1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 71 union ib_gid *mgid); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del_init(&id_priv->device_item); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int ret; 770 int i; 771 772 cma_dev = NULL; 773 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 774 dgid = (union ib_gid *) &addr->sib_addr; 775 pkey = ntohs(addr->sib_pkey); 776 777 mutex_lock(&lock); 778 list_for_each_entry(cur_dev, &dev_list, list) { 779 rdma_for_each_port (cur_dev->device, p) { 780 if (!rdma_cap_af_ib(cur_dev->device, p)) 781 continue; 782 783 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 784 continue; 785 786 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 787 continue; 788 789 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 790 ++i) { 791 ret = rdma_query_gid(cur_dev->device, p, i, 792 &gid); 793 if (ret) 794 continue; 795 796 if (!memcmp(&gid, dgid, sizeof(gid))) { 797 cma_dev = cur_dev; 798 sgid = gid; 799 id_priv->id.port_num = p; 800 goto found; 801 } 802 803 if (!cma_dev && (gid.global.subnet_prefix == 804 dgid->global.subnet_prefix) && 805 port_state == IB_PORT_ACTIVE) { 806 cma_dev = cur_dev; 807 sgid = gid; 808 id_priv->id.port_num = p; 809 goto found; 810 } 811 } 812 } 813 } 814 mutex_unlock(&lock); 815 return -ENODEV; 816 817 found: 818 cma_attach_to_dev(id_priv, cma_dev); 819 rdma_restrack_add(&id_priv->res); 820 mutex_unlock(&lock); 821 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 822 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 823 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 824 return 0; 825 } 826 827 static void cma_id_get(struct rdma_id_private *id_priv) 828 { 829 refcount_inc(&id_priv->refcount); 830 } 831 832 static void cma_id_put(struct rdma_id_private *id_priv) 833 { 834 if (refcount_dec_and_test(&id_priv->refcount)) 835 complete(&id_priv->comp); 836 } 837 838 static struct rdma_id_private * 839 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 840 void *context, enum rdma_ucm_port_space ps, 841 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 842 { 843 struct rdma_id_private *id_priv; 844 845 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 846 if (!id_priv) 847 return ERR_PTR(-ENOMEM); 848 849 id_priv->state = RDMA_CM_IDLE; 850 id_priv->id.context = context; 851 id_priv->id.event_handler = event_handler; 852 id_priv->id.ps = ps; 853 id_priv->id.qp_type = qp_type; 854 id_priv->tos_set = false; 855 id_priv->timeout_set = false; 856 id_priv->min_rnr_timer_set = false; 857 id_priv->gid_type = IB_GID_TYPE_IB; 858 spin_lock_init(&id_priv->lock); 859 mutex_init(&id_priv->qp_mutex); 860 init_completion(&id_priv->comp); 861 refcount_set(&id_priv->refcount, 1); 862 mutex_init(&id_priv->handler_mutex); 863 INIT_LIST_HEAD(&id_priv->device_item); 864 INIT_LIST_HEAD(&id_priv->listen_list); 865 INIT_LIST_HEAD(&id_priv->mc_list); 866 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 867 id_priv->id.route.addr.dev_addr.net = get_net(net); 868 id_priv->seq_num &= 0x00ffffff; 869 870 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 871 if (parent) 872 rdma_restrack_parent_name(&id_priv->res, &parent->res); 873 874 return id_priv; 875 } 876 877 struct rdma_cm_id * 878 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 879 void *context, enum rdma_ucm_port_space ps, 880 enum ib_qp_type qp_type, const char *caller) 881 { 882 struct rdma_id_private *ret; 883 884 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 885 if (IS_ERR(ret)) 886 return ERR_CAST(ret); 887 888 rdma_restrack_set_name(&ret->res, caller); 889 return &ret->id; 890 } 891 EXPORT_SYMBOL(__rdma_create_kernel_id); 892 893 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 894 void *context, 895 enum rdma_ucm_port_space ps, 896 enum ib_qp_type qp_type) 897 { 898 struct rdma_id_private *ret; 899 900 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 901 ps, qp_type, NULL); 902 if (IS_ERR(ret)) 903 return ERR_CAST(ret); 904 905 rdma_restrack_set_name(&ret->res, NULL); 906 return &ret->id; 907 } 908 EXPORT_SYMBOL(rdma_create_user_id); 909 910 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 911 { 912 struct ib_qp_attr qp_attr; 913 int qp_attr_mask, ret; 914 915 qp_attr.qp_state = IB_QPS_INIT; 916 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 917 if (ret) 918 return ret; 919 920 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 921 if (ret) 922 return ret; 923 924 qp_attr.qp_state = IB_QPS_RTR; 925 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 926 if (ret) 927 return ret; 928 929 qp_attr.qp_state = IB_QPS_RTS; 930 qp_attr.sq_psn = 0; 931 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 932 933 return ret; 934 } 935 936 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 937 { 938 struct ib_qp_attr qp_attr; 939 int qp_attr_mask, ret; 940 941 qp_attr.qp_state = IB_QPS_INIT; 942 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 943 if (ret) 944 return ret; 945 946 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 947 } 948 949 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 950 struct ib_qp_init_attr *qp_init_attr) 951 { 952 struct rdma_id_private *id_priv; 953 struct ib_qp *qp; 954 int ret; 955 956 id_priv = container_of(id, struct rdma_id_private, id); 957 if (id->device != pd->device) { 958 ret = -EINVAL; 959 goto out_err; 960 } 961 962 qp_init_attr->port_num = id->port_num; 963 qp = ib_create_qp(pd, qp_init_attr); 964 if (IS_ERR(qp)) { 965 ret = PTR_ERR(qp); 966 goto out_err; 967 } 968 969 if (id->qp_type == IB_QPT_UD) 970 ret = cma_init_ud_qp(id_priv, qp); 971 else 972 ret = cma_init_conn_qp(id_priv, qp); 973 if (ret) 974 goto out_destroy; 975 976 id->qp = qp; 977 id_priv->qp_num = qp->qp_num; 978 id_priv->srq = (qp->srq != NULL); 979 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 980 return 0; 981 out_destroy: 982 ib_destroy_qp(qp); 983 out_err: 984 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 985 return ret; 986 } 987 EXPORT_SYMBOL(rdma_create_qp); 988 989 void rdma_destroy_qp(struct rdma_cm_id *id) 990 { 991 struct rdma_id_private *id_priv; 992 993 id_priv = container_of(id, struct rdma_id_private, id); 994 trace_cm_qp_destroy(id_priv); 995 mutex_lock(&id_priv->qp_mutex); 996 ib_destroy_qp(id_priv->id.qp); 997 id_priv->id.qp = NULL; 998 mutex_unlock(&id_priv->qp_mutex); 999 } 1000 EXPORT_SYMBOL(rdma_destroy_qp); 1001 1002 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1003 struct rdma_conn_param *conn_param) 1004 { 1005 struct ib_qp_attr qp_attr; 1006 int qp_attr_mask, ret; 1007 1008 mutex_lock(&id_priv->qp_mutex); 1009 if (!id_priv->id.qp) { 1010 ret = 0; 1011 goto out; 1012 } 1013 1014 /* Need to update QP attributes from default values. */ 1015 qp_attr.qp_state = IB_QPS_INIT; 1016 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1017 if (ret) 1018 goto out; 1019 1020 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1021 if (ret) 1022 goto out; 1023 1024 qp_attr.qp_state = IB_QPS_RTR; 1025 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1026 if (ret) 1027 goto out; 1028 1029 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1030 1031 if (conn_param) 1032 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1033 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1034 out: 1035 mutex_unlock(&id_priv->qp_mutex); 1036 return ret; 1037 } 1038 1039 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1040 struct rdma_conn_param *conn_param) 1041 { 1042 struct ib_qp_attr qp_attr; 1043 int qp_attr_mask, ret; 1044 1045 mutex_lock(&id_priv->qp_mutex); 1046 if (!id_priv->id.qp) { 1047 ret = 0; 1048 goto out; 1049 } 1050 1051 qp_attr.qp_state = IB_QPS_RTS; 1052 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1053 if (ret) 1054 goto out; 1055 1056 if (conn_param) 1057 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1058 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1059 out: 1060 mutex_unlock(&id_priv->qp_mutex); 1061 return ret; 1062 } 1063 1064 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1065 { 1066 struct ib_qp_attr qp_attr; 1067 int ret; 1068 1069 mutex_lock(&id_priv->qp_mutex); 1070 if (!id_priv->id.qp) { 1071 ret = 0; 1072 goto out; 1073 } 1074 1075 qp_attr.qp_state = IB_QPS_ERR; 1076 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1077 out: 1078 mutex_unlock(&id_priv->qp_mutex); 1079 return ret; 1080 } 1081 1082 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1083 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1084 { 1085 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1086 int ret; 1087 u16 pkey; 1088 1089 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1090 pkey = 0xffff; 1091 else 1092 pkey = ib_addr_get_pkey(dev_addr); 1093 1094 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1095 pkey, &qp_attr->pkey_index); 1096 if (ret) 1097 return ret; 1098 1099 qp_attr->port_num = id_priv->id.port_num; 1100 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1101 1102 if (id_priv->id.qp_type == IB_QPT_UD) { 1103 ret = cma_set_qkey(id_priv, 0); 1104 if (ret) 1105 return ret; 1106 1107 qp_attr->qkey = id_priv->qkey; 1108 *qp_attr_mask |= IB_QP_QKEY; 1109 } else { 1110 qp_attr->qp_access_flags = 0; 1111 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1112 } 1113 return 0; 1114 } 1115 1116 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1117 int *qp_attr_mask) 1118 { 1119 struct rdma_id_private *id_priv; 1120 int ret = 0; 1121 1122 id_priv = container_of(id, struct rdma_id_private, id); 1123 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1124 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1125 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1126 else 1127 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1128 qp_attr_mask); 1129 1130 if (qp_attr->qp_state == IB_QPS_RTR) 1131 qp_attr->rq_psn = id_priv->seq_num; 1132 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1133 if (!id_priv->cm_id.iw) { 1134 qp_attr->qp_access_flags = 0; 1135 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1136 } else 1137 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1138 qp_attr_mask); 1139 qp_attr->port_num = id_priv->id.port_num; 1140 *qp_attr_mask |= IB_QP_PORT; 1141 } else { 1142 ret = -ENOSYS; 1143 } 1144 1145 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1146 qp_attr->timeout = id_priv->timeout; 1147 1148 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1149 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1150 1151 return ret; 1152 } 1153 EXPORT_SYMBOL(rdma_init_qp_attr); 1154 1155 static inline bool cma_zero_addr(const struct sockaddr *addr) 1156 { 1157 switch (addr->sa_family) { 1158 case AF_INET: 1159 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1160 case AF_INET6: 1161 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1162 case AF_IB: 1163 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1164 default: 1165 return false; 1166 } 1167 } 1168 1169 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1170 { 1171 switch (addr->sa_family) { 1172 case AF_INET: 1173 return ipv4_is_loopback( 1174 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1175 case AF_INET6: 1176 return ipv6_addr_loopback( 1177 &((struct sockaddr_in6 *)addr)->sin6_addr); 1178 case AF_IB: 1179 return ib_addr_loopback( 1180 &((struct sockaddr_ib *)addr)->sib_addr); 1181 default: 1182 return false; 1183 } 1184 } 1185 1186 static inline bool cma_any_addr(const struct sockaddr *addr) 1187 { 1188 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1189 } 1190 1191 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1192 { 1193 if (src->sa_family != dst->sa_family) 1194 return -1; 1195 1196 switch (src->sa_family) { 1197 case AF_INET: 1198 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1199 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1200 case AF_INET6: { 1201 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1202 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1203 bool link_local; 1204 1205 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1206 &dst_addr6->sin6_addr)) 1207 return 1; 1208 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1209 IPV6_ADDR_LINKLOCAL; 1210 /* Link local must match their scope_ids */ 1211 return link_local ? (src_addr6->sin6_scope_id != 1212 dst_addr6->sin6_scope_id) : 1213 0; 1214 } 1215 1216 default: 1217 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1218 &((struct sockaddr_ib *) dst)->sib_addr); 1219 } 1220 } 1221 1222 static __be16 cma_port(const struct sockaddr *addr) 1223 { 1224 struct sockaddr_ib *sib; 1225 1226 switch (addr->sa_family) { 1227 case AF_INET: 1228 return ((struct sockaddr_in *) addr)->sin_port; 1229 case AF_INET6: 1230 return ((struct sockaddr_in6 *) addr)->sin6_port; 1231 case AF_IB: 1232 sib = (struct sockaddr_ib *) addr; 1233 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1234 be64_to_cpu(sib->sib_sid_mask))); 1235 default: 1236 return 0; 1237 } 1238 } 1239 1240 static inline int cma_any_port(const struct sockaddr *addr) 1241 { 1242 return !cma_port(addr); 1243 } 1244 1245 static void cma_save_ib_info(struct sockaddr *src_addr, 1246 struct sockaddr *dst_addr, 1247 const struct rdma_cm_id *listen_id, 1248 const struct sa_path_rec *path) 1249 { 1250 struct sockaddr_ib *listen_ib, *ib; 1251 1252 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1253 if (src_addr) { 1254 ib = (struct sockaddr_ib *)src_addr; 1255 ib->sib_family = AF_IB; 1256 if (path) { 1257 ib->sib_pkey = path->pkey; 1258 ib->sib_flowinfo = path->flow_label; 1259 memcpy(&ib->sib_addr, &path->sgid, 16); 1260 ib->sib_sid = path->service_id; 1261 ib->sib_scope_id = 0; 1262 } else { 1263 ib->sib_pkey = listen_ib->sib_pkey; 1264 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1265 ib->sib_addr = listen_ib->sib_addr; 1266 ib->sib_sid = listen_ib->sib_sid; 1267 ib->sib_scope_id = listen_ib->sib_scope_id; 1268 } 1269 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1270 } 1271 if (dst_addr) { 1272 ib = (struct sockaddr_ib *)dst_addr; 1273 ib->sib_family = AF_IB; 1274 if (path) { 1275 ib->sib_pkey = path->pkey; 1276 ib->sib_flowinfo = path->flow_label; 1277 memcpy(&ib->sib_addr, &path->dgid, 16); 1278 } 1279 } 1280 } 1281 1282 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1283 struct sockaddr_in *dst_addr, 1284 struct cma_hdr *hdr, 1285 __be16 local_port) 1286 { 1287 if (src_addr) { 1288 *src_addr = (struct sockaddr_in) { 1289 .sin_family = AF_INET, 1290 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1291 .sin_port = local_port, 1292 }; 1293 } 1294 1295 if (dst_addr) { 1296 *dst_addr = (struct sockaddr_in) { 1297 .sin_family = AF_INET, 1298 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1299 .sin_port = hdr->port, 1300 }; 1301 } 1302 } 1303 1304 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1305 struct sockaddr_in6 *dst_addr, 1306 struct cma_hdr *hdr, 1307 __be16 local_port) 1308 { 1309 if (src_addr) { 1310 *src_addr = (struct sockaddr_in6) { 1311 .sin6_family = AF_INET6, 1312 .sin6_addr = hdr->dst_addr.ip6, 1313 .sin6_port = local_port, 1314 }; 1315 } 1316 1317 if (dst_addr) { 1318 *dst_addr = (struct sockaddr_in6) { 1319 .sin6_family = AF_INET6, 1320 .sin6_addr = hdr->src_addr.ip6, 1321 .sin6_port = hdr->port, 1322 }; 1323 } 1324 } 1325 1326 static u16 cma_port_from_service_id(__be64 service_id) 1327 { 1328 return (u16)be64_to_cpu(service_id); 1329 } 1330 1331 static int cma_save_ip_info(struct sockaddr *src_addr, 1332 struct sockaddr *dst_addr, 1333 const struct ib_cm_event *ib_event, 1334 __be64 service_id) 1335 { 1336 struct cma_hdr *hdr; 1337 __be16 port; 1338 1339 hdr = ib_event->private_data; 1340 if (hdr->cma_version != CMA_VERSION) 1341 return -EINVAL; 1342 1343 port = htons(cma_port_from_service_id(service_id)); 1344 1345 switch (cma_get_ip_ver(hdr)) { 1346 case 4: 1347 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1348 (struct sockaddr_in *)dst_addr, hdr, port); 1349 break; 1350 case 6: 1351 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1352 (struct sockaddr_in6 *)dst_addr, hdr, port); 1353 break; 1354 default: 1355 return -EAFNOSUPPORT; 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int cma_save_net_info(struct