2340 	event->param.conn.retry_count = req_data->retry_count;
2341 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2342 	event->param.conn.srq = req_data->srq;
2343 	event->param.conn.qp_num = req_data->remote_qpn;
2344 
2345 	event->ece.vendor_id = req_data->ece.vendor_id;
2346 	event->ece.attr_mod = req_data->ece.attr_mod;
2347 }
2348 
2349 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2350 				    const struct ib_cm_event *ib_event)
2351 {
2352 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2353 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2354 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2355 		 (id->qp_type == IB_QPT_UD)) ||
2356 		(!id->qp_type));
2357 }
2358 
2359 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2360 			      const struct ib_cm_event *ib_event)
2361 {
2362 	struct rdma_id_private *listen_id, *conn_id = NULL;
2363 	struct rdma_cm_event event = {};
2364 	struct cma_req_info req = {};
2365 	struct net_device *net_dev;
2366 	u8 offset;
2367 	int ret;
2368 
2369 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2370 	if (IS_ERR(listen_id))
2371 		return PTR_ERR(listen_id);
2372 
2373 	trace_cm_req_handler(listen_id, ib_event->event);
2374 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2375 		ret = -EINVAL;
2376 		goto net_dev_put;
2377 	}
2378 
2379 	mutex_lock(&listen_id->handler_mutex);
2380 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2381 		ret = -ECONNABORTED;
2382 		goto err_unlock;
2383 	}
2384 
2385 	offset = cma_user_data_offset(listen_id);
2386 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2387 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2388 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2389 		event.param.ud.private_data = ib_event->private_data + offset;
2390 		event.param.ud.private_data_len =
2391 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2392 	} else {
2393 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2394 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2395 				       ib_event->private_data, offset);
2396 	}
2397 	if (!conn_id) {
2398 		ret = -ENOMEM;
2399 		goto err_unlock;
2400 	}
2401 
2402 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2403 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2404 	if (ret) {
2405 		destroy_id_handler_unlock(conn_id);
2406 		goto err_unlock;
2407 	}
2408 
2409 	conn_id->cm_id.ib = cm_id;
2410 	cm_id->context = conn_id;
2411 	cm_id->cm_handler = cma_ib_handler;
2412 
2413 	ret = cma_cm_event_handler(conn_id, &event);
2414 	if (ret) {
2415 		/* Destroy the CM ID by returning a non-zero value. */
2416 		conn_id->cm_id.ib = NULL;
2417 		mutex_unlock(&listen_id->handler_mutex);
2418 		destroy_id_handler_unlock(conn_id);
2419 		goto net_dev_put;
2420 	}
2421 
2422 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2423 	    conn_id->id.qp_type != IB_QPT_UD) {
2424 		trace_cm_send_mra(cm_id->context);
2425 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2426 	}
2427 	mutex_unlock(&conn_id->handler_mutex);
2428 
2429 err_unlock:
2430 	mutex_unlock(&listen_id->handler_mutex);
2431 
2432 net_dev_put:
2433 	if (net_dev)
2434 		dev_put(net_dev);
2435 
2436 	return ret;
2437 }
2438 
2439 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2440 {
2441 	if (addr->sa_family == AF_IB)
2442 		return ((struct sockaddr_ib *) addr)->sib_sid;
2443 
2444 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2445 }
2446 EXPORT_SYMBOL(rdma_get_service_id);
2447 
2448 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2449 		    union ib_gid *dgid)
2450 {
2451 	struct rdma_addr *addr = &cm_id->route.addr;
2452 
2453 	if (!cm_id->device) {
2454 		if (sgid)
2455 			memset(sgid, 0, sizeof(*sgid));
2456 		if (dgid)
2457 			memset(dgid, 0, sizeof(*dgid));
2458 		return;
2459 	}
2460 
2461 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2462 		if (sgid)
2463 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2464 		if (dgid)
2465 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2466 	} else {
2467 		if (sgid)
2468 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2469 		if (dgid)
2470 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2471 	}
2472 }
2473 EXPORT_SYMBOL(rdma_read_gids);
2474 
2475 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2476 {
2477 	struct rdma_id_private *id_priv = iw_id->context;
2478 	struct rdma_cm_event event = {};
2479 	int ret = 0;
2480 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2481 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2482 
2483 	mutex_lock(&id_priv->handler_mutex);
2484 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2485 		goto out;
2486 
2487 	switch (iw_event->event) {
2488 	case IW_CM_EVENT_CLOSE:
2489 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2490 		break;
2491 	case IW_CM_EVENT_CONNECT_REPLY:
2492 		memcpy(cma_src_addr(id_priv), laddr,
2493 		       rdma_addr_size(laddr));
2494 		memcpy(cma_dst_addr(id_priv), raddr,
2495 		       rdma_addr_size(raddr));
2496 		switch (iw_event->status) {
2497 		case 0:
2498 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2499 			event.param.conn.initiator_depth = iw_event->ird;
2500 			event.param.conn.responder_resources = iw_event->ord;
2501 			break;
2502 		case -ECONNRESET:
2503 		case -ECONNREFUSED:
2504 			event.event = RDMA_CM_EVENT_REJECTED;
2505 			break;
2506 		case -ETIMEDOUT:
2507 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2508 			break;
2509 		default:
2510 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2511 			break;
2512 		}
2513 		break;
2514 	case IW_CM_EVENT_ESTABLISHED:
2515 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2516 		event.param.conn.initiator_depth = iw_event->ird;
2517 		event.param.conn.responder_resources = iw_event->ord;
2518 		break;
2519 	default:
2520 		goto out;
2521 	}
2522 
2523 	event.status = iw_event->status;
2524 	event.param.conn.private_data = iw_event->private_data;
2525 	event.param.conn.private_data_len = iw_event->private_data_len;
2526 	ret = cma_cm_event_handler(id_priv, &event);
2527 	if (ret) {
2528 		/* Destroy the CM ID by returning a non-zero value. */
2529 		id_priv->cm_id.iw = NULL;
2530 		destroy_id_handler_unlock(id_priv);
2531 		return ret;
2532 	}
2533 
2534 out:
2535 	mutex_unlock(&id_priv->handler_mutex);
2536 	return ret;
2537 }
2538 
2539 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2540 			       struct iw_cm_event *iw_event)
2541 {
2542 	struct rdma_id_private *listen_id, *conn_id;
2543 	struct rdma_cm_event event = {};
2544 	int ret = -ECONNABORTED;
2545 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2546 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2547 
2548 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2549 	event.param.conn.private_data = iw_event->private_data;
2550 	event.param.conn.private_data_len = iw_event->private_data_len;
2551 	event.param.conn.initiator_depth = iw_event->ird;
2552 	event.param.conn.responder_resources = iw_event->ord;
2553 
2554 	listen_id = cm_id->context;
2555 
2556 	mutex_lock(&listen_id->handler_mutex);
2557 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2558 		goto out;
2559 
2560 	/* Create a new RDMA id for the new IW CM ID */
2561 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2562 				   listen_id->id.event_handler,
2563 				   listen_id->id.context, RDMA_PS_TCP,
2564 				   IB_QPT_RC, listen_id);
2565 	if (IS_ERR(conn_id)) {
2566 		ret = -ENOMEM;
2567 		goto out;
2568 	}
2569 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2570 	conn_id->state = RDMA_CM_CONNECT;
2571 
2572 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2573 	if (ret) {
2574 		mutex_unlock(&listen_id->handler_mutex);
2575 		destroy_id_handler_unlock(conn_id);
2576 		return ret;
2577 	}
2578 
2579 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2580 	if (ret) {
2581 		mutex_unlock(&listen_id->handler_mutex);
2582 		destroy_id_handler_unlock(conn_id);
2583 		return ret;
2584 	}
2585 
2586 	conn_id->cm_id.iw = cm_id;
2587 	cm_id->context = conn_id;
2588 	cm_id->cm_handler = cma_iw_handler;
2589 
2590 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2591 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2592 
2593 	ret = cma_cm_event_handler(conn_id, &event);
2594 	if (ret) {
2595 		/* User wants to destroy the CM ID */
2596 		conn_id->cm_id.iw = NULL;
2597 		mutex_unlock(&listen_id->handler_mutex);
2598 		destroy_id_handler_unlock(conn_id);
2599 		return ret;
2600 	}
2601 
2602 	mutex_unlock(&conn_id->handler_mutex);
2603 
2604 out:
2605 	mutex_unlock(&listen_id->handler_mutex);
2606 	return ret;
2607 }
2608 
2609 static int cma_ib_listen(struct rdma_id_private *id_priv)
2610 {
2611 	struct sockaddr *addr;
2612 	struct ib_cm_id	*id;
2613 	__be64 svc_id;
2614 
2615 	addr = cma_src_addr(id_priv);
2616 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2617 	id = ib_cm_insert_listen(id_priv->id.device,
2618 				 cma_ib_req_handler, svc_id);
2619 	if (IS_ERR(id))
2620 		return PTR_ERR(id);
2621 	id_priv->cm_id.ib = id;
2622 
2623 	return 0;
2624 }
2625 
2626 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2627 {
2628 	int ret;
2629 	struct iw_cm_id	*id;
2630 
2631 	id = iw_create_cm_id(id_priv->id.device,
2632 			     iw_conn_req_handler,
2633 			     id_priv);
2634 	if (IS_ERR(id))
2635 		return PTR_ERR(id);
2636 
2637 	mutex_lock(&id_priv->qp_mutex);
2638 	id->tos = id_priv->tos;
2639 	id->tos_set = id_priv->tos_set;
2640 	mutex_unlock(&id_priv->qp_mutex);
2641 	id->afonly = id_priv->afonly;
2642 	id_priv->cm_id.iw = id;
2643 
2644 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2645 	       rdma_addr_size(cma_src_addr(id_priv)));
2646 
2647 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2648 
2649 	if (ret) {
2650 		iw_destroy_cm_id(id_priv->cm_id.iw);
2651 		id_priv->cm_id.iw = NULL;
2652 	}
2653 
2654 	return ret;
2655 }
2656 
2657 static int cma_listen_handler(struct rdma_cm_id *id,
2658 			      struct rdma_cm_event *event)
2659 {
2660 	struct rdma_id_private *id_priv = id->context;
2661 
2662 	/* Listening IDs are always destroyed on removal */
2663 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2664 		return -1;
2665 
2666 	id->context = id_priv->id.context;
2667 	id->event_handler = id_priv->id.event_handler;
2668 	trace_cm_event_handler(id_priv, event);
2669 	return id_priv->id.event_handler(id, event);
2670 }
2671 
2672 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2673 			     struct cma_device *cma_dev,
2674 			     struct rdma_id_private **to_destroy)
2675 {
2676 	struct rdma_id_private *dev_id_priv;
2677 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2678 	int ret;
2679 
2680 	lockdep_assert_held(&lock);
2681 
2682 	*to_destroy = NULL;
2683 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2684 		return 0;
2685 
2686 	dev_id_priv =
2687 		__rdma_create_id(net, cma_listen_handler, id_priv,
2688 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2689 	if (IS_ERR(dev_id_priv))
2690 		return PTR_ERR(dev_id_priv);
2691 
2692 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2693 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2694 	       rdma_addr_size(cma_src_addr(id_priv)));
2695 
2696 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2697 	rdma_restrack_add(&dev_id_priv->res);
2698 	cma_id_get(id_priv);
2699 	dev_id_priv->internal_id = 1;
2700 	dev_id_priv->afonly = id_priv->afonly;
2701 	mutex_lock(&id_priv->qp_mutex);
2702 	dev_id_priv->tos_set = id_priv->tos_set;
2703 	dev_id_priv->tos = id_priv->tos;
2704 	mutex_unlock(&id_priv->qp_mutex);
2705 
2706 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2707 	if (ret)
2708 		goto err_listen;
2709 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2710 	return 0;
2711 err_listen:
2712 	/* Caller must destroy this after releasing lock */
2713 	*to_destroy = dev_id_priv;
2714 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2715 	return ret;
2716 }
2717 
2718 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2719 {
2720 	struct rdma_id_private *to_destroy;
2721 	struct cma_device *cma_dev;
2722 	int ret;
2723 
2724 	mutex_lock(&lock);
2725 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2726 	list_for_each_entry(cma_dev, &dev_list, list) {
2727 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2728 		if (ret) {
2729 			/* Prevent racing with cma_process_remove() */
2730 			if (to_destroy)
2731 				list_del_init(&to_destroy->device_item);
2732 			goto err_listen;
2733 		}
2734 	}
2735 	mutex_unlock(&lock);
2736 	return 0;
2737 
2738 err_listen:
2739 	_cma_cancel_listens(id_priv);
2740 	mutex_unlock(&lock);
2741 	if (to_destroy)
2742 		rdma_destroy_id(&to_destroy->id);
2743 	return ret;
2744 }
2745 
2746 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2747 {
2748 	struct rdma_id_private *id_priv;
2749 
2750 	id_priv = container_of(id, struct rdma_id_private, id);
2751 	mutex_lock(&id_priv->qp_mutex);
2752 	id_priv->tos = (u8) tos;
2753 	id_priv->tos_set = true;
2754 	mutex_unlock(&id_priv->qp_mutex);
2755 }
2756 EXPORT_SYMBOL(rdma_set_service_type);
2757 
2758 /**
2759  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2760  *                          with a connection identifier.
