xref: /openbmc/linux/drivers/infiniband/core/cma.c (revision 08ebf57f)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52 
53 static const char * const cma_events[] = {
54 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
55 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
56 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
57 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
58 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
59 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
61 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
62 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
63 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
64 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
65 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
66 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
67 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
68 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
69 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
70 };
71 
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 			      enum ib_gid_type gid_type);
74 
75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
76 {
77 	size_t index = event;
78 
79 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
80 			cma_events[index] : "unrecognized event";
81 }
82 EXPORT_SYMBOL(rdma_event_msg);
83 
84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
85 						int reason)
86 {
87 	if (rdma_ib_or_roce(id->device, id->port_num))
88 		return ibcm_reject_msg(reason);
89 
90 	if (rdma_protocol_iwarp(id->device, id->port_num))
91 		return iwcm_reject_msg(reason);
92 
93 	WARN_ON_ONCE(1);
94 	return "unrecognized transport";
95 }
96 EXPORT_SYMBOL(rdma_reject_msg);
97 
98 /**
99  * rdma_is_consumer_reject - return true if the consumer rejected the connect
100  *                           request.
101  * @id: Communication identifier that received the REJECT event.
102  * @reason: Value returned in the REJECT event status field.
103  */
104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
105 {
106 	if (rdma_ib_or_roce(id->device, id->port_num))
107 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
108 
109 	if (rdma_protocol_iwarp(id->device, id->port_num))
110 		return reason == -ECONNREFUSED;
111 
112 	WARN_ON_ONCE(1);
113 	return false;
114 }
115 
116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
117 				      struct rdma_cm_event *ev, u8 *data_len)
118 {
119 	const void *p;
120 
121 	if (rdma_is_consumer_reject(id, ev->status)) {
122 		*data_len = ev->param.conn.private_data_len;
123 		p = ev->param.conn.private_data;
124 	} else {
125 		*data_len = 0;
126 		p = NULL;
127 	}
128 	return p;
129 }
130 EXPORT_SYMBOL(rdma_consumer_reject_data);
131 
132 /**
133  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
134  * @id: Communication Identifier
135  */
136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
137 {
138 	struct rdma_id_private *id_priv;
139 
140 	id_priv = container_of(id, struct rdma_id_private, id);
141 	if (id->device->node_type == RDMA_NODE_RNIC)
142 		return id_priv->cm_id.iw;
143 	return NULL;
144 }
145 EXPORT_SYMBOL(rdma_iw_cm_id);
146 
147 /**
148  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
149  * @res: rdma resource tracking entry pointer
150  */
151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
152 {
153 	struct rdma_id_private *id_priv =
154 		container_of(res, struct rdma_id_private, res);
155 
156 	return &id_priv->id;
157 }
158 EXPORT_SYMBOL(rdma_res_to_id);
159 
160 static int cma_add_one(struct ib_device *device);
161 static void cma_remove_one(struct ib_device *device, void *client_data);
162 
163 static struct ib_client cma_client = {
164 	.name   = "cma",
165 	.add    = cma_add_one,
166 	.remove = cma_remove_one
167 };
168 
169 static struct ib_sa_client sa_client;
170 static LIST_HEAD(dev_list);
171 static LIST_HEAD(listen_any_list);
172 static DEFINE_MUTEX(lock);
173 static struct rb_root id_table = RB_ROOT;
174 /* Serialize operations of id_table tree */
175 static DEFINE_SPINLOCK(id_table_lock);
176 static struct workqueue_struct *cma_wq;
177 static unsigned int cma_pernet_id;
178 
179 struct cma_pernet {
180 	struct xarray tcp_ps;
181 	struct xarray udp_ps;
182 	struct xarray ipoib_ps;
183 	struct xarray ib_ps;
184 };
185 
186 static struct cma_pernet *cma_pernet(struct net *net)
187 {
188 	return net_generic(net, cma_pernet_id);
189 }
190 
191 static
192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
193 {
194 	struct cma_pernet *pernet = cma_pernet(net);
195 
196 	switch (ps) {
197 	case RDMA_PS_TCP:
198 		return &pernet->tcp_ps;
199 	case RDMA_PS_UDP:
200 		return &pernet->udp_ps;
201 	case RDMA_PS_IPOIB:
202 		return &pernet->ipoib_ps;
203 	case RDMA_PS_IB:
204 		return &pernet->ib_ps;
205 	default:
206 		return NULL;
207 	}
208 }
209 
210 struct id_table_entry {
211 	struct list_head id_list;
212 	struct rb_node rb_node;
213 };
214 
215 struct cma_device {
216 	struct list_head	list;
217 	struct ib_device	*device;
218 	struct completion	comp;
219 	refcount_t refcount;
220 	struct list_head	id_list;
221 	enum ib_gid_type	*default_gid_type;
222 	u8			*default_roce_tos;
223 };
224 
225 struct rdma_bind_list {
226 	enum rdma_ucm_port_space ps;
227 	struct hlist_head	owners;
228 	unsigned short		port;
229 };
230 
231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
232 			struct rdma_bind_list *bind_list, int snum)
233 {
234 	struct xarray *xa = cma_pernet_xa(net, ps);
235 
236 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
237 }
238 
239 static struct rdma_bind_list *cma_ps_find(struct net *net,
240 					  enum rdma_ucm_port_space ps, int snum)
241 {
242 	struct xarray *xa = cma_pernet_xa(net, ps);
243 
244 	return xa_load(xa, snum);
245 }
246 
247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
248 			  int snum)
249 {
250 	struct xarray *xa = cma_pernet_xa(net, ps);
251 
252 	xa_erase(xa, snum);
253 }
254 
255 enum {
256 	CMA_OPTION_AFONLY,
257 };
258 
259 void cma_dev_get(struct cma_device *cma_dev)
260 {
261 	refcount_inc(&cma_dev->refcount);
262 }
263 
264 void cma_dev_put(struct cma_device *cma_dev)
265 {
266 	if (refcount_dec_and_test(&cma_dev->refcount))
267 		complete(&cma_dev->comp);
268 }
269 
270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
271 					     void		*cookie)
272 {
273 	struct cma_device *cma_dev;
274 	struct cma_device *found_cma_dev = NULL;
275 
276 	mutex_lock(&lock);
277 
278 	list_for_each_entry(cma_dev, &dev_list, list)
279 		if (filter(cma_dev->device, cookie)) {
280 			found_cma_dev = cma_dev;
281 			break;
282 		}
283 
284 	if (found_cma_dev)
285 		cma_dev_get(found_cma_dev);
286 	mutex_unlock(&lock);
287 	return found_cma_dev;
288 }
289 
290 int cma_get_default_gid_type(struct cma_device *cma_dev,
291 			     u32 port)
292 {
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
297 }
298 
299 int cma_set_default_gid_type(struct cma_device *cma_dev,
300 			     u32 port,
301 			     enum ib_gid_type default_gid_type)
302 {
303 	unsigned long supported_gids;
304 
305 	if (!rdma_is_port_valid(cma_dev->device, port))
306 		return -EINVAL;
307 
308 	if (default_gid_type == IB_GID_TYPE_IB &&
309 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
310 		default_gid_type = IB_GID_TYPE_ROCE;
311 
312 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
313 
314 	if (!(supported_gids & 1 << default_gid_type))
315 		return -EINVAL;
316 
317 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
318 		default_gid_type;
319 
320 	return 0;
321 }
322 
323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
324 {
325 	if (!rdma_is_port_valid(cma_dev->device, port))
326 		return -EINVAL;
327 
328 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
329 }
330 
331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
332 			     u8 default_roce_tos)
333 {
334 	if (!rdma_is_port_valid(cma_dev->device, port))
335 		return -EINVAL;
336 
337 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
338 		 default_roce_tos;
339 
340 	return 0;
341 }
342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
343 {
344 	return cma_dev->device;
345 }
346 
347 /*
348  * Device removal can occur at anytime, so we need extra handling to
349  * serialize notifying the user of device removal with other callbacks.
350  * We do this by disabling removal notification while a callback is in process,
351  * and reporting it after the callback completes.
352  */
353 
354 struct cma_multicast {
355 	struct rdma_id_private *id_priv;
356 	union {
357 		struct ib_sa_multicast *sa_mc;
358 		struct {
359 			struct work_struct work;
360 			struct rdma_cm_event event;
361 		} iboe_join;
362 	};
363 	struct list_head	list;
364 	void			*context;
365 	struct sockaddr_storage	addr;
366 	u8			join_state;
367 };
368 
369 struct cma_work {
370 	struct work_struct	work;
371 	struct rdma_id_private	*id;
372 	enum rdma_cm_state	old_state;
373 	enum rdma_cm_state	new_state;
374 	struct rdma_cm_event	event;
375 };
376 
377 union cma_ip_addr {
378 	struct in6_addr ip6;
379 	struct {
380 		__be32 pad[3];
381 		__be32 addr;
382 	} ip4;
383 };
384 
385 struct cma_hdr {
386 	u8 cma_version;
387 	u8 ip_version;	/* IP version: 7:4 */
388 	__be16 port;
389 	union cma_ip_addr src_addr;
390 	union cma_ip_addr dst_addr;
391 };
392 
393 #define CMA_VERSION 0x00
394 
395 struct cma_req_info {
396 	struct sockaddr_storage listen_addr_storage;
397 	struct sockaddr_storage src_addr_storage;
398 	struct ib_device *device;
399 	union ib_gid local_gid;
400 	__be64 service_id;
401 	int port;
402 	bool has_gid;
403 	u16 pkey;
404 };
405 
406 static int cma_comp_exch(struct rdma_id_private *id_priv,
407 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
408 {
409 	unsigned long flags;
410 	int ret;
411 
412 	/*
413 	 * The FSM uses a funny double locking where state is protected by both
414 	 * the handler_mutex and the spinlock. State is not allowed to change
415 	 * to/from a handler_mutex protected value without also holding
416 	 * handler_mutex.
417 	 */
418 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
419 		lockdep_assert_held(&id_priv->handler_mutex);
420 
421 	spin_lock_irqsave(&id_priv->lock, flags);
422 	if ((ret = (id_priv->state == comp)))
423 		id_priv->state = exch;
424 	spin_unlock_irqrestore(&id_priv->lock, flags);
425 	return ret;
426 }
427 
428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
429 {
430 	return hdr->ip_version >> 4;
431 }
432 
433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
434 {
435 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
436 }
437 
438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
439 {
440 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
441 }
442 
443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
444 {
445 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
446 }
447 
448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
449 {
450 	struct in_device *in_dev = NULL;
451 
452 	if (ndev) {
453 		rtnl_lock();
454 		in_dev = __in_dev_get_rtnl(ndev);
455 		if (in_dev) {
456 			if (join)
457 				ip_mc_inc_group(in_dev,
458 						*(__be32 *)(mgid->raw + 12));
459 			else
460 				ip_mc_dec_group(in_dev,
461 						*(__be32 *)(mgid->raw + 12));
462 		}
463 		rtnl_unlock();
464 	}
465 	return (in_dev) ? 0 : -ENODEV;
466 }
467 
468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
469 				 struct id_table_entry *entry_b)
470 {
471 	struct rdma_id_private *id_priv = list_first_entry(
472 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
473 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
474 	struct sockaddr *sb = cma_dst_addr(id_priv);
475 
476 	if (ifindex_a != ifindex_b)
477 		return (ifindex_a > ifindex_b) ? 1 : -1;
478 
479 	if (sa->sa_family != sb->sa_family)
480 		return sa->sa_family - sb->sa_family;
481 
482 	if (sa->sa_family == AF_INET &&
483 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
484 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
485 			      &((struct sockaddr_in *)sb)->sin_addr,
486 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
487 	}
488 
489 	if (sa->sa_family == AF_INET6 &&
490 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
491 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
492 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
493 	}
494 
495 	return -1;
496 }
497 
498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
499 {
500 	struct rb_node **new, *parent = NULL;
501 	struct id_table_entry *this, *node;
502 	unsigned long flags;
503 	int result;
504 
505 	node = kzalloc(sizeof(*node), GFP_KERNEL);
506 	if (!node)
507 		return -ENOMEM;
508 
509 	spin_lock_irqsave(&id_table_lock, flags);
510 	new = &id_table.rb_node;
511 	while (*new) {
512 		this = container_of(*new, struct id_table_entry, rb_node);
513 		result = compare_netdev_and_ip(
514 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
515 			cma_dst_addr(node_id_priv), this);
516 
517 		parent = *new;
518 		if (result < 0)
519 			new = &((*new)->rb_left);
520 		else if (result > 0)
521 			new = &((*new)->rb_right);
522 		else {
523 			list_add_tail(&node_id_priv->id_list_entry,
524 				      &this->id_list);
525 			kfree(node);
526 			goto unlock;
527 		}
528 	}
529 
530 	INIT_LIST_HEAD(&node->id_list);
531 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
532 
533 	rb_link_node(&node->rb_node, parent, new);
534 	rb_insert_color(&node->rb_node, &id_table);
535 
536 unlock:
537 	spin_unlock_irqrestore(&id_table_lock, flags);
538 	return 0;
539 }
540 
541 static struct id_table_entry *
542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
543 {
544 	struct rb_node *node = root->rb_node;
545 	struct id_table_entry *data;
546 	int result;
547 
548 	while (node) {
549 		data = container_of(node, struct id_table_entry, rb_node);
550 		result = compare_netdev_and_ip(ifindex, sa, data);
551 		if (result < 0)
552 			node = node->rb_left;
553 		else if (result > 0)
554 			node = node->rb_right;
555 		else
556 			return data;
557 	}
558 
559 	return NULL;
560 }
561 
562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
563 {
564 	struct id_table_entry *data;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&id_table_lock, flags);
568 	if (list_empty(&id_priv->id_list_entry))
569 		goto out;
570 
571 	data = node_from_ndev_ip(&id_table,
572 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
573 				 cma_dst_addr(id_priv));
574 	if (!data)
575 		goto out;
576 
577 	list_del_init(&id_priv->id_list_entry);
578 	if (list_empty(&data->id_list)) {
579 		rb_erase(&data->rb_node, &id_table);
580 		kfree(data);
581 	}
582 out:
583 	spin_unlock_irqrestore(&id_table_lock, flags);
584 }
585 
586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
587 			       struct cma_device *cma_dev)
588 {
589 	cma_dev_get(cma_dev);
590 	id_priv->cma_dev = cma_dev;
591 	id_priv->id.device = cma_dev->device;
592 	id_priv->id.route.addr.dev_addr.transport =
593 		rdma_node_get_transport(cma_dev->device->node_type);
594 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
595 
596 	trace_cm_id_attach(id_priv, cma_dev->device);
597 }
598 
599 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
600 			      struct cma_device *cma_dev)
601 {
602 	_cma_attach_to_dev(id_priv, cma_dev);
603 	id_priv->gid_type =
604 		cma_dev->default_gid_type[id_priv->id.port_num -
605 					  rdma_start_port(cma_dev->device)];
606 }
607 
608 static void cma_release_dev(struct rdma_id_private *id_priv)
609 {
610 	mutex_lock(&lock);
611 	list_del_init(&id_priv->device_item);
612 	cma_dev_put(id_priv->cma_dev);
613 	id_priv->cma_dev = NULL;
614 	id_priv->id.device = NULL;
615 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
616 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
617 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
618 	}
619 	mutex_unlock(&lock);
620 }
621 
622 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
623 {
624 	return id_priv->id.route.addr.src_addr.ss_family;
625 }
626 
627 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
628 {
629 	struct ib_sa_mcmember_rec rec;
630 	int ret = 0;
631 
632 	if (id_priv->qkey) {
633 		if (qkey && id_priv->qkey != qkey)
634 			return -EINVAL;
635 		return 0;
636 	}
637 
638 	if (qkey) {
639 		id_priv->qkey = qkey;
640 		return 0;
641 	}
642 
643 	switch (id_priv->id.ps) {
644 	case RDMA_PS_UDP:
645 	case RDMA_PS_IB:
646 		id_priv->qkey = RDMA_UDP_QKEY;
647 		break;
648 	case RDMA_PS_IPOIB:
649 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
650 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
651 					     id_priv->id.port_num, &rec.mgid,
652 					     &rec);
653 		if (!ret)
654 			id_priv->qkey = be32_to_cpu(rec.qkey);
655 		break;
656 	default:
657 		break;
658 	}
659 	return ret;
660 }
661 
662 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
663 {
664 	dev_addr->dev_type = ARPHRD_INFINIBAND;
665 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
666 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
667 }
668 
669 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
670 {
671 	int ret;
672 
673 	if (addr->sa_family != AF_IB) {
674 		ret = rdma_translate_ip(addr, dev_addr);
675 	} else {
676 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
677 		ret = 0;
678 	}
679 
680 	return ret;
681 }
682 
683 static const struct ib_gid_attr *
684 cma_validate_port(struct ib_device *device, u32 port,
685 		  enum ib_gid_type gid_type,
686 		  union ib_gid *gid,
687 		  struct rdma_id_private *id_priv)
688 {
689 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
690 	int bound_if_index = dev_addr->bound_dev_if;
691 	const struct ib_gid_attr *sgid_attr;
692 	int dev_type = dev_addr->dev_type;
693 	struct net_device *ndev = NULL;
694 
695 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
696 		return ERR_PTR(-ENODEV);
697 
698 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
699 		return ERR_PTR(-ENODEV);
700 
701 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
702 		return ERR_PTR(-ENODEV);
703 
704 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
705 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
706 		if (!ndev)
707 			return ERR_PTR(-ENODEV);
708 	} else {
709 		gid_type = IB_GID_TYPE_IB;
710 	}
711 
712 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
713 	dev_put(ndev);
714 	return sgid_attr;
715 }
716 
717 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
718 			       const struct ib_gid_attr *sgid_attr)
719 {
720 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
721 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
722 }
723 
724 /**
725  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
726  * based on source ip address.
727  * @id_priv:	cm_id which should be bound to cma device
728  *
729  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
730  * based on source IP address. It returns 0 on success or error code otherwise.
731  * It is applicable to active and passive side cm_id.
732  */
733 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
734 {
735 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
736 	const struct ib_gid_attr *sgid_attr;
737 	union ib_gid gid, iboe_gid, *gidp;
738 	struct cma_device *cma_dev;
739 	enum ib_gid_type gid_type;
740 	int ret = -ENODEV;
741 	u32 port;
742 
743 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
744 	    id_priv->id.ps == RDMA_PS_IPOIB)
745 		return -EINVAL;
746 
747 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
748 		    &iboe_gid);
749 
750 	memcpy(&gid, dev_addr->src_dev_addr +
751 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
752 
753 	mutex_lock(&lock);
754 	list_for_each_entry(cma_dev, &dev_list, list) {
755 		rdma_for_each_port (cma_dev->device, port) {
756 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
757 			       &iboe_gid : &gid;
758 			gid_type = cma_dev->default_gid_type[port - 1];
759 			sgid_attr = cma_validate_port(cma_dev->device, port,
760 						      gid_type, gidp, id_priv);
761 			if (!IS_ERR(sgid_attr)) {
762 				id_priv->id.port_num = port;
763 				cma_bind_sgid_attr(id_priv, sgid_attr);
764 				cma_attach_to_dev(id_priv, cma_dev);
765 				ret = 0;
766 				goto out;
767 			}
768 		}
769 	}
770 out:
771 	mutex_unlock(&lock);
772 	return ret;
773 }
774 
775 /**
776  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
777  * @id_priv:		cm id to bind to cma device
778  * @listen_id_priv:	listener cm id to match against
779  * @req:		Pointer to req structure containaining incoming
780  *			request information
781  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
782  * rdma device matches for listen_id and incoming request. It also verifies
783  * that a GID table entry is present for the source address.