sockaddr *src_addr, 1362 struct sockaddr *dst_addr, 1363 const struct rdma_cm_id *listen_id, 1364 const struct ib_cm_event *ib_event, 1365 sa_family_t sa_family, __be64 service_id) 1366 { 1367 if (sa_family == AF_IB) { 1368 if (ib_event->event == IB_CM_REQ_RECEIVED) 1369 cma_save_ib_info(src_addr, dst_addr, listen_id, 1370 ib_event->param.req_rcvd.primary_path); 1371 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1372 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1373 return 0; 1374 } 1375 1376 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1377 } 1378 1379 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1380 struct cma_req_info *req) 1381 { 1382 const struct ib_cm_req_event_param *req_param = 1383 &ib_event->param.req_rcvd; 1384 const struct ib_cm_sidr_req_event_param *sidr_param = 1385 &ib_event->param.sidr_req_rcvd; 1386 1387 switch (ib_event->event) { 1388 case IB_CM_REQ_RECEIVED: 1389 req->device = req_param->listen_id->device; 1390 req->port = req_param->port; 1391 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1392 sizeof(req->local_gid)); 1393 req->has_gid = true; 1394 req->service_id = req_param->primary_path->service_id; 1395 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1396 if (req->pkey != req_param->bth_pkey) 1397 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1398 "RDMA CMA: in the future this may cause the request to be dropped\n", 1399 req_param->bth_pkey, req->pkey); 1400 break; 1401 case IB_CM_SIDR_REQ_RECEIVED: 1402 req->device = sidr_param->listen_id->device; 1403 req->port = sidr_param->port; 1404 req->has_gid = false; 1405 req->service_id = sidr_param->service_id; 1406 req->pkey = sidr_param->pkey; 1407 if (req->pkey != sidr_param->bth_pkey) 1408 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1409 "RDMA CMA: in the future this may cause the request to be dropped\n", 1410 sidr_param->bth_pkey, req->pkey); 1411 break; 1412 default: 1413 return -EINVAL; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1420 const struct sockaddr_in *dst_addr, 1421 const struct sockaddr_in *src_addr) 1422 { 1423 __be32 daddr = dst_addr->sin_addr.s_addr, 1424 saddr = src_addr->sin_addr.s_addr; 1425 struct fib_result res; 1426 struct flowi4 fl4; 1427 int err; 1428 bool ret; 1429 1430 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1431 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1432 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1433 ipv4_is_loopback(saddr)) 1434 return false; 1435 1436 memset(&fl4, 0, sizeof(fl4)); 1437 fl4.flowi4_iif = net_dev->ifindex; 1438 fl4.daddr = daddr; 1439 fl4.saddr = saddr; 1440 1441 rcu_read_lock(); 1442 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1443 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1444 rcu_read_unlock(); 1445 1446 return ret; 1447 } 1448 1449 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1450 const struct sockaddr_in6 *dst_addr, 1451 const struct sockaddr_in6 *src_addr) 1452 { 1453 #if IS_ENABLED(CONFIG_IPV6) 1454 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1455 IPV6_ADDR_LINKLOCAL; 1456 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1457 &src_addr->sin6_addr, net_dev->ifindex, 1458 NULL, strict); 1459 bool ret; 1460 1461 if (!rt) 1462 return false; 1463 1464 ret = rt->rt6i_idev->dev == net_dev; 1465 ip6_rt_put(rt); 1466 1467 return ret; 1468 #else 1469 return false; 1470 #endif 1471 } 1472 1473 static bool validate_net_dev(struct net_device *net_dev, 1474 const struct sockaddr *daddr, 1475 const struct sockaddr *saddr) 1476 { 1477 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1478 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1479 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1480 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1481 1482 switch (daddr->sa_family) { 1483 case AF_INET: 1484 return saddr->sa_family == AF_INET && 1485 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1486 1487 case AF_INET6: 1488 return saddr->sa_family == AF_INET6 && 1489 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1490 1491 default: 1492 return false; 1493 } 1494 } 1495 1496 static struct net_device * 1497 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1498 { 1499 const struct ib_gid_attr *sgid_attr = NULL; 1500 struct net_device *ndev; 1501 1502 if (ib_event->event == IB_CM_REQ_RECEIVED) 1503 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1504 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1505 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1506 1507 if (!sgid_attr) 1508 return NULL; 1509 1510 rcu_read_lock(); 1511 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1512 if (IS_ERR(ndev)) 1513 ndev = NULL; 1514 else 1515 dev_hold(ndev); 1516 rcu_read_unlock(); 1517 return ndev; 1518 } 1519 1520 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1521 struct cma_req_info *req) 1522 { 1523 struct sockaddr *listen_addr = 1524 (struct sockaddr *)&req->listen_addr_storage; 1525 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1526 struct net_device *net_dev; 1527 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1528 int err; 1529 1530 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1531 req->service_id); 1532 if (err) 1533 return ERR_PTR(err); 1534 1535 if (rdma_protocol_roce(req->device, req->port)) 1536 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1537 else 1538 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1539 req->pkey, 1540 gid, listen_addr); 1541 if (!net_dev) 1542 return ERR_PTR(-ENODEV); 1543 1544 return net_dev; 1545 } 1546 1547 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1548 { 1549 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1550 } 1551 1552 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1553 const struct cma_hdr *hdr) 1554 { 1555 struct sockaddr *addr = cma_src_addr(id_priv); 1556 __be32 ip4_addr; 1557 struct in6_addr ip6_addr; 1558 1559 if (cma_any_addr(addr) && !id_priv->afonly) 1560 return true; 1561 1562 switch (addr->sa_family) { 1563 case AF_INET: 1564 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1565 if (cma_get_ip_ver(hdr) != 4) 1566 return false; 1567 if (!cma_any_addr(addr) && 1568 hdr->dst_addr.ip4.addr != ip4_addr) 1569 return false; 1570 break; 1571 case AF_INET6: 1572 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1573 if (cma_get_ip_ver(hdr) != 6) 1574 return false; 1575 if (!cma_any_addr(addr) && 1576 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1577 return false; 1578 break; 1579 case AF_IB: 1580 return true; 1581 default: 1582 return false; 1583 } 1584 1585 return true; 1586 } 1587 1588 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1589 { 1590 struct ib_device *device = id->device; 1591 const u32 port_num = id->port_num ?: rdma_start_port(device); 1592 1593 return rdma_protocol_roce(device, port_num); 1594 } 1595 1596 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1597 { 1598 const struct sockaddr *daddr = 1599 (const struct sockaddr *)&req->listen_addr_storage; 1600 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1601 1602 /* Returns true if the req is for IPv6 link local */ 1603 return (daddr->sa_family == AF_INET6 && 1604 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1605 } 1606 1607 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1608 const struct net_device *net_dev, 1609 const struct cma_req_info *req) 1610 { 1611 const struct rdma_addr *addr = &id->route.addr; 1612 1613 if (!net_dev) 1614 /* This request is an AF_IB request */ 1615 return (!id->port_num || id->port_num == req->port) && 1616 (addr->src_addr.ss_family == AF_IB); 1617 1618 /* 1619 * If the request is not for IPv6 link local, allow matching 1620 * request to any netdevice of the one or multiport rdma device. 1621 */ 1622 if (!cma_is_req_ipv6_ll(req)) 1623 return true; 1624 /* 1625 * Net namespaces must match, and if the listner is listening 1626 * on a specific netdevice than netdevice must match as well. 1627 */ 1628 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1629 (!!addr->dev_addr.bound_dev_if == 1630 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1631 return true; 1632 else 1633 return false; 1634 } 1635 1636 static struct rdma_id_private *cma_find_listener( 1637 const struct rdma_bind_list *bind_list, 1638 const struct ib_cm_id *cm_id, 1639 const struct ib_cm_event *ib_event, 1640 const struct cma_req_info *req, 1641 const struct net_device *net_dev) 1642 { 1643 struct rdma_id_private *id_priv, *id_priv_dev; 1644 1645 lockdep_assert_held(&lock); 1646 1647 if (!bind_list) 1648 return ERR_PTR(-EINVAL); 1649 1650 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1651 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1652 if (id_priv->id.device == cm_id->device && 1653 cma_match_net_dev(&id_priv->id, net_dev, req)) 1654 return id_priv; 1655 list_for_each_entry(id_priv_dev, 1656 &id_priv->listen_list, 1657 listen_item) { 1658 if (id_priv_dev->id.device == cm_id->device && 1659 cma_match_net_dev(&id_priv_dev->id, 1660 net_dev, req)) 1661 return id_priv_dev; 1662 } 1663 } 1664 } 1665 1666 return ERR_PTR(-EINVAL); 1667 } 1668 1669 static struct rdma_id_private * 1670 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1671 const struct ib_cm_event *ib_event, 1672 struct cma_req_info *req, 1673 struct net_device **net_dev) 1674 { 1675 struct rdma_bind_list *bind_list; 1676 struct rdma_id_private *id_priv; 1677 int err; 1678 1679 err = cma_save_req_info(ib_event, req); 1680 if (err) 1681 return ERR_PTR(err); 1682 1683 *net_dev = cma_get_net_dev(ib_event, req); 1684 if (IS_ERR(*net_dev)) { 1685 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1686 /* Assuming the protocol is AF_IB */ 1687 *net_dev = NULL; 1688 } else { 1689 return ERR_CAST(*net_dev); 1690 } 1691 } 1692 1693 mutex_lock(&lock); 1694 /* 1695 * Net namespace might be getting deleted while route lookup, 1696 * cm_id lookup is in progress. Therefore, perform netdevice 1697 * validation, cm_id lookup under rcu lock. 1698 * RCU lock along with netdevice state check, synchronizes with 1699 * netdevice migrating to different net namespace and also avoids 1700 * case where net namespace doesn't get deleted while lookup is in 1701 * progress. 1702 * If the device state is not IFF_UP, its properties such as ifindex 1703 * and nd_net cannot be trusted to remain valid without rcu lock. 1704 * net/core/dev.c change_net_namespace() ensures to synchronize with 1705 * ongoing operations on net device after device is closed using 1706 * synchronize_net(). 1707 */ 1708 rcu_read_lock(); 1709 if (*net_dev) { 1710 /* 1711 * If netdevice is down, it is likely that it is administratively 1712 * down or it might be migrating to different namespace. 1713 * In that case avoid further processing, as the net namespace 1714 * or ifindex may change. 1715 */ 1716 if (((*net_dev)->flags & IFF_UP) == 0) { 1717 id_priv = ERR_PTR(-EHOSTUNREACH); 1718 goto err; 1719 } 1720 1721 if (!validate_net_dev(*net_dev, 1722 (struct sockaddr *)&req->listen_addr_storage, 1723 (struct sockaddr *)&req->src_addr_storage)) { 1724 id_priv = ERR_PTR(-EHOSTUNREACH); 1725 goto err; 1726 } 1727 } 1728 1729 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1730 rdma_ps_from_service_id(req->service_id), 1731 cma_port_from_service_id(req->service_id)); 1732 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1733 err: 1734 rcu_read_unlock(); 1735 mutex_unlock(&lock); 1736 if (IS_ERR(id_priv) && *net_dev) { 1737 dev_put(*net_dev); 1738 *net_dev = NULL; 1739 } 1740 return id_priv; 1741 } 1742 1743 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1744 { 1745 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1746 } 1747 1748 static void cma_cancel_route(struct rdma_id_private *id_priv) 1749 { 1750 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1751 if (id_priv->query) 1752 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1753 } 1754 } 1755 1756 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1757 { 1758 struct rdma_id_private *dev_id_priv; 1759 1760 lockdep_assert_held(&lock); 1761 1762 /* 1763 * Remove from listen_any_list to prevent added devices from spawning 1764 * additional listen requests. 1765 */ 1766 list_del_init(&id_priv->listen_any_item); 1767 1768 while (!list_empty(&id_priv->listen_list)) { 1769 dev_id_priv = 1770 list_first_entry(&id_priv->listen_list, 1771 struct rdma_id_private, listen_item); 1772 /* sync with device removal to avoid duplicate destruction */ 1773 list_del_init(&dev_id_priv->device_item); 1774 list_del_init(&dev_id_priv->listen_item); 1775 mutex_unlock(&lock); 1776 1777 rdma_destroy_id(&dev_id_priv->id); 1778 mutex_lock(&lock); 1779 } 1780 } 1781 1782 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1783 { 1784 mutex_lock(&lock); 1785 _cma_cancel_listens(id_priv); 1786 mutex_unlock(&lock); 1787 } 1788 1789 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1790 enum rdma_cm_state state) 1791 { 1792 switch (state) { 1793 case RDMA_CM_ADDR_QUERY: 1794 /* 1795 * We can avoid doing the rdma_addr_cancel() based on state, 1796 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1797 * Notice that the addr_handler work could still be exiting 1798 * outside this state, however due to the interaction with the 1799 * handler_mutex the work is guaranteed not to touch id_priv 1800 * during exit. 1801 */ 1802 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1803 break; 1804 case RDMA_CM_ROUTE_QUERY: 1805 cma_cancel_route(id_priv); 1806 break; 1807 case RDMA_CM_LISTEN: 1808 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1809 cma_cancel_listens(id_priv); 1810 break; 1811 default: 1812 break; 1813 } 1814 } 1815 1816 static void cma_release_port(struct rdma_id_private *id_priv) 1817 { 1818 struct rdma_bind_list *bind_list = id_priv->bind_list; 1819 struct net *net = id_priv->id.route.addr.dev_addr.net; 1820 1821 if (!bind_list) 1822 return; 1823 1824 mutex_lock(&lock); 1825 hlist_del(&id_priv->node); 1826 if (hlist_empty(&bind_list->owners)) { 1827 cma_ps_remove(net, bind_list->ps, bind_list->port); 1828 kfree(bind_list); 1829 } 1830 mutex_unlock(&lock); 1831 } 1832 1833 static void destroy_mc(struct rdma_id_private *id_priv, 1834 struct cma_multicast *mc) 1835 { 1836 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1837 1838 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1839 ib_sa_free_multicast(mc->sa_mc); 1840 1841 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1842 struct rdma_dev_addr *dev_addr = 1843 &id_priv->id.route.addr.dev_addr; 1844 struct net_device *ndev = NULL; 1845 1846 if (dev_addr->bound_dev_if) 1847 ndev = dev_get_by_index(dev_addr->net, 1848 dev_addr->bound_dev_if); 1849 if (ndev) { 1850 union ib_gid mgid; 1851 1852 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1853 &mgid); 1854 1855 if (!send_only) 1856 cma_igmp_send(ndev, &mgid, false); 1857 1858 dev_put(ndev); 1859 } 1860 1861 cancel_work_sync(&mc->iboe_join.work); 1862 } 1863 kfree(mc); 1864 } 1865 1866 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1867 { 1868 struct cma_multicast *mc; 1869 1870 while (!list_empty(&id_priv->mc_list)) { 1871 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1872 list); 1873 list_del(&mc->list); 1874 destroy_mc(id_priv, mc); 1875 } 1876 } 1877 1878 static void _destroy_id(struct rdma_id_private *id_priv, 1879 enum rdma_cm_state state) 1880 { 1881 cma_cancel_operation(id_priv, state); 1882 1883 rdma_restrack_del(&id_priv->res); 1884 if (id_priv->cma_dev) { 1885 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1886 if (id_priv->cm_id.ib) 1887 ib_destroy_cm_id(id_priv->cm_id.ib); 1888 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1889 if (id_priv->cm_id.iw) 1890 iw_destroy_cm_id(id_priv->cm_id.iw); 1891 } 1892 cma_leave_mc_groups(id_priv); 1893 cma_release_dev(id_priv); 1894 } 1895 1896 cma_release_port(id_priv); 1897 cma_id_put(id_priv); 1898 wait_for_completion(&id_priv->comp); 1899 1900 if (id_priv->internal_id) 1901 cma_id_put(id_priv->id.context); 1902 1903 kfree(id_priv->id.route.path_rec); 1904 1905 put_net(id_priv->id.route.addr.dev_addr.net); 1906 kfree(id_priv); 1907 } 1908 1909 /* 1910 * destroy an ID from within the handler_mutex. This ensures that no other 1911 * handlers can start running concurrently. 