2761  * @id: Communication identifier to associated with service type.
2762  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2763  *
2764  * This function should be called before rdma_connect() on active side,
2765  * and on passive side before rdma_accept(). It is applicable to primary
2766  * path only. The timeout will affect the local side of the QP, it is not
2767  * negotiated with remote side and zero disables the timer. In case it is
2768  * set before rdma_resolve_route, the value will also be used to determine
2769  * PacketLifeTime for RoCE.
2770  *
2771  * Return: 0 for success
2772  */
2773 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2774 {
2775 	struct rdma_id_private *id_priv;
2776 
2777 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2778 		return -EINVAL;
2779 
2780 	id_priv = container_of(id, struct rdma_id_private, id);
2781 	mutex_lock(&id_priv->qp_mutex);
2782 	id_priv->timeout = timeout;
2783 	id_priv->timeout_set = true;
2784 	mutex_unlock(&id_priv->qp_mutex);
2785 
2786 	return 0;
2787 }
2788 EXPORT_SYMBOL(rdma_set_ack_timeout);
2789 
2790 /**
2791  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2792  *			      QP associated with a connection identifier.
2793  * @id: Communication identifier to associated with service type.
2794  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2795  *		   Timer Field" in the IBTA specification.
2796  *
2797  * This function should be called before rdma_connect() on active
2798  * side, and on passive side before rdma_accept(). The timer value
2799  * will be associated with the local QP. When it receives a send it is
2800  * not read to handle, typically if the receive queue is empty, an RNR
2801  * Retry NAK is returned to the requester with the min_rnr_timer
2802  * encoded. The requester will then wait at least the time specified
2803  * in the NAK before retrying. The default is zero, which translates
2804  * to a minimum RNR Timer value of 655 ms.
2805  *
2806  * Return: 0 for success
2807  */
2808 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2809 {
2810 	struct rdma_id_private *id_priv;
2811 
2812 	/* It is a five-bit value */
2813 	if (min_rnr_timer & 0xe0)
2814 		return -EINVAL;
2815 
2816 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2817 		return -EINVAL;
2818 
2819 	id_priv = container_of(id, struct rdma_id_private, id);
2820 	mutex_lock(&id_priv->qp_mutex);
2821 	id_priv->min_rnr_timer = min_rnr_timer;
2822 	id_priv->min_rnr_timer_set = true;
2823 	mutex_unlock(&id_priv->qp_mutex);
2824 
2825 	return 0;
2826 }
2827 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2828 
2829 static int route_set_path_rec_inbound(struct cma_work *work,
2830 				      struct sa_path_rec *path_rec)
2831 {
2832 	struct rdma_route *route = &work->id->id.route;
2833 
2834 	if (!route->path_rec_inbound) {
2835 		route->path_rec_inbound =
2836 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2837 		if (!route->path_rec_inbound)
2838 			return -ENOMEM;
2839 	}
2840 
2841 	*route->path_rec_inbound = *path_rec;
2842 	return 0;
2843 }
2844 
2845 static int route_set_path_rec_outbound(struct cma_work *work,
2846 				       struct sa_path_rec *path_rec)
2847 {
2848 	struct rdma_route *route = &work->id->id.route;
2849 
2850 	if (!route->path_rec_outbound) {
2851 		route->path_rec_outbound =
2852 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2853 		if (!route->path_rec_outbound)
2854 			return -ENOMEM;
2855 	}
2856 
2857 	*route->path_rec_outbound = *path_rec;
2858 	return 0;
2859 }
2860 
2861 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2862 			      unsigned int num_prs, void *context)
2863 {
2864 	struct cma_work *work = context;
2865 	struct rdma_route *route;
2866 	int i;
2867 
2868 	route = &work->id->id.route;
2869 
2870 	if (status)
2871 		goto fail;
2872 
2873 	for (i = 0; i < num_prs; i++) {
2874 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2875 			*route->path_rec = path_rec[i];
2876 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2877 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2878 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2879 			status = route_set_path_rec_outbound(work,
2880 							     &path_rec[i]);
2881 		else
2882 			status = -EINVAL;
2883 
2884 		if (status)
2885 			goto fail;
2886 	}
2887 
2888 	route->num_pri_alt_paths = 1;
2889 	queue_work(cma_wq, &work->work);
2890 	return;
2891 
2892 fail:
2893 	work->old_state = RDMA_CM_ROUTE_QUERY;
2894 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2895 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2896 	work->event.status = status;
2897 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2898 			     status);
2899 	queue_work(cma_wq, &work->work);
2900 }
2901 
2902 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2903 			      unsigned long timeout_ms, struct cma_work *work)
2904 {
2905 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2906 	struct sa_path_rec path_rec;
2907 	ib_sa_comp_mask comp_mask;
2908 	struct sockaddr_in6 *sin6;
2909 	struct sockaddr_ib *sib;
2910 
2911 	memset(&path_rec, 0, sizeof path_rec);
2912 
2913 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2914 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2915 	else
2916 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2917 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2918 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2919 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2920 	path_rec.numb_path = 1;
2921 	path_rec.reversible = 1;
2922 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2923 						  cma_dst_addr(id_priv));
2924 
2925 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2926 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2927 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2928 
2929 	switch (cma_family(id_priv)) {
2930 	case AF_INET:
2931 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2932 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2933 		break;
2934 	case AF_INET6:
2935 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2936 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2937 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2938 		break;
2939 	case AF_IB:
2940 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2941 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2942 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2943 		break;
2944 	}
2945 
2946 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2947 					       id_priv->id.port_num, &path_rec,
2948 					       comp_mask, timeout_ms,
2949 					       GFP_KERNEL, cma_query_handler,
2950 					       work, &id_priv->query);
2951 
2952 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2953 }
2954 
2955 static void cma_iboe_join_work_handler(struct work_struct *work)
2956 {
2957 	struct cma_multicast *mc =
2958 		container_of(work, struct cma_multicast, iboe_join.work);
2959 	struct rdma_cm_event *event = &mc->iboe_join.event;
2960 	struct rdma_id_private *id_priv = mc->id_priv;
2961 	int ret;
2962 
2963 	mutex_lock(&id_priv->handler_mutex);
2964 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2965 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2966 		goto out_unlock;
2967 
2968 	ret = cma_cm_event_handler(id_priv, event);
2969 	WARN_ON(ret);
2970 
2971 out_unlock:
2972 	mutex_unlock(&id_priv->handler_mutex);
2973 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2974 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2975 }
2976 
2977 static void cma_work_handler(struct work_struct *_work)
2978 {
2979 	struct cma_work *work = container_of(_work, struct cma_work, work);
2980 	struct rdma_id_private *id_priv = work->id;
2981 
2982 	mutex_lock(&id_priv->handler_mutex);
2983 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2984 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2985 		goto out_unlock;
2986 	if (work->old_state != 0 || work->new_state != 0) {
2987 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2988 			goto out_unlock;
2989 	}
2990 
2991 	if (cma_cm_event_handler(id_priv, &work->event)) {
2992 		cma_id_put(id_priv);
2993 		destroy_id_handler_unlock(id_priv);
2994 		goto out_free;
2995 	}
2996 
2997 out_unlock:
2998 	mutex_unlock(&id_priv->handler_mutex);
2999 	cma_id_put(id_priv);
3000 out_free:
3001 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3002 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3003 	kfree(work);
3004 }
3005 
3006 static void cma_init_resolve_route_work(struct cma_work *work,
3007 					struct rdma_id_private *id_priv)
3008 {
3009 	work->id = id_priv;
3010 	INIT_WORK(&work->work, cma_work_handler);
3011 	work->old_state = RDMA_CM_ROUTE_QUERY;
3012 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3013 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3014 }
3015 
3016 static void enqueue_resolve_addr_work(struct cma_work *work,
3017 				      struct rdma_id_private *id_priv)
3018 {
3019 	/* Balances with cma_id_put() in cma_work_handler */
3020 	cma_id_get(id_priv);
3021 
3022 	work->id = id_priv;
3023 	INIT_WORK(&work->work, cma_work_handler);
3024 	work->old_state = RDMA_CM_ADDR_QUERY;
3025 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3026 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3027 
3028 	queue_work(cma_wq, &work->work);
3029 }
3030 
3031 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3032 				unsigned long timeout_ms)
3033 {
3034 	struct rdma_route *route = &id_priv->id.route;
3035 	struct cma_work *work;
3036 	int ret;
3037 
3038 	work = kzalloc(sizeof *work, GFP_KERNEL);
3039 	if (!work)
3040 		return -ENOMEM;
3041 
3042 	cma_init_resolve_route_work(work, id_priv);
3043 
3044 	if (!route->path_rec)
3045 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3046 	if (!route->path_rec) {
3047 		ret = -ENOMEM;
3048 		goto err1;
3049 	}
3050 
3051 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3052 	if (ret)
3053 		goto err2;
3054 
3055 	return 0;
3056 err2:
3057 	kfree(route->path_rec);
3058 	route->path_rec = NULL;
3059 err1:
3060 	kfree(work);
3061 	return ret;
3062 }
3063 
3064 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3065 					   unsigned long supported_gids,
3066 					   enum ib_gid_type default_gid)
3067 {
3068 	if ((network_type == RDMA_NETWORK_IPV4 ||
3069 	     network_type == RDMA_NETWORK_IPV6) &&
3070 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3071 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3072 
3073 	return default_gid;
3074 }
3075 
3076 /*
3077  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3078  * path record type based on GID type.
3079  * It also sets up other L2 fields which includes destination mac address
3080  * netdev ifindex, of the path record.
3081  * It returns the netdev of the bound interface for this path record entry.