784  * Returns 0 on success, or returns error code otherwise.
785  */
786 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
787 			      const struct rdma_id_private *listen_id_priv,
788 			      struct cma_req_info *req)
789 {
790 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
791 	const struct ib_gid_attr *sgid_attr;
792 	enum ib_gid_type gid_type;
793 	union ib_gid gid;
794 
795 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
796 	    id_priv->id.ps == RDMA_PS_IPOIB)
797 		return -EINVAL;
798 
799 	if (rdma_protocol_roce(req->device, req->port))
800 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
801 			    &gid);
802 	else
803 		memcpy(&gid, dev_addr->src_dev_addr +
804 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
805 
806 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
807 	sgid_attr = cma_validate_port(req->device, req->port,
808 				      gid_type, &gid, id_priv);
809 	if (IS_ERR(sgid_attr))
810 		return PTR_ERR(sgid_attr);
811 
812 	id_priv->id.port_num = req->port;
813 	cma_bind_sgid_attr(id_priv, sgid_attr);
814 	/* Need to acquire lock to protect against reader
815 	 * of cma_dev->id_list such as cma_netdev_callback() and
816 	 * cma_process_remove().
817 	 */
818 	mutex_lock(&lock);
819 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
820 	mutex_unlock(&lock);
821 	rdma_restrack_add(&id_priv->res);
822 	return 0;
823 }
824 
825 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
826 			      const struct rdma_id_private *listen_id_priv)
827 {
828 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
829 	const struct ib_gid_attr *sgid_attr;
830 	struct cma_device *cma_dev;
831 	enum ib_gid_type gid_type;
832 	int ret = -ENODEV;
833 	union ib_gid gid;
834 	u32 port;
835 
836 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
837 	    id_priv->id.ps == RDMA_PS_IPOIB)
838 		return -EINVAL;
839 
840 	memcpy(&gid, dev_addr->src_dev_addr +
841 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
842 
843 	mutex_lock(&lock);
844 
845 	cma_dev = listen_id_priv->cma_dev;
846 	port = listen_id_priv->id.port_num;
847 	gid_type = listen_id_priv->gid_type;
848 	sgid_attr = cma_validate_port(cma_dev->device, port,
849 				      gid_type, &gid, id_priv);
850 	if (!IS_ERR(sgid_attr)) {
851 		id_priv->id.port_num = port;
852 		cma_bind_sgid_attr(id_priv, sgid_attr);
853 		ret = 0;
854 		goto out;
855 	}
856 
857 	list_for_each_entry(cma_dev, &dev_list, list) {
858 		rdma_for_each_port (cma_dev->device, port) {
859 			if (listen_id_priv->cma_dev == cma_dev &&
860 			    listen_id_priv->id.port_num == port)
861 				continue;
862 
863 			gid_type = cma_dev->default_gid_type[port - 1];
864 			sgid_attr = cma_validate_port(cma_dev->device, port,
865 						      gid_type, &gid, id_priv);
866 			if (!IS_ERR(sgid_attr)) {
867 				id_priv->id.port_num = port;
868 				cma_bind_sgid_attr(id_priv, sgid_attr);
869 				ret = 0;
870 				goto out;
871 			}
872 		}
873 	}
874 
875 out:
876 	if (!ret) {
877 		cma_attach_to_dev(id_priv, cma_dev);
878 		rdma_restrack_add(&id_priv->res);
879 	}
880 
881 	mutex_unlock(&lock);
882 	return ret;
883 }
884 
885 /*
886  * Select the source IB device and address to reach the destination IB address.
887  */
888 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
889 {
890 	struct cma_device *cma_dev, *cur_dev;
891 	struct sockaddr_ib *addr;
892 	union ib_gid gid, sgid, *dgid;
893 	unsigned int p;
894 	u16 pkey, index;
895 	enum ib_port_state port_state;
896 	int ret;
897 	int i;
898 
899 	cma_dev = NULL;
900 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
901 	dgid = (union ib_gid *) &addr->sib_addr;
902 	pkey = ntohs(addr->sib_pkey);
903 
904 	mutex_lock(&lock);
905 	list_for_each_entry(cur_dev, &dev_list, list) {
906 		rdma_for_each_port (cur_dev->device, p) {
907 			if (!rdma_cap_af_ib(cur_dev->device, p))
908 				continue;
909 
910 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
911 				continue;
912 
913 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
914 				continue;
915 
916 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
917 			     ++i) {
918 				ret = rdma_query_gid(cur_dev->device, p, i,
919 						     &gid);
920 				if (ret)
921 					continue;
922 
923 				if (!memcmp(&gid, dgid, sizeof(gid))) {
924 					cma_dev = cur_dev;
925 					sgid = gid;
926 					id_priv->id.port_num = p;
927 					goto found;
928 				}
929 
930 				if (!cma_dev && (gid.global.subnet_prefix ==
931 				    dgid->global.subnet_prefix) &&
932 				    port_state == IB_PORT_ACTIVE) {
933 					cma_dev = cur_dev;
934 					sgid = gid;
935 					id_priv->id.port_num = p;
936 					goto found;
937 				}
938 			}
939 		}
940 	}
941 	mutex_unlock(&lock);
942 	return -ENODEV;
943 
944 found:
945 	cma_attach_to_dev(id_priv, cma_dev);
946 	rdma_restrack_add(&id_priv->res);
947 	mutex_unlock(&lock);
948 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
949 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
950 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
951 	return 0;
952 }
953 
954 static void cma_id_get(struct rdma_id_private *id_priv)
955 {
956 	refcount_inc(&id_priv->refcount);
957 }
958 
959 static void cma_id_put(struct rdma_id_private *id_priv)
960 {
961 	if (refcount_dec_and_test(&id_priv->refcount))
962 		complete(&id_priv->comp);
963 }
964 
965 static struct rdma_id_private *
966 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
967 		 void *context, enum rdma_ucm_port_space ps,
968 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
969 {
970 	struct rdma_id_private *id_priv;
971 
972 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
973 	if (!id_priv)
974 		return ERR_PTR(-ENOMEM);
975 
976 	id_priv->state = RDMA_CM_IDLE;
977 	id_priv->id.context = context;
978 	id_priv->id.event_handler = event_handler;
979 	id_priv->id.ps = ps;
980 	id_priv->id.qp_type = qp_type;
981 	id_priv->tos_set = false;
982 	id_priv->timeout_set = false;
983 	id_priv->min_rnr_timer_set = false;
984 	id_priv->gid_type = IB_GID_TYPE_IB;
985 	spin_lock_init(&id_priv->lock);
986 	mutex_init(&id_priv->qp_mutex);
987 	init_completion(&id_priv->comp);
988 	refcount_set(&id_priv->refcount, 1);
989 	mutex_init(&id_priv->handler_mutex);
990 	INIT_LIST_HEAD(&id_priv->device_item);
991 	INIT_LIST_HEAD(&id_priv->id_list_entry);
992 	INIT_LIST_HEAD(&id_priv->listen_list);
993 	INIT_LIST_HEAD(&id_priv->mc_list);
994 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
995 	id_priv->id.route.addr.dev_addr.net = get_net(net);
996 	id_priv->seq_num &= 0x00ffffff;
997 
998 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
999 	if (parent)
1000 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1001 
1002 	return id_priv;
1003 }
1004 
1005 struct rdma_cm_id *
1006 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1007 			void *context, enum rdma_ucm_port_space ps,
1008 			enum ib_qp_type qp_type, const char *caller)
1009 {
1010 	struct rdma_id_private *ret;
1011 
1012 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1013 	if (IS_ERR(ret))
1014 		return ERR_CAST(ret);
1015 
1016 	rdma_restrack_set_name(&ret->res, caller);
1017 	return &ret->id;
1018 }
1019 EXPORT_SYMBOL(__rdma_create_kernel_id);
1020 
1021 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1022 				       void *context,
1023 				       enum rdma_ucm_port_space ps,
1024 				       enum ib_qp_type qp_type)
1025 {
1026 	struct rdma_id_private *ret;
1027 
1028 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1029 			       ps, qp_type, NULL);
1030 	if (IS_ERR(ret))
1031 		return ERR_CAST(ret);
1032 
1033 	rdma_restrack_set_name(&ret->res, NULL);
1034 	return &ret->id;
1035 }
1036 EXPORT_SYMBOL(rdma_create_user_id);
1037 
1038 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1039 {
1040 	struct ib_qp_attr qp_attr;
1041 	int qp_attr_mask, ret;
1042 
1043 	qp_attr.qp_state = IB_QPS_INIT;
1044 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1045 	if (ret)
1046 		return ret;
1047 
1048 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1049 	if (ret)
1050 		return ret;
1051 
1052 	qp_attr.qp_state = IB_QPS_RTR;
1053 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1054 	if (ret)
1055 		return ret;
1056 
1057 	qp_attr.qp_state = IB_QPS_RTS;
1058 	qp_attr.sq_psn = 0;
1059 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1060 
1061 	return ret;
1062 }
1063 
1064 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1065 {
1066 	struct ib_qp_attr qp_attr;
1067 	int qp_attr_mask, ret;
1068 
1069 	qp_attr.qp_state = IB_QPS_INIT;
1070 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1071 	if (ret)
1072 		return ret;
1073 
1074 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1075 }
1076 
1077 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1078 		   struct ib_qp_init_attr *qp_init_attr)
1079 {
1080 	struct rdma_id_private *id_priv;
1081 	struct ib_qp *qp;
1082 	int ret;
1083 
1084 	id_priv = container_of(id, struct rdma_id_private, id);
1085 	if (id->device != pd->device) {
1086 		ret = -EINVAL;
1087 		goto out_err;
1088 	}
1089 
1090 	qp_init_attr->port_num = id->port_num;
1091 	qp = ib_create_qp(pd, qp_init_attr);
1092 	if (IS_ERR(qp)) {
1093 		ret = PTR_ERR(qp);
1094 		goto out_err;
1095 	}
1096 
1097 	if (id->qp_type == IB_QPT_UD)
1098 		ret = cma_init_ud_qp(id_priv, qp);
1099 	else
1100 		ret = cma_init_conn_qp(id_priv, qp);
1101 	if (ret)
1102 		goto out_destroy;
1103 
1104 	id->qp = qp;
1105 	id_priv->qp_num = qp->qp_num;
1106 	id_priv->srq = (qp->srq != NULL);
1107 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1108 	return 0;
1109 out_destroy:
1110 	ib_destroy_qp(qp);
1111 out_err:
1112 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL(rdma_create_qp);
1116 
1117 void rdma_destroy_qp(struct rdma_cm_id *id)
1118 {
1119 	struct rdma_id_private *id_priv;
1120 
1121 	id_priv = container_of(id, struct rdma_id_private, id);
1122 	trace_cm_qp_destroy(id_priv);
1123 	mutex_lock(&id_priv->qp_mutex);
1124 	ib_destroy_qp(id_priv->id.qp);
1125 	id_priv->id.qp = NULL;
1126 	mutex_unlock(&id_priv->qp_mutex);
1127 }
1128 EXPORT_SYMBOL(rdma_destroy_qp);
1129 
1130 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1131 			     struct rdma_conn_param *conn_param)
1132 {
1133 	struct ib_qp_attr qp_attr;
1134 	int qp_attr_mask, ret;
1135 
1136 	mutex_lock(&id_priv->qp_mutex);
1137 	if (!id_priv->id.qp) {
1138 		ret = 0;
1139 		goto out;
1140 	}
1141 
1142 	/* Need to update QP attributes from default values. */
1143 	qp_attr.qp_state = IB_QPS_INIT;
1144 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1145 	if (ret)
1146 		goto out;
1147 
1148 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1149 	if (ret)
1150 		goto out;
1151 
1152 	qp_attr.qp_state = IB_QPS_RTR;
1153 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1154 	if (ret)
1155 		goto out;
1156 
1157 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1158 
1159 	if (conn_param)
1160 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1161 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1162 out:
1163 	mutex_unlock(&id_priv->qp_mutex);
1164 	return ret;
1165 }
1166 
1167 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1168 			     struct rdma_conn_param *conn_param)
1169 {
1170 	struct ib_qp_attr qp_attr;
1171 	int qp_attr_mask, ret;
1172 
1173 	mutex_lock(&id_priv->qp_mutex);
1174 	if (!id_priv->id.qp) {
1175 		ret = 0;
1176 		goto out;
1177 	}
1178 
1179 	qp_attr.qp_state = IB_QPS_RTS;
1180 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1181 	if (ret)
1182 		goto out;
1183 
1184 	if (conn_param)
1185 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1186 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1187 out:
1188 	mutex_unlock(&id_priv->qp_mutex);
1189 	return ret;
1190 }
1191 
1192 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1193 {
1194 	struct ib_qp_attr qp_attr;
1195 	int ret;
1196 
1197 	mutex_lock(&id_priv->qp_mutex);
1198 	if (!id_priv->id.qp) {
1199 		ret = 0;
1200 		goto out;
1201 	}
1202 
1203 	qp_attr.qp_state = IB_QPS_ERR;
1204 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1205 out:
1206 	mutex_unlock(&id_priv->qp_mutex);
1207 	return ret;
1208 }
1209 
1210 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1211 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1212 {
1213 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1214 	int ret;
1215 	u16 pkey;
1216 
1217 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1218 		pkey = 0xffff;
1219 	else
1220 		pkey = ib_addr_get_pkey(dev_addr);
1221 
1222 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1223 				  pkey, &qp_attr->pkey_index);
1224 	if (ret)
1225 		return ret;
1226 
1227 	qp_attr->port_num = id_priv->id.port_num;
1228 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1229 
1230 	if (id_priv->id.qp_type == IB_QPT_UD) {
1231 		ret = cma_set_qkey(id_priv, 0);
1232 		if (ret)
1233 			return ret;
1234 
1235 		qp_attr->qkey = id_priv->qkey;
1236 		*qp_attr_mask |= IB_QP_QKEY;
1237 	} else {
1238 		qp_attr->qp_access_flags = 0;
1239 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1240 	}
1241 	return 0;
1242 }
1243 
1244 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1245 		       int *qp_attr_mask)
1246 {
1247 	struct rdma_id_private *id_priv;
1248 	int ret = 0;
1249 
1250 	id_priv = container_of(id, struct rdma_id_private, id);
1251 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1252 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1253 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1254 		else
1255 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1256 						 qp_attr_mask);
1257 
1258 		if (qp_attr->qp_state == IB_QPS_RTR)
1259 			qp_attr->rq_psn = id_priv->seq_num;
1260 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1261 		if (!id_priv->cm_id.iw) {
1262 			qp_attr->qp_access_flags = 0;
1263 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1264 		} else
1265 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1266 						 qp_attr_mask);
1267 		qp_attr->port_num = id_priv->id.port_num;
1268 		*qp_attr_mask |= IB_QP_PORT;
1269 	} else {
1270 		ret = -ENOSYS;
1271 	}
1272 
1273 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1274 		qp_attr->timeout = id_priv->timeout;
1275 
1276 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1277 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1278 
1279 	return ret;
1280 }
1281 EXPORT_SYMBOL(rdma_init_qp_attr);
1282 
1283 static inline bool cma_zero_addr(const struct sockaddr *addr)
1284 {
1285 	switch (addr->sa_family) {
1286 	case AF_INET:
1287 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1288 	case AF_INET6:
1289 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1290 	case AF_IB:
1291 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1292 	default:
1293 		return false;
1294 	}
1295 }
1296 
1297 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1298 {
1299 	switch (addr->sa_family) {
1300 	case AF_INET:
1301 		return ipv4_is_loopback(
1302 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1303 	case AF_INET6:
1304 		return ipv6_addr_loopback(
1305 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1306 	case AF_IB:
1307 		return ib_addr_loopback(
1308 			&((struct sockaddr_ib *)addr)->sib_addr);
1309 	default:
1310 		return false;
1311 	}
1312 }
1313 
1314 static inline bool cma_any_addr(const struct sockaddr *addr)
1315 {
1316 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1317 }
1318 
1319 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1320 {
1321 	if (src->sa_family != dst->sa_family)
1322 		return -1;
1323 
1324 	switch (src->sa_family) {
1325 	case AF_INET:
1326 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1327 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1328 	case AF_INET6: {
1329 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1330 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1331 		bool link_local;
1332 
1333 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1334 					  &dst_addr6->sin6_addr))
1335 			return 1;
1336 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1337 			     IPV6_ADDR_LINKLOCAL;
1338 		/* Link local must match their scope_ids */
1339 		return link_local ? (src_addr6->sin6_scope_id !=
1340 				     dst_addr6->sin6_scope_id) :
1341 				    0;
1342 	}
1343 
1344 	default:
1345 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1346 				   &((struct sockaddr_ib *) dst)->sib_addr);
1347 	}
1348 }
1349 
1350 static __be16 cma_port(const struct sockaddr *addr)
1351 {
1352 	struct sockaddr_ib *sib;
1353 
1354 	switch (addr->sa_family) {
1355 	case AF_INET:
1356 		return ((struct sockaddr_in *) addr)->sin_port;
1357 	case AF_INET6:
1358 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1359 	case AF_IB:
1360 		sib = (struct sockaddr_ib *) addr;
1361 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1362 				    be64_to_cpu(sib->sib_sid_mask)));
1363 	default:
1364 		return 0;
1365 	}
1366 }
1367 
1368 static inline int cma_any_port(const struct sockaddr *addr)
1369 {
1370 	return !cma_port(addr);
1371 }
1372 
1373 static void cma_save_ib_info(struct sockaddr *src_addr,
1374 			     struct sockaddr *dst_addr,
1375 			     const struct rdma_cm_id *listen_id,
1376 			     const struct sa_path_rec *path)
1377 {
1378 	struct sockaddr_ib *listen_ib, *ib;
1379 
1380 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1381 	if (src_addr) {
1382 		ib = (struct sockaddr_ib *)src_addr;
1383 		ib->sib_family = AF_IB;
1384 		if (path) {
1385 			ib->sib_pkey = path->pkey;
1386 			ib->sib_flowinfo = path->flow_label;
1387 			memcpy(&ib->sib_addr, &path->sgid, 16);
1388 			ib->sib_sid = path->service_id;
1389 			ib->sib_scope_id = 0;
1390 		} else {
1391 			ib->sib_pkey = listen_ib->sib_pkey;
1392 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1393 			ib->sib_addr = listen_ib->sib_addr;
1394 			ib->sib_sid = listen_ib->sib_sid;
1395 			ib->sib_scope_id = listen_ib->sib_scope_id;
1396 		}
1397 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1398 	}
1399 	if (dst_addr) {
1400 		ib = (struct sockaddr_ib *)dst_addr;
1401 		ib->sib_family = AF_IB;
1402 		if (path) {
1403 			ib->sib_pkey = path->pkey;
1404 			ib->sib_flowinfo = path->flow_label;
1405 			memcpy(&ib->sib_addr, &path->dgid, 16);
1406 		}
1407 	}
1408 }
1409 
1410 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1411 			      struct sockaddr_in *dst_addr,
1412 			      struct cma_hdr *hdr,
1413 			      __be16 local_port)
1414 {
1415 	if (src_addr) {
1416 		*src_addr = (struct sockaddr_in) {
1417 			.sin_family = AF_INET,
1418 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1419 			.sin_port = local_port,
1420 		};
1421 	}
1422 
1423 	if (dst_addr) {
1424 		*dst_addr = (struct sockaddr_in) {
1425 			.sin_family = AF_INET,
1426 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1427 			.sin_port = hdr->port,
1428 		};
1429 	}
1430 }
1431 