1912 */ 1913 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1914 __releases(&idprv->handler_mutex) 1915 { 1916 enum rdma_cm_state state; 1917 unsigned long flags; 1918 1919 trace_cm_id_destroy(id_priv); 1920 1921 /* 1922 * Setting the state to destroyed under the handler mutex provides a 1923 * fence against calling handler callbacks. If this is invoked due to 1924 * the failure of a handler callback then it guarentees that no future 1925 * handlers will be called. 1926 */ 1927 lockdep_assert_held(&id_priv->handler_mutex); 1928 spin_lock_irqsave(&id_priv->lock, flags); 1929 state = id_priv->state; 1930 id_priv->state = RDMA_CM_DESTROYING; 1931 spin_unlock_irqrestore(&id_priv->lock, flags); 1932 mutex_unlock(&id_priv->handler_mutex); 1933 _destroy_id(id_priv, state); 1934 } 1935 1936 void rdma_destroy_id(struct rdma_cm_id *id) 1937 { 1938 struct rdma_id_private *id_priv = 1939 container_of(id, struct rdma_id_private, id); 1940 1941 mutex_lock(&id_priv->handler_mutex); 1942 destroy_id_handler_unlock(id_priv); 1943 } 1944 EXPORT_SYMBOL(rdma_destroy_id); 1945 1946 static int cma_rep_recv(struct rdma_id_private *id_priv) 1947 { 1948 int ret; 1949 1950 ret = cma_modify_qp_rtr(id_priv, NULL); 1951 if (ret) 1952 goto reject; 1953 1954 ret = cma_modify_qp_rts(id_priv, NULL); 1955 if (ret) 1956 goto reject; 1957 1958 trace_cm_send_rtu(id_priv); 1959 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1960 if (ret) 1961 goto reject; 1962 1963 return 0; 1964 reject: 1965 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1966 cma_modify_qp_err(id_priv); 1967 trace_cm_send_rej(id_priv); 1968 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1969 NULL, 0, NULL, 0); 1970 return ret; 1971 } 1972 1973 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1974 const struct ib_cm_rep_event_param *rep_data, 1975 void *private_data) 1976 { 1977 event->param.conn.private_data = private_data; 1978 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1979 event->param.conn.responder_resources = rep_data->responder_resources; 1980 event->param.conn.initiator_depth = rep_data->initiator_depth; 1981 event->param.conn.flow_control = rep_data->flow_control; 1982 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1983 event->param.conn.srq = rep_data->srq; 1984 event->param.conn.qp_num = rep_data->remote_qpn; 1985 1986 event->ece.vendor_id = rep_data->ece.vendor_id; 1987 event->ece.attr_mod = rep_data->ece.attr_mod; 1988 } 1989 1990 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1991 struct rdma_cm_event *event) 1992 { 1993 int ret; 1994 1995 lockdep_assert_held(&id_priv->handler_mutex); 1996 1997 trace_cm_event_handler(id_priv, event); 1998 ret = id_priv->id.event_handler(&id_priv->id, event); 1999 trace_cm_event_done(id_priv, event, ret); 2000 return ret; 2001 } 2002 2003 static int cma_ib_handler(struct ib_cm_id *cm_id, 2004 const struct ib_cm_event *ib_event) 2005 { 2006 struct rdma_id_private *id_priv = cm_id->context; 2007 struct rdma_cm_event event = {}; 2008 enum rdma_cm_state state; 2009 int ret; 2010 2011 mutex_lock(&id_priv->handler_mutex); 2012 state = READ_ONCE(id_priv->state); 2013 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2014 state != RDMA_CM_CONNECT) || 2015 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2016 state != RDMA_CM_DISCONNECT)) 2017 goto out; 2018 2019 switch (ib_event->event) { 2020 case IB_CM_REQ_ERROR: 2021 case IB_CM_REP_ERROR: 2022 event.event = RDMA_CM_EVENT_UNREACHABLE; 2023 event.status = -ETIMEDOUT; 2024 break; 2025 case IB_CM_REP_RECEIVED: 2026 if (state == RDMA_CM_CONNECT && 2027 (id_priv->id.qp_type != IB_QPT_UD)) { 2028 trace_cm_send_mra(id_priv); 2029 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2030 } 2031 if (id_priv->id.qp) { 2032 event.status = cma_rep_recv(id_priv); 2033 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2034 RDMA_CM_EVENT_ESTABLISHED; 2035 } else { 2036 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2037 } 2038 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2039 ib_event->private_data); 2040 break; 2041 case IB_CM_RTU_RECEIVED: 2042 case IB_CM_USER_ESTABLISHED: 2043 event.event = RDMA_CM_EVENT_ESTABLISHED; 2044 break; 2045 case IB_CM_DREQ_ERROR: 2046 event.status = -ETIMEDOUT; 2047 fallthrough; 2048 case IB_CM_DREQ_RECEIVED: 2049 case IB_CM_DREP_RECEIVED: 2050 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2051 RDMA_CM_DISCONNECT)) 2052 goto out; 2053 event.event = RDMA_CM_EVENT_DISCONNECTED; 2054 break; 2055 case IB_CM_TIMEWAIT_EXIT: 2056 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2057 break; 2058 case IB_CM_MRA_RECEIVED: 2059 /* ignore event */ 2060 goto out; 2061 case IB_CM_REJ_RECEIVED: 2062 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2063 ib_event->param.rej_rcvd.reason)); 2064 cma_modify_qp_err(id_priv); 2065 event.status = ib_event->param.rej_rcvd.reason; 2066 event.event = RDMA_CM_EVENT_REJECTED; 2067 event.param.conn.private_data = ib_event->private_data; 2068 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2069 break; 2070 default: 2071 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2072 ib_event->event); 2073 goto out; 2074 } 2075 2076 ret = cma_cm_event_handler(id_priv, &event); 2077 if (ret) { 2078 /* Destroy the CM ID by returning a non-zero value. */ 2079 id_priv->cm_id.ib = NULL; 2080 destroy_id_handler_unlock(id_priv); 2081 return ret; 2082 } 2083 out: 2084 mutex_unlock(&id_priv->handler_mutex); 2085 return 0; 2086 } 2087 2088 static struct rdma_id_private * 2089 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2090 const struct ib_cm_event *ib_event, 2091 struct net_device *net_dev) 2092 { 2093 struct rdma_id_private *listen_id_priv; 2094 struct rdma_id_private *id_priv; 2095 struct rdma_cm_id *id; 2096 struct rdma_route *rt; 2097 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2098 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2099 const __be64 service_id = 2100 ib_event->param.req_rcvd.primary_path->service_id; 2101 int ret; 2102 2103 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2104 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2105 listen_id->event_handler, listen_id->context, 2106 listen_id->ps, 2107 ib_event->param.req_rcvd.qp_type, 2108 listen_id_priv); 2109 if (IS_ERR(id_priv)) 2110 return NULL; 2111 2112 id = &id_priv->id; 2113 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2114 (struct sockaddr *)&id->route.addr.dst_addr, 2115 listen_id, ib_event, ss_family, service_id)) 2116 goto err; 2117 2118 rt = &id->route; 2119 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2120 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2121 GFP_KERNEL); 2122 if (!rt->path_rec) 2123 goto err; 2124 2125 rt->path_rec[0] = *path; 2126 if (rt->num_paths == 2) 2127 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2128 2129 if (net_dev) { 2130 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2131 } else { 2132 if (!cma_protocol_roce(listen_id) && 2133 cma_any_addr(cma_src_addr(id_priv))) { 2134 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2135 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2136 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2137 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2138 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2139 if (ret) 2140 goto err; 2141 } 2142 } 2143 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2144 2145 id_priv->state = RDMA_CM_CONNECT; 2146 return id_priv; 2147 2148 err: 2149 rdma_destroy_id(id); 2150 return NULL; 2151 } 2152 2153 static struct rdma_id_private * 2154 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2155 const struct ib_cm_event *ib_event, 2156 struct net_device *net_dev) 2157 { 2158 const struct rdma_id_private *listen_id_priv; 2159 struct rdma_id_private *id_priv; 2160 struct rdma_cm_id *id; 2161 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2162 struct net *net = listen_id->route.addr.dev_addr.net; 2163 int ret; 2164 2165 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2166 id_priv = __rdma_create_id(net, listen_id->event_handler, 2167 listen_id->context, listen_id->ps, IB_QPT_UD, 2168 listen_id_priv); 2169 if (IS_ERR(id_priv)) 2170 return NULL; 2171 2172 id = &id_priv->id; 2173 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2174 (struct sockaddr *)&id->route.addr.dst_addr, 2175 listen_id, ib_event, ss_family, 2176 ib_event->param.sidr_req_rcvd.service_id)) 2177 goto err; 2178 2179 if (net_dev) { 2180 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2181 } else { 2182 if (!cma_any_addr(cma_src_addr(id_priv))) { 2183 ret = cma_translate_addr(cma_src_addr(id_priv), 2184 &id->route.addr.dev_addr); 2185 if (ret) 2186 goto err; 2187 } 2188 } 2189 2190 id_priv->state = RDMA_CM_CONNECT; 2191 return id_priv; 2192 err: 2193 rdma_destroy_id(id); 2194 return NULL; 2195 } 2196 2197 static void cma_set_req_event_data(struct rdma_cm_event *event, 2198 const struct ib_cm_req_event_param *req_data, 2199 void *private_data, int offset) 2200 { 2201 event->param.conn.private_data = private_data + offset; 2202 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2203 event->param.conn.responder_resources = req_data->responder_resources; 2204 event->param.conn.initiator_depth = req_data->initiator_depth; 2205 event->param.conn.flow_control = req_data->flow_control; 2206 event->param.conn.retry_count = req_data->retry_count; 2207 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2208 event->param.conn.srq = req_data->srq; 2209 event->param.conn.qp_num = req_data->remote_qpn; 2210 2211 event->ece.vendor_id = req_data->ece.vendor_id; 2212 event->ece.attr_mod = req_data->ece.attr_mod; 2213 } 2214 2215 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2216 const struct ib_cm_event *ib_event) 2217 { 2218 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2219 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2220 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2221 (id->qp_type == IB_QPT_UD)) || 2222 (!id->qp_type)); 2223 } 2224 2225 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2226 const struct ib_cm_event *ib_event) 2227 { 2228 struct rdma_id_private *listen_id, *conn_id = NULL; 2229 struct rdma_cm_event event = {}; 2230 struct cma_req_info req = {}; 2231 struct net_device *net_dev; 2232 u8 offset; 2233 int ret; 2234 2235 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2236 if (IS_ERR(listen_id)) 2237 return PTR_ERR(listen_id); 2238 2239 trace_cm_req_handler(listen_id, ib_event->event); 2240 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2241 ret = -EINVAL; 2242 goto net_dev_put; 2243 } 2244 2245 mutex_lock(&listen_id->handler_mutex); 2246 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2247 ret = -ECONNABORTED; 2248 goto err_unlock; 2249 } 2250 2251 offset = cma_user_data_offset(listen_id); 2252 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2253 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2254 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2255 event.param.ud.private_data = ib_event->private_data + offset; 2256 event.param.ud.private_data_len = 2257 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2258 } else { 2259 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2260 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2261 ib_event->private_data, offset); 2262 } 2263 if (!conn_id) { 2264 ret = -ENOMEM; 2265 goto err_unlock; 2266 } 2267 2268 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2269 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2270 if (ret) { 2271 destroy_id_handler_unlock(conn_id); 2272 goto err_unlock; 2273 } 2274 2275 conn_id->cm_id.ib = cm_id; 2276 cm_id->context = conn_id; 2277 cm_id->cm_handler = cma_ib_handler; 2278 2279 ret = cma_cm_event_handler(conn_id, &event); 2280 if (ret) { 2281 /* Destroy the CM ID by returning a non-zero value. */ 2282 conn_id->cm_id.ib = NULL; 2283 mutex_unlock(&listen_id->handler_mutex); 2284 destroy_id_handler_unlock(conn_id); 2285 goto net_dev_put; 2286 } 2287 2288 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2289 conn_id->id.qp_type != IB_QPT_UD) { 2290 trace_cm_send_mra(cm_id->context); 2291 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2292 } 2293 mutex_unlock(&conn_id->handler_mutex); 2294 2295 err_unlock: 2296 mutex_unlock(&listen_id->handler_mutex); 2297 2298 net_dev_put: 2299 if (net_dev) 2300 dev_put(net_dev); 2301 2302 return ret; 2303 } 2304 2305 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2306 { 2307 if (addr->sa_family == AF_IB) 2308 return ((struct sockaddr_ib *) addr)->sib_sid; 2309 2310 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2311 } 2312 EXPORT_SYMBOL(rdma_get_service_id); 2313 2314 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2315 union ib_gid *dgid) 2316 { 2317 struct rdma_addr *addr = &cm_id->route.addr; 2318 2319 if (!cm_id->device) { 2320 if (sgid) 2321 memset(sgid, 0, sizeof(*sgid)); 2322 if (dgid) 2323 memset(dgid, 0, sizeof(*dgid)); 2324 return; 2325 } 2326 2327 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2328 if (sgid) 2329 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2330 if (dgid) 2331 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2332 } else { 2333 if (sgid) 2334 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2335 if (dgid) 2336 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2337 } 2338 } 2339 EXPORT_SYMBOL(rdma_read_gids); 2340 2341 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2342 { 2343 struct rdma_id_private *id_priv = iw_id->context; 2344 struct rdma_cm_event event = {}; 2345 int ret = 0; 2346 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2347 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2348 2349 mutex_lock(&id_priv->handler_mutex); 2350 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2351 goto out; 2352 2353 switch (iw_event->event) { 2354 case IW_CM_EVENT_CLOSE: 2355 event.event = RDMA_CM_EVENT_DISCONNECTED; 2356 break; 2357 case IW_CM_EVENT_CONNECT_REPLY: 2358 memcpy(cma_src_addr(id_priv), laddr, 2359 rdma_addr_size(laddr)); 2360 memcpy(cma_dst_addr(id_priv), raddr, 2361 rdma_addr_size(raddr)); 2362 switch (iw_event->status) { 2363 case 0: 2364 event.event = RDMA_CM_EVENT_ESTABLISHED; 2365 event.param.conn.initiator_depth = iw_event->ird; 2366 event.param.conn.responder_resources = iw_event->ord; 2367 break; 2368 case -ECONNRESET: 2369 case -ECONNREFUSED: 2370 event.event = RDMA_CM_EVENT_REJECTED; 2371 break; 2372 case -ETIMEDOUT: 2373 event.event = RDMA_CM_EVENT_UNREACHABLE; 2374 break; 2375 default: 2376 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2377 break; 2378 } 2379 break; 2380 case IW_CM_EVENT_ESTABLISHED: 2381 event.event = RDMA_CM_EVENT_ESTABLISHED; 2382 event.param.conn.initiator_depth = iw_event->ird; 2383 event.param.conn.responder_resources = iw_event->ord; 2384 break; 2385 default: 2386 goto out; 2387 } 2388 2389 event.status = iw_event->status; 2390 event.param.conn.private_data = iw_event->private_data; 2391 event.param.conn.private_data_len = iw_event->private_data_len; 2392 ret = cma_cm_event_handler(id_priv, &event); 2393 if (ret) { 2394 /* Destroy the CM ID by returning a non-zero value. */ 2395 id_priv->cm_id.iw = NULL; 2396 destroy_id_handler_unlock(id_priv); 2397 return ret; 2398 } 2399 2400 out: 2401 mutex_unlock(&id_priv->handler_mutex); 2402 return ret; 2403 } 2404 2405 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2406 struct iw_cm_event *iw_event) 2407 { 2408 struct rdma_id_private *listen_id, *conn_id; 2409 struct rdma_cm_event event = {}; 2410 int ret = -ECONNABORTED; 2411 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2412 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2413 2414 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2415 event.param.conn.private_data = iw_event->private_data; 2416 event.param.conn.private_data_len = iw_event->private_data_len; 2417 event.param.conn.initiator_depth = iw_event->ird; 2418 event.param.conn.responder_resources = iw_event->ord; 2419 2420 listen_id = cm_id->context; 2421 2422 mutex_lock(&listen_id->handler_mutex); 2423 