3082  */
3083 static struct net_device *
3084 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3085 {
3086 	struct rdma_route *route = &id_priv->id.route;
3087 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3088 	struct rdma_addr *addr = &route->addr;
3089 	unsigned long supported_gids;
3090 	struct net_device *ndev;
3091 
3092 	if (!addr->dev_addr.bound_dev_if)
3093 		return NULL;
3094 
3095 	ndev = dev_get_by_index(addr->dev_addr.net,
3096 				addr->dev_addr.bound_dev_if);
3097 	if (!ndev)
3098 		return NULL;
3099 
3100 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3101 						    id_priv->id.port_num);
3102 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3103 				      supported_gids,
3104 				      id_priv->gid_type);
3105 	/* Use the hint from IP Stack to select GID Type */
3106 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3107 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3108 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3109 
3110 	route->path_rec->roce.route_resolved = true;
3111 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3112 	return ndev;
3113 }
3114 
3115 int rdma_set_ib_path(struct rdma_cm_id *id,
3116 		     struct sa_path_rec *path_rec)
3117 {
3118 	struct rdma_id_private *id_priv;
3119 	struct net_device *ndev;
3120 	int ret;
3121 
3122 	id_priv = container_of(id, struct rdma_id_private, id);
3123 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3124 			   RDMA_CM_ROUTE_RESOLVED))
3125 		return -EINVAL;
3126 
3127 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3128 				     GFP_KERNEL);
3129 	if (!id->route.path_rec) {
3130 		ret = -ENOMEM;
3131 		goto err;
3132 	}
3133 
3134 	if (rdma_protocol_roce(id->device, id->port_num)) {
3135 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3136 		if (!ndev) {
3137 			ret = -ENODEV;
3138 			goto err_free;
3139 		}
3140 		dev_put(ndev);
3141 	}
3142 
3143 	id->route.num_pri_alt_paths = 1;
3144 	return 0;
3145 
3146 err_free:
3147 	kfree(id->route.path_rec);
3148 	id->route.path_rec = NULL;
3149 err:
3150 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3151 	return ret;
3152 }
3153 EXPORT_SYMBOL(rdma_set_ib_path);
3154 
3155 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3156 {
3157 	struct cma_work *work;
3158 
3159 	work = kzalloc(sizeof *work, GFP_KERNEL);
3160 	if (!work)
3161 		return -ENOMEM;
3162 
3163 	cma_init_resolve_route_work(work, id_priv);
3164 	queue_work(cma_wq, &work->work);
3165 	return 0;
3166 }
3167 
3168 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3169 {
3170 	struct net_device *dev;
3171 
3172 	dev = vlan_dev_real_dev(vlan_ndev);
3173 	if (dev->num_tc)
3174 		return netdev_get_prio_tc_map(dev, prio);
3175 
3176 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3177 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3178 }
3179 
3180 struct iboe_prio_tc_map {
3181 	int input_prio;
3182 	int output_tc;
3183 	bool found;
3184 };
3185 
3186 static int get_lower_vlan_dev_tc(struct net_device *dev,
3187 				 struct netdev_nested_priv *priv)
3188 {
3189 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3190 
3191 	if (is_vlan_dev(dev))
3192 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3193 	else if (dev->num_tc)
3194 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3195 	else
3196 		map->output_tc = 0;
3197 	/* We are interested only in first level VLAN device, so always
3198 	 * return 1 to stop iterating over next level devices.
3199 	 */
3200 	map->found = true;
3201 	return 1;
3202 }
3203 
3204 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3205 {
3206 	struct iboe_prio_tc_map prio_tc_map = {};
3207 	int prio = rt_tos2priority(tos);
3208 	struct netdev_nested_priv priv;
3209 
3210 	/* If VLAN device, get it directly from the VLAN netdev */
3211 	if (is_vlan_dev(ndev))
3212 		return get_vlan_ndev_tc(ndev, prio);
3213 
3214 	prio_tc_map.input_prio = prio;
3215 	priv.data = (void *)&prio_tc_map;
3216 	rcu_read_lock();
3217 	netdev_walk_all_lower_dev_rcu(ndev,
3218 				      get_lower_vlan_dev_tc,
3219 				      &priv);
3220 	rcu_read_unlock();
3221 	/* If map is found from lower device, use it; Otherwise
3222 	 * continue with the current netdevice to get priority to tc map.
3223 	 */
3224 	if (prio_tc_map.found)
3225 		return prio_tc_map.output_tc;
3226 	else if (ndev->num_tc)
3227 		return netdev_get_prio_tc_map(ndev, prio);
3228 	else
3229 		return 0;
3230 }
3231 
3232 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3233 {
3234 	struct sockaddr_in6 *addr6;
3235 	u16 dport, sport;
3236 	u32 hash, fl;
3237 
3238 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3239 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3240 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3241 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3242 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3243 		hash = (u32)sport * 31 + dport;
3244 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3245 	}
3246 
3247 	return cpu_to_be32(fl);
3248 }
3249 
3250 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3251 {
3252 	struct rdma_route *route = &id_priv->id.route;
3253 	struct rdma_addr *addr = &route->addr;
3254 	struct cma_work *work;
3255 	int ret;
3256 	struct net_device *ndev;
3257 
3258 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3259 					rdma_start_port(id_priv->cma_dev->device)];
3260 	u8 tos;
3261 
3262 	mutex_lock(&id_priv->qp_mutex);
3263 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3264 	mutex_unlock(&id_priv->qp_mutex);
3265 
3266 	work = kzalloc(sizeof *work, GFP_KERNEL);
3267 	if (!work)
3268 		return -ENOMEM;
3269 
3270 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3271 	if (!route->path_rec) {
3272 		ret = -ENOMEM;
3273 		goto err1;
3274 	}
3275 
3276 	route->num_pri_alt_paths = 1;
3277 
3278 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3279 	if (!ndev) {
3280 		ret = -ENODEV;
3281 		goto err2;
3282 	}
3283 
3284 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3285 		    &route->path_rec->sgid);
3286 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3287 		    &route->path_rec->dgid);
3288 
3289 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3290 		/* TODO: get the hoplimit from the inet/inet6 device */
3291 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3292 	else
3293 		route->path_rec->hop_limit = 1;
3294 	route->path_rec->reversible = 1;
3295 	route->path_rec->pkey = cpu_to_be16(0xffff);
3296 	route->path_rec->mtu_selector = IB_SA_EQ;
3297 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3298 	route->path_rec->traffic_class = tos;
3299 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3300 	route->path_rec->rate_selector = IB_SA_EQ;
3301 	route->path_rec->rate = iboe_get_rate(ndev);
3302 	dev_put(ndev);
3303 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3304 	/* In case ACK timeout is set, use this value to calculate
3305 	 * PacketLifeTime.  As per IBTA 12.7.34,
3306 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3307 	 * Assuming a negligible local ACK delay, we can use
3308 	 * PacketLifeTime = local ACK timeout/2
3309 	 * as a reasonable approximation for RoCE networks.
3310 	 */
3311 	mutex_lock(&id_priv->qp_mutex);
3312 	if (id_priv->timeout_set && id_priv->timeout)
3313 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3314 	else
3315 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3316 	mutex_unlock(&id_priv->qp_mutex);
3317 
3318 	if (!route->path_rec->mtu) {
3319 		ret = -EINVAL;
3320 		goto err2;
3321 	}
3322 
3323 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3324 					 id_priv->id.port_num))
3325 		route->path_rec->flow_label =
3326 			cma_get_roce_udp_flow_label(id_priv);
3327 
3328 	cma_init_resolve_route_work(work, id_priv);
3329 	queue_work(cma_wq, &work->work);
3330 
3331 	return 0;
3332 
3333 err2:
3334 	kfree(route->path_rec);
3335 	route->path_rec = NULL;
3336 	route->num_pri_alt_paths = 0;
3337 err1:
3338 	kfree(work);
3339 	return ret;
3340 }
3341 
3342 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3343 {
3344 	struct rdma_id_private *id_priv;
3345 	int ret;
3346 
3347 	if (!timeout_ms)
3348 		return -EINVAL;
3349 
3350 	id_priv = container_of(id, struct rdma_id_private, id);
3351 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3352 		return -EINVAL;
3353 
3354 	cma_id_get(id_priv);
3355 	if (rdma_cap_ib_sa(id->device, id->port_num))
3356 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3357 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3358 		ret = cma_resolve_iboe_route(id_priv);
3359 		if (!ret)
3360 			cma_add_id_to_tree(id_priv);
3361 	}
3362 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3363 		ret = cma_resolve_iw_route(id_priv);
3364 	else
3365 		ret = -ENOSYS;
3366 
3367 	if (ret)
3368 		goto err;
3369 
3370 	return 0;
3371 err:
3372 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3373 	cma_id_put(id_priv);
3374 	return ret;
3375 }
3376 EXPORT_SYMBOL(rdma_resolve_route);
3377 
3378 static void cma_set_loopback(struct sockaddr *addr)
3379 {
3380 	switch (addr->sa_family) {
3381 	case AF_INET:
3382 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3383 		break;
3384 	case AF_INET6:
3385 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3386 			      0, 0, 0, htonl(1));
3387 		break;
3388 	default:
3389 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3390 			    0, 0, 0, htonl(1));
3391 		break;
3392 	}
3393 }
3394 
3395 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3396 {
3397 	struct cma_device *cma_dev, *cur_dev;
3398 	union ib_gid gid;
3399 	enum ib_port_state port_state;
3400 	unsigned int p;
3401 	u16 pkey;
3402 	int ret;
3403 
3404 	cma_dev = NULL;
3405 	mutex_lock(&lock);
3406 	list_for_each_entry(cur_dev, &dev_list, list) {
3407 		if (cma_family(id_priv) == AF_IB &&
3408 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3409 			continue;
3410 
3411 		if (!cma_dev)
3412 			cma_dev = cur_dev;
3413 
3414 		rdma_for_each_port (cur_dev->device, p) {
3415 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3416 			    port_state == IB_PORT_ACTIVE) {
3417 				cma_dev = cur_dev;
3418 				goto port_found;
3419 			}
3420 		}
3421 	}
3422 
3423 	if (!cma_dev) {
3424 		ret = -ENODEV;
3425 		goto out;
3426 	}
3427 
3428 	p = 1;
3429 
3430 port_found:
3431 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3432 	if (ret)
3433 		goto out;
3434 
3435 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3436 	if (ret)
3437 		goto out;
3438 
3439 	id_priv->id.route.addr.dev_addr.dev_type =
3440 		(rdma_protocol_ib(cma_dev->device, p)) ?
3441 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3442 
3443 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3444 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3445 	id_priv->id.port_num = p;
3446 	cma_attach_to_dev(id_priv, cma_dev);
3447 	rdma_restrack_add(&id_priv->res);
3448 	cma_set_loopback(cma_src_addr(id_priv));
3449 out:
3450 	mutex_unlock(&lock);
3451 	return ret;
3452 }
3453 
3454 static void addr_handler(int status, struct sockaddr *src_addr,
3455 			 struct rdma_dev_addr *dev_addr, void *context)
3456 {
3457 	struct rdma_id_private *id_priv = context;
3458 	struct rdma_cm_event event = {};
3459 	struct sockaddr *addr;
3460 	struct sockaddr_storage old_addr;
3461 
3462 	mutex_lock(&id_priv->handler_mutex);
3463 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3464 			   RDMA_CM_ADDR_RESOLVED))
3465 		goto out;
3466 
3467 	/*
3468 	 * Store the previous src address, so that if we fail to acquire
3469 	 * matching rdma device, old address can be restored back, which helps
3470 	 * to cancel the cma listen operation correctly.