1432 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1433 			      struct sockaddr_in6 *dst_addr,
1434 			      struct cma_hdr *hdr,
1435 			      __be16 local_port)
1436 {
1437 	if (src_addr) {
1438 		*src_addr = (struct sockaddr_in6) {
1439 			.sin6_family = AF_INET6,
1440 			.sin6_addr = hdr->dst_addr.ip6,
1441 			.sin6_port = local_port,
1442 		};
1443 	}
1444 
1445 	if (dst_addr) {
1446 		*dst_addr = (struct sockaddr_in6) {
1447 			.sin6_family = AF_INET6,
1448 			.sin6_addr = hdr->src_addr.ip6,
1449 			.sin6_port = hdr->port,
1450 		};
1451 	}
1452 }
1453 
1454 static u16 cma_port_from_service_id(__be64 service_id)
1455 {
1456 	return (u16)be64_to_cpu(service_id);
1457 }
1458 
1459 static int cma_save_ip_info(struct sockaddr *src_addr,
1460 			    struct sockaddr *dst_addr,
1461 			    const struct ib_cm_event *ib_event,
1462 			    __be64 service_id)
1463 {
1464 	struct cma_hdr *hdr;
1465 	__be16 port;
1466 
1467 	hdr = ib_event->private_data;
1468 	if (hdr->cma_version != CMA_VERSION)
1469 		return -EINVAL;
1470 
1471 	port = htons(cma_port_from_service_id(service_id));
1472 
1473 	switch (cma_get_ip_ver(hdr)) {
1474 	case 4:
1475 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1476 				  (struct sockaddr_in *)dst_addr, hdr, port);
1477 		break;
1478 	case 6:
1479 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1480 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1481 		break;
1482 	default:
1483 		return -EAFNOSUPPORT;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static int cma_save_net_info(struct sockaddr *src_addr,
1490 			     struct sockaddr *dst_addr,
1491 			     const struct rdma_cm_id *listen_id,
1492 			     const struct ib_cm_event *ib_event,
1493 			     sa_family_t sa_family, __be64 service_id)
1494 {
1495 	if (sa_family == AF_IB) {
1496 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1497 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1498 					 ib_event->param.req_rcvd.primary_path);
1499 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1500 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1501 		return 0;
1502 	}
1503 
1504 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1505 }
1506 
1507 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1508 			     struct cma_req_info *req)
1509 {
1510 	const struct ib_cm_req_event_param *req_param =
1511 		&ib_event->param.req_rcvd;
1512 	const struct ib_cm_sidr_req_event_param *sidr_param =
1513 		&ib_event->param.sidr_req_rcvd;
1514 
1515 	switch (ib_event->event) {
1516 	case IB_CM_REQ_RECEIVED:
1517 		req->device	= req_param->listen_id->device;
1518 		req->port	= req_param->port;
1519 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1520 		       sizeof(req->local_gid));
1521 		req->has_gid	= true;
1522 		req->service_id = req_param->primary_path->service_id;
1523 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1524 		if (req->pkey != req_param->bth_pkey)
1525 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1526 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1527 					    req_param->bth_pkey, req->pkey);
1528 		break;
1529 	case IB_CM_SIDR_REQ_RECEIVED:
1530 		req->device	= sidr_param->listen_id->device;
1531 		req->port	= sidr_param->port;
1532 		req->has_gid	= false;
1533 		req->service_id	= sidr_param->service_id;
1534 		req->pkey	= sidr_param->pkey;
1535 		if (req->pkey != sidr_param->bth_pkey)
1536 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1537 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1538 					    sidr_param->bth_pkey, req->pkey);
1539 		break;
1540 	default:
1541 		return -EINVAL;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1548 				  const struct sockaddr_in *dst_addr,
1549 				  const struct sockaddr_in *src_addr)
1550 {
1551 	__be32 daddr = dst_addr->sin_addr.s_addr,
1552 	       saddr = src_addr->sin_addr.s_addr;
1553 	struct fib_result res;
1554 	struct flowi4 fl4;
1555 	int err;
1556 	bool ret;
1557 
1558 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1559 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1560 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1561 	    ipv4_is_loopback(saddr))
1562 		return false;
1563 
1564 	memset(&fl4, 0, sizeof(fl4));
1565 	fl4.flowi4_oif = net_dev->ifindex;
1566 	fl4.daddr = daddr;
1567 	fl4.saddr = saddr;
1568 
1569 	rcu_read_lock();
1570 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1571 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1572 	rcu_read_unlock();
1573 
1574 	return ret;
1575 }
1576 
1577 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1578 				  const struct sockaddr_in6 *dst_addr,
1579 				  const struct sockaddr_in6 *src_addr)
1580 {
1581 #if IS_ENABLED(CONFIG_IPV6)
1582 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1583 			   IPV6_ADDR_LINKLOCAL;
1584 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1585 					 &src_addr->sin6_addr, net_dev->ifindex,
1586 					 NULL, strict);
1587 	bool ret;
1588 
1589 	if (!rt)
1590 		return false;
1591 
1592 	ret = rt->rt6i_idev->dev == net_dev;
1593 	ip6_rt_put(rt);
1594 
1595 	return ret;
1596 #else
1597 	return false;
1598 #endif
1599 }
1600 
1601 static bool validate_net_dev(struct net_device *net_dev,
1602 			     const struct sockaddr *daddr,
1603 			     const struct sockaddr *saddr)
1604 {
1605 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1606 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1607 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1608 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1609 
1610 	switch (daddr->sa_family) {
1611 	case AF_INET:
1612 		return saddr->sa_family == AF_INET &&
1613 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1614 
1615 	case AF_INET6:
1616 		return saddr->sa_family == AF_INET6 &&
1617 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1618 
1619 	default:
1620 		return false;
1621 	}
1622 }
1623 
1624 static struct net_device *
1625 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1626 {
1627 	const struct ib_gid_attr *sgid_attr = NULL;
1628 	struct net_device *ndev;
1629 
1630 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1631 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1632 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1633 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1634 
1635 	if (!sgid_attr)
1636 		return NULL;
1637 
1638 	rcu_read_lock();
1639 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1640 	if (IS_ERR(ndev))
1641 		ndev = NULL;
1642 	else
1643 		dev_hold(ndev);
1644 	rcu_read_unlock();
1645 	return ndev;
1646 }
1647 
1648 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1649 					  struct cma_req_info *req)
1650 {
1651 	struct sockaddr *listen_addr =
1652 			(struct sockaddr *)&req->listen_addr_storage;
1653 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1654 	struct net_device *net_dev;
1655 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1656 	int err;
1657 
1658 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1659 			       req->service_id);
1660 	if (err)
1661 		return ERR_PTR(err);
1662 
1663 	if (rdma_protocol_roce(req->device, req->port))
1664 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1665 	else
1666 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1667 						   req->pkey,
1668 						   gid, listen_addr);
1669 	if (!net_dev)
1670 		return ERR_PTR(-ENODEV);
1671 
1672 	return net_dev;
1673 }
1674 
1675 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1676 {
1677 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1678 }
1679 
1680 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1681 				   const struct cma_hdr *hdr)
1682 {
1683 	struct sockaddr *addr = cma_src_addr(id_priv);
1684 	__be32 ip4_addr;
1685 	struct in6_addr ip6_addr;
1686 
1687 	if (cma_any_addr(addr) && !id_priv->afonly)
1688 		return true;
1689 
1690 	switch (addr->sa_family) {
1691 	case AF_INET:
1692 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1693 		if (cma_get_ip_ver(hdr) != 4)
1694 			return false;
1695 		if (!cma_any_addr(addr) &&
1696 		    hdr->dst_addr.ip4.addr != ip4_addr)
1697 			return false;
1698 		break;
1699 	case AF_INET6:
1700 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1701 		if (cma_get_ip_ver(hdr) != 6)
1702 			return false;
1703 		if (!cma_any_addr(addr) &&
1704 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1705 			return false;
1706 		break;
1707 	case AF_IB:
1708 		return true;
1709 	default:
1710 		return false;
1711 	}
1712 
1713 	return true;
1714 }
1715 
1716 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1717 {
1718 	struct ib_device *device = id->device;
1719 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1720 
1721 	return rdma_protocol_roce(device, port_num);
1722 }
1723 
1724 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1725 {
1726 	const struct sockaddr *daddr =
1727 			(const struct sockaddr *)&req->listen_addr_storage;
1728 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1729 
1730 	/* Returns true if the req is for IPv6 link local */
1731 	return (daddr->sa_family == AF_INET6 &&
1732 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1733 }
1734 
1735 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1736 			      const struct net_device *net_dev,
1737 			      const struct cma_req_info *req)
1738 {
1739 	const struct rdma_addr *addr = &id->route.addr;
1740 
1741 	if (!net_dev)
1742 		/* This request is an AF_IB request */
1743 		return (!id->port_num || id->port_num == req->port) &&
1744 		       (addr->src_addr.ss_family == AF_IB);
1745 
1746 	/*
1747 	 * If the request is not for IPv6 link local, allow matching
1748 	 * request to any netdevice of the one or multiport rdma device.
1749 	 */
1750 	if (!cma_is_req_ipv6_ll(req))
1751 		return true;
1752 	/*
1753 	 * Net namespaces must match, and if the listner is listening
1754 	 * on a specific netdevice than netdevice must match as well.
1755 	 */
1756 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1757 	    (!!addr->dev_addr.bound_dev_if ==
1758 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1759 		return true;
1760 	else
1761 		return false;
1762 }
1763 
1764 static struct rdma_id_private *cma_find_listener(
1765 		const struct rdma_bind_list *bind_list,
1766 		const struct ib_cm_id *cm_id,
1767 		const struct ib_cm_event *ib_event,
1768 		const struct cma_req_info *req,
1769 		const struct net_device *net_dev)
1770 {
1771 	struct rdma_id_private *id_priv, *id_priv_dev;
1772 
1773 	lockdep_assert_held(&lock);
1774 
1775 	if (!bind_list)
1776 		return ERR_PTR(-EINVAL);
1777 
1778 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1779 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1780 			if (id_priv->id.device == cm_id->device &&
1781 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1782 				return id_priv;
1783 			list_for_each_entry(id_priv_dev,
1784 					    &id_priv->listen_list,
1785 					    listen_item) {
1786 				if (id_priv_dev->id.device == cm_id->device &&
1787 				    cma_match_net_dev(&id_priv_dev->id,
1788 						      net_dev, req))
1789 					return id_priv_dev;
1790 			}
1791 		}
1792 	}
1793 
1794 	return ERR_PTR(-EINVAL);
1795 }
1796 
1797 static struct rdma_id_private *
1798 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1799 		     const struct ib_cm_event *ib_event,
1800 		     struct cma_req_info *req,
1801 		     struct net_device **net_dev)
1802 {
1803 	struct rdma_bind_list *bind_list;
1804 	struct rdma_id_private *id_priv;
1805 	int err;
1806 
1807 	err = cma_save_req_info(ib_event, req);
1808 	if (err)
1809 		return ERR_PTR(err);
1810 
1811 	*net_dev = cma_get_net_dev(ib_event, req);
1812 	if (IS_ERR(*net_dev)) {
1813 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1814 			/* Assuming the protocol is AF_IB */
1815 			*net_dev = NULL;
1816 		} else {
1817 			return ERR_CAST(*net_dev);
1818 		}
1819 	}
1820 
1821 	mutex_lock(&lock);
1822 	/*
1823 	 * Net namespace might be getting deleted while route lookup,
1824 	 * cm_id lookup is in progress. Therefore, perform netdevice
1825 	 * validation, cm_id lookup under rcu lock.
1826 	 * RCU lock along with netdevice state check, synchronizes with
1827 	 * netdevice migrating to different net namespace and also avoids
1828 	 * case where net namespace doesn't get deleted while lookup is in
1829 	 * progress.
1830 	 * If the device state is not IFF_UP, its properties such as ifindex
1831 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1832 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1833 	 * ongoing operations on net device after device is closed using
1834 	 * synchronize_net().
1835 	 */
1836 	rcu_read_lock();
1837 	if (*net_dev) {
1838 		/*
1839 		 * If netdevice is down, it is likely that it is administratively
1840 		 * down or it might be migrating to different namespace.
1841 		 * In that case avoid further processing, as the net namespace
1842 		 * or ifindex may change.
1843 		 */
1844 		if (((*net_dev)->flags & IFF_UP) == 0) {
1845 			id_priv = ERR_PTR(-EHOSTUNREACH);
1846 			goto err;
1847 		}
1848 
1849 		if (!validate_net_dev(*net_dev,
1850 				 (struct sockaddr *)&req->src_addr_storage,
1851 				 (struct sockaddr *)&req->listen_addr_storage)) {
1852 			id_priv = ERR_PTR(-EHOSTUNREACH);
1853 			goto err;
1854 		}
1855 	}
1856 
1857 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1858 				rdma_ps_from_service_id(req->service_id),
1859 				cma_port_from_service_id(req->service_id));
1860 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1861 err:
1862 	rcu_read_unlock();
1863 	mutex_unlock(&lock);
1864 	if (IS_ERR(id_priv) && *net_dev) {
1865 		dev_put(*net_dev);
1866 		*net_dev = NULL;
1867 	}
1868 	return id_priv;
1869 }
1870 
1871 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1872 {
1873 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1874 }
1875 
1876 static void cma_cancel_route(struct rdma_id_private *id_priv)
1877 {
1878 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1879 		if (id_priv->query)
1880 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1881 	}
1882 }
1883 
1884 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1885 {
1886 	struct rdma_id_private *dev_id_priv;
1887 
1888 	lockdep_assert_held(&lock);
1889 
1890 	/*
1891 	 * Remove from listen_any_list to prevent added devices from spawning
1892 	 * additional listen requests.
1893 	 */
1894 	list_del_init(&id_priv->listen_any_item);
1895 
1896 	while (!list_empty(&id_priv->listen_list)) {
1897 		dev_id_priv =
1898 			list_first_entry(&id_priv->listen_list,
1899 					 struct rdma_id_private, listen_item);
1900 		/* sync with device removal to avoid duplicate destruction */
1901 		list_del_init(&dev_id_priv->device_item);
1902 		list_del_init(&dev_id_priv->listen_item);
1903 		mutex_unlock(&lock);
1904 
1905 		rdma_destroy_id(&dev_id_priv->id);
1906 		mutex_lock(&lock);
1907 	}
1908 }
1909 
1910 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1911 {
1912 	mutex_lock(&lock);
1913 	_cma_cancel_listens(id_priv);
1914 	mutex_unlock(&lock);
1915 }
1916 
1917 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1918 				 enum rdma_cm_state state)
1919 {
1920 	switch (state) {
1921 	case RDMA_CM_ADDR_QUERY:
1922 		/*
1923 		 * We can avoid doing the rdma_addr_cancel() based on state,
1924 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1925 		 * Notice that the addr_handler work could still be exiting
1926 		 * outside this state, however due to the interaction with the
1927 		 * handler_mutex the work is guaranteed not to touch id_priv
1928 		 * during exit.
1929 		 */
1930 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1931 		break;
1932 	case RDMA_CM_ROUTE_QUERY:
1933 		cma_cancel_route(id_priv);
1934 		break;
1935 	case RDMA_CM_LISTEN:
1936 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1937 			cma_cancel_listens(id_priv);
1938 		break;
1939 	default:
1940 		break;
1941 	}
1942 }
1943 
1944 static void cma_release_port(struct rdma_id_private *id_priv)
1945 {
1946 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1947 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1948 
1949 	if (!bind_list)
1950 		return;
1951 
1952 	mutex_lock(&lock);
1953 	hlist_del(&id_priv->node);
1954 	if (hlist_empty(&bind_list->owners)) {
1955 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1956 		kfree(bind_list);
1957 	}
1958 	mutex_unlock(&lock);
1959 }
1960 
1961 static void destroy_mc(struct rdma_id_private *id_priv,
1962 		       struct cma_multicast *mc)
1963 {
1964 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
1965 
1966 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1967 		ib_sa_free_multicast(mc->sa_mc);
1968 
1969 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1970 		struct rdma_dev_addr *dev_addr =
1971 			&id_priv->id.route.addr.dev_addr;
1972 		struct net_device *ndev = NULL;
1973 
1974 		if (dev_addr->bound_dev_if)
1975 			ndev = dev_get_by_index(dev_addr->net,
1976 						dev_addr->bound_dev_if);
1977 		if (ndev && !send_only) {
1978 			enum ib_gid_type gid_type;
1979 			union ib_gid mgid;
1980 
1981 			gid_type = id_priv->cma_dev->default_gid_type
1982 					   [id_priv->id.port_num -
1983 					    rdma_start_port(
1984 						    id_priv->cma_dev->device)];
1985 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
1986 					  gid_type);
1987 			cma_igmp_send(ndev, &mgid, false);
1988 		}
1989 		dev_put(ndev);
1990 
1991 		cancel_work_sync(&mc->iboe_join.work);
1992 	}
1993 	kfree(mc);
1994 }
1995 
1996 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1997 {
1998 	struct cma_multicast *mc;
1999 
2000 	while (!list_empty(&id_priv->mc_list)) {
2001 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2002 				      list);
2003 		list_del(&mc->list);
2004 		destroy_mc(id_priv, mc);
2005 	}
2006 }
2007 
2008 static void _destroy_id(struct rdma_id_private *id_priv,
2009 			enum rdma_cm_state state)
2010 {
2011 	cma_cancel_operation(id_priv, state);
2012 
2013 	rdma_restrack_del(&id_priv->res);
2014 	cma_remove_id_from_tree(id_priv);
2015 	if (id_priv->cma_dev) {
2016 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2017 			if (id_priv->cm_id.ib)
2018 				ib_destroy_cm_id(id_priv->cm_id.ib);
2019 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2020 			if (id_priv->cm_id.iw)
2021 				iw_destroy_cm_id(id_priv->cm_id.iw);
2022 		}
2023 		cma_leave_mc_groups(id_priv);
2024 		cma_release_dev(id_priv);
2025 	}
2026 
2027 	cma_release_port(id_priv);
2028 	cma_id_put(id_priv);
2029 	wait_for_completion(&id_priv->comp);
2030 
2031 	if (id_priv->internal_id)
2032 		cma_id_put(id_priv->id.context);
2033 
2034 	kfree(id_priv->id.route.path_rec);
2035 	kfree(id_priv->id.route.path_rec_inbound);
2036 	kfree(id_priv->id.route.path_rec_outbound);
2037 
2038 	put_net(id_priv->id.route.addr.dev_addr.net);
2039 	kfree(id_priv);
2040 }
2041 
2042 /*
2043  * destroy an ID from within the handler_mutex. This ensures that no other
2044  * handlers can start running concurrently.