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2424 goto out; 2425 2426 /* Create a new RDMA id for the new IW CM ID */ 2427 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2428 listen_id->id.event_handler, 2429 listen_id->id.context, RDMA_PS_TCP, 2430 IB_QPT_RC, listen_id); 2431 if (IS_ERR(conn_id)) { 2432 ret = -ENOMEM; 2433 goto out; 2434 } 2435 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2436 conn_id->state = RDMA_CM_CONNECT; 2437 2438 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2439 if (ret) { 2440 mutex_unlock(&listen_id->handler_mutex); 2441 destroy_id_handler_unlock(conn_id); 2442 return ret; 2443 } 2444 2445 ret = cma_iw_acquire_dev(conn_id, listen_id); 2446 if (ret) { 2447 mutex_unlock(&listen_id->handler_mutex); 2448 destroy_id_handler_unlock(conn_id); 2449 return ret; 2450 } 2451 2452 conn_id->cm_id.iw = cm_id; 2453 cm_id->context = conn_id; 2454 cm_id->cm_handler = cma_iw_handler; 2455 2456 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2457 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2458 2459 ret = cma_cm_event_handler(conn_id, &event); 2460 if (ret) { 2461 /* User wants to destroy the CM ID */ 2462 conn_id->cm_id.iw = NULL; 2463 mutex_unlock(&listen_id->handler_mutex); 2464 destroy_id_handler_unlock(conn_id); 2465 return ret; 2466 } 2467 2468 mutex_unlock(&conn_id->handler_mutex); 2469 2470 out: 2471 mutex_unlock(&listen_id->handler_mutex); 2472 return ret; 2473 } 2474 2475 static int cma_ib_listen(struct rdma_id_private *id_priv) 2476 { 2477 struct sockaddr *addr; 2478 struct ib_cm_id *id; 2479 __be64 svc_id; 2480 2481 addr = cma_src_addr(id_priv); 2482 svc_id = rdma_get_service_id(&id_priv->id, addr); 2483 id = ib_cm_insert_listen(id_priv->id.device, 2484 cma_ib_req_handler, svc_id); 2485 if (IS_ERR(id)) 2486 return PTR_ERR(id); 2487 id_priv->cm_id.ib = id; 2488 2489 return 0; 2490 } 2491 2492 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2493 { 2494 int ret; 2495 struct iw_cm_id *id; 2496 2497 id = iw_create_cm_id(id_priv->id.device, 2498 iw_conn_req_handler, 2499 id_priv); 2500 if (IS_ERR(id)) 2501 return PTR_ERR(id); 2502 2503 mutex_lock(&id_priv->qp_mutex); 2504 id->tos = id_priv->tos; 2505 id->tos_set = id_priv->tos_set; 2506 mutex_unlock(&id_priv->qp_mutex); 2507 id->afonly = id_priv->afonly; 2508 id_priv->cm_id.iw = id; 2509 2510 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2511 rdma_addr_size(cma_src_addr(id_priv))); 2512 2513 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2514 2515 if (ret) { 2516 iw_destroy_cm_id(id_priv->cm_id.iw); 2517 id_priv->cm_id.iw = NULL; 2518 } 2519 2520 return ret; 2521 } 2522 2523 static int cma_listen_handler(struct rdma_cm_id *id, 2524 struct rdma_cm_event *event) 2525 { 2526 struct rdma_id_private *id_priv = id->context; 2527 2528 /* Listening IDs are always destroyed on removal */ 2529 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2530 return -1; 2531 2532 id->context = id_priv->id.context; 2533 id->event_handler = id_priv->id.event_handler; 2534 trace_cm_event_handler(id_priv, event); 2535 return id_priv->id.event_handler(id, event); 2536 } 2537 2538 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2539 struct cma_device *cma_dev, 2540 struct rdma_id_private **to_destroy) 2541 { 2542 struct rdma_id_private *dev_id_priv; 2543 struct net *net = id_priv->id.route.addr.dev_addr.net; 2544 int ret; 2545 2546 lockdep_assert_held(&lock); 2547 2548 *to_destroy = NULL; 2549 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2550 return 0; 2551 2552 dev_id_priv = 2553 __rdma_create_id(net, cma_listen_handler, id_priv, 2554 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2555 if (IS_ERR(dev_id_priv)) 2556 return PTR_ERR(dev_id_priv); 2557 2558 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2559 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2560 rdma_addr_size(cma_src_addr(id_priv))); 2561 2562 _cma_attach_to_dev(dev_id_priv, cma_dev); 2563 rdma_restrack_add(&dev_id_priv->res); 2564 cma_id_get(id_priv); 2565 dev_id_priv->internal_id = 1; 2566 dev_id_priv->afonly = id_priv->afonly; 2567 mutex_lock(&id_priv->qp_mutex); 2568 dev_id_priv->tos_set = id_priv->tos_set; 2569 dev_id_priv->tos = id_priv->tos; 2570 mutex_unlock(&id_priv->qp_mutex); 2571 2572 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2573 if (ret) 2574 goto err_listen; 2575 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2576 return 0; 2577 err_listen: 2578 /* Caller must destroy this after releasing lock */ 2579 *to_destroy = dev_id_priv; 2580 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2581 return ret; 2582 } 2583 2584 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2585 { 2586 struct rdma_id_private *to_destroy; 2587 struct cma_device *cma_dev; 2588 int ret; 2589 2590 mutex_lock(&lock); 2591 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2592 list_for_each_entry(cma_dev, &dev_list, list) { 2593 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2594 if (ret) { 2595 /* Prevent racing with cma_process_remove() */ 2596 if (to_destroy) 2597 list_del_init(&to_destroy->device_item); 2598 goto err_listen; 2599 } 2600 } 2601 mutex_unlock(&lock); 2602 return 0; 2603 2604 err_listen: 2605 _cma_cancel_listens(id_priv); 2606 mutex_unlock(&lock); 2607 if (to_destroy) 2608 rdma_destroy_id(&to_destroy->id); 2609 return ret; 2610 } 2611 2612 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2613 { 2614 struct rdma_id_private *id_priv; 2615 2616 id_priv = container_of(id, struct rdma_id_private, id); 2617 mutex_lock(&id_priv->qp_mutex); 2618 id_priv->tos = (u8) tos; 2619 id_priv->tos_set = true; 2620 mutex_unlock(&id_priv->qp_mutex); 2621 } 2622 EXPORT_SYMBOL(rdma_set_service_type); 2623 2624 /** 2625 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2626 * with a connection identifier. 2627 * @id: Communication identifier to associated with service type. 2628 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2629 * 2630 * This function should be called before rdma_connect() on active side, 2631 * and on passive side before rdma_accept(). It is applicable to primary 2632 * path only. The timeout will affect the local side of the QP, it is not 2633 * negotiated with remote side and zero disables the timer. In case it is 2634 * set before rdma_resolve_route, the value will also be used to determine 2635 * PacketLifeTime for RoCE. 2636 * 2637 * Return: 0 for success 2638 */ 2639 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2640 { 2641 struct rdma_id_private *id_priv; 2642 2643 if (id->qp_type != IB_QPT_RC) 2644 return -EINVAL; 2645 2646 id_priv = container_of(id, struct rdma_id_private, id); 2647 mutex_lock(&id_priv->qp_mutex); 2648 id_priv->timeout = timeout; 2649 id_priv->timeout_set = true; 2650 mutex_unlock(&id_priv->qp_mutex); 2651 2652 return 0; 2653 } 2654 EXPORT_SYMBOL(rdma_set_ack_timeout); 2655 2656 /** 2657 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2658 * QP associated with a connection identifier. 2659 * @id: Communication identifier to associated with service type. 2660 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2661 * Timer Field" in the IBTA specification. 2662 * 2663 * This function should be called before rdma_connect() on active 2664 * side, and on passive side before rdma_accept(). The timer value 2665 * will be associated with the local QP. When it receives a send it is 2666 * not read to handle, typically if the receive queue is empty, an RNR 2667 * Retry NAK is returned to the requester with the min_rnr_timer 2668 * encoded. The requester will then wait at least the time specified 2669 * in the NAK before retrying. The default is zero, which translates 2670 * to a minimum RNR Timer value of 655 ms. 2671 * 2672 * Return: 0 for success 2673 */ 2674 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2675 { 2676 struct rdma_id_private *id_priv; 2677 2678 /* It is a five-bit value */ 2679 if (min_rnr_timer & 0xe0) 2680 return -EINVAL; 2681 2682 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2683 return -EINVAL; 2684 2685 id_priv = container_of(id, struct rdma_id_private, id); 2686 mutex_lock(&id_priv->qp_mutex); 2687 id_priv->min_rnr_timer = min_rnr_timer; 2688 id_priv->min_rnr_timer_set = true; 2689 mutex_unlock(&id_priv->qp_mutex); 2690 2691 return 0; 2692 } 2693 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2694 2695 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2696 void *context) 2697 { 2698 struct cma_work *work = context; 2699 struct rdma_route *route; 2700 2701 route = &work->id->id.route; 2702 2703 if (!status) { 2704 route->num_paths = 1; 2705 *route->path_rec = *path_rec; 2706 } else { 2707 work->old_state = RDMA_CM_ROUTE_QUERY; 2708 work->new_state = RDMA_CM_ADDR_RESOLVED; 2709 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2710 work->event.status = status; 2711 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2712 status); 2713 } 2714 2715 queue_work(cma_wq, &work->work); 2716 } 2717 2718 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2719 unsigned long timeout_ms, struct cma_work *work) 2720 { 2721 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2722 struct sa_path_rec path_rec; 2723 ib_sa_comp_mask comp_mask; 2724 struct sockaddr_in6 *sin6; 2725 struct sockaddr_ib *sib; 2726 2727 memset(&path_rec, 0, sizeof path_rec); 2728 2729 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2730 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2731 else 2732 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2733 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2734 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2735 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2736 path_rec.numb_path = 1; 2737 path_rec.reversible = 1; 2738 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2739 cma_dst_addr(id_priv)); 2740 2741 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2742 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2743 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2744 2745 switch (cma_family(id_priv)) { 2746 case AF_INET: 2747 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2748 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2749 break; 2750 case AF_INET6: 2751 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2752 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2753 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2754 break; 2755 case AF_IB: 2756 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2757 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2758 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2759 break; 2760 } 2761 2762 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2763 id_priv->id.port_num, &path_rec, 2764 comp_mask, timeout_ms, 2765 GFP_KERNEL, cma_query_handler, 2766 work, &id_priv->query); 2767 2768 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2769 } 2770 2771 static void cma_iboe_join_work_handler(struct work_struct *work) 2772 { 2773 struct cma_multicast *mc = 2774 container_of(work, struct cma_multicast, iboe_join.work); 2775 struct rdma_cm_event *event = &mc->iboe_join.event; 2776 struct rdma_id_private *id_priv = mc->id_priv; 2777 int ret; 2778 2779 mutex_lock(&id_priv->handler_mutex); 2780 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2781 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2782 goto out_unlock; 2783 2784 ret = cma_cm_event_handler(id_priv, event); 2785 WARN_ON(ret); 2786 2787 out_unlock: 2788 mutex_unlock(&id_priv->handler_mutex); 2789 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2790 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2791 } 2792 2793 static void cma_work_handler(struct work_struct *_work) 2794 { 2795 struct cma_work *work = container_of(_work, struct cma_work, work); 2796 struct rdma_id_private *id_priv = work->id; 2797 2798 mutex_lock(&id_priv->handler_mutex); 2799 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2800 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2801 goto out_unlock; 2802 if (work->old_state != 0 || work->new_state != 0) { 2803 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2804 goto out_unlock; 2805 } 2806 2807 if (cma_cm_event_handler(id_priv, &work->event)) { 2808 cma_id_put(id_priv); 2809 destroy_id_handler_unlock(id_priv); 2810 goto out_free; 2811 } 2812 2813 out_unlock: 2814 mutex_unlock(&id_priv->handler_mutex); 2815 cma_id_put(id_priv); 2816 out_free: 2817 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2818 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2819 kfree(work); 2820 } 2821 2822 static void cma_init_resolve_route_work(struct cma_work *work, 2823 struct rdma_id_private *id_priv) 2824 { 2825 work->id = id_priv; 2826 INIT_WORK(&work->work, cma_work_handler); 2827 work->old_state = RDMA_CM_ROUTE_QUERY; 2828 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2829 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2830 } 2831 2832 static void enqueue_resolve_addr_work(struct cma_work *work, 2833 struct rdma_id_private *id_priv) 2834 { 2835 /* Balances with cma_id_put() in cma_work_handler */ 2836 cma_id_get(id_priv); 2837 2838 work->id = id_priv; 2839 INIT_WORK(&work->work, cma_work_handler); 2840 work->old_state = RDMA_CM_ADDR_QUERY; 2841 work->new_state = RDMA_CM_ADDR_RESOLVED; 2842 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2843 2844 queue_work(cma_wq, &work->work); 2845 } 2846 2847 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2848 unsigned long timeout_ms) 2849 { 2850 struct rdma_route *route = &id_priv->id.route; 2851 struct cma_work *work; 2852 int ret; 2853 2854 work = kzalloc(sizeof *work, GFP_KERNEL); 2855 if (!work) 2856 return -ENOMEM; 2857 2858 cma_init_resolve_route_work(work, id_priv); 2859 2860 if (!route->path_rec) 2861 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2862 if (!route->path_rec) { 2863 ret = -ENOMEM; 2864 goto err1; 2865 } 2866 2867 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2868 if (ret) 2869 goto err2; 2870 2871 return 0; 2872 err2: 2873 kfree(route->path_rec); 2874 route->path_rec = NULL; 2875 err1: 2876 kfree(work); 2877 return ret; 2878 } 2879 2880 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2881 unsigned long supported_gids, 2882 enum ib_gid_type default_gid) 2883 { 2884 if ((network_type == RDMA_NETWORK_IPV4 || 2885 network_type == RDMA_NETWORK_IPV6) && 2886 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2887 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2888 2889 return default_gid; 2890 } 2891 2892 /* 2893 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2894 * path record type based on GID type. 2895 * It also sets up other L2 fields which includes destination mac address 2896 * netdev ifindex, of the path record. 2897 * It returns the netdev of the bound interface for this path record entry. 