3471 	 */
3472 	addr = cma_src_addr(id_priv);
3473 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3474 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3475 	if (!status && !id_priv->cma_dev) {
3476 		status = cma_acquire_dev_by_src_ip(id_priv);
3477 		if (status)
3478 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3479 					     status);
3480 		rdma_restrack_add(&id_priv->res);
3481 	} else if (status) {
3482 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3483 	}
3484 
3485 	if (status) {
3486 		memcpy(addr, &old_addr,
3487 		       rdma_addr_size((struct sockaddr *)&old_addr));
3488 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3489 				   RDMA_CM_ADDR_BOUND))
3490 			goto out;
3491 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3492 		event.status = status;
3493 	} else
3494 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3495 
3496 	if (cma_cm_event_handler(id_priv, &event)) {
3497 		destroy_id_handler_unlock(id_priv);
3498 		return;
3499 	}
3500 out:
3501 	mutex_unlock(&id_priv->handler_mutex);
3502 }
3503 
3504 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3505 {
3506 	struct cma_work *work;
3507 	union ib_gid gid;
3508 	int ret;
3509 
3510 	work = kzalloc(sizeof *work, GFP_KERNEL);
3511 	if (!work)
3512 		return -ENOMEM;
3513 
3514 	if (!id_priv->cma_dev) {
3515 		ret = cma_bind_loopback(id_priv);
3516 		if (ret)
3517 			goto err;
3518 	}
3519 
3520 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3521 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3522 
3523 	enqueue_resolve_addr_work(work, id_priv);
3524 	return 0;
3525 err:
3526 	kfree(work);
3527 	return ret;
3528 }
3529 
3530 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3531 {
3532 	struct cma_work *work;
3533 	int ret;
3534 
3535 	work = kzalloc(sizeof *work, GFP_KERNEL);
3536 	if (!work)
3537 		return -ENOMEM;
3538 
3539 	if (!id_priv->cma_dev) {
3540 		ret = cma_resolve_ib_dev(id_priv);
3541 		if (ret)
3542 			goto err;
3543 	}
3544 
3545 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3546 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3547 
3548 	enqueue_resolve_addr_work(work, id_priv);
3549 	return 0;
3550 err:
3551 	kfree(work);
3552 	return ret;
3553 }
3554 
3555 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3556 {
3557 	struct rdma_id_private *id_priv;
3558 	unsigned long flags;
3559 	int ret;
3560 
3561 	id_priv = container_of(id, struct rdma_id_private, id);
3562 	spin_lock_irqsave(&id_priv->lock, flags);
3563 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3564 	    id_priv->state == RDMA_CM_IDLE) {
3565 		id_priv->reuseaddr = reuse;
3566 		ret = 0;
3567 	} else {
3568 		ret = -EINVAL;
3569 	}
3570 	spin_unlock_irqrestore(&id_priv->lock, flags);
3571 	return ret;
3572 }
3573 EXPORT_SYMBOL(rdma_set_reuseaddr);
3574 
3575 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3576 {
3577 	struct rdma_id_private *id_priv;
3578 	unsigned long flags;
3579 	int ret;
3580 
3581 	id_priv = container_of(id, struct rdma_id_private, id);
3582 	spin_lock_irqsave(&id_priv->lock, flags);
3583 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3584 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3585 		id_priv->afonly = afonly;
3586 		ret = 0;
3587 	} else {
3588 		ret = -EINVAL;
3589 	}
3590 	spin_unlock_irqrestore(&id_priv->lock, flags);
3591 	return ret;
3592 }
3593 EXPORT_SYMBOL(rdma_set_afonly);
3594 
3595 static void cma_bind_port(struct rdma_bind_list *bind_list,
3596 			  struct rdma_id_private *id_priv)
3597 {
3598 	struct sockaddr *addr;
3599 	struct sockaddr_ib *sib;
3600 	u64 sid, mask;
3601 	__be16 port;
3602 
3603 	lockdep_assert_held(&lock);
3604 
3605 	addr = cma_src_addr(id_priv);
3606 	port = htons(bind_list->port);
3607 
3608 	switch (addr->sa_family) {
3609 	case AF_INET:
3610 		((struct sockaddr_in *) addr)->sin_port = port;
3611 		break;
3612 	case AF_INET6:
3613 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3614 		break;
3615 	case AF_IB:
3616 		sib = (struct sockaddr_ib *) addr;
3617 		sid = be64_to_cpu(sib->sib_sid);
3618 		mask = be64_to_cpu(sib->sib_sid_mask);
3619 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3620 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3621 		break;
3622 	}
3623 	id_priv->bind_list = bind_list;
3624 	hlist_add_head(&id_priv->node, &bind_list->owners);
3625 }
3626 
3627 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3628 			  struct rdma_id_private *id_priv, unsigned short snum)
3629 {
3630 	struct rdma_bind_list *bind_list;
3631 	int ret;
3632 
3633 	lockdep_assert_held(&lock);
3634 
3635 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3636 	if (!bind_list)
3637 		return -ENOMEM;
3638 
3639 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3640 			   snum);
3641 	if (ret < 0)
3642 		goto err;
3643 
3644 	bind_list->ps = ps;
3645 	bind_list->port = snum;
3646 	cma_bind_port(bind_list, id_priv);
3647 	return 0;
3648 err:
3649 	kfree(bind_list);
3650 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3651 }
3652 
3653 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3654 			      struct rdma_id_private *id_priv)
3655 {
3656 	struct rdma_id_private *cur_id;
3657 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3658 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3659 	__be16 dport = cma_port(daddr);
3660 
3661 	lockdep_assert_held(&lock);
3662 
3663 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3664 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3665 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3666 		__be16 cur_dport = cma_port(cur_daddr);
3667 
3668 		if (id_priv == cur_id)
3669 			continue;
3670 
3671 		/* different dest port -> unique */
3672 		if (!cma_any_port(daddr) &&
3673 		    !cma_any_port(cur_daddr) &&
3674 		    (dport != cur_dport))
3675 			continue;
3676 
3677 		/* different src address -> unique */
3678 		if (!cma_any_addr(saddr) &&
3679 		    !cma_any_addr(cur_saddr) &&
3680 		    cma_addr_cmp(saddr, cur_saddr))
3681 			continue;
3682 
3683 		/* different dst address -> unique */
3684 		if (!cma_any_addr(daddr) &&
3685 		    !cma_any_addr(cur_daddr) &&
3686 		    cma_addr_cmp(daddr, cur_daddr))
3687 			continue;
3688 
3689 		return -EADDRNOTAVAIL;
3690 	}
3691 	return 0;
3692 }
3693 
3694 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3695 			      struct rdma_id_private *id_priv)
3696 {
3697 	static unsigned int last_used_port;
3698 	int low, high, remaining;
3699 	unsigned int rover;
3700 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3701 
3702 	lockdep_assert_held(&lock);
3703 
3704 	inet_get_local_port_range(net, &low, &high);
3705 	remaining = (high - low) + 1;
3706 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3707 retry:
3708 	if (last_used_port != rover) {
3709 		struct rdma_bind_list *bind_list;
3710 		int ret;
3711 
3712 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3713 
3714 		if (!bind_list) {
3715 			ret = cma_alloc_port(ps, id_priv, rover);
3716 		} else {
3717 			ret = cma_port_is_unique(bind_list, id_priv);
3718 			if (!ret)
3719 				cma_bind_port(bind_list, id_priv);
3720 		}
3721 		/*
3722 		 * Remember previously used port number in order to avoid
3723 		 * re-using same port immediately after it is closed.
3724 		 */
3725 		if (!ret)
3726 			last_used_port = rover;
3727 		if (ret != -EADDRNOTAVAIL)
3728 			return ret;
3729 	}
3730 	if (--remaining) {
3731 		rover++;
3732 		if ((rover < low) || (rover > high))
3733 			rover = low;
3734 		goto retry;
3735 	}
3736 	return -EADDRNOTAVAIL;
3737 }
3738 
3739 /*
3740  * Check that the requested port is available.  This is called when trying to
3741  * bind to a specific port, or when trying to listen on a bound port.  In
3742  * the latter case, the provided id_priv may already be on the bind_list, but
3743  * we still need to check that it's okay to start listening.
3744  */
3745 static int cma_check_port(struct rdma_bind_list *bind_list,
3746 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3747 {
3748 	struct rdma_id_private *cur_id;
3749 	struct sockaddr *addr, *cur_addr;
3750 
3751 	lockdep_assert_held(&lock);
3752 
3753 	addr = cma_src_addr(id_priv);
3754 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3755 		if (id_priv == cur_id)
3756 			continue;
3757 
3758 		if (reuseaddr && cur_id->reuseaddr)
3759 			continue;
3760 
3761 		cur_addr = cma_src_addr(cur_id);
3762 		if (id_priv->afonly && cur_id->afonly &&
3763 		    (addr->sa_family != cur_addr->sa_family))
3764 			continue;
3765 
3766 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3767 			return -EADDRNOTAVAIL;
3768 
3769 		if (!cma_addr_cmp(addr, cur_addr))
3770 			return -EADDRINUSE;
3771 	}
3772 	return 0;
3773 }
3774 
3775 static int cma_use_port(enum rdma_ucm_port_space ps,
3776 			struct rdma_id_private *id_priv)
3777 {
3778 	struct rdma_bind_list *bind_list;
3779 	unsigned short snum;
3780 	int ret;
3781 
3782 	lockdep_assert_held(&lock);
3783 
3784 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3785 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3786 		return -EACCES;
3787 
3788 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3789 	if (!bind_list) {
3790 		ret = cma_alloc_port(ps, id_priv, snum);
3791 	} else {
3792 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3793 		if (!ret)
3794 			cma_bind_port(bind_list, id_priv);
3795 	}
3796 	return ret;
3797 }
3798 
3799 static enum rdma_ucm_port_space
3800 cma_select_inet_ps(struct rdma_id_private *id_priv)
3801 {
3802 	switch (id_priv->id.ps) {
3803 	case RDMA_PS_TCP:
3804 	case RDMA_PS_UDP:
3805 	case RDMA_PS_IPOIB:
3806 	case RDMA_PS_IB:
3807 		return id_priv->id.ps;
3808 	default:
3809 
3810 		return 0;
3811 	}
3812 }
3813 
3814 static enum rdma_ucm_port_space
3815 cma_select_ib_ps(struct rdma_id_private *id_priv)
3816 {
3817 	enum rdma_ucm_port_space ps = 0;
3818 	struct sockaddr_ib *sib;
3819 	u64 sid_ps, mask, sid;
3820 
3821 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3822 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3823 	sid = be64_to_cpu(sib->sib_sid) & mask;
3824 
3825 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3826 		sid_ps = RDMA_IB_IP_PS_IB;
3827 		ps = RDMA_PS_IB;
3828 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3829 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3830 		sid_ps = RDMA_IB_IP_PS_TCP;
3831 		ps = RDMA_PS_TCP;
3832 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3833 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3834 		sid_ps = RDMA_IB_IP_PS_UDP;
3835 		ps = RDMA_PS_UDP;
3836 	}
3837 
3838 	if (ps) {
3839 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3840 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3841 						be64_to_cpu(sib->sib_sid_mask));
3842 	}
3843 	return ps;
3844 }
3845 
3846 static int cma_get_port(struct rdma_id_private *id_priv)
3847 {
3848 	enum rdma_ucm_port_space ps;
3849 	int ret;
3850 
3851 	if (cma_family(id_priv) != AF_IB)
3852 		ps = cma_select_inet_ps(id_priv);
3853 	else
3854 		ps = cma_select_ib_ps(id_priv);
3855 	if (!ps)
3856 		return -EPROTONOSUPPORT;
3857 
3858 	mutex_lock(&lock);
3859 	if (cma_any_port(cma_src_addr(id_priv)))
3860 		ret = cma_alloc_any_port(ps, id_priv);
3861 	else
3862 		ret = cma_use_port(ps, id_priv);
3863 	mutex_unlock(&lock);
3864 
3865 	return ret;
3866 }
3867 
3868 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3869 			       struct sockaddr *addr)
3870 {
3871 #if IS_ENABLED(CONFIG_IPV6)
3872 	struct sockaddr_in6 *sin6;
3873 
3874 	if (addr->sa_family != AF_INET6)
3875 		return 0;
3876 
3877 	sin6 = (struct sockaddr_in6 *) addr;
3878 
3879 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3880 		return 0;
3881 
3882 	if (!sin6->sin6_scope_id)
3883 			return -EINVAL;
3884 
3885 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3886 #endif
3887 	return 0;
3888 }
3889 
3890 int rdma_listen(struct rdma_cm_id *id, int backlog)
3891 {
3892 	struct rdma_id_private *id_priv =
3893 		container_of(id, struct rdma_id_private, id);
3894 	int ret;
3895 
3896 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3897 		struct sockaddr_in any_in = {
3898 			.sin_family = AF_INET,
3899 			.sin_addr.s_addr = htonl(INADDR_ANY),
3900 		};
3901 
3902 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3903 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3904 		if (ret)
3905 			return ret;
3906 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3907 					   RDMA_CM_LISTEN)))
3908 			return -EINVAL;
3909 	}
3910 
3911 	/*
3912 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3913 	 * any more, and has to be unique in the bind list.