2045  */
2046 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2047 	__releases(&idprv->handler_mutex)
2048 {
2049 	enum rdma_cm_state state;
2050 	unsigned long flags;
2051 
2052 	trace_cm_id_destroy(id_priv);
2053 
2054 	/*
2055 	 * Setting the state to destroyed under the handler mutex provides a
2056 	 * fence against calling handler callbacks. If this is invoked due to
2057 	 * the failure of a handler callback then it guarentees that no future
2058 	 * handlers will be called.
2059 	 */
2060 	lockdep_assert_held(&id_priv->handler_mutex);
2061 	spin_lock_irqsave(&id_priv->lock, flags);
2062 	state = id_priv->state;
2063 	id_priv->state = RDMA_CM_DESTROYING;
2064 	spin_unlock_irqrestore(&id_priv->lock, flags);
2065 	mutex_unlock(&id_priv->handler_mutex);
2066 	_destroy_id(id_priv, state);
2067 }
2068 
2069 void rdma_destroy_id(struct rdma_cm_id *id)
2070 {
2071 	struct rdma_id_private *id_priv =
2072 		container_of(id, struct rdma_id_private, id);
2073 
2074 	mutex_lock(&id_priv->handler_mutex);
2075 	destroy_id_handler_unlock(id_priv);
2076 }
2077 EXPORT_SYMBOL(rdma_destroy_id);
2078 
2079 static int cma_rep_recv(struct rdma_id_private *id_priv)
2080 {
2081 	int ret;
2082 
2083 	ret = cma_modify_qp_rtr(id_priv, NULL);
2084 	if (ret)
2085 		goto reject;
2086 
2087 	ret = cma_modify_qp_rts(id_priv, NULL);
2088 	if (ret)
2089 		goto reject;
2090 
2091 	trace_cm_send_rtu(id_priv);
2092 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2093 	if (ret)
2094 		goto reject;
2095 
2096 	return 0;
2097 reject:
2098 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2099 	cma_modify_qp_err(id_priv);
2100 	trace_cm_send_rej(id_priv);
2101 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2102 		       NULL, 0, NULL, 0);
2103 	return ret;
2104 }
2105 
2106 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2107 				   const struct ib_cm_rep_event_param *rep_data,
2108 				   void *private_data)
2109 {
2110 	event->param.conn.private_data = private_data;
2111 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2112 	event->param.conn.responder_resources = rep_data->responder_resources;
2113 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2114 	event->param.conn.flow_control = rep_data->flow_control;
2115 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2116 	event->param.conn.srq = rep_data->srq;
2117 	event->param.conn.qp_num = rep_data->remote_qpn;
2118 
2119 	event->ece.vendor_id = rep_data->ece.vendor_id;
2120 	event->ece.attr_mod = rep_data->ece.attr_mod;
2121 }
2122 
2123 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2124 				struct rdma_cm_event *event)
2125 {
2126 	int ret;
2127 
2128 	lockdep_assert_held(&id_priv->handler_mutex);
2129 
2130 	trace_cm_event_handler(id_priv, event);
2131 	ret = id_priv->id.event_handler(&id_priv->id, event);
2132 	trace_cm_event_done(id_priv, event, ret);
2133 	return ret;
2134 }
2135 
2136 static int cma_ib_handler(struct ib_cm_id *cm_id,
2137 			  const struct ib_cm_event *ib_event)
2138 {
2139 	struct rdma_id_private *id_priv = cm_id->context;
2140 	struct rdma_cm_event event = {};
2141 	enum rdma_cm_state state;
2142 	int ret;
2143 
2144 	mutex_lock(&id_priv->handler_mutex);
2145 	state = READ_ONCE(id_priv->state);
2146 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2147 	     state != RDMA_CM_CONNECT) ||
2148 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2149 	     state != RDMA_CM_DISCONNECT))
2150 		goto out;
2151 
2152 	switch (ib_event->event) {
2153 	case IB_CM_REQ_ERROR:
2154 	case IB_CM_REP_ERROR:
2155 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2156 		event.status = -ETIMEDOUT;
2157 		break;
2158 	case IB_CM_REP_RECEIVED:
2159 		if (state == RDMA_CM_CONNECT &&
2160 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2161 			trace_cm_send_mra(id_priv);
2162 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2163 		}
2164 		if (id_priv->id.qp) {
2165 			event.status = cma_rep_recv(id_priv);
2166 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2167 						     RDMA_CM_EVENT_ESTABLISHED;
2168 		} else {
2169 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2170 		}
2171 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2172 				       ib_event->private_data);
2173 		break;
2174 	case IB_CM_RTU_RECEIVED:
2175 	case IB_CM_USER_ESTABLISHED:
2176 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2177 		break;
2178 	case IB_CM_DREQ_ERROR:
2179 		event.status = -ETIMEDOUT;
2180 		fallthrough;
2181 	case IB_CM_DREQ_RECEIVED:
2182 	case IB_CM_DREP_RECEIVED:
2183 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2184 				   RDMA_CM_DISCONNECT))
2185 			goto out;
2186 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2187 		break;
2188 	case IB_CM_TIMEWAIT_EXIT:
2189 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2190 		break;
2191 	case IB_CM_MRA_RECEIVED:
2192 		/* ignore event */
2193 		goto out;
2194 	case IB_CM_REJ_RECEIVED:
2195 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2196 										ib_event->param.rej_rcvd.reason));
2197 		cma_modify_qp_err(id_priv);
2198 		event.status = ib_event->param.rej_rcvd.reason;
2199 		event.event = RDMA_CM_EVENT_REJECTED;
2200 		event.param.conn.private_data = ib_event->private_data;
2201 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2202 		break;
2203 	default:
2204 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2205 		       ib_event->event);
2206 		goto out;
2207 	}
2208 
2209 	ret = cma_cm_event_handler(id_priv, &event);
2210 	if (ret) {
2211 		/* Destroy the CM ID by returning a non-zero value. */
2212 		id_priv->cm_id.ib = NULL;
2213 		destroy_id_handler_unlock(id_priv);
2214 		return ret;
2215 	}
2216 out:
2217 	mutex_unlock(&id_priv->handler_mutex);
2218 	return 0;
2219 }
2220 
2221 static struct rdma_id_private *
2222 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2223 		   const struct ib_cm_event *ib_event,
2224 		   struct net_device *net_dev)
2225 {
2226 	struct rdma_id_private *listen_id_priv;
2227 	struct rdma_id_private *id_priv;
2228 	struct rdma_cm_id *id;
2229 	struct rdma_route *rt;
2230 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2231 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2232 	const __be64 service_id =
2233 		ib_event->param.req_rcvd.primary_path->service_id;
2234 	int ret;
2235 
2236 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2237 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2238 				   listen_id->event_handler, listen_id->context,
2239 				   listen_id->ps,
2240 				   ib_event->param.req_rcvd.qp_type,
2241 				   listen_id_priv);
2242 	if (IS_ERR(id_priv))
2243 		return NULL;
2244 
2245 	id = &id_priv->id;
2246 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2247 			      (struct sockaddr *)&id->route.addr.dst_addr,
2248 			      listen_id, ib_event, ss_family, service_id))
2249 		goto err;
2250 
2251 	rt = &id->route;
2252 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2253 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2254 				     sizeof(*rt->path_rec), GFP_KERNEL);
2255 	if (!rt->path_rec)
2256 		goto err;
2257 
2258 	rt->path_rec[0] = *path;
2259 	if (rt->num_pri_alt_paths == 2)
2260 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2261 
2262 	if (net_dev) {
2263 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2264 	} else {
2265 		if (!cma_protocol_roce(listen_id) &&
2266 		    cma_any_addr(cma_src_addr(id_priv))) {
2267 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2268 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2269 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2270 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2271 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2272 			if (ret)
2273 				goto err;
2274 		}
2275 	}
2276 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2277 
2278 	id_priv->state = RDMA_CM_CONNECT;
2279 	return id_priv;
2280 
2281 err:
2282 	rdma_destroy_id(id);
2283 	return NULL;
2284 }
2285 
2286 static struct rdma_id_private *
2287 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2288 		  const struct ib_cm_event *ib_event,
2289 		  struct net_device *net_dev)
2290 {
2291 	const struct rdma_id_private *listen_id_priv;
2292 	struct rdma_id_private *id_priv;
2293 	struct rdma_cm_id *id;
2294 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2295 	struct net *net = listen_id->route.addr.dev_addr.net;
2296 	int ret;
2297 
2298 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2299 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2300 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2301 				   listen_id_priv);
2302 	if (IS_ERR(id_priv))
2303 		return NULL;
2304 
2305 	id = &id_priv->id;
2306 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2307 			      (struct sockaddr *)&id->route.addr.dst_addr,
2308 			      listen_id, ib_event, ss_family,
2309 			      ib_event->param.sidr_req_rcvd.service_id))
2310 		goto err;
2311 
2312 	if (net_dev) {
2313 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2314 	} else {
2315 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2316 			ret = cma_translate_addr(cma_src_addr(id_priv),
2317 						 &id->route.addr.dev_addr);
2318 			if (ret)
2319 				goto err;
2320 		}
2321 	}
2322 
2323 	id_priv->state = RDMA_CM_CONNECT;
2324 	return id_priv;
2325 err:
2326 	rdma_destroy_id(id);
2327 	return NULL;
2328 }
2329 
2330 static void cma_set_req_event_data(struct rdma_cm_event *event,
2331 				   const struct ib_cm_req_event_param *req_data,
2332 				   void *private_data, int offset)
2333 {
2334 	event->param.conn.private_data = private_data + offset;
2335 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2336 	event->param.conn.responder_resources = req_data->responder_resources;
2337 	event->param.conn.initiator_depth = req_data->initiator_depth;
2338 	event->param.conn.flow_control = req_data->flow_control;
2339 	event->param.conn.retry_count = req_data->retry_count;
2340 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2341 	event->param.conn.srq = req_data->srq;
2342 	event->param.conn.qp_num = req_data->remote_qpn;
2343 
2344 	event->ece.vendor_id = req_data->ece.vendor_id;
2345 	event->ece.attr_mod = req_data->ece.attr_mod;
2346 }
2347 
2348 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2349 				    const struct ib_cm_event *ib_event)
2350 {
2351 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2352 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2353 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2354 		 (id->qp_type == IB_QPT_UD)) ||
2355 		(!id->qp_type));
2356 }
2357 
2358 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2359 			      const struct ib_cm_event *ib_event)
2360 {
2361 	struct rdma_id_private *listen_id, *conn_id = NULL;
2362 	struct rdma_cm_event event = {};
2363 	struct cma_req_info req = {};
2364 	struct net_device *net_dev;
2365 	u8 offset;
2366 	int ret;
2367 
2368 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2369 	if (IS_ERR(listen_id))
2370 		return PTR_ERR(listen_id);
2371 
2372 	trace_cm_req_handler(listen_id, ib_event->event);
2373 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2374 		ret = -EINVAL;
2375 		goto net_dev_put;
2376 	}
2377 
2378 	mutex_lock(&listen_id->handler_mutex);
2379 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2380 		ret = -ECONNABORTED;
2381 		goto err_unlock;
2382 	}
2383 
2384 	offset = cma_user_data_offset(listen_id);
2385 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2386 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2387 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2388 		event.param.ud.private_data = ib_event->private_data + offset;
2389 		event.param.ud.private_data_len =
2390 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2391 	} else {
2392 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2393 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2394 				       ib_event->private_data, offset);
2395 	}
2396 	if (!conn_id) {
2397 		ret = -ENOMEM;
2398 		goto err_unlock;
2399 	}
2400 
2401 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2402 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2403 	if (ret) {
2404 		destroy_id_handler_unlock(conn_id);
2405 		goto err_unlock;
2406 	}
2407 
2408 	conn_id->cm_id.ib = cm_id;
2409 	cm_id->context = conn_id;
2410 	cm_id->cm_handler = cma_ib_handler;
2411 
2412 	ret = cma_cm_event_handler(conn_id, &event);
2413 	if (ret) {
2414 		/* Destroy the CM ID by returning a non-zero value. */
2415 		conn_id->cm_id.ib = NULL;
2416 		mutex_unlock(&listen_id->handler_mutex);
2417 		destroy_id_handler_unlock(conn_id);
2418 		goto net_dev_put;
2419 	}
2420 
2421 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2422 	    conn_id->id.qp_type != IB_QPT_UD) {
2423 		trace_cm_send_mra(cm_id->context);
2424 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2425 	}
2426 	mutex_unlock(&conn_id->handler_mutex);
2427 
2428 err_unlock:
2429 	mutex_unlock(&listen_id->handler_mutex);
2430 
2431 net_dev_put:
2432 	dev_put(net_dev);
2433 
2434 	return ret;
2435 }
2436 
2437 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2438 {
2439 	if (addr->sa_family == AF_IB)
2440 		return ((struct sockaddr_ib *) addr)->sib_sid;
2441 
2442 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2443 }
2444 EXPORT_SYMBOL(rdma_get_service_id);
2445 
2446 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2447 		    union ib_gid *dgid)
2448 {
2449 	struct rdma_addr *addr = &cm_id->route.addr;
2450 
2451 	if (!cm_id->device) {
2452 		if (sgid)
2453 			memset(sgid, 0, sizeof(*sgid));
2454 		if (dgid)
2455 			memset(dgid, 0, sizeof(*dgid));
2456 		return;
2457 	}
2458 
2459 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2460 		if (sgid)
2461 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2462 		if (dgid)
2463 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2464 	} else {
2465 		if (sgid)
2466 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2467 		if (dgid)
2468 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2469 	}
2470 }
2471 EXPORT_SYMBOL(rdma_read_gids);
2472 
2473 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2474 {
2475 	struct rdma_id_private *id_priv = iw_id->context;
2476 	struct rdma_cm_event event = {};
2477 	int ret = 0;
2478 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2479 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2480 
2481 	mutex_lock(&id_priv->handler_mutex);
2482 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2483 		goto out;
2484 
2485 	switch (iw_event->event) {
2486 	case IW_CM_EVENT_CLOSE:
2487 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2488 		break;
2489 	case IW_CM_EVENT_CONNECT_REPLY:
2490 		memcpy(cma_src_addr(id_priv), laddr,
2491 		       rdma_addr_size(laddr));
2492 		memcpy(cma_dst_addr(id_priv), raddr,
2493 		       rdma_addr_size(raddr));
2494 		switch (iw_event->status) {
2495 		case 0:
2496 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2497 			event.param.conn.initiator_depth = iw_event->ird;
2498 			event.param.conn.responder_resources = iw_event->ord;
2499 			break;
2500 		case -ECONNRESET:
2501 		case -ECONNREFUSED:
2502 			event.event = RDMA_CM_EVENT_REJECTED;
2503 			break;
2504 		case -ETIMEDOUT:
2505 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2506 			break;
2507 		default:
2508 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2509 			break;
2510 		}
2511 		break;
2512 	case IW_CM_EVENT_ESTABLISHED:
2513 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2514 		event.param.conn.initiator_depth = iw_event->ird;
2515 		event.param.conn.responder_resources = iw_event->ord;
2516 		break;
2517 	default:
2518 		goto out;
2519 	}
2520 
2521 	event.status = iw_event->status;
2522 	event.param.conn.private_data = iw_event->private_data;
2523 	event.param.conn.private_data_len = iw_event->private_data_len;
2524 	ret = cma_cm_event_handler(id_priv, &event);
2525 	if (ret) {
2526 		/* Destroy the CM ID by returning a non-zero value. */
2527 		id_priv->cm_id.iw = NULL;
2528 		destroy_id_handler_unlock(id_priv);
2529 		return ret;
2530 	}
2531 
2532 out:
2533 	mutex_unlock(&id_priv->handler_mutex);
2534 	return ret;
2535 }
2536 
2537 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2538 			       struct iw_cm_event *iw_event)
2539 {
2540 	struct rdma_id_private *listen_id, *conn_id;
2541 	struct rdma_cm_event event = {};
2542 	int ret = -ECONNABORTED;
2543 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2544 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2545 
2546 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2547 	event.param.conn.private_data = iw_event->private_data;
2548 	event.param.conn.private_data_len = iw_event->private_data_len;
2549 	event.param.conn.initiator_depth = iw_event->ird;
2550 	event.param.conn.responder_resources = iw_event->ord;
2551 
2552 	listen_id = cm_id->context;
2553 
2554 	mutex_lock(&listen_id->handler_mutex);
2555 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2556 		goto out;
2557 
2558 	/* Create a new RDMA id for the new IW CM ID */
2559 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2560 				   listen_id->id.event_handler,
2561 				   listen_id->id.context, RDMA_PS_TCP,
2562 				   IB_QPT_RC, listen_id);
2563 	if (IS_ERR(conn_id)) {
2564 		ret = -ENOMEM;
2565 		goto out;
2566 	}
2567 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2568 	conn_id->state = RDMA_CM_CONNECT;
2569 
2570 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2571 	if (ret) {
2572 		mutex_unlock(&listen_id->handler_mutex);
2573 		destroy_id_handler_unlock(conn_id);
2574 		return ret;
2575 	}
2576 
2577 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2578 	if (ret) {
2579 		mutex_unlock(&listen_id->handler_mutex);
2580 		destroy_id_handler_unlock(conn_id);
2581 		return ret;
2582 	}
2583 
2584 	conn_id->cm_id.iw = cm_id;
2585 	cm_id->context = conn_id;
2586 	cm_id->cm_handler = cma_iw_handler;
2587 
2588 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2589 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2590 
2591 	ret = cma_cm_event_handler(conn_id, &event);
2592 	if (ret) {
2593 		/* User wants to destroy the CM ID */
2594 		conn_id->cm_id.iw = NULL;
2595 		mutex_unlock(&listen_id->handler_mutex);
2596 		destroy_id_handler_unlock(conn_id);
2597 		return ret;
2598 	}
2599 
2600 	mutex_unlock(&conn_id->handler_mutex);
2601 
2602 out:
2603 	mutex_unlock(&listen_id->handler_mutex);
2604 	return ret;
2605 }
2606 
2607 static int cma_ib_listen(struct rdma_id_private *id_priv)
2608 {
2609 	struct sockaddr *addr;
2610 	struct ib_cm_id	*id;
2611 	__be64 svc_id;
2612 
2613 	addr = cma_src_addr(id_priv);
2614 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2615 	id = ib_cm_insert_listen(id_priv->id.device,
2616 				 cma_ib_req_handler, svc_id);
2617 	if (IS_ERR(id))
2618 		return PTR_ERR(id);
2619 	id_priv->cm_id.ib = id;
2620 
2621 	return 0;
2622 }
2623 
2624 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2625 {
2626 	int ret;
2627 	struct iw_cm_id	*id;
2628 
2629 	id = iw_create_cm_id(id_priv->id.device,
2630 			     iw_conn_req_handler,
2631 			     id_priv);
2632 	if (IS_ERR(id))
2633 		return PTR_ERR(id);
2634 
2635 	mutex_lock(&id_priv->qp_mutex);
2636 	id->tos = id_priv->tos;
2637 	id->tos_set = id_priv->tos_set;
2638 	mutex_unlock(&id_priv->qp_mutex);
2639 	id->afonly = id_priv->afonly;
2640 	id_priv->cm_id.iw = id;
2641 
2642 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2643 	       rdma_addr_size(cma_src_addr(id_priv)));
2644 
2645 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2646 
2647 	if (ret) {
2648 		iw_destroy_cm_id(id_priv->cm_id.iw);
2649 		id_priv->cm_id.iw = NULL;
2650 	}
2651 
2652 	return ret;
2653 }
2654 
2655 static int cma_listen_handler(struct rdma_cm_id *id,
2656 			      struct rdma_cm_event *event)
2657 {
2658 	struct rdma_id_private *id_priv = id->context;
2659 
2660 	/* Listening IDs are always destroyed on removal */
2661 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2662 		return -1;
2663 
2664 	id->context = id_priv->id.context;
2665 	id->event_handler = id_priv->id.event_handler;
2666 	trace_cm_event_handler(id_priv, event);
2667 	return id_priv->id.event_handler(id, event);
2668 }
2669 
2670 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2671 			     struct cma_device *cma_dev,
2672 			     struct rdma_id_private **to_destroy)
2673 {
2674 	struct rdma_id_private *dev_id_priv;
2675 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2676 	int ret;
2677 
2678 	lockdep_assert_held(&lock);
2679 
2680 	*to_destroy = NULL;
2681 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2682 		return 0;
2683 
2684 	dev_id_priv =
2685 		__rdma_create_id(net, cma_listen_handler, id_priv,
2686 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2687 	if (IS_ERR(dev_id_priv))
2688 		return PTR_ERR(dev_id_priv);
2689 
2690 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2691 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2692 	       rdma_addr_size(cma_src_addr(id_priv)));
2693 
2694 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2695 	rdma_restrack_add(&dev_id_priv->res);
2696 	cma_id_get(id_priv);
2697 	dev_id_priv->internal_id = 1;
2698 	dev_id_priv->afonly = id_priv->afonly;
2699 	mutex_lock(&id_priv->qp_mutex);
2700 	dev_id_priv->tos_set = id_priv->tos_set;
2701 	dev_id_priv->tos = id_priv->tos;
2702 	mutex_unlock(&id_priv->qp_mutex);
2703 
2704 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2705 	if (ret)
2706 		goto err_listen;
2707 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2708 	return 0;
2709 err_listen:
2710 	/* Caller must destroy this after releasing lock */
2711 	*to_destroy = dev_id_priv;
2712 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2713 	return ret;
2714 }
2715 
2716 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2717 {
2718 	struct rdma_id_private *to_destroy;
2719 	struct cma_device *cma_dev;
2720 	int ret;
2721 
2722 	mutex_lock(&lock);
2723 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2724 	list_for_each_entry(cma_dev, &dev_list, list) {
2725 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2726 		if (ret) {
2727 			/* Prevent racing with cma_process_remove() */
2728 			if (to_destroy)
2729 				list_del_init(&to_destroy->device_item);
2730 			goto err_listen;
2731 		}
2732 	}
2733 	mutex_unlock(&lock);
2734 	return 0;
2735 
2736 err_listen:
2737 	_cma_cancel_listens(id_priv);
2738 	mutex_unlock(&lock);
2739 	if (to_destroy)
2740 		rdma_destroy_id(&to_destroy->id);
2741 	return ret;
2742 }
2743 
2744 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2745 {
2746 	struct rdma_id_private *id_priv;
2747 
2748 	id_priv = container_of(id, struct rdma_id_private, id);
2749 	mutex_lock(&id_priv->qp_mutex);
2750 	id_priv->tos = (u8) tos;
2751 	id_priv->tos_set = true;
2752 	mutex_unlock(&id_priv->qp_mutex);
2753 }
2754 EXPORT_SYMBOL(rdma_set_service_type);
2755 
2756 /**
2757  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2758  *                          with a connection identifier.