2898 */ 2899 static struct net_device * 2900 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2901 { 2902 struct rdma_route *route = &id_priv->id.route; 2903 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2904 struct rdma_addr *addr = &route->addr; 2905 unsigned long supported_gids; 2906 struct net_device *ndev; 2907 2908 if (!addr->dev_addr.bound_dev_if) 2909 return NULL; 2910 2911 ndev = dev_get_by_index(addr->dev_addr.net, 2912 addr->dev_addr.bound_dev_if); 2913 if (!ndev) 2914 return NULL; 2915 2916 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2917 id_priv->id.port_num); 2918 gid_type = cma_route_gid_type(addr->dev_addr.network, 2919 supported_gids, 2920 id_priv->gid_type); 2921 /* Use the hint from IP Stack to select GID Type */ 2922 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2923 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2924 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2925 2926 route->path_rec->roce.route_resolved = true; 2927 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2928 return ndev; 2929 } 2930 2931 int rdma_set_ib_path(struct rdma_cm_id *id, 2932 struct sa_path_rec *path_rec) 2933 { 2934 struct rdma_id_private *id_priv; 2935 struct net_device *ndev; 2936 int ret; 2937 2938 id_priv = container_of(id, struct rdma_id_private, id); 2939 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2940 RDMA_CM_ROUTE_RESOLVED)) 2941 return -EINVAL; 2942 2943 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2944 GFP_KERNEL); 2945 if (!id->route.path_rec) { 2946 ret = -ENOMEM; 2947 goto err; 2948 } 2949 2950 if (rdma_protocol_roce(id->device, id->port_num)) { 2951 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2952 if (!ndev) { 2953 ret = -ENODEV; 2954 goto err_free; 2955 } 2956 dev_put(ndev); 2957 } 2958 2959 id->route.num_paths = 1; 2960 return 0; 2961 2962 err_free: 2963 kfree(id->route.path_rec); 2964 id->route.path_rec = NULL; 2965 err: 2966 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2967 return ret; 2968 } 2969 EXPORT_SYMBOL(rdma_set_ib_path); 2970 2971 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2972 { 2973 struct cma_work *work; 2974 2975 work = kzalloc(sizeof *work, GFP_KERNEL); 2976 if (!work) 2977 return -ENOMEM; 2978 2979 cma_init_resolve_route_work(work, id_priv); 2980 queue_work(cma_wq, &work->work); 2981 return 0; 2982 } 2983 2984 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2985 { 2986 struct net_device *dev; 2987 2988 dev = vlan_dev_real_dev(vlan_ndev); 2989 if (dev->num_tc) 2990 return netdev_get_prio_tc_map(dev, prio); 2991 2992 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2993 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2994 } 2995 2996 struct iboe_prio_tc_map { 2997 int input_prio; 2998 int output_tc; 2999 bool found; 3000 }; 3001 3002 static int get_lower_vlan_dev_tc(struct net_device *dev, 3003 struct netdev_nested_priv *priv) 3004 { 3005 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3006 3007 if (is_vlan_dev(dev)) 3008 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3009 else if (dev->num_tc) 3010 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3011 else 3012 map->output_tc = 0; 3013 /* We are interested only in first level VLAN device, so always 3014 * return 1 to stop iterating over next level devices. 3015 */ 3016 map->found = true; 3017 return 1; 3018 } 3019 3020 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3021 { 3022 struct iboe_prio_tc_map prio_tc_map = {}; 3023 int prio = rt_tos2priority(tos); 3024 struct netdev_nested_priv priv; 3025 3026 /* If VLAN device, get it directly from the VLAN netdev */ 3027 if (is_vlan_dev(ndev)) 3028 return get_vlan_ndev_tc(ndev, prio); 3029 3030 prio_tc_map.input_prio = prio; 3031 priv.data = (void *)&prio_tc_map; 3032 rcu_read_lock(); 3033 netdev_walk_all_lower_dev_rcu(ndev, 3034 get_lower_vlan_dev_tc, 3035 &priv); 3036 rcu_read_unlock(); 3037 /* If map is found from lower device, use it; Otherwise 3038 * continue with the current netdevice to get priority to tc map. 3039 */ 3040 if (prio_tc_map.found) 3041 return prio_tc_map.output_tc; 3042 else if (ndev->num_tc) 3043 return netdev_get_prio_tc_map(ndev, prio); 3044 else 3045 return 0; 3046 } 3047 3048 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3049 { 3050 struct sockaddr_in6 *addr6; 3051 u16 dport, sport; 3052 u32 hash, fl; 3053 3054 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3055 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3056 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3057 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3058 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3059 hash = (u32)sport * 31 + dport; 3060 fl = hash & IB_GRH_FLOWLABEL_MASK; 3061 } 3062 3063 return cpu_to_be32(fl); 3064 } 3065 3066 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3067 { 3068 struct rdma_route *route = &id_priv->id.route; 3069 struct rdma_addr *addr = &route->addr; 3070 struct cma_work *work; 3071 int ret; 3072 struct net_device *ndev; 3073 3074 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3075 rdma_start_port(id_priv->cma_dev->device)]; 3076 u8 tos; 3077 3078 mutex_lock(&id_priv->qp_mutex); 3079 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3080 mutex_unlock(&id_priv->qp_mutex); 3081 3082 work = kzalloc(sizeof *work, GFP_KERNEL); 3083 if (!work) 3084 return -ENOMEM; 3085 3086 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3087 if (!route->path_rec) { 3088 ret = -ENOMEM; 3089 goto err1; 3090 } 3091 3092 route->num_paths = 1; 3093 3094 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3095 if (!ndev) { 3096 ret = -ENODEV; 3097 goto err2; 3098 } 3099 3100 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3101 &route->path_rec->sgid); 3102 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3103 &route->path_rec->dgid); 3104 3105 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3106 /* TODO: get the hoplimit from the inet/inet6 device */ 3107 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3108 else 3109 route->path_rec->hop_limit = 1; 3110 route->path_rec->reversible = 1; 3111 route->path_rec->pkey = cpu_to_be16(0xffff); 3112 route->path_rec->mtu_selector = IB_SA_EQ; 3113 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3114 route->path_rec->traffic_class = tos; 3115 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3116 route->path_rec->rate_selector = IB_SA_EQ; 3117 route->path_rec->rate = iboe_get_rate(ndev); 3118 dev_put(ndev); 3119 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3120 /* In case ACK timeout is set, use this value to calculate 3121 * PacketLifeTime. As per IBTA 12.7.34, 3122 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3123 * Assuming a negligible local ACK delay, we can use 3124 * PacketLifeTime = local ACK timeout/2 3125 * as a reasonable approximation for RoCE networks. 3126 */ 3127 mutex_lock(&id_priv->qp_mutex); 3128 if (id_priv->timeout_set && id_priv->timeout) 3129 route->path_rec->packet_life_time = id_priv->timeout - 1; 3130 else 3131 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3132 mutex_unlock(&id_priv->qp_mutex); 3133 3134 if (!route->path_rec->mtu) { 3135 ret = -EINVAL; 3136 goto err2; 3137 } 3138 3139 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3140 id_priv->id.port_num)) 3141 route->path_rec->flow_label = 3142 cma_get_roce_udp_flow_label(id_priv); 3143 3144 cma_init_resolve_route_work(work, id_priv); 3145 queue_work(cma_wq, &work->work); 3146 3147 return 0; 3148 3149 err2: 3150 kfree(route->path_rec); 3151 route->path_rec = NULL; 3152 route->num_paths = 0; 3153 err1: 3154 kfree(work); 3155 return ret; 3156 } 3157 3158 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3159 { 3160 struct rdma_id_private *id_priv; 3161 int ret; 3162 3163 if (!timeout_ms) 3164 return -EINVAL; 3165 3166 id_priv = container_of(id, struct rdma_id_private, id); 3167 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3168 return -EINVAL; 3169 3170 cma_id_get(id_priv); 3171 if (rdma_cap_ib_sa(id->device, id->port_num)) 3172 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3173 else if (rdma_protocol_roce(id->device, id->port_num)) 3174 ret = cma_resolve_iboe_route(id_priv); 3175 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3176 ret = cma_resolve_iw_route(id_priv); 3177 else 3178 ret = -ENOSYS; 3179 3180 if (ret) 3181 goto err; 3182 3183 return 0; 3184 err: 3185 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3186 cma_id_put(id_priv); 3187 return ret; 3188 } 3189 EXPORT_SYMBOL(rdma_resolve_route); 3190 3191 static void cma_set_loopback(struct sockaddr *addr) 3192 { 3193 switch (addr->sa_family) { 3194 case AF_INET: 3195 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3196 break; 3197 case AF_INET6: 3198 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3199 0, 0, 0, htonl(1)); 3200 break; 3201 default: 3202 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3203 0, 0, 0, htonl(1)); 3204 break; 3205 } 3206 } 3207 3208 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3209 { 3210 struct cma_device *cma_dev, *cur_dev; 3211 union ib_gid gid; 3212 enum ib_port_state port_state; 3213 unsigned int p; 3214 u16 pkey; 3215 int ret; 3216 3217 cma_dev = NULL; 3218 mutex_lock(&lock); 3219 list_for_each_entry(cur_dev, &dev_list, list) { 3220 if (cma_family(id_priv) == AF_IB && 3221 !rdma_cap_ib_cm(cur_dev->device, 1)) 3222 continue; 3223 3224 if (!cma_dev) 3225 cma_dev = cur_dev; 3226 3227 rdma_for_each_port (cur_dev->device, p) { 3228 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3229 port_state == IB_PORT_ACTIVE) { 3230 cma_dev = cur_dev; 3231 goto port_found; 3232 } 3233 } 3234 } 3235 3236 if (!cma_dev) { 3237 ret = -ENODEV; 3238 goto out; 3239 } 3240 3241 p = 1; 3242 3243 port_found: 3244 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3245 if (ret) 3246 goto out; 3247 3248 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3249 if (ret) 3250 goto out; 3251 3252 id_priv->id.route.addr.dev_addr.dev_type = 3253 (rdma_protocol_ib(cma_dev->device, p)) ? 3254 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3255 3256 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3257 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3258 id_priv->id.port_num = p; 3259 cma_attach_to_dev(id_priv, cma_dev); 3260 rdma_restrack_add(&id_priv->res); 3261 cma_set_loopback(cma_src_addr(id_priv)); 3262 out: 3263 mutex_unlock(&lock); 3264 return ret; 3265 } 3266 3267 static void addr_handler(int status, struct sockaddr *src_addr, 3268 struct rdma_dev_addr *dev_addr, void *context) 3269 { 3270 struct rdma_id_private *id_priv = context; 3271 struct rdma_cm_event event = {}; 3272 struct sockaddr *addr; 3273 struct sockaddr_storage old_addr; 3274 3275 mutex_lock(&id_priv->handler_mutex); 3276 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3277 RDMA_CM_ADDR_RESOLVED)) 3278 goto out; 3279 3280 /* 3281 * Store the previous src address, so that if we fail to acquire 3282 * matching rdma device, old address can be restored back, which helps 3283 * to cancel the cma listen operation correctly. 3284 */ 3285 addr = cma_src_addr(id_priv); 3286 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3287 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3288 if (!status && !id_priv->cma_dev) { 3289 status = cma_acquire_dev_by_src_ip(id_priv); 3290 if (status) 3291 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3292 status); 3293 rdma_restrack_add(&id_priv->res); 3294 } else if (status) { 3295 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3296 } 3297 3298 if (status) { 3299 memcpy(addr, &old_addr, 3300 rdma_addr_size((struct sockaddr *)&old_addr)); 3301 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3302 RDMA_CM_ADDR_BOUND)) 3303 goto out; 3304 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3305 event.status = status; 3306 } else 3307 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3308 3309 if (cma_cm_event_handler(id_priv, &event)) { 3310 destroy_id_handler_unlock(id_priv); 3311 return; 3312 } 3313 out: 3314 mutex_unlock(&id_priv->handler_mutex); 3315 } 3316 3317 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3318 { 3319 struct cma_work *work; 3320 union ib_gid gid; 3321 int ret; 3322 3323 work = kzalloc(sizeof *work, GFP_KERNEL); 3324 if (!work) 3325 return -ENOMEM; 3326 3327 if (!id_priv->cma_dev) { 3328 ret = cma_bind_loopback(id_priv); 3329 if (ret) 3330 goto err; 3331 } 3332 3333 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3334 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3335 3336 enqueue_resolve_addr_work(work, id_priv); 3337 return 0; 3338 err: 3339 kfree(work); 3340 return ret; 3341 } 3342 3343 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3344 { 3345 struct cma_work *work; 3346 int ret; 3347 3348 work = kzalloc(sizeof *work, GFP_KERNEL); 3349 if (!work) 3350 return -ENOMEM; 3351 3352 if (!id_priv->cma_dev) { 3353 ret = cma_resolve_ib_dev(id_priv); 3354 if (ret) 3355 goto err; 3356 } 3357 3358 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3359 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3360 3361 enqueue_resolve_addr_work(work, id_priv); 3362 return 0; 3363 err: 3364 kfree(work); 3365 return ret; 3366 } 3367 3368 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3369 const struct sockaddr *dst_addr) 3370 { 3371 if (!src_addr || !src_addr->sa_family) { 3372 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3373 src_addr->sa_family = dst_addr->sa_family; 3374 if (IS_ENABLED(CONFIG_IPV6) && 3375 dst_addr->sa_family == AF_INET6) { 3376 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3377 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3378 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3379 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3380 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3381 } else if (dst_addr->sa_family == AF_IB) { 3382 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3383 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3384 } 3385 } 3386 return rdma_bind_addr(id, src_addr); 3387 } 3388 3389 /* 3390 * If required, resolve the source address for bind and leave the id_priv in 3391 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3392 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3393 * ignored. 3394 */ 3395 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3396 struct sockaddr *src_addr, 3397 const struct sockaddr *dst_addr) 3398 { 3399 int ret; 3400 3401 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3402 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3403 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3404 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3405 if (ret) 3406 goto err_dst; 3407 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3408 RDMA_CM_ADDR_QUERY))) { 3409 ret = -EINVAL; 3410 goto err_dst; 3411 } 3412 } 3413 3414 if (cma_family(id_priv) != dst_addr->sa_family) { 3415 ret = -EINVAL; 3416 goto err_state; 3417 } 3418 return 0; 3419 3420 err_state: 3421 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3422 err_dst: 3423 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3424 return ret; 3425 } 3426 3427 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3428 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3429 { 3430 struct rdma_id_private *id_priv = 3431 container_of(id, struct rdma_id_private, id); 3432 int ret; 3433 3434 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3435 if (ret) 3436 return ret; 3437 3438 if (cma_any_addr(dst_addr)) { 3439 ret = cma_resolve_loopback(id_priv); 3440 } else { 3441 if (dst_addr->sa_family == AF_IB) { 3442 ret = cma_resolve_ib_addr(id_priv); 3443 } else { 3444 /* 3445 * The FSM can return back to RDMA_CM_ADDR_BOUND after 3446 * rdma_resolve_ip() is called, eg through the error 3447 * path in addr_handler(). If this happens the existing 3448 * request must be canceled before issuing a new one. 3449 * Since canceling a request is a bit slow and this 3450 * oddball path is rare, keep track once a request has 3451 * been issued. The track turns out to be a permanent 3452 * state since this is the only cancel as it is 3453 * immediately before rdma_resolve_ip(). 