3914 	 */
3915 	if (id_priv->reuseaddr) {
3916 		mutex_lock(&lock);
3917 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3918 		if (!ret)
3919 			id_priv->reuseaddr = 0;
3920 		mutex_unlock(&lock);
3921 		if (ret)
3922 			goto err;
3923 	}
3924 
3925 	id_priv->backlog = backlog;
3926 	if (id_priv->cma_dev) {
3927 		if (rdma_cap_ib_cm(id->device, 1)) {
3928 			ret = cma_ib_listen(id_priv);
3929 			if (ret)
3930 				goto err;
3931 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3932 			ret = cma_iw_listen(id_priv, backlog);
3933 			if (ret)
3934 				goto err;
3935 		} else {
3936 			ret = -ENOSYS;
3937 			goto err;
3938 		}
3939 	} else {
3940 		ret = cma_listen_on_all(id_priv);
3941 		if (ret)
3942 			goto err;
3943 	}
3944 
3945 	return 0;
3946 err:
3947 	id_priv->backlog = 0;
3948 	/*
3949 	 * All the failure paths that lead here will not allow the req_handler's
3950 	 * to have run.
3951 	 */
3952 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3953 	return ret;
3954 }
3955 EXPORT_SYMBOL(rdma_listen);
3956 
3957 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
3958 			      struct sockaddr *addr, const struct sockaddr *daddr)
3959 {
3960 	struct sockaddr *id_daddr;
3961 	int ret;
3962 
3963 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3964 	    addr->sa_family != AF_IB)
3965 		return -EAFNOSUPPORT;
3966 
3967 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3968 		return -EINVAL;
3969 
3970 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
3971 	if (ret)
3972 		goto err1;
3973 
3974 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3975 	if (!cma_any_addr(addr)) {
3976 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
3977 		if (ret)
3978 			goto err1;
3979 
3980 		ret = cma_acquire_dev_by_src_ip(id_priv);
3981 		if (ret)
3982 			goto err1;
3983 	}
3984 
3985 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3986 		if (addr->sa_family == AF_INET)
3987 			id_priv->afonly = 1;
3988 #if IS_ENABLED(CONFIG_IPV6)
3989 		else if (addr->sa_family == AF_INET6) {
3990 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3991 
3992 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3993 		}
3994 #endif
3995 	}
3996 	id_daddr = cma_dst_addr(id_priv);
3997 	if (daddr != id_daddr)
3998 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
3999 	id_daddr->sa_family = addr->sa_family;
4000 
4001 	ret = cma_get_port(id_priv);
4002 	if (ret)
4003 		goto err2;
4004 
4005 	if (!cma_any_addr(addr))
4006 		rdma_restrack_add(&id_priv->res);
4007 	return 0;
4008 err2:
4009 	if (id_priv->cma_dev)
4010 		cma_release_dev(id_priv);
4011 err1:
4012 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4013 	return ret;
4014 }
4015 
4016 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4017 			 const struct sockaddr *dst_addr)
4018 {
4019 	struct rdma_id_private *id_priv =
4020 		container_of(id, struct rdma_id_private, id);
4021 	struct sockaddr_storage zero_sock = {};
4022 
4023 	if (src_addr && src_addr->sa_family)
4024 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4025 
4026 	/*
4027 	 * When the src_addr is not specified, automatically supply an any addr
4028 	 */
4029 	zero_sock.ss_family = dst_addr->sa_family;
4030 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4031 		struct sockaddr_in6 *src_addr6 =
4032 			(struct sockaddr_in6 *)&zero_sock;
4033 		struct sockaddr_in6 *dst_addr6 =
4034 			(struct sockaddr_in6 *)dst_addr;
4035 
4036 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4037 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4038 			id->route.addr.dev_addr.bound_dev_if =
4039 				dst_addr6->sin6_scope_id;
4040 	} else if (dst_addr->sa_family == AF_IB) {
4041 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4042 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4043 	}
4044 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4045 }
4046 
4047 /*
4048  * If required, resolve the source address for bind and leave the id_priv in
4049  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4050  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4051  * ignored.
4052  */
4053 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4054 			       struct sockaddr *src_addr,
4055 			       const struct sockaddr *dst_addr)
4056 {
4057 	int ret;
4058 
4059 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4060 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4061 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4062 		if (ret)
4063 			return ret;
4064 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4065 					   RDMA_CM_ADDR_QUERY)))
4066 			return -EINVAL;
4067 
4068 	}
4069 
4070 	if (cma_family(id_priv) != dst_addr->sa_family) {
4071 		ret = -EINVAL;
4072 		goto err_state;
4073 	}
4074 	return 0;
4075 
4076 err_state:
4077 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4078 	return ret;
4079 }
4080 
4081 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4082 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4083 {
4084 	struct rdma_id_private *id_priv =
4085 		container_of(id, struct rdma_id_private, id);
4086 	int ret;
4087 
4088 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4089 	if (ret)
4090 		return ret;
4091 
4092 	if (cma_any_addr(dst_addr)) {
4093 		ret = cma_resolve_loopback(id_priv);
4094 	} else {
4095 		if (dst_addr->sa_family == AF_IB) {
4096 			ret = cma_resolve_ib_addr(id_priv);
4097 		} else {
4098 			/*
4099 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4100 			 * rdma_resolve_ip() is called, eg through the error
4101 			 * path in addr_handler(). If this happens the existing
4102 			 * request must be canceled before issuing a new one.
4103 			 * Since canceling a request is a bit slow and this
4104 			 * oddball path is rare, keep track once a request has
4105 			 * been issued. The track turns out to be a permanent
4106 			 * state since this is the only cancel as it is
4107 			 * immediately before rdma_resolve_ip().
4108 			 */
4109 			if (id_priv->used_resolve_ip)
4110 				rdma_addr_cancel(&id->route.addr.dev_addr);
4111 			else
4112 				id_priv->used_resolve_ip = 1;
4113 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4114 					      &id->route.addr.dev_addr,
4115 					      timeout_ms, addr_handler,
4116 					      false, id_priv);
4117 		}
4118 	}
4119 	if (ret)
4120 		goto err;
4121 
4122 	return 0;
4123 err:
4124 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4125 	return ret;
4126 }
4127 EXPORT_SYMBOL(rdma_resolve_addr);
4128 
4129 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4130 {
4131 	struct rdma_id_private *id_priv =
4132 		container_of(id, struct rdma_id_private, id);
4133 
4134 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4135 }
4136 EXPORT_SYMBOL(rdma_bind_addr);
4137 
4138 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4139 {
4140 	struct cma_hdr *cma_hdr;
4141 
4142 	cma_hdr = hdr;
4143 	cma_hdr->cma_version = CMA_VERSION;
4144 	if (cma_family(id_priv) == AF_INET) {
4145 		struct sockaddr_in *src4, *dst4;
4146 
4147 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4148 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4149 
4150 		cma_set_ip_ver(cma_hdr, 4);
4151 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4152 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4153 		cma_hdr->port = src4->sin_port;
4154 	} else if (cma_family(id_priv) == AF_INET6) {
4155 		struct sockaddr_in6 *src6, *dst6;
4156 
4157 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4158 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4159 
4160 		cma_set_ip_ver(cma_hdr, 6);
4161 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4162 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4163 		cma_hdr->port = src6->sin6_port;
4164 	}
4165 	return 0;
4166 }
4167 
4168 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4169 				const struct ib_cm_event *ib_event)
4170 {
4171 	struct rdma_id_private *id_priv = cm_id->context;
4172 	struct rdma_cm_event event = {};
4173 	const struct ib_cm_sidr_rep_event_param *rep =
4174 				&ib_event->param.sidr_rep_rcvd;
4175 	int ret;
4176 
4177 	mutex_lock(&id_priv->handler_mutex);
4178 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4179 		goto out;
4180 
4181 	switch (ib_event->event) {
4182 	case IB_CM_SIDR_REQ_ERROR:
4183 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4184 		event.status = -ETIMEDOUT;
4185 		break;
4186 	case IB_CM_SIDR_REP_RECEIVED:
4187 		event.param.ud.private_data = ib_event->private_data;
4188 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4189 		if (rep->status != IB_SIDR_SUCCESS) {
4190 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4191 			event.status = ib_event->param.sidr_rep_rcvd.status;
4192 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4193 					     event.status);
4194 			break;
4195 		}
4196 		ret = cma_set_qkey(id_priv, rep->qkey);
4197 		if (ret) {
4198 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4199 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4200 			event.status = ret;
4201 			break;
4202 		}
4203 		ib_init_ah_attr_from_path(id_priv->id.device,
4204 					  id_priv->id.port_num,
4205 					  id_priv->id.route.path_rec,
4206 					  &event.param.ud.ah_attr,
4207 					  rep->sgid_attr);
4208 		event.param.ud.qp_num = rep->qpn;
4209 		event.param.ud.qkey = rep->qkey;
4210 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4211 		event.status = 0;
4212 		break;
4213 	default:
4214 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4215 		       ib_event->event);
4216 		goto out;
4217 	}
4218 
4219 	ret = cma_cm_event_handler(id_priv, &event);
4220 
4221 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4222 	if (ret) {
4223 		/* Destroy the CM ID by returning a non-zero value. */
4224 		id_priv->cm_id.ib = NULL;
4225 		destroy_id_handler_unlock(id_priv);
4226 		return ret;
4227 	}
4228 out:
4229 	mutex_unlock(&id_priv->handler_mutex);
4230 	return 0;
4231 }
4232 
4233 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4234 			      struct rdma_conn_param *conn_param)
4235 {
4236 	struct ib_cm_sidr_req_param req;
4237 	struct ib_cm_id	*id;
4238 	void *private_data;
4239 	u8 offset;
4240 	int ret;
4241 
4242 	memset(&req, 0, sizeof req);
4243 	offset = cma_user_data_offset(id_priv);
4244 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4245 		return -EINVAL;
4246 
4247 	if (req.private_data_len) {
4248 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4249 		if (!private_data)
4250 			return -ENOMEM;
4251 	} else {
4252 		private_data = NULL;
4253 	}
4254 
4255 	if (conn_param->private_data && conn_param->private_data_len)
4256 		memcpy(private_data + offset, conn_param->private_data,
4257 		       conn_param->private_data_len);
4258 
4259 	if (private_data) {
4260 		ret = cma_format_hdr(private_data, id_priv);
4261 		if (ret)
4262 			goto out;
4263 		req.private_data = private_data;
4264 	}
4265 
4266 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4267 			     id_priv);
4268 	if (IS_ERR(id)) {
4269 		ret = PTR_ERR(id);
4270 		goto out;
4271 	}
4272 	id_priv->cm_id.ib = id;
4273 
4274 	req.path = id_priv->id.route.path_rec;
4275 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4276 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4277 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4278 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4279 
4280 	trace_cm_send_sidr_req(id_priv);
4281 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4282 	if (ret) {
4283 		ib_destroy_cm_id(id_priv->cm_id.ib);
4284 		id_priv->cm_id.ib = NULL;
4285 	}
4286 out:
4287 	kfree(private_data);
4288 	return ret;
4289 }
4290 
4291 static int cma_connect_ib(struct rdma_id_private *id_priv,
4292 			  struct rdma_conn_param *conn_param)
4293 {
4294 	struct ib_cm_req_param req;
4295 	struct rdma_route *route;
4296 	void *private_data;
4297 	struct ib_cm_id	*id;
4298 	u8 offset;
4299 	int ret;
4300 
4301 	memset(&req, 0, sizeof req);
4302 	offset = cma_user_data_offset(id_priv);
4303 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4304 		return -EINVAL;
4305 
4306 	if (req.private_data_len) {
4307 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4308 		if (!private_data)
4309 			return -ENOMEM;
4310 	} else {
4311 		private_data = NULL;
4312 	}
4313 
4314 	if (conn_param->private_data && conn_param->private_data_len)
4315 		memcpy(private_data + offset, conn_param->private_data,
4316 		       conn_param->private_data_len);
4317 
4318 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4319 	if (IS_ERR(id)) {
4320 		ret = PTR_ERR(id);
4321 		goto out;
4322 	}
4323 	id_priv->cm_id.ib = id;
4324 
4325 	route = &id_priv->id.route;
4326 	if (private_data) {
4327 		ret = cma_format_hdr(private_data, id_priv);
4328 		if (ret)
4329 			goto out;
4330 		req.private_data = private_data;
4331 	}
4332 
4333 	req.primary_path = &route->path_rec[0];
4334 	req.primary_path_inbound = route->path_rec_inbound;
4335 	req.primary_path_outbound = route->path_rec_outbound;
4336 	if (route->num_pri_alt_paths == 2)
4337 		req.alternate_path = &route->path_rec[1];
4338 
4339 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4340 	/* Alternate path SGID attribute currently unsupported */
4341 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4342 	req.qp_num = id_priv->qp_num;
4343 	req.qp_type = id_priv->id.qp_type;
4344 	req.starting_psn = id_priv->seq_num;
4345 	req.responder_resources = conn_param->responder_resources;
4346 	req.initiator_depth = conn_param->initiator_depth;
4347 	req.flow_control = conn_param->flow_control;
4348 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4349 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4350 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4351 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4352 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4353 	req.srq = id_priv->srq ? 1 : 0;
4354 	req.ece.vendor_id = id_priv->ece.vendor_id;
4355 	req.ece.attr_mod = id_priv->ece.attr_mod;
4356 
4357 	trace_cm_send_req(id_priv);
4358 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4359 out:
4360 	if (ret && !IS_ERR(id)) {
4361 		ib_destroy_cm_id(id);
4362 		id_priv->cm_id.ib = NULL;
4363 	}
4364 
4365 	kfree(private_data);
4366 	return ret;
4367 }
4368 
4369 static int cma_connect_iw(struct rdma_id_private *id_priv,
4370 			  struct rdma_conn_param *conn_param)
4371 {
4372 	struct iw_cm_id *cm_id;
4373 	int ret;
4374 	struct iw_cm_conn_param iw_param;
4375 
4376 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4377 	if (IS_ERR(cm_id))
4378 		return PTR_ERR(cm_id);
4379 
4380 	mutex_lock(&id_priv->qp_mutex);
4381 	cm_id->tos = id_priv->tos;
4382 	cm_id->tos_set = id_priv->tos_set;
4383 	mutex_unlock(&id_priv->qp_mutex);
4384 
4385 	id_priv->cm_id.iw = cm_id;
4386 
4387 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4388 	       rdma_addr_size(cma_src_addr(id_priv)));
4389 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4390 	       rdma_addr_size(cma_dst_addr(id_priv)));
4391 
4392 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4393 	if (ret)
4394 		goto out;
4395 
4396 	if (conn_param) {
4397 		iw_param.ord = conn_param->initiator_depth;
4398 		iw_param.ird = conn_param->responder_resources;
4399 		iw_param.private_data = conn_param->private_data;
4400 		iw_param.private_data_len = conn_param->private_data_len;
4401 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4402 	} else {
4403 		memset(&iw_param, 0, sizeof iw_param);
4404 		iw_param.qpn = id_priv->qp_num;
4405 	}
4406 	ret = iw_cm_connect(cm_id, &iw_param);
4407 out:
4408 	if (ret) {
4409 		iw_destroy_cm_id(cm_id);
4410 		id_priv->cm_id.iw = NULL;
4411 	}
4412 	return ret;
4413 }
4414 
4415 /**
4416  * rdma_connect_locked - Initiate an active connection request.