2759  * @id: Communication identifier to associated with service type.
2760  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2761  *
2762  * This function should be called before rdma_connect() on active side,
2763  * and on passive side before rdma_accept(). It is applicable to primary
2764  * path only. The timeout will affect the local side of the QP, it is not
2765  * negotiated with remote side and zero disables the timer. In case it is
2766  * set before rdma_resolve_route, the value will also be used to determine
2767  * PacketLifeTime for RoCE.
2768  *
2769  * Return: 0 for success
2770  */
2771 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2772 {
2773 	struct rdma_id_private *id_priv;
2774 
2775 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2776 		return -EINVAL;
2777 
2778 	id_priv = container_of(id, struct rdma_id_private, id);
2779 	mutex_lock(&id_priv->qp_mutex);
2780 	id_priv->timeout = timeout;
2781 	id_priv->timeout_set = true;
2782 	mutex_unlock(&id_priv->qp_mutex);
2783 
2784 	return 0;
2785 }
2786 EXPORT_SYMBOL(rdma_set_ack_timeout);
2787 
2788 /**
2789  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2790  *			      QP associated with a connection identifier.
2791  * @id: Communication identifier to associated with service type.
2792  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2793  *		   Timer Field" in the IBTA specification.
2794  *
2795  * This function should be called before rdma_connect() on active
2796  * side, and on passive side before rdma_accept(). The timer value
2797  * will be associated with the local QP. When it receives a send it is
2798  * not read to handle, typically if the receive queue is empty, an RNR
2799  * Retry NAK is returned to the requester with the min_rnr_timer
2800  * encoded. The requester will then wait at least the time specified
2801  * in the NAK before retrying. The default is zero, which translates
2802  * to a minimum RNR Timer value of 655 ms.
2803  *
2804  * Return: 0 for success
2805  */
2806 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2807 {
2808 	struct rdma_id_private *id_priv;
2809 
2810 	/* It is a five-bit value */
2811 	if (min_rnr_timer & 0xe0)
2812 		return -EINVAL;
2813 
2814 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2815 		return -EINVAL;
2816 
2817 	id_priv = container_of(id, struct rdma_id_private, id);
2818 	mutex_lock(&id_priv->qp_mutex);
2819 	id_priv->min_rnr_timer = min_rnr_timer;
2820 	id_priv->min_rnr_timer_set = true;
2821 	mutex_unlock(&id_priv->qp_mutex);
2822 
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2826 
2827 static int route_set_path_rec_inbound(struct cma_work *work,
2828 				      struct sa_path_rec *path_rec)
2829 {
2830 	struct rdma_route *route = &work->id->id.route;
2831 
2832 	if (!route->path_rec_inbound) {
2833 		route->path_rec_inbound =
2834 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2835 		if (!route->path_rec_inbound)
2836 			return -ENOMEM;
2837 	}
2838 
2839 	*route->path_rec_inbound = *path_rec;
2840 	return 0;
2841 }
2842 
2843 static int route_set_path_rec_outbound(struct cma_work *work,
2844 				       struct sa_path_rec *path_rec)
2845 {
2846 	struct rdma_route *route = &work->id->id.route;
2847 
2848 	if (!route->path_rec_outbound) {
2849 		route->path_rec_outbound =
2850 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2851 		if (!route->path_rec_outbound)
2852 			return -ENOMEM;
2853 	}
2854 
2855 	*route->path_rec_outbound = *path_rec;
2856 	return 0;
2857 }
2858 
2859 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2860 			      unsigned int num_prs, void *context)
2861 {
2862 	struct cma_work *work = context;
2863 	struct rdma_route *route;
2864 	int i;
2865 
2866 	route = &work->id->id.route;
2867 
2868 	if (status)
2869 		goto fail;
2870 
2871 	for (i = 0; i < num_prs; i++) {
2872 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2873 			*route->path_rec = path_rec[i];
2874 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2875 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2876 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2877 			status = route_set_path_rec_outbound(work,
2878 							     &path_rec[i]);
2879 		else
2880 			status = -EINVAL;
2881 
2882 		if (status)
2883 			goto fail;
2884 	}
2885 
2886 	route->num_pri_alt_paths = 1;
2887 	queue_work(cma_wq, &work->work);
2888 	return;
2889 
2890 fail:
2891 	work->old_state = RDMA_CM_ROUTE_QUERY;
2892 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2893 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2894 	work->event.status = status;
2895 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2896 			     status);
2897 	queue_work(cma_wq, &work->work);
2898 }
2899 
2900 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2901 			      unsigned long timeout_ms, struct cma_work *work)
2902 {
2903 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2904 	struct sa_path_rec path_rec;
2905 	ib_sa_comp_mask comp_mask;
2906 	struct sockaddr_in6 *sin6;
2907 	struct sockaddr_ib *sib;
2908 
2909 	memset(&path_rec, 0, sizeof path_rec);
2910 
2911 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2912 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2913 	else
2914 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2915 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2916 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2917 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2918 	path_rec.numb_path = 1;
2919 	path_rec.reversible = 1;
2920 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2921 						  cma_dst_addr(id_priv));
2922 
2923 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2924 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2925 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2926 
2927 	switch (cma_family(id_priv)) {
2928 	case AF_INET:
2929 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2930 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2931 		break;
2932 	case AF_INET6:
2933 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2934 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2935 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2936 		break;
2937 	case AF_IB:
2938 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2939 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2940 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2941 		break;
2942 	}
2943 
2944 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2945 					       id_priv->id.port_num, &path_rec,
2946 					       comp_mask, timeout_ms,
2947 					       GFP_KERNEL, cma_query_handler,
2948 					       work, &id_priv->query);
2949 
2950 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2951 }
2952 
2953 static void cma_iboe_join_work_handler(struct work_struct *work)
2954 {
2955 	struct cma_multicast *mc =
2956 		container_of(work, struct cma_multicast, iboe_join.work);
2957 	struct rdma_cm_event *event = &mc->iboe_join.event;
2958 	struct rdma_id_private *id_priv = mc->id_priv;
2959 	int ret;
2960 
2961 	mutex_lock(&id_priv->handler_mutex);
2962 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2963 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2964 		goto out_unlock;
2965 
2966 	ret = cma_cm_event_handler(id_priv, event);
2967 	WARN_ON(ret);
2968 
2969 out_unlock:
2970 	mutex_unlock(&id_priv->handler_mutex);
2971 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2972 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2973 }
2974 
2975 static void cma_work_handler(struct work_struct *_work)
2976 {
2977 	struct cma_work *work = container_of(_work, struct cma_work, work);
2978 	struct rdma_id_private *id_priv = work->id;
2979 
2980 	mutex_lock(&id_priv->handler_mutex);
2981 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2982 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2983 		goto out_unlock;
2984 	if (work->old_state != 0 || work->new_state != 0) {
2985 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2986 			goto out_unlock;
2987 	}
2988 
2989 	if (cma_cm_event_handler(id_priv, &work->event)) {
2990 		cma_id_put(id_priv);
2991 		destroy_id_handler_unlock(id_priv);
2992 		goto out_free;
2993 	}
2994 
2995 out_unlock:
2996 	mutex_unlock(&id_priv->handler_mutex);
2997 	cma_id_put(id_priv);
2998 out_free:
2999 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3000 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3001 	kfree(work);
3002 }
3003 
3004 static void cma_init_resolve_route_work(struct cma_work *work,
3005 					struct rdma_id_private *id_priv)
3006 {
3007 	work->id = id_priv;
3008 	INIT_WORK(&work->work, cma_work_handler);
3009 	work->old_state = RDMA_CM_ROUTE_QUERY;
3010 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3011 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3012 }
3013 
3014 static void enqueue_resolve_addr_work(struct cma_work *work,
3015 				      struct rdma_id_private *id_priv)
3016 {
3017 	/* Balances with cma_id_put() in cma_work_handler */
3018 	cma_id_get(id_priv);
3019 
3020 	work->id = id_priv;
3021 	INIT_WORK(&work->work, cma_work_handler);
3022 	work->old_state = RDMA_CM_ADDR_QUERY;
3023 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3024 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3025 
3026 	queue_work(cma_wq, &work->work);
3027 }
3028 
3029 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3030 				unsigned long timeout_ms)
3031 {
3032 	struct rdma_route *route = &id_priv->id.route;
3033 	struct cma_work *work;
3034 	int ret;
3035 
3036 	work = kzalloc(sizeof *work, GFP_KERNEL);
3037 	if (!work)
3038 		return -ENOMEM;
3039 
3040 	cma_init_resolve_route_work(work, id_priv);
3041 
3042 	if (!route->path_rec)
3043 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3044 	if (!route->path_rec) {
3045 		ret = -ENOMEM;
3046 		goto err1;
3047 	}
3048 
3049 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3050 	if (ret)
3051 		goto err2;
3052 
3053 	return 0;
3054 err2:
3055 	kfree(route->path_rec);
3056 	route->path_rec = NULL;
3057 err1:
3058 	kfree(work);
3059 	return ret;
3060 }
3061 
3062 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3063 					   unsigned long supported_gids,
3064 					   enum ib_gid_type default_gid)
3065 {
3066 	if ((network_type == RDMA_NETWORK_IPV4 ||
3067 	     network_type == RDMA_NETWORK_IPV6) &&
3068 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3069 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3070 
3071 	return default_gid;
3072 }
3073 
3074 /*
3075  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3076  * path record type based on GID type.
3077  * It also sets up other L2 fields which includes destination mac address
3078  * netdev ifindex, of the path record.
3079  * It returns the netdev of the bound interface for this path record entry.
3080  */
3081 static struct net_device *
3082 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3083 {
3084 	struct rdma_route *route = &id_priv->id.route;
3085 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3086 	struct rdma_addr *addr = &route->addr;
3087 	unsigned long supported_gids;
3088 	struct net_device *ndev;
3089 
3090 	if (!addr->dev_addr.bound_dev_if)
3091 		return NULL;
3092 
3093 	ndev = dev_get_by_index(addr->dev_addr.net,
3094 				addr->dev_addr.bound_dev_if);
3095 	if (!ndev)
3096 		return NULL;
3097 
3098 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3099 						    id_priv->id.port_num);
3100 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3101 				      supported_gids,
3102 				      id_priv->gid_type);
3103 	/* Use the hint from IP Stack to select GID Type */
3104 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3105 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3106 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3107 
3108 	route->path_rec->roce.route_resolved = true;
3109 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3110 	return ndev;
3111 }
3112 
3113 int rdma_set_ib_path(struct rdma_cm_id *id,
3114 		     struct sa_path_rec *path_rec)
3115 {
3116 	struct rdma_id_private *id_priv;
3117 	struct net_device *ndev;
3118 	int ret;
3119 
3120 	id_priv = container_of(id, struct rdma_id_private, id);
3121 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3122 			   RDMA_CM_ROUTE_RESOLVED))
3123 		return -EINVAL;
3124 
3125 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3126 				     GFP_KERNEL);
3127 	if (!id->route.path_rec) {
3128 		ret = -ENOMEM;
3129 		goto err;
3130 	}
3131 
3132 	if (rdma_protocol_roce(id->device, id->port_num)) {
3133 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3134 		if (!ndev) {
3135 			ret = -ENODEV;
3136 			goto err_free;
3137 		}
3138 		dev_put(ndev);
3139 	}
3140 
3141 	id->route.num_pri_alt_paths = 1;
3142 	return 0;
3143 
3144 err_free:
3145 	kfree(id->route.path_rec);
3146 	id->route.path_rec = NULL;
3147 err:
3148 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3149 	return ret;
3150 }
3151 EXPORT_SYMBOL(rdma_set_ib_path);
3152 
3153 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3154 {
3155 	struct cma_work *work;
3156 
3157 	work = kzalloc(sizeof *work, GFP_KERNEL);
3158 	if (!work)
3159 		return -ENOMEM;
3160 
3161 	cma_init_resolve_route_work(work, id_priv);
3162 	queue_work(cma_wq, &work->work);
3163 	return 0;
3164 }
3165 
3166 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3167 {
3168 	struct net_device *dev;
3169 
3170 	dev = vlan_dev_real_dev(vlan_ndev);
3171 	if (dev->num_tc)
3172 		return netdev_get_prio_tc_map(dev, prio);
3173 
3174 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3175 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3176 }
3177 
3178 struct iboe_prio_tc_map {
3179 	int input_prio;
3180 	int output_tc;
3181 	bool found;
3182 };
3183 
3184 static int get_lower_vlan_dev_tc(struct net_device *dev,
3185 				 struct netdev_nested_priv *priv)
3186 {
3187 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3188 
3189 	if (is_vlan_dev(dev))
3190 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3191 	else if (dev->num_tc)
3192 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3193 	else
3194 		map->output_tc = 0;
3195 	/* We are interested only in first level VLAN device, so always
3196 	 * return 1 to stop iterating over next level devices.
3197 	 */
3198 	map->found = true;
3199 	return 1;
3200 }
3201 
3202 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3203 {
3204 	struct iboe_prio_tc_map prio_tc_map = {};
3205 	int prio = rt_tos2priority(tos);
3206 	struct netdev_nested_priv priv;
3207 
3208 	/* If VLAN device, get it directly from the VLAN netdev */
3209 	if (is_vlan_dev(ndev))
3210 		return get_vlan_ndev_tc(ndev, prio);
3211 
3212 	prio_tc_map.input_prio = prio;
3213 	priv.data = (void *)&prio_tc_map;
3214 	rcu_read_lock();
3215 	netdev_walk_all_lower_dev_rcu(ndev,
3216 				      get_lower_vlan_dev_tc,
3217 				      &priv);
3218 	rcu_read_unlock();
3219 	/* If map is found from lower device, use it; Otherwise
3220 	 * continue with the current netdevice to get priority to tc map.