3454 */ 3455 if (id_priv->used_resolve_ip) 3456 rdma_addr_cancel(&id->route.addr.dev_addr); 3457 else 3458 id_priv->used_resolve_ip = 1; 3459 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3460 &id->route.addr.dev_addr, 3461 timeout_ms, addr_handler, 3462 false, id_priv); 3463 } 3464 } 3465 if (ret) 3466 goto err; 3467 3468 return 0; 3469 err: 3470 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3471 return ret; 3472 } 3473 EXPORT_SYMBOL(rdma_resolve_addr); 3474 3475 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3476 { 3477 struct rdma_id_private *id_priv; 3478 unsigned long flags; 3479 int ret; 3480 3481 id_priv = container_of(id, struct rdma_id_private, id); 3482 spin_lock_irqsave(&id_priv->lock, flags); 3483 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3484 id_priv->state == RDMA_CM_IDLE) { 3485 id_priv->reuseaddr = reuse; 3486 ret = 0; 3487 } else { 3488 ret = -EINVAL; 3489 } 3490 spin_unlock_irqrestore(&id_priv->lock, flags); 3491 return ret; 3492 } 3493 EXPORT_SYMBOL(rdma_set_reuseaddr); 3494 3495 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3496 { 3497 struct rdma_id_private *id_priv; 3498 unsigned long flags; 3499 int ret; 3500 3501 id_priv = container_of(id, struct rdma_id_private, id); 3502 spin_lock_irqsave(&id_priv->lock, flags); 3503 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3504 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3505 id_priv->afonly = afonly; 3506 ret = 0; 3507 } else { 3508 ret = -EINVAL; 3509 } 3510 spin_unlock_irqrestore(&id_priv->lock, flags); 3511 return ret; 3512 } 3513 EXPORT_SYMBOL(rdma_set_afonly); 3514 3515 static void cma_bind_port(struct rdma_bind_list *bind_list, 3516 struct rdma_id_private *id_priv) 3517 { 3518 struct sockaddr *addr; 3519 struct sockaddr_ib *sib; 3520 u64 sid, mask; 3521 __be16 port; 3522 3523 lockdep_assert_held(&lock); 3524 3525 addr = cma_src_addr(id_priv); 3526 port = htons(bind_list->port); 3527 3528 switch (addr->sa_family) { 3529 case AF_INET: 3530 ((struct sockaddr_in *) addr)->sin_port = port; 3531 break; 3532 case AF_INET6: 3533 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3534 break; 3535 case AF_IB: 3536 sib = (struct sockaddr_ib *) addr; 3537 sid = be64_to_cpu(sib->sib_sid); 3538 mask = be64_to_cpu(sib->sib_sid_mask); 3539 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3540 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3541 break; 3542 } 3543 id_priv->bind_list = bind_list; 3544 hlist_add_head(&id_priv->node, &bind_list->owners); 3545 } 3546 3547 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3548 struct rdma_id_private *id_priv, unsigned short snum) 3549 { 3550 struct rdma_bind_list *bind_list; 3551 int ret; 3552 3553 lockdep_assert_held(&lock); 3554 3555 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3556 if (!bind_list) 3557 return -ENOMEM; 3558 3559 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3560 snum); 3561 if (ret < 0) 3562 goto err; 3563 3564 bind_list->ps = ps; 3565 bind_list->port = snum; 3566 cma_bind_port(bind_list, id_priv); 3567 return 0; 3568 err: 3569 kfree(bind_list); 3570 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3571 } 3572 3573 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3574 struct rdma_id_private *id_priv) 3575 { 3576 struct rdma_id_private *cur_id; 3577 struct sockaddr *daddr = cma_dst_addr(id_priv); 3578 struct sockaddr *saddr = cma_src_addr(id_priv); 3579 __be16 dport = cma_port(daddr); 3580 3581 lockdep_assert_held(&lock); 3582 3583 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3584 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3585 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3586 __be16 cur_dport = cma_port(cur_daddr); 3587 3588 if (id_priv == cur_id) 3589 continue; 3590 3591 /* different dest port -> unique */ 3592 if (!cma_any_port(daddr) && 3593 !cma_any_port(cur_daddr) && 3594 (dport != cur_dport)) 3595 continue; 3596 3597 /* different src address -> unique */ 3598 if (!cma_any_addr(saddr) && 3599 !cma_any_addr(cur_saddr) && 3600 cma_addr_cmp(saddr, cur_saddr)) 3601 continue; 3602 3603 /* different dst address -> unique */ 3604 if (!cma_any_addr(daddr) && 3605 !cma_any_addr(cur_daddr) && 3606 cma_addr_cmp(daddr, cur_daddr)) 3607 continue; 3608 3609 return -EADDRNOTAVAIL; 3610 } 3611 return 0; 3612 } 3613 3614 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3615 struct rdma_id_private *id_priv) 3616 { 3617 static unsigned int last_used_port; 3618 int low, high, remaining; 3619 unsigned int rover; 3620 struct net *net = id_priv->id.route.addr.dev_addr.net; 3621 3622 lockdep_assert_held(&lock); 3623 3624 inet_get_local_port_range(net, &low, &high); 3625 remaining = (high - low) + 1; 3626 rover = prandom_u32() % remaining + low; 3627 retry: 3628 if (last_used_port != rover) { 3629 struct rdma_bind_list *bind_list; 3630 int ret; 3631 3632 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3633 3634 if (!bind_list) { 3635 ret = cma_alloc_port(ps, id_priv, rover); 3636 } else { 3637 ret = cma_port_is_unique(bind_list, id_priv); 3638 if (!ret) 3639 cma_bind_port(bind_list, id_priv); 3640 } 3641 /* 3642 * Remember previously used port number in order to avoid 3643 * re-using same port immediately after it is closed. 3644 */ 3645 if (!ret) 3646 last_used_port = rover; 3647 if (ret != -EADDRNOTAVAIL) 3648 return ret; 3649 } 3650 if (--remaining) { 3651 rover++; 3652 if ((rover < low) || (rover > high)) 3653 rover = low; 3654 goto retry; 3655 } 3656 return -EADDRNOTAVAIL; 3657 } 3658 3659 /* 3660 * Check that the requested port is available. This is called when trying to 3661 * bind to a specific port, or when trying to listen on a bound port. In 3662 * the latter case, the provided id_priv may already be on the bind_list, but 3663 * we still need to check that it's okay to start listening. 3664 */ 3665 static int cma_check_port(struct rdma_bind_list *bind_list, 3666 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3667 { 3668 struct rdma_id_private *cur_id; 3669 struct sockaddr *addr, *cur_addr; 3670 3671 lockdep_assert_held(&lock); 3672 3673 addr = cma_src_addr(id_priv); 3674 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3675 if (id_priv == cur_id) 3676 continue; 3677 3678 if (reuseaddr && cur_id->reuseaddr) 3679 continue; 3680 3681 cur_addr = cma_src_addr(cur_id); 3682 if (id_priv->afonly && cur_id->afonly && 3683 (addr->sa_family != cur_addr->sa_family)) 3684 continue; 3685 3686 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3687 return -EADDRNOTAVAIL; 3688 3689 if (!cma_addr_cmp(addr, cur_addr)) 3690 return -EADDRINUSE; 3691 } 3692 return 0; 3693 } 3694 3695 static int cma_use_port(enum rdma_ucm_port_space ps, 3696 struct rdma_id_private *id_priv) 3697 { 3698 struct rdma_bind_list *bind_list; 3699 unsigned short snum; 3700 int ret; 3701 3702 lockdep_assert_held(&lock); 3703 3704 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3705 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3706 return -EACCES; 3707 3708 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3709 if (!bind_list) { 3710 ret = cma_alloc_port(ps, id_priv, snum); 3711 } else { 3712 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3713 if (!ret) 3714 cma_bind_port(bind_list, id_priv); 3715 } 3716 return ret; 3717 } 3718 3719 static enum rdma_ucm_port_space 3720 cma_select_inet_ps(struct rdma_id_private *id_priv) 3721 { 3722 switch (id_priv->id.ps) { 3723 case RDMA_PS_TCP: 3724 case RDMA_PS_UDP: 3725 case RDMA_PS_IPOIB: 3726 case RDMA_PS_IB: 3727 return id_priv->id.ps; 3728 default: 3729 3730 return 0; 3731 } 3732 } 3733 3734 static enum rdma_ucm_port_space 3735 cma_select_ib_ps(struct rdma_id_private *id_priv) 3736 { 3737 enum rdma_ucm_port_space ps = 0; 3738 struct sockaddr_ib *sib; 3739 u64 sid_ps, mask, sid; 3740 3741 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3742 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3743 sid = be64_to_cpu(sib->sib_sid) & mask; 3744 3745 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3746 sid_ps = RDMA_IB_IP_PS_IB; 3747 ps = RDMA_PS_IB; 3748 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3749 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3750 sid_ps = RDMA_IB_IP_PS_TCP; 3751 ps = RDMA_PS_TCP; 3752 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3753 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3754 sid_ps = RDMA_IB_IP_PS_UDP; 3755 ps = RDMA_PS_UDP; 3756 } 3757 3758 if (ps) { 3759 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3760 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3761 be64_to_cpu(sib->sib_sid_mask)); 3762 } 3763 return ps; 3764 } 3765 3766 static int cma_get_port(struct rdma_id_private *id_priv) 3767 { 3768 enum rdma_ucm_port_space ps; 3769 int ret; 3770 3771 if (cma_family(id_priv) != AF_IB) 3772 ps = cma_select_inet_ps(id_priv); 3773 else 3774 ps = cma_select_ib_ps(id_priv); 3775 if (!ps) 3776 return -EPROTONOSUPPORT; 3777 3778 mutex_lock(&lock); 3779 if (cma_any_port(cma_src_addr(id_priv))) 3780 ret = cma_alloc_any_port(ps, id_priv); 3781 else 3782 ret = cma_use_port(ps, id_priv); 3783 mutex_unlock(&lock); 3784 3785 return ret; 3786 } 3787 3788 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3789 struct sockaddr *addr) 3790 { 3791 #if IS_ENABLED(CONFIG_IPV6) 3792 struct sockaddr_in6 *sin6; 3793 3794 if (addr->sa_family != AF_INET6) 3795 return 0; 3796 3797 sin6 = (struct sockaddr_in6 *) addr; 3798 3799 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3800 return 0; 3801 3802 if (!sin6->sin6_scope_id) 3803 return -EINVAL; 3804 3805 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3806 #endif 3807 return 0; 3808 } 3809 3810 int rdma_listen(struct rdma_cm_id *id, int backlog) 3811 { 3812 struct rdma_id_private *id_priv = 3813 container_of(id, struct rdma_id_private, id); 3814 int ret; 3815 3816 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3817 struct sockaddr_in any_in = { 3818 .sin_family = AF_INET, 3819 .sin_addr.s_addr = htonl(INADDR_ANY), 3820 }; 3821 3822 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3823 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3824 if (ret) 3825 return ret; 3826 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3827 RDMA_CM_LISTEN))) 3828 return -EINVAL; 3829 } 3830 3831 /* 3832 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3833 * any more, and has to be unique in the bind list. 3834 */ 3835 if (id_priv->reuseaddr) { 3836 mutex_lock(&lock); 3837 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3838 if (!ret) 3839 id_priv->reuseaddr = 0; 3840 mutex_unlock(&lock); 3841 if (ret) 3842 goto err; 3843 } 3844 3845 id_priv->backlog = backlog; 3846 if (id_priv->cma_dev) { 3847 if (rdma_cap_ib_cm(id->device, 1)) { 3848 ret = cma_ib_listen(id_priv); 3849 if (ret) 3850 goto err; 3851 } else if (rdma_cap_iw_cm(id->device, 1)) { 3852 ret = cma_iw_listen(id_priv, backlog); 3853 if (ret) 3854 goto err; 3855 } else { 3856 ret = -ENOSYS; 3857 goto err; 3858 } 3859 } else { 3860 ret = cma_listen_on_all(id_priv); 3861 if (ret) 3862 goto err; 3863 } 3864 3865 return 0; 3866 err: 3867 id_priv->backlog = 0; 3868 /* 3869 * All the failure paths that lead here will not allow the req_handler's 3870 * to have run. 3871 */ 3872 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3873 return ret; 3874 } 3875 EXPORT_SYMBOL(rdma_listen); 3876 3877 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3878 { 3879 struct rdma_id_private *id_priv; 3880 int ret; 3881 struct sockaddr *daddr; 3882 3883 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3884 addr->sa_family != AF_IB) 3885 return -EAFNOSUPPORT; 3886 3887 id_priv = container_of(id, struct rdma_id_private, id); 3888 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3889 return -EINVAL; 3890 3891 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3892 if (ret) 3893 goto err1; 3894 3895 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3896 if (!cma_any_addr(addr)) { 3897 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3898 if (ret) 3899 goto err1; 3900 3901 ret = cma_acquire_dev_by_src_ip(id_priv); 3902 if (ret) 3903 goto err1; 3904 } 3905 3906 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3907 if (addr->sa_family == AF_INET) 3908 id_priv->afonly = 1; 3909 #if IS_ENABLED(CONFIG_IPV6) 3910 else if (addr->sa_family == AF_INET6) { 3911 struct net *net = id_priv->id.route.addr.dev_addr.net; 3912 3913 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3914 } 3915 #endif 3916 } 3917 daddr = cma_dst_addr(id_priv); 3918 daddr->sa_family = addr->sa_family; 3919 3920 ret = cma_get_port(id_priv); 3921 if (ret) 3922 goto err2; 3923 3924 if (!cma_any_addr(addr)) 3925 rdma_restrack_add(&id_priv->res); 3926 return 0; 3927 err2: 3928 if (id_priv->cma_dev) 3929 cma_release_dev(id_priv); 3930 err1: 3931 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3932 return ret; 3933 } 3934 EXPORT_SYMBOL(rdma_bind_addr); 3935 3936 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3937 { 3938 struct cma_hdr *cma_hdr; 3939 3940 cma_hdr = hdr; 3941 cma_hdr->cma_version = CMA_VERSION; 3942 if (cma_family(id_priv) == AF_INET) { 3943 struct sockaddr_in *src4, *dst4; 3944 3945 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3946 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3947 3948 cma_set_ip_ver(cma_hdr, 4); 3949 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3950 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3951 cma_hdr->port = src4->sin_port; 3952 } else if (cma_family(id_priv) == AF_INET6) { 3953 struct sockaddr_in6 *src6, *dst6; 3954 3955 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3956 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3957 3958 cma_set_ip_ver(cma_hdr, 6); 3959 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3960 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3961 cma_hdr->port = src6->sin6_port; 3962 } 3963 return 0; 3964 } 3965 3966 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3967 const struct ib_cm_event *ib_event) 3968 { 3969 struct rdma_id_private *id_priv = cm_id->context; 3970 struct rdma_cm_event event = {}; 3971 const struct ib_cm_sidr_rep_event_param *rep = 3972 &ib_event->param.sidr_rep_rcvd; 3973 int ret; 3974 3975 mutex_lock(&id_priv->handler_mutex); 3976 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3977 goto out; 3978 3979 switch (ib_event->event) { 3980 case IB_CM_SIDR_REQ_ERROR: 3981 event.event = RDMA_CM_EVENT_UNREACHABLE; 3982 event.status = -ETIMEDOUT; 3983 break; 3984 case IB_CM_SIDR_REP_RECEIVED: 3985 event.param.ud.private_data = ib_event->private_data; 3986 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3987 if (rep->status != IB_SIDR_SUCCESS) { 3988 event.event = RDMA_CM_EVENT_UNREACHABLE; 3989 event.status = ib_event->param.sidr_rep_rcvd.status; 3990 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3991 event.status); 3992 break; 3993 } 3994 ret = cma_set_qkey(id_priv, rep->qkey); 3995 if (ret) { 3996 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3997 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3998 event.status = ret; 3999 break; 4000 } 4001 ib_init_ah_attr_from_path(id_priv->id.device, 4002 id_priv->id.port_num, 4003 id_priv->id.route.path_rec, 4004 &event.param.ud.ah_attr, 4005 rep->sgid_attr); 4006 event.param.ud.qp_num = rep->qpn; 4007 event.param.ud.qkey = rep->qkey; 4008 event.event = RDMA_CM_EVENT_ESTABLISHED; 4009 event.status = 0; 4010 break; 4011 default: 4012 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4013 ib_event->event); 4014 goto out; 4015 } 4016 4017 ret = cma_cm_event_handler(id_priv, &event); 4018 4019 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4020 if (ret) { 4021 /* Destroy the CM ID by returning a non-zero value. */ 4022 id_priv->cm_id.ib = NULL; 4023 destroy_id_handler_unlock(id_priv); 4024 return ret; 4025 } 4026 out: 4027 mutex_unlock(&id_priv->handler_mutex); 4028 return 0; 4029 } 4030 4031 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4032 struct rdma_conn_param *conn_param) 4033 { 4034 struct ib_cm_sidr_req_param req; 4035 struct ib_cm_id *id; 4036 void *private_data; 4037 u8 offset; 4038 int ret; 4039 4040 memset(&req, 0, sizeof req); 4041 offset = cma_user_data_offset(id_priv); 4042 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4043 return -EINVAL; 4044 4045 if (req.private_data_len) { 4046 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4047 if (!private_data) 4048 return -ENOMEM; 4049 } else { 4050 private_data = NULL; 4051 } 4052 4053 if (conn_param->private_data && conn_param->private_data_len) 4054 memcpy(private_data + offset, conn_param->private_data, 4055 conn_param->private_data_len); 4056 4057 if (private_data) { 4058 ret = cma_format_hdr(private_data, id_priv); 4059 if (ret) 4060 goto out; 4061 req.private_data = private_data; 4062 } 4063 4064 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4065 id_priv); 4066 if (IS_ERR(id)) { 4067 ret = PTR_ERR(id); 4068 goto out; 4069 } 4070 id_priv->cm_id.ib = id; 4071 4072 req.path = id_priv->id.route.path_rec; 4073 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4074 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4075 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4076 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4077 4078 trace_cm_send_sidr_req(id_priv); 4079 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4080 if (ret) { 4081 ib_destroy_cm_id(id_priv->cm_id.ib); 4082 id_priv->cm_id.ib = NULL; 4083 } 4084 out: 4085 kfree(private_data); 4086 return ret; 4087 } 4088 4089 static int cma_connect_ib(struct rdma_id_private *id_priv, 4090 struct rdma_conn_param *conn_param) 4091 { 4092 struct ib_cm_req_param req; 4093 struct rdma_route *route; 4094 void *private_data; 4095 struct ib_cm_id *id; 4096 u8 offset; 4097 int ret; 4098 4099 memset(&req, 0, sizeof req); 4100 offset = cma_user_data_offset(id_priv); 4101 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4102 return -EINVAL; 4103 4104 if (req.private_data_len) { 4105 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4106 if (!private_data) 4107 return -ENOMEM; 4108 } else { 4109 private_data = NULL; 4110 } 4111 4112 if (conn_param->private_data && conn_param->private_data_len) 4113 memcpy(private_data + offset, conn_param->private_data, 4114 conn_param->private_data_len); 4115 4116 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4117 if (IS_ERR(id)) { 4118 ret = PTR_ERR(id); 4119 goto out; 4120 } 4121 id_priv->cm_id.ib = id; 4122 4123 route = &id_priv->id.route; 4124 if (private_data) { 4125 ret = cma_format_hdr(private_data, id_priv); 4126 if (ret) 4127 goto out; 4128 req.private_data = private_data; 4129 } 4130 4131 req.primary_path = &route->path_rec[0]; 4132 if (route->num_paths == 2) 4133 req.alternate_path = &route->path_rec[1]; 4134 4135 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4136 /* Alternate path SGID attribute currently unsupported */ 4137 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4138 req.qp_num = id_priv->qp_num; 4139 req.qp_type = id_priv->id.qp_type; 4140 req.starting_psn = id_priv->seq_num; 4141 req.responder_resources = conn_param->responder_resources; 4142 req.initiator_depth = conn_param->initiator_depth; 4143 req.flow_control = conn_param->flow_control; 4144 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4145 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4146 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4147 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4148 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4149 req.srq = id_priv->srq ? 