4417  * @id: Connection identifier to connect.
4418  * @conn_param: Connection information used for connected QPs.
4419  *
4420  * Same as rdma_connect() but can only be called from the
4421  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4422  */
4423 int rdma_connect_locked(struct rdma_cm_id *id,
4424 			struct rdma_conn_param *conn_param)
4425 {
4426 	struct rdma_id_private *id_priv =
4427 		container_of(id, struct rdma_id_private, id);
4428 	int ret;
4429 
4430 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4431 		return -EINVAL;
4432 
4433 	if (!id->qp) {
4434 		id_priv->qp_num = conn_param->qp_num;
4435 		id_priv->srq = conn_param->srq;
4436 	}
4437 
4438 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4439 		if (id->qp_type == IB_QPT_UD)
4440 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4441 		else
4442 			ret = cma_connect_ib(id_priv, conn_param);
4443 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4444 		ret = cma_connect_iw(id_priv, conn_param);
4445 	} else {
4446 		ret = -ENOSYS;
4447 	}
4448 	if (ret)
4449 		goto err_state;
4450 	return 0;
4451 err_state:
4452 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4453 	return ret;
4454 }
4455 EXPORT_SYMBOL(rdma_connect_locked);
4456 
4457 /**
4458  * rdma_connect - Initiate an active connection request.
4459  * @id: Connection identifier to connect.
4460  * @conn_param: Connection information used for connected QPs.
4461  *
4462  * Users must have resolved a route for the rdma_cm_id to connect with by having
4463  * called rdma_resolve_route before calling this routine.
4464  *
4465  * This call will either connect to a remote QP or obtain remote QP information
4466  * for unconnected rdma_cm_id's.  The actual operation is based on the
4467  * rdma_cm_id's port space.
4468  */
4469 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4470 {
4471 	struct rdma_id_private *id_priv =
4472 		container_of(id, struct rdma_id_private, id);
4473 	int ret;
4474 
4475 	mutex_lock(&id_priv->handler_mutex);
4476 	ret = rdma_connect_locked(id, conn_param);
4477 	mutex_unlock(&id_priv->handler_mutex);
4478 	return ret;
4479 }
4480 EXPORT_SYMBOL(rdma_connect);
4481 
4482 /**
4483  * rdma_connect_ece - Initiate an active connection request with ECE data.
4484  * @id: Connection identifier to connect.
4485  * @conn_param: Connection information used for connected QPs.
4486  * @ece: ECE parameters
4487  *
4488  * See rdma_connect() explanation.
4489  */
4490 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4491 		     struct rdma_ucm_ece *ece)
4492 {
4493 	struct rdma_id_private *id_priv =
4494 		container_of(id, struct rdma_id_private, id);
4495 
4496 	id_priv->ece.vendor_id = ece->vendor_id;
4497 	id_priv->ece.attr_mod = ece->attr_mod;
4498 
4499 	return rdma_connect(id, conn_param);
4500 }
4501 EXPORT_SYMBOL(rdma_connect_ece);
4502 
4503 static int cma_accept_ib(struct rdma_id_private *id_priv,
4504 			 struct rdma_conn_param *conn_param)
4505 {
4506 	struct ib_cm_rep_param rep;
4507 	int ret;
4508 
4509 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4510 	if (ret)
4511 		goto out;
4512 
4513 	ret = cma_modify_qp_rts(id_priv, conn_param);
4514 	if (ret)
4515 		goto out;
4516 
4517 	memset(&rep, 0, sizeof rep);
4518 	rep.qp_num = id_priv->qp_num;
4519 	rep.starting_psn = id_priv->seq_num;
4520 	rep.private_data = conn_param->private_data;
4521 	rep.private_data_len = conn_param->private_data_len;
4522 	rep.responder_resources = conn_param->responder_resources;
4523 	rep.initiator_depth = conn_param->initiator_depth;
4524 	rep.failover_accepted = 0;
4525 	rep.flow_control = conn_param->flow_control;
4526 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4527 	rep.srq = id_priv->srq ? 1 : 0;
4528 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4529 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4530 
4531 	trace_cm_send_rep(id_priv);
4532 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4533 out:
4534 	return ret;
4535 }
4536 
4537 static int cma_accept_iw(struct rdma_id_private *id_priv,
4538 		  struct rdma_conn_param *conn_param)
4539 {
4540 	struct iw_cm_conn_param iw_param;
4541 	int ret;
4542 
4543 	if (!conn_param)
4544 		return -EINVAL;
4545 
4546 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4547 	if (ret)
4548 		return ret;
4549 
4550 	iw_param.ord = conn_param->initiator_depth;
4551 	iw_param.ird = conn_param->responder_resources;
4552 	iw_param.private_data = conn_param->private_data;
4553 	iw_param.private_data_len = conn_param->private_data_len;
4554 	if (id_priv->id.qp)
4555 		iw_param.qpn = id_priv->qp_num;
4556 	else
4557 		iw_param.qpn = conn_param->qp_num;
4558 
4559 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4560 }
4561 
4562 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4563 			     enum ib_cm_sidr_status status, u32 qkey,
4564 			     const void *private_data, int private_data_len)
4565 {
4566 	struct ib_cm_sidr_rep_param rep;
4567 	int ret;
4568 
4569 	memset(&rep, 0, sizeof rep);
4570 	rep.status = status;
4571 	if (status == IB_SIDR_SUCCESS) {
4572 		ret = cma_set_qkey(id_priv, qkey);
4573 		if (ret)
4574 			return ret;
4575 		rep.qp_num = id_priv->qp_num;
4576 		rep.qkey = id_priv->qkey;
4577 
4578 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4579 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4580 	}
4581 
4582 	rep.private_data = private_data;
4583 	rep.private_data_len = private_data_len;
4584 
4585 	trace_cm_send_sidr_rep(id_priv);
4586 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4587 }
4588 
4589 /**
4590  * rdma_accept - Called to accept a connection request or response.
4591  * @id: Connection identifier associated with the request.
4592  * @conn_param: Information needed to establish the connection.  This must be
4593  *   provided if accepting a connection request.  If accepting a connection
4594  *   response, this parameter must be NULL.
4595  *
4596  * Typically, this routine is only called by the listener to accept a connection
4597  * request.  It must also be called on the active side of a connection if the
4598  * user is performing their own QP transitions.
4599  *
4600  * In the case of error, a reject message is sent to the remote side and the
4601  * state of the qp associated with the id is modified to error, such that any
4602  * previously posted receive buffers would be flushed.
4603  *
4604  * This function is for use by kernel ULPs and must be called from under the
4605  * handler callback.