3221 	 */
3222 	if (prio_tc_map.found)
3223 		return prio_tc_map.output_tc;
3224 	else if (ndev->num_tc)
3225 		return netdev_get_prio_tc_map(ndev, prio);
3226 	else
3227 		return 0;
3228 }
3229 
3230 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3231 {
3232 	struct sockaddr_in6 *addr6;
3233 	u16 dport, sport;
3234 	u32 hash, fl;
3235 
3236 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3237 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3238 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3239 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3240 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3241 		hash = (u32)sport * 31 + dport;
3242 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3243 	}
3244 
3245 	return cpu_to_be32(fl);
3246 }
3247 
3248 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3249 {
3250 	struct rdma_route *route = &id_priv->id.route;
3251 	struct rdma_addr *addr = &route->addr;
3252 	struct cma_work *work;
3253 	int ret;
3254 	struct net_device *ndev;
3255 
3256 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3257 					rdma_start_port(id_priv->cma_dev->device)];
3258 	u8 tos;
3259 
3260 	mutex_lock(&id_priv->qp_mutex);
3261 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3262 	mutex_unlock(&id_priv->qp_mutex);
3263 
3264 	work = kzalloc(sizeof *work, GFP_KERNEL);
3265 	if (!work)
3266 		return -ENOMEM;
3267 
3268 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3269 	if (!route->path_rec) {
3270 		ret = -ENOMEM;
3271 		goto err1;
3272 	}
3273 
3274 	route->num_pri_alt_paths = 1;
3275 
3276 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3277 	if (!ndev) {
3278 		ret = -ENODEV;
3279 		goto err2;
3280 	}
3281 
3282 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3283 		    &route->path_rec->sgid);
3284 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3285 		    &route->path_rec->dgid);
3286 
3287 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3288 		/* TODO: get the hoplimit from the inet/inet6 device */
3289 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3290 	else
3291 		route->path_rec->hop_limit = 1;
3292 	route->path_rec->reversible = 1;
3293 	route->path_rec->pkey = cpu_to_be16(0xffff);
3294 	route->path_rec->mtu_selector = IB_SA_EQ;
3295 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3296 	route->path_rec->traffic_class = tos;
3297 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3298 	route->path_rec->rate_selector = IB_SA_EQ;
3299 	route->path_rec->rate = iboe_get_rate(ndev);
3300 	dev_put(ndev);
3301 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3302 	/* In case ACK timeout is set, use this value to calculate
3303 	 * PacketLifeTime.  As per IBTA 12.7.34,
3304 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3305 	 * Assuming a negligible local ACK delay, we can use
3306 	 * PacketLifeTime = local ACK timeout/2
3307 	 * as a reasonable approximation for RoCE networks.
3308 	 */
3309 	mutex_lock(&id_priv->qp_mutex);
3310 	if (id_priv->timeout_set && id_priv->timeout)
3311 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3312 	else
3313 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3314 	mutex_unlock(&id_priv->qp_mutex);
3315 
3316 	if (!route->path_rec->mtu) {
3317 		ret = -EINVAL;
3318 		goto err2;
3319 	}
3320 
3321 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3322 					 id_priv->id.port_num))
3323 		route->path_rec->flow_label =
3324 			cma_get_roce_udp_flow_label(id_priv);
3325 
3326 	cma_init_resolve_route_work(work, id_priv);
3327 	queue_work(cma_wq, &work->work);
3328 
3329 	return 0;
3330 
3331 err2:
3332 	kfree(route->path_rec);
3333 	route->path_rec = NULL;
3334 	route->num_pri_alt_paths = 0;
3335 err1:
3336 	kfree(work);
3337 	return ret;
3338 }
3339 
3340 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3341 {
3342 	struct rdma_id_private *id_priv;
3343 	int ret;
3344 
3345 	if (!timeout_ms)
3346 		return -EINVAL;
3347 
3348 	id_priv = container_of(id, struct rdma_id_private, id);
3349 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3350 		return -EINVAL;
3351 
3352 	cma_id_get(id_priv);
3353 	if (rdma_cap_ib_sa(id->device, id->port_num))
3354 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3355 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3356 		ret = cma_resolve_iboe_route(id_priv);
3357 		if (!ret)
3358 			cma_add_id_to_tree(id_priv);
3359 	}
3360 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3361 		ret = cma_resolve_iw_route(id_priv);
3362 	else
3363 		ret = -ENOSYS;
3364 
3365 	if (ret)
3366 		goto err;
3367 
3368 	return 0;
3369 err:
3370 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3371 	cma_id_put(id_priv);
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL(rdma_resolve_route);
3375 
3376 static void cma_set_loopback(struct sockaddr *addr)
3377 {
3378 	switch (addr->sa_family) {
3379 	case AF_INET:
3380 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3381 		break;
3382 	case AF_INET6:
3383 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3384 			      0, 0, 0, htonl(1));
3385 		break;
3386 	default:
3387 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3388 			    0, 0, 0, htonl(1));
3389 		break;
3390 	}
3391 }
3392 
3393 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3394 {
3395 	struct cma_device *cma_dev, *cur_dev;
3396 	union ib_gid gid;
3397 	enum ib_port_state port_state;
3398 	unsigned int p;
3399 	u16 pkey;
3400 	int ret;
3401 
3402 	cma_dev = NULL;
3403 	mutex_lock(&lock);
3404 	list_for_each_entry(cur_dev, &dev_list, list) {
3405 		if (cma_family(id_priv) == AF_IB &&
3406 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3407 			continue;
3408 
3409 		if (!cma_dev)
3410 			cma_dev = cur_dev;
3411 
3412 		rdma_for_each_port (cur_dev->device, p) {
3413 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3414 			    port_state == IB_PORT_ACTIVE) {
3415 				cma_dev = cur_dev;
3416 				goto port_found;
3417 			}
3418 		}
3419 	}
3420 
3421 	if (!cma_dev) {
3422 		ret = -ENODEV;
3423 		goto out;
3424 	}
3425 
3426 	p = 1;
3427 
3428 port_found:
3429 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3430 	if (ret)
3431 		goto out;
3432 
3433 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3434 	if (ret)
3435 		goto out;
3436 
3437 	id_priv->id.route.addr.dev_addr.dev_type =
3438 		(rdma_protocol_ib(cma_dev->device, p)) ?
3439 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3440 
3441 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3442 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3443 	id_priv->id.port_num = p;
3444 	cma_attach_to_dev(id_priv, cma_dev);
3445 	rdma_restrack_add(&id_priv->res);
3446 	cma_set_loopback(cma_src_addr(id_priv));
3447 out:
3448 	mutex_unlock(&lock);
3449 	return ret;
3450 }
3451 
3452 static void addr_handler(int status, struct sockaddr *src_addr,
3453 			 struct rdma_dev_addr *dev_addr, void *context)
3454 {
3455 	struct rdma_id_private *id_priv = context;
3456 	struct rdma_cm_event event = {};
3457 	struct sockaddr *addr;
3458 	struct sockaddr_storage old_addr;
3459 
3460 	mutex_lock(&id_priv->handler_mutex);
3461 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3462 			   RDMA_CM_ADDR_RESOLVED))
3463 		goto out;
3464 
3465 	/*
3466 	 * Store the previous src address, so that if we fail to acquire
3467 	 * matching rdma device, old address can be restored back, which helps
3468 	 * to cancel the cma listen operation correctly.
3469 	 */
3470 	addr = cma_src_addr(id_priv);
3471 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3472 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3473 	if (!status && !id_priv->cma_dev) {
3474 		status = cma_acquire_dev_by_src_ip(id_priv);
3475 		if (status)
3476 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3477 					     status);
3478 		rdma_restrack_add(&id_priv->res);
3479 	} else if (status) {
3480 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3481 	}
3482 
3483 	if (status) {
3484 		memcpy(addr, &old_addr,
3485 		       rdma_addr_size((struct sockaddr *)&old_addr));
3486 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3487 				   RDMA_CM_ADDR_BOUND))
3488 			goto out;
3489 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3490 		event.status = status;
3491 	} else
3492 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3493 
3494 	if (cma_cm_event_handler(id_priv, &event)) {
3495 		destroy_id_handler_unlock(id_priv);
3496 		return;
3497 	}
3498 out:
3499 	mutex_unlock(&id_priv->handler_mutex);
3500 }
3501 
3502 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3503 {
3504 	struct cma_work *work;
3505 	union ib_gid gid;
3506 	int ret;
3507 
3508 	work = kzalloc(sizeof *work, GFP_KERNEL);
3509 	if (!work)
3510 		return -ENOMEM;
3511 
3512 	if (!id_priv->cma_dev) {
3513 		ret = cma_bind_loopback(id_priv);
3514 		if (ret)
3515 			goto err;
3516 	}
3517 
3518 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3519 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3520 
3521 	enqueue_resolve_addr_work(work, id_priv);
3522 	return 0;
3523 err:
3524 	kfree(work);
3525 	return ret;
3526 }
3527 
3528 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3529 {
3530 	struct cma_work *work;
3531 	int ret;
3532 
3533 	work = kzalloc(sizeof *work, GFP_KERNEL);
3534 	if (!work)
3535 		return -ENOMEM;
3536 
3537 	if (!id_priv->cma_dev) {
3538 		ret = cma_resolve_ib_dev(id_priv);
3539 		if (ret)
3540 			goto err;
3541 	}
3542 
3543 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3544 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3545 
3546 	enqueue_resolve_addr_work(work, id_priv);
3547 	return 0;
3548 err:
3549 	kfree(work);
3550 	return ret;
3551 }
3552 
3553 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3554 {
3555 	struct rdma_id_private *id_priv;
3556 	unsigned long flags;
3557 	int ret;
3558 
3559 	id_priv = container_of(id, struct rdma_id_private, id);
3560 	spin_lock_irqsave(&id_priv->lock, flags);
3561 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3562 	    id_priv->state == RDMA_CM_IDLE) {
3563 		id_priv->reuseaddr = reuse;
3564 		ret = 0;
3565 	} else {
3566 		ret = -EINVAL;
3567 	}
3568 	spin_unlock_irqrestore(&id_priv->lock, flags);
3569 	return ret;
3570 }
3571 EXPORT_SYMBOL(rdma_set_reuseaddr);
3572 
3573 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3574 {
3575 	struct rdma_id_private *id_priv;
3576 	unsigned long flags;
3577 	int ret;
3578 
3579 	id_priv = container_of(id, struct rdma_id_private, id);
3580 	spin_lock_irqsave(&id_priv->lock, flags);
3581 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3582 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3583 		id_priv->afonly = afonly;
3584 		ret = 0;
3585 	} else {
3586 		ret = -EINVAL;
3587 	}
3588 	spin_unlock_irqrestore(&id_priv->lock, flags);
3589 	return ret;
3590 }
3591 EXPORT_SYMBOL(rdma_set_afonly);
3592 
3593 static void cma_bind_port(struct rdma_bind_list *bind_list,
3594 			  struct rdma_id_private *id_priv)
3595 {
3596 	struct sockaddr *addr;
3597 	struct sockaddr_ib *sib;
3598 	u64 sid, mask;
3599 	__be16 port;
3600 
3601 	lockdep_assert_held(&lock);
3602 
3603 	addr = cma_src_addr(id_priv);
3604 	port = htons(bind_list->port);
3605 
3606 	switch (addr->sa_family) {
3607 	case AF_INET:
3608 		((struct sockaddr_in *) addr)->sin_port = port;
3609 		break;
3610 	case AF_INET6:
3611 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3612 		break;
3613 	case AF_IB:
3614 		sib = (struct sockaddr_ib *) addr;
3615 		sid = be64_to_cpu(sib->sib_sid);
3616 		mask = be64_to_cpu(sib->sib_sid_mask);
3617 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3618 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3619 		break;
3620 	}
3621 	id_priv->bind_list = bind_list;
3622 	hlist_add_head(&id_priv->node, &bind_list->owners);
3623 }
3624 
3625 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3626 			  struct rdma_id_private *id_priv, unsigned short snum)
3627 {
3628 	struct rdma_bind_list *bind_list;
3629 	int ret;
3630 
3631 	lockdep_assert_held(&lock);
3632 
3633 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3634 	if (!bind_list)
3635 		return -ENOMEM;
3636 
3637 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3638 			   snum);
3639 	if (ret < 0)
3640 		goto err;
3641 
3642 	bind_list->ps = ps;
3643 	bind_list->port = snum;
3644 	cma_bind_port(bind_list, id_priv);
3645 	return 0;
3646 err:
3647 	kfree(bind_list);
3648 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3649 }
3650 
3651 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3652 			      struct rdma_id_private *id_priv)
3653 {
3654 	struct rdma_id_private *cur_id;
3655 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3656 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3657 	__be16 dport = cma_port(daddr);
3658 
3659 	lockdep_assert_held(&lock);
3660 
3661 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3662 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3663 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3664 		__be16 cur_dport = cma_port(cur_daddr);
3665 
3666 		if (id_priv == cur_id)
3667 			continue;
3668 
3669 		/* different dest port -> unique */
3670 		if (!cma_any_port(daddr) &&
3671 		    !cma_any_port(cur_daddr) &&
3672 		    (dport != cur_dport))
3673 			continue;
3674 
3675 		/* different src address -> unique */
3676 		if (!cma_any_addr(saddr) &&
3677 		    !cma_any_addr(cur_saddr) &&
3678 		    cma_addr_cmp(saddr, cur_saddr))
3679 			continue;
3680 
3681 		/* different dst address -> unique */
3682 		if (!cma_any_addr(daddr) &&
3683 		    !cma_any_addr(cur_daddr) &&
3684 		    cma_addr_cmp(daddr, cur_daddr))
3685 			continue;
3686 
3687 		return -EADDRNOTAVAIL;
3688 	}
3689 	return 0;
3690 }
3691 
3692 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3693 			      struct rdma_id_private *id_priv)
3694 {
3695 	static unsigned int last_used_port;
3696 	int low, high, remaining;
3697 	unsigned int rover;
3698 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3699 
3700 	lockdep_assert_held(&lock);
3701 
3702 	inet_get_local_port_range(net, &low, &high);
3703 	remaining = (high - low) + 1;
3704 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3705 retry:
3706 	if (last_used_port != rover) {
3707 		struct rdma_bind_list *bind_list;
3708 		int ret;
3709 
3710 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3711 
3712 		if (!bind_list) {
3713 			ret = cma_alloc_port(ps, id_priv, rover);
3714 		} else {
3715 			ret = cma_port_is_unique(bind_list, id_priv);
3716 			if (!ret)
3717 				cma_bind_port(bind_list, id_priv);
3718 		}
3719 		/*
3720 		 * Remember previously used port number in order to avoid
3721 		 * re-using same port immediately after it is closed.
3722 		 */
3723 		if (!ret)
3724 			last_used_port = rover;
3725 		if (ret != -EADDRNOTAVAIL)
3726 			return ret;
3727 	}
3728 	if (--remaining) {
3729 		rover++;
3730 		if ((rover < low) || (rover > high))
3731 			rover = low;
3732 		goto retry;
3733 	}
3734 	return -EADDRNOTAVAIL;
3735 }
3736 
3737 /*
3738  * Check that the requested port is available.  This is called when trying to
3739  * bind to a specific port, or when trying to listen on a bound port.  In
3740  * the latter case, the provided id_priv may already be on the bind_list, but
3741  * we still need to check that it's okay to start listening.
3742  */
3743 static int cma_check_port(struct rdma_bind_list *bind_list,
3744 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3745 {
3746 	struct rdma_id_private *cur_id;
3747 	struct sockaddr *addr, *cur_addr;
3748 
3749 	lockdep_assert_held(&lock);
3750 
3751 	addr = cma_src_addr(id_priv);
3752 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3753 		if (id_priv == cur_id)
3754 			continue;
3755 
3756 		if (reuseaddr && cur_id->reuseaddr)
3757 			continue;
3758 
3759 		cur_addr = cma_src_addr(cur_id);
3760 		if (id_priv->afonly && cur_id->afonly &&
3761 		    (addr->sa_family != cur_addr->sa_family))
3762 			continue;
3763 
3764 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3765 			return -EADDRNOTAVAIL;
3766 
3767 		if (!cma_addr_cmp(addr, cur_addr))
3768 			return -EADDRINUSE;
3769 	}
3770 	return 0;
3771 }
3772 
3773 static int cma_use_port(enum rdma_ucm_port_space ps,
3774 			struct rdma_id_private *id_priv)
3775 {
3776 	struct rdma_bind_list *bind_list;
3777 	unsigned short snum;
3778 	int ret;
3779 
3780 	lockdep_assert_held(&lock);
3781 
3782 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3783 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3784 		return -EACCES;
3785 
3786 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3787 	if (!bind_list) {
3788 		ret = cma_alloc_port(ps, id_priv, snum);
3789 	} else {
3790 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3791 		if (!ret)
3792 			cma_bind_port(bind_list, id_priv);
3793 	}
3794 	return ret;
3795 }
3796 
3797 static enum rdma_ucm_port_space
3798 cma_select_inet_ps(struct rdma_id_private *id_priv)
3799 {
3800 	switch (id_priv->id.ps) {
3801 	case RDMA_PS_TCP:
3802 	case RDMA_PS_UDP:
3803 	case RDMA_PS_IPOIB:
3804 	case RDMA_PS_IB:
3805 		return id_priv->id.ps;
3806 	default:
3807 
3808 		return 0;
3809 	}
3810 }
3811 
3812 static enum rdma_ucm_port_space
3813 cma_select_ib_ps(struct rdma_id_private *id_priv)
3814 {
3815 	enum rdma_ucm_port_space ps = 0;
3816 	struct sockaddr_ib *sib;
3817 	u64 sid_ps, mask, sid;
3818 
3819 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3820 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3821 	sid = be64_to_cpu(sib->sib_sid) & mask;
3822 
3823 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3824 		sid_ps = RDMA_IB_IP_PS_IB;
3825 		ps = RDMA_PS_IB;
3826 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3827 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3828 		sid_ps = RDMA_IB_IP_PS_TCP;
3829 		ps = RDMA_PS_TCP;
3830 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3831 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3832 		sid_ps = RDMA_IB_IP_PS_UDP;
3833 		ps = RDMA_PS_UDP;
3834 	}
3835 
3836 	if (ps) {
3837 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3838 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3839 						be64_to_cpu(sib->sib_sid_mask));
3840 	}
3841 	return ps;
3842 }
3843 
3844 static int cma_get_port(struct rdma_id_private *id_priv)
3845 {
3846 	enum rdma_ucm_port_space ps;
3847 	int ret;
3848 
3849 	if (cma_family(id_priv) != AF_IB)
3850 		ps = cma_select_inet_ps(id_priv);
3851 	else
3852 		ps = cma_select_ib_ps(id_priv);
3853 	if (!ps)
3854 		return -EPROTONOSUPPORT;
3855 
3856 	mutex_lock(&lock);
3857 	if (cma_any_port(cma_src_addr(id_priv)))
3858 		ret = cma_alloc_any_port(ps, id_priv);
3859 	else
3860 		ret = cma_use_port(ps, id_priv);
3861 	mutex_unlock(&lock);
3862 
3863 	return ret;
3864 }
3865 
3866 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3867 			       struct sockaddr *addr)
3868 {
3869 #if IS_ENABLED(CONFIG_IPV6)
3870 	struct sockaddr_in6 *sin6;
3871 
3872 	if (addr->sa_family != AF_INET6)
3873 		return 0;
3874 
3875 	sin6 = (struct sockaddr_in6 *) addr;
3876 
3877 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3878 		return 0;
3879 
3880 	if (!sin6->sin6_scope_id)
3881 			return -EINVAL;
3882 
3883 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3884 #endif
3885 	return 0;
3886 }
3887 
3888 int rdma_listen(struct rdma_cm_id *id, int backlog)
3889 {
3890 	struct rdma_id_private *id_priv =
3891 		container_of(id, struct rdma_id_private, id);
3892 	int ret;
3893 
3894 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3895 		struct sockaddr_in any_in = {
3896 			.sin_family = AF_INET,
3897 			.sin_addr.s_addr = htonl(INADDR_ANY),
3898 		};
3899 
3900 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3901 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3902 		if (ret)
3903 			return ret;
3904 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3905 					   RDMA_CM_LISTEN)))
3906 			return -EINVAL;
3907 	}
3908 
3909 	/*
3910 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3911 	 * any more, and has to be unique in the bind list.