1 : 0; 4150 req.ece.vendor_id = id_priv->ece.vendor_id; 4151 req.ece.attr_mod = id_priv->ece.attr_mod; 4152 4153 trace_cm_send_req(id_priv); 4154 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4155 out: 4156 if (ret && !IS_ERR(id)) { 4157 ib_destroy_cm_id(id); 4158 id_priv->cm_id.ib = NULL; 4159 } 4160 4161 kfree(private_data); 4162 return ret; 4163 } 4164 4165 static int cma_connect_iw(struct rdma_id_private *id_priv, 4166 struct rdma_conn_param *conn_param) 4167 { 4168 struct iw_cm_id *cm_id; 4169 int ret; 4170 struct iw_cm_conn_param iw_param; 4171 4172 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4173 if (IS_ERR(cm_id)) 4174 return PTR_ERR(cm_id); 4175 4176 mutex_lock(&id_priv->qp_mutex); 4177 cm_id->tos = id_priv->tos; 4178 cm_id->tos_set = id_priv->tos_set; 4179 mutex_unlock(&id_priv->qp_mutex); 4180 4181 id_priv->cm_id.iw = cm_id; 4182 4183 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4184 rdma_addr_size(cma_src_addr(id_priv))); 4185 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4186 rdma_addr_size(cma_dst_addr(id_priv))); 4187 4188 ret = cma_modify_qp_rtr(id_priv, conn_param); 4189 if (ret) 4190 goto out; 4191 4192 if (conn_param) { 4193 iw_param.ord = conn_param->initiator_depth; 4194 iw_param.ird = conn_param->responder_resources; 4195 iw_param.private_data = conn_param->private_data; 4196 iw_param.private_data_len = conn_param->private_data_len; 4197 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4198 } else { 4199 memset(&iw_param, 0, sizeof iw_param); 4200 iw_param.qpn = id_priv->qp_num; 4201 } 4202 ret = iw_cm_connect(cm_id, &iw_param); 4203 out: 4204 if (ret) { 4205 iw_destroy_cm_id(cm_id); 4206 id_priv->cm_id.iw = NULL; 4207 } 4208 return ret; 4209 } 4210 4211 /** 4212 * rdma_connect_locked - Initiate an active connection request. 4213 * @id: Connection identifier to connect. 4214 * @conn_param: Connection information used for connected QPs. 4215 * 4216 * Same as rdma_connect() but can only be called from the 4217 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4218 */ 4219 int rdma_connect_locked(struct rdma_cm_id *id, 4220 struct rdma_conn_param *conn_param) 4221 { 4222 struct rdma_id_private *id_priv = 4223 container_of(id, struct rdma_id_private, id); 4224 int ret; 4225 4226 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4227 return -EINVAL; 4228 4229 if (!id->qp) { 4230 id_priv->qp_num = conn_param->qp_num; 4231 id_priv->srq = conn_param->srq; 4232 } 4233 4234 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4235 if (id->qp_type == IB_QPT_UD) 4236 ret = cma_resolve_ib_udp(id_priv, conn_param); 4237 else 4238 ret = cma_connect_ib(id_priv, conn_param); 4239 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4240 ret = cma_connect_iw(id_priv, conn_param); 4241 } else { 4242 ret = -ENOSYS; 4243 } 4244 if (ret) 4245 goto err_state; 4246 return 0; 4247 err_state: 4248 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4249 return ret; 4250 } 4251 EXPORT_SYMBOL(rdma_connect_locked); 4252 4253 /** 4254 * rdma_connect - Initiate an active connection request. 4255 * @id: Connection identifier to connect. 4256 * @conn_param: Connection information used for connected QPs. 4257 * 4258 * Users must have resolved a route for the rdma_cm_id to connect with by having 4259 * called rdma_resolve_route before calling this routine. 4260 * 4261 * This call will either connect to a remote QP or obtain remote QP information 4262 * for unconnected rdma_cm_id's. The actual operation is based on the 4263 * rdma_cm_id's port space. 4264 */ 4265 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4266 { 4267 struct rdma_id_private *id_priv = 4268 container_of(id, struct rdma_id_private, id); 4269 int ret; 4270 4271 mutex_lock(&id_priv->handler_mutex); 4272 ret = rdma_connect_locked(id, conn_param); 4273 mutex_unlock(&id_priv->handler_mutex); 4274 return ret; 4275 } 4276 EXPORT_SYMBOL(rdma_connect); 4277 4278 /** 4279 * rdma_connect_ece - Initiate an active connection request with ECE data. 4280 * @id: Connection identifier to connect. 4281 * @conn_param: Connection information used for connected QPs. 4282 * @ece: ECE parameters 4283 * 4284 * See rdma_connect() explanation. 4285 */ 4286 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4287 struct rdma_ucm_ece *ece) 4288 { 4289 struct rdma_id_private *id_priv = 4290 container_of(id, struct rdma_id_private, id); 4291 4292 id_priv->ece.vendor_id = ece->vendor_id; 4293 id_priv->ece.attr_mod = ece->attr_mod; 4294 4295 return rdma_connect(id, conn_param); 4296 } 4297 EXPORT_SYMBOL(rdma_connect_ece); 4298 4299 static int cma_accept_ib(struct rdma_id_private *id_priv, 4300 struct rdma_conn_param *conn_param) 4301 { 4302 struct ib_cm_rep_param rep; 4303 int ret; 4304 4305 ret = cma_modify_qp_rtr(id_priv, conn_param); 4306 if (ret) 4307 goto out; 4308 4309 ret = cma_modify_qp_rts(id_priv, conn_param); 4310 if (ret) 4311 goto out; 4312 4313 memset(&rep, 0, sizeof rep); 4314 rep.qp_num = id_priv->qp_num; 4315 rep.starting_psn = id_priv->seq_num; 4316 rep.private_data = conn_param->private_data; 4317 rep.private_data_len = conn_param->private_data_len; 4318 rep.responder_resources = conn_param->responder_resources; 4319 rep.initiator_depth = conn_param->initiator_depth; 4320 rep.failover_accepted = 0; 4321 rep.flow_control = conn_param->flow_control; 4322 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4323 rep.srq = id_priv->srq ? 1 : 0; 4324 rep.ece.vendor_id = id_priv->ece.vendor_id; 4325 rep.ece.attr_mod = id_priv->ece.attr_mod; 4326 4327 trace_cm_send_rep(id_priv); 4328 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4329 out: 4330 return ret; 4331 } 4332 4333 static int cma_accept_iw(struct rdma_id_private *id_priv, 4334 struct rdma_conn_param *conn_param) 4335 { 4336 struct iw_cm_conn_param iw_param; 4337 int ret; 4338 4339 if (!conn_param) 4340 return -EINVAL; 4341 4342 ret = cma_modify_qp_rtr(id_priv, conn_param); 4343 if (ret) 4344 return ret; 4345 4346 iw_param.ord = conn_param->initiator_depth; 4347 iw_param.ird = conn_param->responder_resources; 4348 iw_param.private_data = conn_param->private_data; 4349 iw_param.private_data_len = conn_param->private_data_len; 4350 if (id_priv->id.qp) 4351 iw_param.qpn = id_priv->qp_num; 4352 else 4353 iw_param.qpn = conn_param->qp_num; 4354 4355 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4356 } 4357 4358 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4359 enum ib_cm_sidr_status status, u32 qkey, 4360 const void *private_data, int private_data_len) 4361 { 4362 struct ib_cm_sidr_rep_param rep; 4363 int ret; 4364 4365 memset(&rep, 0, sizeof rep); 4366 rep.status = status; 4367 if (status == IB_SIDR_SUCCESS) { 4368 ret = cma_set_qkey(id_priv, qkey); 4369 if (ret) 4370 return ret; 4371 rep.qp_num = id_priv->qp_num; 4372 rep.qkey = id_priv->qkey; 4373 4374 rep.ece.vendor_id = id_priv->ece.vendor_id; 4375 rep.ece.attr_mod = id_priv->ece.attr_mod; 4376 } 4377 4378 rep.private_data = private_data; 4379 rep.private_data_len = private_data_len; 4380 4381 trace_cm_send_sidr_rep(id_priv); 4382 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4383 } 4384 4385 /** 4386 * rdma_accept - Called to accept a connection request or response. 4387 * @id: Connection identifier associated with the request. 4388 * @conn_param: Information needed to establish the connection. This must be 4389 * provided if accepting a connection request. If accepting a connection 4390 * response, this parameter must be NULL. 4391 * 4392 * Typically, this routine is only called by the listener to accept a connection 4393 * request. It must also be called on the active side of a connection if the 4394 * user is performing their own QP transitions. 4395 * 4396 * In the case of error, a reject message is sent to the remote side and the 4397 * state of the qp associated with the id is modified to error, such that any 4398 * previously posted receive buffers would be flushed. 4399 * 4400 * This function is for use by kernel ULPs and must be called from under the 4401 * handler callback. 4402 */ 4403 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4404 { 4405 struct rdma_id_private *id_priv = 4406 container_of(id, struct rdma_id_private, id); 4407 int ret; 4408 4409 lockdep_assert_held(&id_priv->handler_mutex); 4410 4411 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4412 return -EINVAL; 4413 4414 if (!id->qp && conn_param) { 4415 id_priv->qp_num = conn_param->qp_num; 4416 id_priv->srq = conn_param->srq; 4417 } 4418 4419 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4420 if (id->qp_type == IB_QPT_UD) { 4421 if (conn_param) 4422 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4423 conn_param->qkey, 4424 conn_param->private_data, 4425 conn_param->private_data_len); 4426 else 4427 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4428 0, NULL, 0); 4429 } else { 4430 if (conn_param) 4431 ret = cma_accept_ib(id_priv, conn_param); 4432 else 4433 ret = cma_rep_recv(id_priv); 4434 } 4435 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4436 ret = cma_accept_iw(id_priv, conn_param); 4437 } else { 4438 ret = -ENOSYS; 4439 } 4440 if (ret) 4441 goto reject; 4442 4443 return 0; 4444 reject: 4445 cma_modify_qp_err(id_priv); 4446 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4447 return ret; 4448 } 4449 EXPORT_SYMBOL(rdma_accept); 4450 4451 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4452 struct rdma_ucm_ece *ece) 4453 { 4454 struct rdma_id_private *id_priv = 4455 container_of(id, struct rdma_id_private, id); 4456 4457 id_priv->ece.vendor_id = ece->vendor_id; 4458 id_priv->ece.attr_mod = ece->attr_mod; 4459 4460 return rdma_accept(id, conn_param); 4461 } 4462 EXPORT_SYMBOL(rdma_accept_ece); 4463 4464 void rdma_lock_handler(struct rdma_cm_id *id) 4465 { 4466 struct rdma_id_private *id_priv = 4467 container_of(id, struct rdma_id_private, id); 4468 4469 mutex_lock(&id_priv->handler_mutex); 4470 } 4471 EXPORT_SYMBOL(rdma_lock_handler); 4472 4473 void rdma_unlock_handler(struct rdma_cm_id *id) 4474 { 4475 struct rdma_id_private *id_priv = 4476 container_of(id, struct rdma_id_private, id); 4477 4478 mutex_unlock(&id_priv->handler_mutex); 4479 } 4480 EXPORT_SYMBOL(rdma_unlock_handler); 4481 4482 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4483 { 4484 struct rdma_id_private *id_priv; 4485 int ret; 4486 4487 id_priv = container_of(id, struct rdma_id_private, id); 4488 if (!id_priv->cm_id.ib) 4489 return -EINVAL; 4490 4491 switch (id->device->node_type) { 4492 case RDMA_NODE_IB_CA: 4493 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4494 break; 4495 default: 4496 ret = 0; 4497 break; 4498 } 4499 return ret; 4500 } 4501 EXPORT_SYMBOL(rdma_notify); 4502 4503 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4504 u8 private_data_len, u8 reason) 4505 { 4506 struct rdma_id_private *id_priv; 4507 int ret; 4508 4509 id_priv = container_of(id, struct rdma_id_private, id); 4510 if (!id_priv->cm_id.ib) 4511 return -EINVAL; 4512 4513 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4514 if (id->qp_type == IB_QPT_UD) { 4515 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4516 private_data, private_data_len); 4517 } else { 4518 trace_cm_send_rej(id_priv); 4519 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4520 private_data, private_data_len); 4521 } 4522 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4523 ret = iw_cm_reject(id_priv->cm_id.iw, 4524 private_data, private_data_len); 4525 } else { 4526 ret = -ENOSYS; 4527 } 4528 4529 return ret; 4530 } 4531 EXPORT_SYMBOL(rdma_reject); 4532 4533 int rdma_disconnect(struct rdma_cm_id *id) 4534 { 4535 struct rdma_id_private *id_priv; 4536 int ret; 4537 4538 id_priv = container_of(id, struct rdma_id_private, id); 4539 if (!id_priv->cm_id.ib) 4540 return -EINVAL; 4541 4542 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4543 ret = cma_modify_qp_err(id_priv); 4544 if (ret) 4545 goto out; 4546 /* Initiate or respond to a disconnect. */ 4547 trace_cm_disconnect(id_priv); 4548 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4549 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4550 trace_cm_sent_drep(id_priv); 4551 } else { 4552 trace_cm_sent_dreq(id_priv); 4553 } 4554 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4555 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4556 } else 4557 ret = -EINVAL; 4558 4559 out: 4560 return ret; 4561 } 4562 EXPORT_SYMBOL(rdma_disconnect); 4563 4564 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4565 struct ib_sa_multicast *multicast, 4566 struct rdma_cm_event *event, 4567 struct cma_multicast *mc) 4568 { 4569 struct rdma_dev_addr *dev_addr; 4570 enum ib_gid_type gid_type; 4571 struct net_device *ndev; 4572 4573 if (!status) 4574 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4575 else 4576 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4577 status); 4578 4579 event->status = status; 4580 event->param.ud.private_data = mc->context; 4581 if (status) { 4582 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4583 return; 4584 } 4585 4586 dev_addr = &id_priv->id.route.addr.dev_addr; 4587 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4588 gid_type = 4589 id_priv->cma_dev 4590 ->default_gid_type[id_priv->id.port_num - 4591 rdma_start_port( 4592 id_priv->cma_dev->device)]; 4593 4594 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4595 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4596 &multicast->rec, ndev, gid_type, 4597 &event->param.ud.ah_attr)) { 4598 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4599 goto out; 4600 } 4601 4602 event->param.ud.qp_num = 0xFFFFFF; 4603 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4604 4605 out: 4606 if (ndev) 4607 dev_put(ndev); 4608 } 4609 4610 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4611 { 4612 struct cma_multicast *mc = multicast->context; 4613 struct rdma_id_private *id_priv = mc->id_priv; 4614 struct rdma_cm_event event = {}; 4615 int ret = 0; 4616 4617 mutex_lock(&id_priv->handler_mutex); 4618 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4619 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4620 goto out; 4621 