4606  */
4607 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4608 {
4609 	struct rdma_id_private *id_priv =
4610 		container_of(id, struct rdma_id_private, id);
4611 	int ret;
4612 
4613 	lockdep_assert_held(&id_priv->handler_mutex);
4614 
4615 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4616 		return -EINVAL;
4617 
4618 	if (!id->qp && conn_param) {
4619 		id_priv->qp_num = conn_param->qp_num;
4620 		id_priv->srq = conn_param->srq;
4621 	}
4622 
4623 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4624 		if (id->qp_type == IB_QPT_UD) {
4625 			if (conn_param)
4626 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4627 							conn_param->qkey,
4628 							conn_param->private_data,
4629 							conn_param->private_data_len);
4630 			else
4631 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4632 							0, NULL, 0);
4633 		} else {
4634 			if (conn_param)
4635 				ret = cma_accept_ib(id_priv, conn_param);
4636 			else
4637 				ret = cma_rep_recv(id_priv);
4638 		}
4639 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4640 		ret = cma_accept_iw(id_priv, conn_param);
4641 	} else {
4642 		ret = -ENOSYS;
4643 	}
4644 	if (ret)
4645 		goto reject;
4646 
4647 	return 0;
4648 reject:
4649 	cma_modify_qp_err(id_priv);
4650 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4651 	return ret;
4652 }
4653 EXPORT_SYMBOL(rdma_accept);
4654 
4655 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4656 		    struct rdma_ucm_ece *ece)
4657 {
4658 	struct rdma_id_private *id_priv =
4659 		container_of(id, struct rdma_id_private, id);
4660 
4661 	id_priv->ece.vendor_id = ece->vendor_id;
4662 	id_priv->ece.attr_mod = ece->attr_mod;
4663 
4664 	return rdma_accept(id, conn_param);
4665 }
4666 EXPORT_SYMBOL(rdma_accept_ece);
4667 
4668 void rdma_lock_handler(struct rdma_cm_id *id)
4669 {
4670 	struct rdma_id_private *id_priv =
4671 		container_of(id, struct rdma_id_private, id);
4672 
4673 	mutex_lock(&id_priv->handler_mutex);
4674 }
4675 EXPORT_SYMBOL(rdma_lock_handler);
4676 
4677 void rdma_unlock_handler(struct rdma_cm_id *id)
4678 {
4679 	struct rdma_id_private *id_priv =
4680 		container_of(id, struct rdma_id_private, id);
4681 
4682 	mutex_unlock(&id_priv->handler_mutex);
4683 }
4684 EXPORT_SYMBOL(rdma_unlock_handler);
4685 
4686 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4687 {
4688 	struct rdma_id_private *id_priv;
4689 	int ret;
4690 
4691 	id_priv = container_of(id, struct rdma_id_private, id);
4692 	if (!id_priv->cm_id.ib)
4693 		return -EINVAL;
4694 
4695 	switch (id->device->node_type) {
4696 	case RDMA_NODE_IB_CA:
4697 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4698 		break;
4699 	default:
4700 		ret = 0;
4701 		break;
4702 	}
4703 	return ret;
4704 }
4705 EXPORT_SYMBOL(rdma_notify);
4706 
4707 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4708 		u8 private_data_len, u8 reason)
4709 {
4710 	struct rdma_id_private *id_priv;
4711 	int ret;
4712 
4713 	id_priv = container_of(id, struct rdma_id_private, id);
4714 	if (!id_priv->cm_id.ib)
4715 		return -EINVAL;
4716 
4717 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4718 		if (id->qp_type == IB_QPT_UD) {
4719 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4720 						private_data, private_data_len);
4721 		} else {
4722 			trace_cm_send_rej(id_priv);
4723 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4724 					     private_data, private_data_len);
4725 		}
4726 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4727 		ret = iw_cm_reject(id_priv->cm_id.iw,
4728 				   private_data, private_data_len);
4729 	} else {
4730 		ret = -ENOSYS;
4731 	}
4732 
4733 	return ret;
4734 }
4735 EXPORT_SYMBOL(rdma_reject);
4736 
4737 int rdma_disconnect(struct rdma_cm_id *id)
4738 {
4739 	struct rdma_id_private *id_priv;
4740 	int ret;
4741 
4742 	id_priv = container_of(id, struct rdma_id_private, id);
4743 	if (!id_priv->cm_id.ib)
4744 		return -EINVAL;
4745 
4746 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4747 		ret = cma_modify_qp_err(id_priv);
4748 		if (ret)
4749 			goto out;
4750 		/* Initiate or respond to a disconnect. */
4751 		trace_cm_disconnect(id_priv);
4752 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4753 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4754 				trace_cm_sent_drep(id_priv);
4755 		} else {
4756 			trace_cm_sent_dreq(id_priv);
4757 		}
4758 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4759 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4760 	} else
4761 		ret = -EINVAL;
4762 
4763 out:
4764 	return ret;
4765 }
4766 EXPORT_SYMBOL(rdma_disconnect);
4767 
4768 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4769 			      struct ib_sa_multicast *multicast,
4770 			      struct rdma_cm_event *event,
4771 			      struct cma_multicast *mc)
4772 {
4773 	struct rdma_dev_addr *dev_addr;
4774 	enum ib_gid_type gid_type;
4775 	struct net_device *ndev;
4776 
4777 	if (!status)
4778 		status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4779 	else
4780 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4781 				     status);
4782 
4783 	event->status = status;
4784 	event->param.ud.private_data = mc->context;
4785 	if (status) {
4786 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4787 		return;
4788 	}
4789 
4790 	dev_addr = &id_priv->id.route.addr.dev_addr;
4791 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4792 	gid_type =
4793 		id_priv->cma_dev
4794 			->default_gid_type[id_priv->id.port_num -
4795 					   rdma_start_port(
4796 						   id_priv->cma_dev->device)];
4797 
4798 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4799 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4800 				     &multicast->rec, ndev, gid_type,
4801 				     &event->param.ud.ah_attr)) {
4802 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4803 		goto out;
4804 	}
4805 
4806 	event->param.ud.qp_num = 0xFFFFFF;
4807 	event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4808 
4809 out:
4810 	if (ndev)
4811 		dev_put(ndev);
4812 }
4813 
4814 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4815 {
4816 	struct cma_multicast *mc = multicast->context;
4817 	struct rdma_id_private *id_priv = mc->id_priv;
4818 	struct rdma_cm_event event = {};
4819 	int ret = 0;
4820 
4821 	mutex_lock(&id_priv->handler_mutex);
4822 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4823 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4824 		goto out;
4825 
4826 	cma_make_mc_event(status, id_priv, multicast, &event, mc);
4827 	ret = cma_cm_event_handler(id_priv, &event);
4828 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4829 	WARN_ON(ret);
4830 
4831 out:
4832 	mutex_unlock(&id_priv->handler_mutex);
4833 	return 0;
4834 }
4835 
4836 static void cma_set_mgid(struct rdma_id_private *id_priv,
4837 			 struct sockaddr *addr, union ib_gid *mgid)
4838 {
4839 	unsigned char mc_map[MAX_ADDR_LEN];
4840 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4841 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4842 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4843 
4844 	if (cma_any_addr(addr)) {
4845 		memset(mgid, 0, sizeof *mgid);
4846 	} else if ((addr->sa_family == AF_INET6) &&
4847 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4848 								 0xFF10A01B)) {
4849 		/* IPv6 address is an SA assigned MGID. */
4850 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4851 	} else if (addr->sa_family == AF_IB) {
4852 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4853 	} else if (addr->sa_family == AF_INET6) {
4854 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4855 		if (id_priv->id.ps == RDMA_PS_UDP)
4856 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4857 		*mgid = *(union ib_gid *) (mc_map + 4);
4858 	} else {
4859 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4860 		if (id_priv->id.ps == RDMA_PS_UDP)
4861 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4862 		*mgid = *(union ib_gid *) (mc_map + 4);
4863 	}
4864 }
4865 
4866 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4867 				 struct cma_multicast *mc)
4868 {
4869 	struct ib_sa_mcmember_rec rec;
4870 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4871 	ib_sa_comp_mask comp_mask;
4872 	int ret;
4873 
4874 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4875 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4876 				     &rec.mgid, &rec);
4877 	if (ret)
4878 		return ret;
4879 
4880 	ret = cma_set_qkey(id_priv, 0);
4881 	if (ret)
4882 		return ret;
4883 
4884 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4885 	rec.qkey = cpu_to_be32(id_priv->qkey);
4886 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4887 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4888 	rec.join_state = mc->join_state;
4889 
4890 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4891 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4892 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4893 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4894 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4895 
4896 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4897 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4898 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4899 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4900 			     IB_SA_MCMEMBER_REC_MTU |
4901 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4902 
4903 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4904 					 id_priv->id.port_num, &rec, comp_mask,
4905 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4906 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4907 }
4908 
4909 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4910 			      enum ib_gid_type gid_type)
4911 {
4912 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4913 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4914 
4915 	if (cma_any_addr(addr)) {
4916 		memset(mgid, 0, sizeof *mgid);
4917 	} else if (addr->sa_family == AF_INET6) {
4918 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4919 	} else {
4920 		mgid->raw[0] =
4921 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4922 		mgid->raw[1] =
4923 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4924 		mgid->raw[2] = 0;
4925 		mgid->raw[3] = 0;
4926 		mgid->raw[4] = 0;
4927 		mgid->raw[5] = 0;
4928 		mgid->raw[6] = 0;
4929 		mgid->raw[7] = 0;
4930 		mgid->raw[8] = 0;
4931 		mgid->raw[9] = 0;
4932 		mgid->raw[10] = 0xff;
4933 		mgid->raw[11] = 0xff;
4934 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4935 	}
4936 }
4937 
4938 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4939 				   struct cma_multicast *mc)
4940 {
4941 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4942 	int err = 0;
4943 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4944 	struct net_device *ndev = NULL;
4945 	struct ib_sa_multicast ib;
4946 	enum ib_gid_type gid_type;
4947 	bool send_only;
4948 
4949 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4950 
4951 	if (cma_zero_addr(addr))
4952 		return -EINVAL;
4953 
4954 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4955 		   rdma_start_port(id_priv->cma_dev->device)];
4956 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4957 
4958 	ib.rec.pkey = cpu_to_be16(0xffff);
4959 	if (id_priv->id.ps == RDMA_PS_UDP)
4960 		ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4961 
4962 	if (dev_addr->bound_dev_if)
4963 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4964 	if (!ndev)
4965 		return -ENODEV;
4966 
4967 	ib.rec.rate = iboe_get_rate(ndev);
4968 	ib.rec.hop_limit = 1;
4969 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4970 
4971 	if (addr->sa_family == AF_INET) {
4972 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4973 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4974 			if (!send_only) {
4975 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4976 						    true);
4977 			}
4978 		}
4979 	} else {
4980 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4981 			err = -ENOTSUPP;
4982 	}
4983 	dev_put(ndev);
4984 	if (err || !ib.rec.mtu)
4985 		return err ?: -EINVAL;
4986 
4987 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4988 		    &ib.rec.port_gid);
4989 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4990 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4991 	queue_work(cma_wq, &mc->iboe_join.work);
4992 	return 0;
4993 }
4994 
4995 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4996 			u8 join_state, void *context)
4997 {
4998 	struct rdma_id_private *id_priv =
4999 		container_of(id, struct rdma_id_private, id);
5000 	struct cma_multicast *mc;
5001 	int ret;
5002 
5003 	/* Not supported for kernel QPs */
5004 	if (WARN_ON(id->qp))
5005 		return -EINVAL;
5006 
5007 	/* ULP is calling this wrong. */
5008 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5009 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5010 		return -EINVAL;
5011 
5012 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5013 	if (!mc)