3912 	 */
3913 	if (id_priv->reuseaddr) {
3914 		mutex_lock(&lock);
3915 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3916 		if (!ret)
3917 			id_priv->reuseaddr = 0;
3918 		mutex_unlock(&lock);
3919 		if (ret)
3920 			goto err;
3921 	}
3922 
3923 	id_priv->backlog = backlog;
3924 	if (id_priv->cma_dev) {
3925 		if (rdma_cap_ib_cm(id->device, 1)) {
3926 			ret = cma_ib_listen(id_priv);
3927 			if (ret)
3928 				goto err;
3929 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3930 			ret = cma_iw_listen(id_priv, backlog);
3931 			if (ret)
3932 				goto err;
3933 		} else {
3934 			ret = -ENOSYS;
3935 			goto err;
3936 		}
3937 	} else {
3938 		ret = cma_listen_on_all(id_priv);
3939 		if (ret)
3940 			goto err;
3941 	}
3942 
3943 	return 0;
3944 err:
3945 	id_priv->backlog = 0;
3946 	/*
3947 	 * All the failure paths that lead here will not allow the req_handler's
3948 	 * to have run.
3949 	 */
3950 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3951 	return ret;
3952 }
3953 EXPORT_SYMBOL(rdma_listen);
3954 
3955 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
3956 			      struct sockaddr *addr, const struct sockaddr *daddr)
3957 {
3958 	struct sockaddr *id_daddr;
3959 	int ret;
3960 
3961 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3962 	    addr->sa_family != AF_IB)
3963 		return -EAFNOSUPPORT;
3964 
3965 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3966 		return -EINVAL;
3967 
3968 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
3969 	if (ret)
3970 		goto err1;
3971 
3972 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3973 	if (!cma_any_addr(addr)) {
3974 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
3975 		if (ret)
3976 			goto err1;
3977 
3978 		ret = cma_acquire_dev_by_src_ip(id_priv);
3979 		if (ret)
3980 			goto err1;
3981 	}
3982 
3983 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3984 		if (addr->sa_family == AF_INET)
3985 			id_priv->afonly = 1;
3986 #if IS_ENABLED(CONFIG_IPV6)
3987 		else if (addr->sa_family == AF_INET6) {
3988 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3989 
3990 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3991 		}
3992 #endif
3993 	}
3994 	id_daddr = cma_dst_addr(id_priv);
3995 	if (daddr != id_daddr)
3996 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
3997 	id_daddr->sa_family = addr->sa_family;
3998 
3999 	ret = cma_get_port(id_priv);
4000 	if (ret)
4001 		goto err2;
4002 
4003 	if (!cma_any_addr(addr))
4004 		rdma_restrack_add(&id_priv->res);
4005 	return 0;
4006 err2:
4007 	if (id_priv->cma_dev)
4008 		cma_release_dev(id_priv);
4009 err1:
4010 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4011 	return ret;
4012 }
4013 
4014 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4015 			 const struct sockaddr *dst_addr)
4016 {
4017 	struct rdma_id_private *id_priv =
4018 		container_of(id, struct rdma_id_private, id);
4019 	struct sockaddr_storage zero_sock = {};
4020 
4021 	if (src_addr && src_addr->sa_family)
4022 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4023 
4024 	/*
4025 	 * When the src_addr is not specified, automatically supply an any addr
4026 	 */
4027 	zero_sock.ss_family = dst_addr->sa_family;
4028 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4029 		struct sockaddr_in6 *src_addr6 =
4030 			(struct sockaddr_in6 *)&zero_sock;
4031 		struct sockaddr_in6 *dst_addr6 =
4032 			(struct sockaddr_in6 *)dst_addr;
4033 
4034 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4035 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4036 			id->route.addr.dev_addr.bound_dev_if =
4037 				dst_addr6->sin6_scope_id;
4038 	} else if (dst_addr->sa_family == AF_IB) {
4039 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4040 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4041 	}
4042 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4043 }
4044 
4045 /*
4046  * If required, resolve the source address for bind and leave the id_priv in
4047  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4048  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4049  * ignored.
4050  */
4051 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4052 			       struct sockaddr *src_addr,
4053 			       const struct sockaddr *dst_addr)
4054 {
4055 	int ret;
4056 
4057 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4058 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4059 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4060 		if (ret)
4061 			return ret;
4062 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4063 					   RDMA_CM_ADDR_QUERY)))
4064 			return -EINVAL;
4065 
4066 	}
4067 
4068 	if (cma_family(id_priv) != dst_addr->sa_family) {
4069 		ret = -EINVAL;
4070 		goto err_state;
4071 	}
4072 	return 0;
4073 
4074 err_state:
4075 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4076 	return ret;
4077 }
4078 
4079 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4080 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4081 {
4082 	struct rdma_id_private *id_priv =
4083 		container_of(id, struct rdma_id_private, id);
4084 	int ret;
4085 
4086 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4087 	if (ret)
4088 		return ret;
4089 
4090 	if (cma_any_addr(dst_addr)) {
4091 		ret = cma_resolve_loopback(id_priv);
4092 	} else {
4093 		if (dst_addr->sa_family == AF_IB) {
4094 			ret = cma_resolve_ib_addr(id_priv);
4095 		} else {
4096 			/*
4097 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4098 			 * rdma_resolve_ip() is called, eg through the error
4099 			 * path in addr_handler(). If this happens the existing
4100 			 * request must be canceled before issuing a new one.
4101 			 * Since canceling a request is a bit slow and this
4102 			 * oddball path is rare, keep track once a request has
4103 			 * been issued. The track turns out to be a permanent
4104 			 * state since this is the only cancel as it is
4105 			 * immediately before rdma_resolve_ip().
4106 			 */
4107 			if (id_priv->used_resolve_ip)
4108 				rdma_addr_cancel(&id->route.addr.dev_addr);
4109 			else
4110 				id_priv->used_resolve_ip = 1;
4111 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4112 					      &id->route.addr.dev_addr,
4113 					      timeout_ms, addr_handler,
4114 					      false, id_priv);
4115 		}
4116 	}
4117 	if (ret)
4118 		goto err;
4119 
4120 	return 0;
4121 err:
4122 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4123 	return ret;
4124 }
4125 EXPORT_SYMBOL(rdma_resolve_addr);
4126 
4127 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4128 {
4129 	struct rdma_id_private *id_priv =
4130 		container_of(id, struct rdma_id_private, id);
4131 
4132 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4133 }
4134 EXPORT_SYMBOL(rdma_bind_addr);
4135 
4136 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4137 {
4138 	struct cma_hdr *cma_hdr;
4139 
4140 	cma_hdr = hdr;
4141 	cma_hdr->cma_version = CMA_VERSION;
4142 	if (cma_family(id_priv) == AF_INET) {
4143 		struct sockaddr_in *src4, *dst4;
4144 
4145 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4146 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4147 
4148 		cma_set_ip_ver(cma_hdr, 4);
4149 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4150 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4151 		cma_hdr->port = src4->sin_port;
4152 	} else if (cma_family(id_priv) == AF_INET6) {
4153 		struct sockaddr_in6 *src6, *dst6;
4154 
4155 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4156 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4157 
4158 		cma_set_ip_ver(cma_hdr, 6);
4159 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4160 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4161 		cma_hdr->port = src6->sin6_port;
4162 	}
4163 	return 0;
4164 }
4165 
4166 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4167 				const struct ib_cm_event *ib_event)
4168 {
4169 	struct rdma_id_private *id_priv = cm_id->context;
4170 	struct rdma_cm_event event = {};
4171 	const struct ib_cm_sidr_rep_event_param *rep =
4172 				&ib_event->param.sidr_rep_rcvd;
4173 	int ret;
4174 
4175 	mutex_lock(&id_priv->handler_mutex);
4176 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4177 		goto out;
4178 
4179 	switch (ib_event->event) {
4180 	case IB_CM_SIDR_REQ_ERROR:
4181 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4182 		event.status = -ETIMEDOUT;
4183 		break;
4184 	case IB_CM_SIDR_REP_RECEIVED:
4185 		event.param.ud.private_data = ib_event->private_data;
4186 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4187 		if (rep->status != IB_SIDR_SUCCESS) {
4188 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4189 			event.status = ib_event->param.sidr_rep_rcvd.status;
4190 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4191 					     event.status);
4192 			break;
4193 		}
4194 		ret = cma_set_qkey(id_priv, rep->qkey);
4195 		if (ret) {
4196 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4197 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4198 			event.status = ret;
4199 			break;
4200 		}
4201 		ib_init_ah_attr_from_path(id_priv->id.device,
4202 					  id_priv->id.port_num,
4203 					  id_priv->id.route.path_rec,
4204 					  &event.param.ud.ah_attr,
4205 					  rep->sgid_attr);
4206 		event.param.ud.qp_num = rep->qpn;
4207 		event.param.ud.qkey = rep->qkey;
4208 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4209 		event.status = 0;
4210 		break;
4211 	default:
4212 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4213 		       ib_event->event);
4214 		goto out;
4215 	}
4216 
4217 	ret = cma_cm_event_handler(id_priv, &event);
4218 
4219 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4220 	if (ret) {
4221 		/* Destroy the CM ID by returning a non-zero value. */
4222 		id_priv->cm_id.ib = NULL;
4223 		destroy_id_handler_unlock(id_priv);
4224 		return ret;
4225 	}
4226 out:
4227 	mutex_unlock(&id_priv->handler_mutex);
4228 	return 0;
4229 }
4230 
4231 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4232 			      struct rdma_conn_param *conn_param)
4233 {
4234 	struct ib_cm_sidr_req_param req;
4235 	struct ib_cm_id	*id;
4236 	void *private_data;
4237 	u8 offset;
4238 	int ret;
4239 
4240 	memset(&req, 0, sizeof req);
4241 	offset = cma_user_data_offset(id_priv);
4242 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4243 		return -EINVAL;
4244 
4245 	if (req.private_data_len) {
4246 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4247 		if (!private_data)
4248 			return -ENOMEM;
4249 	} else {
4250 		private_data = NULL;
4251 	}
4252 
4253 	if (conn_param->private_data && conn_param->private_data_len)
4254 		memcpy(private_data + offset, conn_param->private_data,
4255 		       conn_param->private_data_len);
4256 
4257 	if (private_data) {
4258 		ret = cma_format_hdr(private_data, id_priv);
4259 		if (ret)
4260 			goto out;
4261 		req.private_data = private_data;
4262 	}
4263 
4264 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4265 			     id_priv);
4266 	if (IS_ERR(id)) {
4267 		ret = PTR_ERR(id);
4268 		goto out;
4269 	}
4270 	id_priv->cm_id.ib = id;
4271 
4272 	req.path = id_priv->id.route.path_rec;
4273 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4274 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4275 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4276 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4277 
4278 	trace_cm_send_sidr_req(id_priv);
4279 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4280 	if (ret) {
4281 		ib_destroy_cm_id(id_priv->cm_id.ib);
4282 		id_priv->cm_id.ib = NULL;
4283 	}
4284 out:
4285 	kfree(private_data);
4286 	return ret;
4287 }
4288 
4289 static int cma_connect_ib(struct rdma_id_private *id_priv,
4290 			  struct rdma_conn_param *conn_param)
4291 {
4292 	struct ib_cm_req_param req;
4293 	struct rdma_route *route;
4294 	void *private_data;
4295 	struct ib_cm_id	*id;
4296 	u8 offset;
4297 	int ret;
4298 
4299 	memset(&req, 0, sizeof req);
4300 	offset = cma_user_data_offset(id_priv);
4301 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4302 		return -EINVAL;
4303 
4304 	if (req.private_data_len) {
4305 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4306 		if (!private_data)
4307 			return -ENOMEM;
4308 	} else {
4309 		private_data = NULL;
4310 	}
4311 
4312 	if (conn_param->private_data && conn_param->private_data_len)
4313 		memcpy(private_data + offset, conn_param->private_data,
4314 		       conn_param->private_data_len);
4315 
4316 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4317 	if (IS_ERR(id)) {
4318 		ret = PTR_ERR(id);
4319 		goto out;
4320 	}
4321 	id_priv->cm_id.ib = id;
4322 
4323 	route = &id_priv->id.route;
4324 	if (private_data) {
4325 		ret = cma_format_hdr(private_data, id_priv);
4326 		if (ret)
4327 			goto out;
4328 		req.private_data = private_data;
4329 	}
4330 
4331 	req.primary_path = &route->path_rec[0];
4332 	req.primary_path_inbound = route->path_rec_inbound;
4333 	req.primary_path_outbound = route->path_rec_outbound;
4334 	if (route->num_pri_alt_paths == 2)
4335 		req.alternate_path = &route->path_rec[1];
4336 
4337 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4338 	/* Alternate path SGID attribute currently unsupported */
4339 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4340 	req.qp_num = id_priv->qp_num;
4341 	req.qp_type = id_priv->id.qp_type;
4342 	req.starting_psn = id_priv->seq_num;
4343 	req.responder_resources = conn_param->responder_resources;
4344 	req.initiator_depth = conn_param->initiator_depth;
4345 	req.flow_control = conn_param->flow_control;
4346 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4347 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4348 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4349 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4350 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4351 	req.srq = id_priv->srq ? 1 : 0;
4352 	req.ece.vendor_id = id_priv->ece.vendor_id;
4353 	req.ece.attr_mod = id_priv->ece.attr_mod;
4354 
4355 	trace_cm_send_req(id_priv);
4356 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4357 out:
4358 	if (ret && !IS_ERR(id)) {
4359 		ib_destroy_cm_id(id);
4360 		id_priv->cm_id.ib = NULL;
4361 	}
4362 
4363 	kfree(private_data);
4364 	return ret;
4365 }
4366 
4367 static int cma_connect_iw(struct rdma_id_private *id_priv,
4368 			  struct rdma_conn_param *conn_param)
4369 {
4370 	struct iw_cm_id *cm_id;
4371 	int ret;
4372 	struct iw_cm_conn_param iw_param;
4373 
4374 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4375 	if (IS_ERR(cm_id))
4376 		return PTR_ERR(cm_id);
4377 
4378 	mutex_lock(&id_priv->qp_mutex);
4379 	cm_id->tos = id_priv->tos;
4380 	cm_id->tos_set = id_priv->tos_set;
4381 	mutex_unlock(&id_priv->qp_mutex);
4382 
4383 	id_priv->cm_id.iw = cm_id;
4384 
4385 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4386 	       rdma_addr_size(cma_src_addr(id_priv)));
4387 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4388 	       rdma_addr_size(cma_dst_addr(id_priv)));
4389 
4390 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4391 	if (ret)
4392 		goto out;
4393 
4394 	if (conn_param) {
4395 		iw_param.ord = conn_param->initiator_depth;
4396 		iw_param.ird = conn_param->responder_resources;
4397 		iw_param.private_data = conn_param->private_data;
4398 		iw_param.private_data_len = conn_param->private_data_len;
4399 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4400 	} else {
4401 		memset(&iw_param, 0, sizeof iw_param);
4402 		iw_param.qpn = id_priv->qp_num;
4403 	}
4404 	ret = iw_cm_connect(cm_id, &iw_param);
4405 out:
4406 	if (ret) {
4407 		iw_destroy_cm_id(cm_id);
4408 		id_priv->cm_id.iw = NULL;
4409 	}
4410 	return ret;
4411 }
4412 
4413 /**
4414  * rdma_connect_locked - Initiate an active connection request.
4415  * @id: Connection identifier to connect.
4416  * @conn_param: Connection information used for connected QPs.
4417  *
4418  * Same as rdma_connect() but can only be called from the
4419  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4420  */
4421 int rdma_connect_locked(struct rdma_cm_id *id,
4422 			struct rdma_conn_param *conn_param)
4423 {
4424 	struct rdma_id_private *id_priv =
4425 		container_of(id, struct rdma_id_private, id);
4426 	int ret;
4427 
4428 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4429 		return -EINVAL;
4430 
4431 	if (!id->qp) {
4432 		id_priv->qp_num = conn_param->qp_num;
4433 		id_priv->srq = conn_param->srq;
4434 	}
4435 
4436 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4437 		if (id->qp_type == IB_QPT_UD)
4438 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4439 		else
4440 			ret = cma_connect_ib(id_priv, conn_param);
4441 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4442 		ret = cma_connect_iw(id_priv, conn_param);
4443 	} else {
4444 		ret = -ENOSYS;
4445 	}
4446 	if (ret)
4447 		goto err_state;
4448 	return 0;
4449 err_state:
4450 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4451 	return ret;
4452 }
4453 EXPORT_SYMBOL(rdma_connect_locked);
4454 
4455 /**
4456  * rdma_connect - Initiate an active connection request.
4457  * @id: Connection identifier to connect.
4458  * @conn_param: Connection information used for connected QPs.
4459  *
4460  * Users must have resolved a route for the rdma_cm_id to connect with by having
4461  * called rdma_resolve_route before calling this routine.
4462  *
4463  * This call will either connect to a remote QP or obtain remote QP information
4464  * for unconnected rdma_cm_id's.  The actual operation is based on the
4465  * rdma_cm_id's port space.
4466  */
4467 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4468 {
4469 	struct rdma_id_private *id_priv =
4470 		container_of(id, struct rdma_id_private, id);
4471 	int ret;
4472 
4473 	mutex_lock(&id_priv->handler_mutex);
4474 	ret = rdma_connect_locked(id, conn_param);
4475 	mutex_unlock(&id_priv->handler_mutex);
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL(rdma_connect);
4479 
4480 /**
4481  * rdma_connect_ece - Initiate an active connection request with ECE data.
4482  * @id: Connection identifier to connect.
4483  * @conn_param: Connection information used for connected QPs.
4484  * @ece: ECE parameters
4485  *
4486  * See rdma_connect() explanation.