4622 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4623 ret = cma_cm_event_handler(id_priv, &event); 4624 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4625 WARN_ON(ret); 4626 4627 out: 4628 mutex_unlock(&id_priv->handler_mutex); 4629 return 0; 4630 } 4631 4632 static void cma_set_mgid(struct rdma_id_private *id_priv, 4633 struct sockaddr *addr, union ib_gid *mgid) 4634 { 4635 unsigned char mc_map[MAX_ADDR_LEN]; 4636 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4637 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4638 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4639 4640 if (cma_any_addr(addr)) { 4641 memset(mgid, 0, sizeof *mgid); 4642 } else if ((addr->sa_family == AF_INET6) && 4643 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4644 0xFF10A01B)) { 4645 /* IPv6 address is an SA assigned MGID. */ 4646 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4647 } else if (addr->sa_family == AF_IB) { 4648 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4649 } else if (addr->sa_family == AF_INET6) { 4650 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4651 if (id_priv->id.ps == RDMA_PS_UDP) 4652 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4653 *mgid = *(union ib_gid *) (mc_map + 4); 4654 } else { 4655 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4656 if (id_priv->id.ps == RDMA_PS_UDP) 4657 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4658 *mgid = *(union ib_gid *) (mc_map + 4); 4659 } 4660 } 4661 4662 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4663 struct cma_multicast *mc) 4664 { 4665 struct ib_sa_mcmember_rec rec; 4666 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4667 ib_sa_comp_mask comp_mask; 4668 int ret; 4669 4670 ib_addr_get_mgid(dev_addr, &rec.mgid); 4671 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4672 &rec.mgid, &rec); 4673 if (ret) 4674 return ret; 4675 4676 ret = cma_set_qkey(id_priv, 0); 4677 if (ret) 4678 return ret; 4679 4680 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4681 rec.qkey = cpu_to_be32(id_priv->qkey); 4682 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4683 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4684 rec.join_state = mc->join_state; 4685 4686 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4687 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4688 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4689 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4690 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4691 4692 if (id_priv->id.ps == RDMA_PS_IPOIB) 4693 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4694 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4695 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4696 IB_SA_MCMEMBER_REC_MTU | 4697 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4698 4699 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4700 id_priv->id.port_num, &rec, comp_mask, 4701 GFP_KERNEL, cma_ib_mc_handler, mc); 4702 return PTR_ERR_OR_ZERO(mc->sa_mc); 4703 } 4704 4705 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4706 enum ib_gid_type gid_type) 4707 { 4708 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4709 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4710 4711 if (cma_any_addr(addr)) { 4712 memset(mgid, 0, sizeof *mgid); 4713 } else if (addr->sa_family == AF_INET6) { 4714 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4715 } else { 4716 mgid->raw[0] = 4717 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4718 mgid->raw[1] = 4719 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4720 mgid->raw[2] = 0; 4721 mgid->raw[3] = 0; 4722 mgid->raw[4] = 0; 4723 mgid->raw[5] = 0; 4724 mgid->raw[6] = 0; 4725 mgid->raw[7] = 0; 4726 mgid->raw[8] = 0; 4727 mgid->raw[9] = 0; 4728 mgid->raw[10] = 0xff; 4729 mgid->raw[11] = 0xff; 4730 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4731 } 4732 } 4733 4734 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4735 struct cma_multicast *mc) 4736 { 4737 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4738 int err = 0; 4739 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4740 struct net_device *ndev = NULL; 4741 struct ib_sa_multicast ib; 4742 enum ib_gid_type gid_type; 4743 bool send_only; 4744 4745 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4746 4747 if (cma_zero_addr(addr)) 4748 return -EINVAL; 4749 4750 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4751 rdma_start_port(id_priv->cma_dev->device)]; 4752 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4753 4754 ib.rec.pkey = cpu_to_be16(0xffff); 4755 if (id_priv->id.ps == RDMA_PS_UDP) 4756 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4757 4758 if (dev_addr->bound_dev_if) 4759 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4760 if (!ndev) 4761 return -ENODEV; 4762 4763 ib.rec.rate = iboe_get_rate(ndev); 4764 ib.rec.hop_limit = 1; 4765 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4766 4767 if (addr->sa_family == AF_INET) { 4768 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4769 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4770 if (!send_only) { 4771 err = cma_igmp_send(ndev, &ib.rec.mgid, 4772 true); 4773 } 4774 } 4775 } else { 4776 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4777 err = -ENOTSUPP; 4778 } 4779 dev_put(ndev); 4780 if (err || !ib.rec.mtu) 4781 return err ?: -EINVAL; 4782 4783 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4784 &ib.rec.port_gid); 4785 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4786 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4787 queue_work(cma_wq, &mc->iboe_join.work); 4788 return 0; 4789 } 4790 4791 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4792 u8 join_state, void *context) 4793 { 4794 struct rdma_id_private *id_priv = 4795 container_of(id, struct rdma_id_private, id); 4796 struct cma_multicast *mc; 4797 int ret; 4798 4799 /* Not supported for kernel QPs */ 4800 if (WARN_ON(id->qp)) 4801 return -EINVAL; 4802 4803 /* ULP is calling this wrong. */ 4804 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4805 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4806 return -EINVAL; 4807 4808 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4809 if (!mc) 4810 return -ENOMEM; 4811 4812 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4813 mc->context = context; 4814 mc->id_priv = id_priv; 4815 mc->join_state = join_state; 4816 4817 if (rdma_protocol_roce(id->device, id->port_num)) { 4818 ret = cma_iboe_join_multicast(id_priv, mc); 4819 if (ret) 4820 goto out_err; 4821 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4822 ret = cma_join_ib_multicast(id_priv, mc); 4823 if (ret) 4824 goto out_err; 4825 } else { 4826 ret = -ENOSYS; 4827 goto out_err; 4828 } 4829 4830 spin_lock(&id_priv->lock); 4831 list_add(&mc->list, &id_priv->mc_list); 4832 spin_unlock(&id_priv->lock); 4833 4834 return 0; 4835 out_err: 4836 kfree(mc); 4837 return ret; 4838 } 4839 EXPORT_SYMBOL(rdma_join_multicast); 4840 4841 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4842 { 4843 struct rdma_id_private *id_priv; 4844 struct cma_multicast *mc; 4845 4846 id_priv = container_of(id, struct rdma_id_private, id); 4847 spin_lock_irq(&id_priv->lock); 4848 list_for_each_entry(mc, &id_priv->mc_list, list) { 4849 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4850 continue; 4851 list_del(&mc->list); 4852 spin_unlock_irq(&id_priv->lock); 4853 4854 WARN_ON(id_priv->cma_dev->device != id->device); 4855 destroy_mc(id_priv, mc); 4856 return; 4857 } 4858 spin_unlock_irq(&id_priv->lock); 4859 } 4860 EXPORT_SYMBOL(rdma_leave_multicast); 4861 4862 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4863 { 4864 struct rdma_dev_addr *dev_addr; 4865 struct cma_work *work; 4866 4867 dev_addr = &id_priv->id.route.addr.dev_addr; 4868 4869 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4870 (net_eq(dev_net(ndev), dev_addr->net)) && 4871 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4872 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4873 ndev->name, &id_priv->id); 4874 work = kzalloc(sizeof *work, GFP_KERNEL); 4875 if (!work) 4876 return -ENOMEM; 4877 4878 INIT_WORK(&work->work, cma_work_handler); 4879 work->id = id_priv; 4880 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4881 cma_id_get(id_priv); 4882 queue_work(cma_wq, &work->work); 4883 } 4884 4885 return 0; 4886 } 4887 4888 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4889 void *ptr) 4890 { 4891 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4892 struct cma_device *cma_dev; 4893 struct rdma_id_private *id_priv; 4894 int ret = NOTIFY_DONE; 4895 4896 if (event != NETDEV_BONDING_FAILOVER) 4897 return NOTIFY_DONE; 4898 4899 if (!netif_is_bond_master(ndev)) 4900 return NOTIFY_DONE; 4901 4902 mutex_lock(&lock); 4903 list_for_each_entry(cma_dev, &dev_list, list) 4904 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 4905 ret = cma_netdev_change(ndev, id_priv); 4906 if (ret) 4907 goto out; 4908 } 4909 4910 out: 4911 mutex_unlock(&lock); 4912 return ret; 4913 } 4914 4915 static struct notifier_block cma_nb = { 4916 .notifier_call = cma_netdev_callback 4917 }; 4918 4919 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4920 { 4921 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4922 enum rdma_cm_state state; 4923 unsigned long flags; 4924 4925 mutex_lock(&id_priv->handler_mutex); 4926 /* Record that we want to remove the device */ 4927 spin_lock_irqsave(&id_priv->lock, flags); 4928 state = id_priv->state; 4929 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4930 spin_unlock_irqrestore(&id_priv->lock, flags); 4931 mutex_unlock(&id_priv->handler_mutex); 4932 cma_id_put(id_priv); 4933 return; 4934 } 4935 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4936 spin_unlock_irqrestore(&id_priv->lock, flags); 4937 4938 if (cma_cm_event_handler(id_priv, &event)) { 4939 /* 4940 * At this point the ULP promises it won't call 4941 * rdma_destroy_id() concurrently 4942 */ 4943 cma_id_put(id_priv); 4944 mutex_unlock(&id_priv->handler_mutex); 4945 trace_cm_id_destroy(id_priv); 4946 _destroy_id(id_priv, state); 4947 return; 4948 } 4949 mutex_unlock(&id_priv->handler_mutex); 4950 4951 /* 4952 * If this races with destroy then the thread that first assigns state 4953 * to a destroying does the cancel. 4954 */ 4955 cma_cancel_operation(id_priv, state); 4956 cma_id_put(id_priv); 4957 } 4958 4959 static void cma_process_remove(struct cma_device *cma_dev) 4960 { 4961 mutex_lock(&lock); 4962 while (!list_empty(&cma_dev->id_list)) { 4963 struct rdma_id_private *id_priv = list_first_entry( 4964 &cma_dev->id_list, struct rdma_id_private, device_item); 4965 4966 list_del_init(&id_priv->listen_item); 4967 list_del_init(&id_priv->device_item); 4968 cma_id_get(id_priv); 4969 mutex_unlock(&lock); 4970 4971 cma_send_device_removal_put(id_priv); 4972 4973 mutex_lock(&lock); 4974 } 4975 mutex_unlock(&lock); 4976 4977 cma_dev_put(cma_dev); 4978 wait_for_completion(&cma_dev->comp); 4979 } 4980 4981 static bool cma_supported(struct ib_device *device) 4982 { 4983 u32 i; 4984 4985 rdma_for_each_port(device, i) { 4986 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4987 return true; 4988 } 4989 return false; 4990 } 4991 4992 static int cma_add_one(struct ib_device *device) 4993 { 4994 struct rdma_id_private *to_destroy; 4995 struct cma_device *cma_dev; 4996 struct rdma_id_private *id_priv; 4997 unsigned long supported_gids = 0; 4998 int ret; 4999 u32 i; 5000 5001 if (!cma_supported(device)) 5002 return -EOPNOTSUPP; 5003 5004 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5005 if (!cma_dev) 5006 return -ENOMEM; 5007 5008 cma_dev->device = device; 5009 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5010 sizeof(*cma_dev->default_gid_type), 5011 GFP_KERNEL); 5012 if (!cma_dev->default_gid_type) { 5013 ret = -ENOMEM; 5014 goto free_cma_dev; 5015 } 5016 5017 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5018 sizeof(*cma_dev->default_roce_tos), 5019 GFP_KERNEL); 5020 if (!cma_dev->default_roce_tos) { 5021 ret = -ENOMEM; 5022 goto free_gid_type; 5023 } 5024 5025 rdma_for_each_port (device, i) { 5026 supported_gids = roce_gid_type_mask_support(device, i); 5027 WARN_ON(!supported_gids); 5028 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5029 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5030 CMA_PREFERRED_ROCE_GID_TYPE; 5031 else 5032 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5033 find_first_bit(&supported_gids, BITS_PER_LONG); 5034 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5035 } 5036 5037 init_completion(&cma_dev->comp); 5038 refcount_set(&cma_dev->refcount, 1); 5039 INIT_LIST_HEAD(&cma_dev->id_list); 5040 ib_set_client_data(device, &cma_client, cma_dev); 5041 5042 mutex_lock(&lock); 5043 list_add_tail(&cma_dev->list, &dev_list); 5044 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5045 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5046 if (ret) 5047 goto free_listen; 5048 } 5049 mutex_unlock(&lock); 5050 5051 trace_cm_add_one(device); 5052 return 0; 5053 5054 free_listen: 5055 list_del(&cma_dev->list); 5056 mutex_unlock(&lock); 5057 5058 /* cma_process_remove() will delete to_destroy */ 5059 cma_process_remove(cma_dev); 5060 kfree(cma_dev->default_roce_tos); 5061 free_gid_type: 5062 kfree(cma_dev->default_gid_type); 5063 5064 free_cma_dev: 5065 kfree(cma_dev); 5066 return ret; 5067 } 5068 5069 static void cma_remove_one(struct ib_device *device, void *client_data) 5070 { 5071 struct cma_device *cma_dev = client_data; 5072 5073 trace_cm_remove_one(device); 5074 5075 mutex_lock(&lock); 5076 list_del(&cma_dev->list); 5077 mutex_unlock(&lock); 5078 5079 cma_process_remove(cma_dev); 5080 kfree(cma_dev->default_roce_tos); 5081 kfree(cma_dev->default_gid_type); 5082 kfree(cma_dev); 5083 } 5084 5085 static int cma_init_net(struct net *net) 5086 { 5087 struct cma_pernet *pernet = cma_pernet(net); 5088 5089 xa_init(&pernet->tcp_ps); 5090 xa_init(&pernet->udp_ps); 5091 xa_init(&pernet->ipoib_ps); 5092 xa_init(&pernet->ib_ps); 5093 5094 return 0; 5095 } 5096 5097 static void cma_exit_net(struct net *net) 5098 { 5099 struct cma_pernet *pernet = cma_pernet(net); 5100 5101 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5102 WARN_ON(!xa_empty(&pernet->udp_ps)); 5103 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5104 WARN_ON(!xa_empty(&pernet->ib_ps)); 5105 } 5106 5107 static struct pernet_operations cma_pernet_operations = { 5108 .init = cma_init_net, 5109 .exit = cma_exit_net, 5110 .id = &cma_pernet_id, 5111 .size = sizeof(struct cma_pernet), 5112 }; 5113 5114 static int __init cma_init(void) 5115 { 5116 int ret; 5117 5118 /* 5119 * There is a rare lock ordering dependency in cma_netdev_callback() 5120 * that only happens when bonding is enabled. Teach lockdep that rtnl 5121 * must never be nested under lock so it can find these without having 5122 * to test with bonding. 5123 */ 5124 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5125 rtnl_lock(); 5126 mutex_lock(&lock); 5127 mutex_unlock(&lock); 5128 rtnl_unlock(); 5129 } 5130 5131 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5132 if (!cma_wq) 5133 return -ENOMEM; 5134 5135 ret = register_pernet_subsys(&cma_pernet_operations); 5136 if (ret) 5137 goto err_wq; 5138 5139 ib_sa_register_client(&sa_client); 5140 register_netdevice_notifier(&cma_nb); 5141 5142 ret = ib_register_client(&cma_client); 5143 if (ret) 5144 goto err; 5145 5146 ret = cma_configfs_init(); 5147 if (ret) 5148 goto err_ib; 5149 5150 return 0; 5151 5152 err_ib: 5153 ib_unregister_client(&cma_client); 5154 err: 5155 unregister_netdevice_notifier(&cma_nb); 5156 ib_sa_unregister_client(&sa_client); 5157 unregister_pernet_subsys(&cma_pernet_operations); 5158 err_wq: 5159 destroy_workqueue(cma_wq); 5160 return ret; 5161 } 5162 5163 static void __exit cma_cleanup(void) 5164 { 5165 cma_configfs_exit(); 5166 ib_unregister_client(&cma_client); 5167 unregister_netdevice_notifier(&cma_nb); 5168 ib_sa_unregister_client(&sa_client); 5169 unregister_pernet_subsys(&cma_pernet_operations); 5170 destroy_workqueue(cma_wq); 5171 } 5172 5173 module_init(cma_init); 5174 module_exit(cma_cleanup); 5175