5014 		return -ENOMEM;
5015 
5016 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5017 	mc->context = context;
5018 	mc->id_priv = id_priv;
5019 	mc->join_state = join_state;
5020 
5021 	if (rdma_protocol_roce(id->device, id->port_num)) {
5022 		ret = cma_iboe_join_multicast(id_priv, mc);
5023 		if (ret)
5024 			goto out_err;
5025 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5026 		ret = cma_join_ib_multicast(id_priv, mc);
5027 		if (ret)
5028 			goto out_err;
5029 	} else {
5030 		ret = -ENOSYS;
5031 		goto out_err;
5032 	}
5033 
5034 	spin_lock(&id_priv->lock);
5035 	list_add(&mc->list, &id_priv->mc_list);
5036 	spin_unlock(&id_priv->lock);
5037 
5038 	return 0;
5039 out_err:
5040 	kfree(mc);
5041 	return ret;
5042 }
5043 EXPORT_SYMBOL(rdma_join_multicast);
5044 
5045 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5046 {
5047 	struct rdma_id_private *id_priv;
5048 	struct cma_multicast *mc;
5049 
5050 	id_priv = container_of(id, struct rdma_id_private, id);
5051 	spin_lock_irq(&id_priv->lock);
5052 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5053 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5054 			continue;
5055 		list_del(&mc->list);
5056 		spin_unlock_irq(&id_priv->lock);
5057 
5058 		WARN_ON(id_priv->cma_dev->device != id->device);
5059 		destroy_mc(id_priv, mc);
5060 		return;
5061 	}
5062 	spin_unlock_irq(&id_priv->lock);
5063 }
5064 EXPORT_SYMBOL(rdma_leave_multicast);
5065 
5066 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5067 {
5068 	struct rdma_dev_addr *dev_addr;
5069 	struct cma_work *work;
5070 
5071 	dev_addr = &id_priv->id.route.addr.dev_addr;
5072 
5073 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5074 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5075 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5076 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5077 			ndev->name, &id_priv->id);
5078 		work = kzalloc(sizeof *work, GFP_KERNEL);
5079 		if (!work)
5080 			return -ENOMEM;
5081 
5082 		INIT_WORK(&work->work, cma_work_handler);
5083 		work->id = id_priv;
5084 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5085 		cma_id_get(id_priv);
5086 		queue_work(cma_wq, &work->work);
5087 	}
5088 
5089 	return 0;
5090 }
5091 
5092 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5093 			       void *ptr)
5094 {
5095 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5096 	struct cma_device *cma_dev;
5097 	struct rdma_id_private *id_priv;
5098 	int ret = NOTIFY_DONE;
5099 
5100 	if (event != NETDEV_BONDING_FAILOVER)
5101 		return NOTIFY_DONE;
5102 
5103 	if (!netif_is_bond_master(ndev))
5104 		return NOTIFY_DONE;
5105 
5106 	mutex_lock(&lock);
5107 	list_for_each_entry(cma_dev, &dev_list, list)
5108 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5109 			ret = cma_netdev_change(ndev, id_priv);
5110 			if (ret)
5111 				goto out;
5112 		}
5113 
5114 out:
5115 	mutex_unlock(&lock);
5116 	return ret;
5117 }
5118 
5119 static void cma_netevent_work_handler(struct work_struct *_work)
5120 {
5121 	struct rdma_id_private *id_priv =
5122 		container_of(_work, struct rdma_id_private, id.net_work);
5123 	struct rdma_cm_event event = {};
5124 
5125 	mutex_lock(&id_priv->handler_mutex);
5126 
5127 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5128 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5129 		goto out_unlock;
5130 
5131 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5132 	event.status = -ETIMEDOUT;
5133 
5134 	if (cma_cm_event_handler(id_priv, &event)) {
5135 		__acquire(&id_priv->handler_mutex);
5136 		id_priv->cm_id.ib = NULL;
5137 		cma_id_put(id_priv);
5138 		destroy_id_handler_unlock(id_priv);
5139 		return;
5140 	}
5141 
5142 out_unlock:
5143 	mutex_unlock(&id_priv->handler_mutex);
5144 	cma_id_put(id_priv);
5145 }
5146 
5147 static int cma_netevent_callback(struct notifier_block *self,
5148 				 unsigned long event, void *ctx)
5149 {
5150 	struct id_table_entry *ips_node = NULL;
5151 	struct rdma_id_private *current_id;
5152 	struct neighbour *neigh = ctx;
5153 	unsigned long flags;
5154 
5155 	if (event != NETEVENT_NEIGH_UPDATE)
5156 		return NOTIFY_DONE;
5157 
5158 	spin_lock_irqsave(&id_table_lock, flags);
5159 	if (neigh->tbl->family == AF_INET6) {
5160 		struct sockaddr_in6 neigh_sock_6;
5161 
5162 		neigh_sock_6.sin6_family = AF_INET6;
5163 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5164 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5165 					     (struct sockaddr *)&neigh_sock_6);
5166 	} else if (neigh->tbl->family == AF_INET) {
5167 		struct sockaddr_in neigh_sock_4;
5168 
5169 		neigh_sock_4.sin_family = AF_INET;
5170 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5171 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5172 					     (struct sockaddr *)&neigh_sock_4);
5173 	} else
5174 		goto out;
5175 
5176 	if (!ips_node)
5177 		goto out;
5178 
5179 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5180 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5181 			   neigh->ha, ETH_ALEN))
5182 			continue;
5183 		INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5184 		cma_id_get(current_id);
5185 		queue_work(cma_wq, &current_id->id.net_work);
5186 	}
5187 out:
5188 	spin_unlock_irqrestore(&id_table_lock, flags);
5189 	return NOTIFY_DONE;
5190 }
5191 
5192 static struct notifier_block cma_nb = {
5193 	.notifier_call = cma_netdev_callback
5194 };
5195 
5196 static struct notifier_block cma_netevent_cb = {
5197 	.notifier_call = cma_netevent_callback
5198 };
5199 
5200 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5201 {
5202 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5203 	enum rdma_cm_state state;
5204 	unsigned long flags;
5205 
5206 	mutex_lock(&id_priv->handler_mutex);
5207 	/* Record that we want to remove the device */
5208 	spin_lock_irqsave(&id_priv->lock, flags);
5209 	state = id_priv->state;
5210 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5211 		spin_unlock_irqrestore(&id_priv->lock, flags);
5212 		mutex_unlock(&id_priv->handler_mutex);
5213 		cma_id_put(id_priv);
5214 		return;
5215 	}
5216 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5217 	spin_unlock_irqrestore(&id_priv->lock, flags);
5218 
5219 	if (cma_cm_event_handler(id_priv, &event)) {
5220 		/*
5221 		 * At this point the ULP promises it won't call
5222 		 * rdma_destroy_id() concurrently
5223 		 */
5224 		cma_id_put(id_priv);
5225 		mutex_unlock(&id_priv->handler_mutex);
5226 		trace_cm_id_destroy(id_priv);
5227 		_destroy_id(id_priv, state);
5228 		return;
5229 	}
5230 	mutex_unlock(&id_priv->handler_mutex);
5231 
5232 	/*
5233 	 * If this races with destroy then the thread that first assigns state
5234 	 * to a destroying does the cancel.
5235 	 */
5236 	cma_cancel_operation(id_priv, state);
5237 	cma_id_put(id_priv);
5238 }
5239 
5240 static void cma_process_remove(struct cma_device *cma_dev)
5241 {
5242 	mutex_lock(&lock);
5243 	while (!list_empty(&cma_dev->id_list)) {
5244 		struct rdma_id_private *id_priv = list_first_entry(
5245 			&cma_dev->id_list, struct rdma_id_private, device_item);
5246 
5247 		list_del_init(&id_priv->listen_item);
5248 		list_del_init(&id_priv->device_item);
5249 		cma_id_get(id_priv);
5250 		mutex_unlock(&lock);
5251 
5252 		cma_send_device_removal_put(id_priv);
5253 
5254 		mutex_lock(&lock);
5255 	}
5256 	mutex_unlock(&lock);
5257 
5258 	cma_dev_put(cma_dev);
5259 	wait_for_completion(&cma_dev->comp);
5260 }
5261 
5262 static bool cma_supported(struct ib_device *device)
5263 {
5264 	u32 i;
5265 
5266 	rdma_for_each_port(device, i) {
5267 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5268 			return true;
5269 	}
5270 	return false;
5271 }
5272 
5273 static int cma_add_one(struct ib_device *device)
5274 {
5275 	struct rdma_id_private *to_destroy;
5276 	struct cma_device *cma_dev;
5277 	struct rdma_id_private *id_priv;
5278 	unsigned long supported_gids = 0;
5279 	int ret;
5280 	u32 i;
5281 
5282 	if (!cma_supported(device))
5283 		return -EOPNOTSUPP;
5284 
5285 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5286 	if (!cma_dev)
5287 		return -ENOMEM;
5288 
5289 	cma_dev->device = device;
5290 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5291 					    sizeof(*cma_dev->default_gid_type),
5292 					    GFP_KERNEL);
5293 	if (!cma_dev->default_gid_type) {
5294 		ret = -ENOMEM;
5295 		goto free_cma_dev;
5296 	}
5297 
5298 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5299 					    sizeof(*cma_dev->default_roce_tos),
5300 					    GFP_KERNEL);
5301 	if (!cma_dev->default_roce_tos) {
5302 		ret = -ENOMEM;
5303 		goto free_gid_type;
5304 	}
5305 
5306 	rdma_for_each_port (device, i) {
5307 		supported_gids = roce_gid_type_mask_support(device, i);
5308 		WARN_ON(!supported_gids);
5309 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5310 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5311 				CMA_PREFERRED_ROCE_GID_TYPE;
5312 		else
5313 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5314 				find_first_bit(&supported_gids, BITS_PER_LONG);
5315 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5316 	}
5317 
5318 	init_completion(&cma_dev->comp);
5319 	refcount_set(&cma_dev->refcount, 1);
5320 	INIT_LIST_HEAD(&cma_dev->id_list);
5321 	ib_set_client_data(device, &cma_client, cma_dev);
5322 
5323 	mutex_lock(&lock);
5324 	list_add_tail(&cma_dev->list, &dev_list);
5325 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5326 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5327 		if (ret)
5328 			goto free_listen;
5329 	}
5330 	mutex_unlock(&lock);
5331 
5332 	trace_cm_add_one(device);
5333 	return 0;
5334 
5335 free_listen:
5336 	list_del(&cma_dev->list);
5337 	mutex_unlock(&lock);
5338 
5339 	/* cma_process_remove() will delete to_destroy */
5340 	cma_process_remove(cma_dev);
5341 	kfree(cma_dev->default_roce_tos);
5342 free_gid_type:
5343 	kfree(cma_dev->default_gid_type);
5344 
5345 free_cma_dev:
5346 	kfree(cma_dev);
5347 	return ret;
5348 }
5349 
5350 static void cma_remove_one(struct ib_device *device, void *client_data)
5351 {
5352 	struct cma_device *cma_dev = client_data;
5353 
5354 	trace_cm_remove_one(device);
5355 
5356 	mutex_lock(&lock);
5357 	list_del(&cma_dev->list);
5358 	mutex_unlock(&lock);
5359 
5360 	cma_process_remove(cma_dev);
5361 	kfree(cma_dev->default_roce_tos);
5362 	kfree(cma_dev->default_gid_type);
5363 	kfree(cma_dev);
5364 }
5365 
5366 static int cma_init_net(struct net *net)
5367 {
5368 	struct cma_pernet *pernet = cma_pernet(net);
5369 
5370 	xa_init(&pernet->tcp_ps);
5371 	xa_init(&pernet->udp_ps);
5372 	xa_init(&pernet->ipoib_ps);
5373 	xa_init(&pernet->ib_ps);
5374 
5375 	return 0;
5376 }
5377 
5378 static void cma_exit_net(struct net *net)
5379 {
5380 	struct cma_pernet *pernet = cma_pernet(net);
5381 
5382 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5383 	WARN_ON(!xa_empty(&pernet->udp_ps));
5384 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5385 	WARN_ON(!xa_empty(&pernet->ib_ps));
5386 }
5387 
5388 static struct pernet_operations cma_pernet_operations = {
5389 	.init = cma_init_net,
5390 	.exit = cma_exit_net,
5391 	.id = &cma_pernet_id,
5392 	.size = sizeof(struct cma_pernet),
5393 };
5394 
5395 static int __init cma_init(void)
5396 {
5397 	int ret;
5398 
5399 	/*
5400 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5401 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5402 	 * must never be nested under lock so it can find these without having
5403 	 * to test with bonding.
5404 	 */
5405 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5406 		rtnl_lock();
5407 		mutex_lock(&lock);
5408 		mutex_unlock(&lock);
5409 		rtnl_unlock();
5410 	}
5411 
5412 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5413 	if (!cma_wq)
5414 		return -ENOMEM;
5415 
5416 	ret = register_pernet_subsys(&cma_pernet_operations);
5417 	if (ret)
5418 		goto err_wq;
5419 
5420 	ib_sa_register_client(&sa_client);
5421 	register_netdevice_notifier(&cma_nb);
5422 	register_netevent_notifier(&cma_netevent_cb);
5423 
5424 	ret = ib_register_client(&cma_client);
5425 	if (ret)
5426 		goto err;
5427 
5428 	ret = cma_configfs_init();
5429 	if (ret)
5430 		goto err_ib;
5431 
5432 	return 0;
5433 
5434 err_ib:
5435 	ib_unregister_client(&cma_client);
5436 err:
5437 	unregister_netevent_notifier(&cma_netevent_cb);
5438 	unregister_netdevice_notifier(&cma_nb);
5439 	ib_sa_unregister_client(&sa_client);
5440 	unregister_pernet_subsys(&cma_pernet_operations);
5441 err_wq:
5442 	destroy_workqueue(cma_wq);
5443 	return ret;
5444 }
5445 
5446 static void __exit cma_cleanup(void)
5447 {
5448 	cma_configfs_exit();
5449 	ib_unregister_client(&cma_client);
5450 	unregister_netevent_notifier(&cma_netevent_cb);
5451 	unregister_netdevice_notifier(&cma_nb);
5452 	ib_sa_unregister_client(&sa_client);
5453 	unregister_pernet_subsys(&cma_pernet_operations);
5454 	destroy_workqueue(cma_wq);
5455 }
5456 
5457 module_init(cma_init);
5458 module_exit(cma_cleanup);
5459