4487  */
4488 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4489 		     struct rdma_ucm_ece *ece)
4490 {
4491 	struct rdma_id_private *id_priv =
4492 		container_of(id, struct rdma_id_private, id);
4493 
4494 	id_priv->ece.vendor_id = ece->vendor_id;
4495 	id_priv->ece.attr_mod = ece->attr_mod;
4496 
4497 	return rdma_connect(id, conn_param);
4498 }
4499 EXPORT_SYMBOL(rdma_connect_ece);
4500 
4501 static int cma_accept_ib(struct rdma_id_private *id_priv,
4502 			 struct rdma_conn_param *conn_param)
4503 {
4504 	struct ib_cm_rep_param rep;
4505 	int ret;
4506 
4507 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4508 	if (ret)
4509 		goto out;
4510 
4511 	ret = cma_modify_qp_rts(id_priv, conn_param);
4512 	if (ret)
4513 		goto out;
4514 
4515 	memset(&rep, 0, sizeof rep);
4516 	rep.qp_num = id_priv->qp_num;
4517 	rep.starting_psn = id_priv->seq_num;
4518 	rep.private_data = conn_param->private_data;
4519 	rep.private_data_len = conn_param->private_data_len;
4520 	rep.responder_resources = conn_param->responder_resources;
4521 	rep.initiator_depth = conn_param->initiator_depth;
4522 	rep.failover_accepted = 0;
4523 	rep.flow_control = conn_param->flow_control;
4524 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4525 	rep.srq = id_priv->srq ? 1 : 0;
4526 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4527 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4528 
4529 	trace_cm_send_rep(id_priv);
4530 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4531 out:
4532 	return ret;
4533 }
4534 
4535 static int cma_accept_iw(struct rdma_id_private *id_priv,
4536 		  struct rdma_conn_param *conn_param)
4537 {
4538 	struct iw_cm_conn_param iw_param;
4539 	int ret;
4540 
4541 	if (!conn_param)
4542 		return -EINVAL;
4543 
4544 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4545 	if (ret)
4546 		return ret;
4547 
4548 	iw_param.ord = conn_param->initiator_depth;
4549 	iw_param.ird = conn_param->responder_resources;
4550 	iw_param.private_data = conn_param->private_data;
4551 	iw_param.private_data_len = conn_param->private_data_len;
4552 	if (id_priv->id.qp)
4553 		iw_param.qpn = id_priv->qp_num;
4554 	else
4555 		iw_param.qpn = conn_param->qp_num;
4556 
4557 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4558 }
4559 
4560 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4561 			     enum ib_cm_sidr_status status, u32 qkey,
4562 			     const void *private_data, int private_data_len)
4563 {
4564 	struct ib_cm_sidr_rep_param rep;
4565 	int ret;
4566 
4567 	memset(&rep, 0, sizeof rep);
4568 	rep.status = status;
4569 	if (status == IB_SIDR_SUCCESS) {
4570 		ret = cma_set_qkey(id_priv, qkey);
4571 		if (ret)
4572 			return ret;
4573 		rep.qp_num = id_priv->qp_num;
4574 		rep.qkey = id_priv->qkey;
4575 
4576 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4577 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4578 	}
4579 
4580 	rep.private_data = private_data;
4581 	rep.private_data_len = private_data_len;
4582 
4583 	trace_cm_send_sidr_rep(id_priv);
4584 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4585 }
4586 
4587 /**
4588  * rdma_accept - Called to accept a connection request or response.
4589  * @id: Connection identifier associated with the request.
4590  * @conn_param: Information needed to establish the connection.  This must be
4591  *   provided if accepting a connection request.  If accepting a connection
4592  *   response, this parameter must be NULL.
4593  *
4594  * Typically, this routine is only called by the listener to accept a connection
4595  * request.  It must also be called on the active side of a connection if the
4596  * user is performing their own QP transitions.
4597  *
4598  * In the case of error, a reject message is sent to the remote side and the
4599  * state of the qp associated with the id is modified to error, such that any
4600  * previously posted receive buffers would be flushed.
4601  *
4602  * This function is for use by kernel ULPs and must be called from under the
4603  * handler callback.
4604  */
4605 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4606 {
4607 	struct rdma_id_private *id_priv =
4608 		container_of(id, struct rdma_id_private, id);
4609 	int ret;
4610 
4611 	lockdep_assert_held(&id_priv->handler_mutex);
4612 
4613 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4614 		return -EINVAL;
4615 
4616 	if (!id->qp && conn_param) {
4617 		id_priv->qp_num = conn_param->qp_num;
4618 		id_priv->srq = conn_param->srq;
4619 	}
4620 
4621 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4622 		if (id->qp_type == IB_QPT_UD) {
4623 			if (conn_param)
4624 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4625 							conn_param->qkey,
4626 							conn_param->private_data,
4627 							conn_param->private_data_len);
4628 			else
4629 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4630 							0, NULL, 0);
4631 		} else {
4632 			if (conn_param)
4633 				ret = cma_accept_ib(id_priv, conn_param);
4634 			else
4635 				ret = cma_rep_recv(id_priv);
4636 		}
4637 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4638 		ret = cma_accept_iw(id_priv, conn_param);
4639 	} else {
4640 		ret = -ENOSYS;
4641 	}
4642 	if (ret)
4643 		goto reject;
4644 
4645 	return 0;
4646 reject:
4647 	cma_modify_qp_err(id_priv);
4648 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4649 	return ret;
4650 }
4651 EXPORT_SYMBOL(rdma_accept);
4652 
4653 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4654 		    struct rdma_ucm_ece *ece)
4655 {
4656 	struct rdma_id_private *id_priv =
4657 		container_of(id, struct rdma_id_private, id);
4658 
4659 	id_priv->ece.vendor_id = ece->vendor_id;
4660 	id_priv->ece.attr_mod = ece->attr_mod;
4661 
4662 	return rdma_accept(id, conn_param);
4663 }
4664 EXPORT_SYMBOL(rdma_accept_ece);
4665 
4666 void rdma_lock_handler(struct rdma_cm_id *id)
4667 {
4668 	struct rdma_id_private *id_priv =
4669 		container_of(id, struct rdma_id_private, id);
4670 
4671 	mutex_lock(&id_priv->handler_mutex);
4672 }
4673 EXPORT_SYMBOL(rdma_lock_handler);
4674 
4675 void rdma_unlock_handler(struct rdma_cm_id *id)
4676 {
4677 	struct rdma_id_private *id_priv =
4678 		container_of(id, struct rdma_id_private, id);
4679 
4680 	mutex_unlock(&id_priv->handler_mutex);
4681 }
4682 EXPORT_SYMBOL(rdma_unlock_handler);
4683 
4684 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4685 {
4686 	struct rdma_id_private *id_priv;
4687 	int ret;
4688 
4689 	id_priv = container_of(id, struct rdma_id_private, id);
4690 	if (!id_priv->cm_id.ib)
4691 		return -EINVAL;
4692 
4693 	switch (id->device->node_type) {
4694 	case RDMA_NODE_IB_CA:
4695 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4696 		break;
4697 	default:
4698 		ret = 0;
4699 		break;
4700 	}
4701 	return ret;
4702 }
4703 EXPORT_SYMBOL(rdma_notify);
4704 
4705 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4706 		u8 private_data_len, u8 reason)
4707 {
4708 	struct rdma_id_private *id_priv;
4709 	int ret;
4710 
4711 	id_priv = container_of(id, struct rdma_id_private, id);
4712 	if (!id_priv->cm_id.ib)
4713 		return -EINVAL;
4714 
4715 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4716 		if (id->qp_type == IB_QPT_UD) {
4717 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4718 						private_data, private_data_len);
4719 		} else {
4720 			trace_cm_send_rej(id_priv);
4721 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4722 					     private_data, private_data_len);
4723 		}
4724 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4725 		ret = iw_cm_reject(id_priv->cm_id.iw,
4726 				   private_data, private_data_len);
4727 	} else {
4728 		ret = -ENOSYS;
4729 	}
4730 
4731 	return ret;
4732 }
4733 EXPORT_SYMBOL(rdma_reject);
4734 
4735 int rdma_disconnect(struct rdma_cm_id *id)
4736 {
4737 	struct rdma_id_private *id_priv;
4738 	int ret;
4739 
4740 	id_priv = container_of(id, struct rdma_id_private, id);
4741 	if (!id_priv->cm_id.ib)
4742 		return -EINVAL;
4743 
4744 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4745 		ret = cma_modify_qp_err(id_priv);
4746 		if (ret)
4747 			goto out;
4748 		/* Initiate or respond to a disconnect. */
4749 		trace_cm_disconnect(id_priv);
4750 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4751 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4752 				trace_cm_sent_drep(id_priv);
4753 		} else {
4754 			trace_cm_sent_dreq(id_priv);
4755 		}
4756 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4757 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4758 	} else
4759 		ret = -EINVAL;
4760 
4761 out:
4762 	return ret;
4763 }
4764 EXPORT_SYMBOL(rdma_disconnect);
4765 
4766 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4767 			      struct ib_sa_multicast *multicast,
4768 			      struct rdma_cm_event *event,
4769 			      struct cma_multicast *mc)
4770 {
4771 	struct rdma_dev_addr *dev_addr;
4772 	enum ib_gid_type gid_type;
4773 	struct net_device *ndev;
4774 
4775 	if (!status)
4776 		status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4777 	else
4778 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4779 				     status);
4780 
4781 	event->status = status;
4782 	event->param.ud.private_data = mc->context;
4783 	if (status) {
4784 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4785 		return;
4786 	}
4787 
4788 	dev_addr = &id_priv->id.route.addr.dev_addr;
4789 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4790 	gid_type =
4791 		id_priv->cma_dev
4792 			->default_gid_type[id_priv->id.port_num -
4793 					   rdma_start_port(
4794 						   id_priv->cma_dev->device)];
4795 
4796 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4797 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4798 				     &multicast->rec, ndev, gid_type,
4799 				     &event->param.ud.ah_attr)) {
4800 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4801 		goto out;
4802 	}
4803 
4804 	event->param.ud.qp_num = 0xFFFFFF;
4805 	event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4806 
4807 out:
4808 	if (ndev)
4809 		dev_put(ndev);
4810 }
4811 
4812 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4813 {
4814 	struct cma_multicast *mc = multicast->context;
4815 	struct rdma_id_private *id_priv = mc->id_priv;
4816 	struct rdma_cm_event event = {};
4817 	int ret = 0;
4818 
4819 	mutex_lock(&id_priv->handler_mutex);
4820 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4821 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4822 		goto out;
4823 
4824 	cma_make_mc_event(status, id_priv, multicast, &event, mc);
4825 	ret = cma_cm_event_handler(id_priv, &event);
4826 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4827 	WARN_ON(ret);
4828 
4829 out:
4830 	mutex_unlock(&id_priv->handler_mutex);
4831 	return 0;
4832 }
4833 
4834 static void cma_set_mgid(struct rdma_id_private *id_priv,
4835 			 struct sockaddr *addr, union ib_gid *mgid)
4836 {
4837 	unsigned char mc_map[MAX_ADDR_LEN];
4838 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4839 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4840 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4841 
4842 	if (cma_any_addr(addr)) {
4843 		memset(mgid, 0, sizeof *mgid);
4844 	} else if ((addr->sa_family == AF_INET6) &&
4845 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4846 								 0xFF10A01B)) {
4847 		/* IPv6 address is an SA assigned MGID. */
4848 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4849 	} else if (addr->sa_family == AF_IB) {
4850 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4851 	} else if (addr->sa_family == AF_INET6) {
4852 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4853 		if (id_priv->id.ps == RDMA_PS_UDP)
4854 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4855 		*mgid = *(union ib_gid *) (mc_map + 4);
4856 	} else {
4857 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4858 		if (id_priv->id.ps == RDMA_PS_UDP)
4859 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4860 		*mgid = *(union ib_gid *) (mc_map + 4);
4861 	}
4862 }
4863 
4864 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4865 				 struct cma_multicast *mc)
4866 {
4867 	struct ib_sa_mcmember_rec rec;
4868 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4869 	ib_sa_comp_mask comp_mask;
4870 	int ret;
4871 
4872 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4873 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4874 				     &rec.mgid, &rec);
4875 	if (ret)
4876 		return ret;
4877 
4878 	ret = cma_set_qkey(id_priv, 0);
4879 	if (ret)
4880 		return ret;
4881 
4882 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4883 	rec.qkey = cpu_to_be32(id_priv->qkey);
4884 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4885 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4886 	rec.join_state = mc->join_state;
4887 
4888 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4889 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4890 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4891 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4892 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4893 
4894 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4895 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4896 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4897 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4898 			     IB_SA_MCMEMBER_REC_MTU |
4899 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4900 
4901 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4902 					 id_priv->id.port_num, &rec, comp_mask,
4903 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4904 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4905 }
4906 
4907 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4908 			      enum ib_gid_type gid_type)
4909 {
4910 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4911 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4912 
4913 	if (cma_any_addr(addr)) {
4914 		memset(mgid, 0, sizeof *mgid);
4915 	} else if (addr->sa_family == AF_INET6) {
4916 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4917 	} else {
4918 		mgid->raw[0] =
4919 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4920 		mgid->raw[1] =
4921 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4922 		mgid->raw[2] = 0;
4923 		mgid->raw[3] = 0;
4924 		mgid->raw[4] = 0;
4925 		mgid->raw[5] = 0;
4926 		mgid->raw[6] = 0;
4927 		mgid->raw[7] = 0;
4928 		mgid->raw[8] = 0;
4929 		mgid->raw[9] = 0;
4930 		mgid->raw[10] = 0xff;
4931 		mgid->raw[11] = 0xff;
4932 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4933 	}
4934 }
4935 
4936 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4937 				   struct cma_multicast *mc)
4938 {
4939 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4940 	int err = 0;
4941 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4942 	struct net_device *ndev = NULL;
4943 	struct ib_sa_multicast ib;
4944 	enum ib_gid_type gid_type;
4945 	bool send_only;
4946 
4947 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4948 
4949 	if (cma_zero_addr(addr))
4950 		return -EINVAL;
4951 
4952 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4953 		   rdma_start_port(id_priv->cma_dev->device)];
4954 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4955 
4956 	ib.rec.pkey = cpu_to_be16(0xffff);
4957 	if (id_priv->id.ps == RDMA_PS_UDP)
4958 		ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4959 
4960 	if (dev_addr->bound_dev_if)
4961 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4962 	if (!ndev)
4963 		return -ENODEV;
4964 
4965 	ib.rec.rate = iboe_get_rate(ndev);
4966 	ib.rec.hop_limit = 1;
4967 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4968 
4969 	if (addr->sa_family == AF_INET) {
4970 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4971 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4972 			if (!send_only) {
4973 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4974 						    true);
4975 			}
4976 		}
4977 	} else {
4978 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4979 			err = -ENOTSUPP;
4980 	}
4981 	dev_put(ndev);
4982 	if (err || !ib.rec.mtu)
4983 		return err ?: -EINVAL;
4984 
4985 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4986 		    &ib.rec.port_gid);
4987 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4988 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4989 	queue_work(cma_wq, &mc->iboe_join.work);
4990 	return 0;
4991 }
4992 
4993 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4994 			u8 join_state, void *context)
4995 {
4996 	struct rdma_id_private *id_priv =
4997 		container_of(id, struct rdma_id_private, id);
4998 	struct cma_multicast *mc;
4999 	int ret;
5000 
5001 	/* Not supported for kernel QPs */
5002 	if (WARN_ON(id->qp))
5003 		return -EINVAL;
5004 
5005 	/* ULP is calling this wrong. */
5006 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5007 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5008 		return -EINVAL;
5009 
5010 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5011 	if (!mc)
5012 		return -ENOMEM;
5013 
5014 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5015 	mc->context = context;
5016 	mc->id_priv = id_priv;
5017 	mc->join_state = join_state;
5018 
5019 	if (rdma_protocol_roce(id->device, id->port_num)) {
5020 		ret = cma_iboe_join_multicast(id_priv, mc);
5021 		if (ret)
5022 			goto out_err;
5023 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5024 		ret = cma_join_ib_multicast(id_priv, mc);
5025 		if (ret)
5026 			goto out_err;
5027 	} else {
5028 		ret = -ENOSYS;
5029 		goto out_err;
5030 	}
5031 
5032 	spin_lock(&id_priv->lock);
5033 	list_add(&mc->list, &id_priv->mc_list);
5034 	spin_unlock(&id_priv->lock);
5035 
5036 	return 0;
5037 out_err:
5038 	kfree(mc);
5039 	return ret;
5040 }
5041 EXPORT_SYMBOL(rdma_join_multicast);
5042 
5043 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5044 {
5045 	struct rdma_id_private *id_priv;
5046 	struct cma_multicast *mc;
5047 
5048 	id_priv = container_of(id, struct rdma_id_private, id);
5049 	spin_lock_irq(&id_priv->lock);
5050 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5051 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5052 			continue;
5053 		list_del(&mc->list);
5054 		spin_unlock_irq(&id_priv->lock);
5055 
5056 		WARN_ON(id_priv->cma_dev->device != id->device);
5057 		destroy_mc(id_priv, mc);
5058 		return;
5059 	}
5060 	spin_unlock_irq(&id_priv->lock);
5061 }
5062 EXPORT_SYMBOL(rdma_leave_multicast);
5063 
5064 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5065 {
5066 	struct rdma_dev_addr *dev_addr;
5067 	struct cma_work *work;
5068 
5069 	dev_addr = &id_priv->id.route.addr.dev_addr;
5070 
5071 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5072 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5073 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5074 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5075 			ndev->name, &id_priv->id);
5076 		work = kzalloc(sizeof *work, GFP_KERNEL);
5077 		if (!work)
5078 			return -ENOMEM;
5079 
5080 		INIT_WORK(&work->work, cma_work_handler);
5081 		work->id = id_priv;
5082 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5083 		cma_id_get(id_priv);
5084 		queue_work(cma_wq, &work->work);
5085 	}
5086 
5087 	return 0;
5088 }
5089 
5090 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5091 			       void *ptr)
5092 {
5093 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5094 	struct cma_device *cma_dev;
5095 	struct rdma_id_private *id_priv;
5096 	int ret = NOTIFY_DONE;
5097 
5098 	if (event != NETDEV_BONDING_FAILOVER)
5099 		return NOTIFY_DONE;
5100 
5101 	if (!netif_is_bond_master(ndev))
5102 		return NOTIFY_DONE;
5103 
5104 	mutex_lock(&lock);
5105 	list_for_each_entry(cma_dev, &dev_list, list)
5106 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5107 			ret = cma_netdev_change(ndev, id_priv);
5108 			if (ret)
5109 				goto out;
5110 		}
5111 
5112 out:
5113 	mutex_unlock(&lock);
5114 	return ret;
5115 }
5116 
5117 static void cma_netevent_work_handler(struct work_struct *_work)
5118 {
5119 	struct rdma_id_private *id_priv =
5120 		container_of(_work, struct rdma_id_private, id.net_work);
5121 	struct rdma_cm_event event = {};
5122 
5123 	mutex_lock(&id_priv->handler_mutex);
5124 
5125 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5126 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5127 		goto out_unlock;
5128 
5129 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5130 	event.status = -ETIMEDOUT;
5131 
5132 	if (cma_cm_event_handler(id_priv, &event)) {
5133 		__acquire(&id_priv->handler_mutex);
5134 		id_priv->cm_id.ib = NULL;
5135 		cma_id_put(id_priv);
5136 		destroy_id_handler_unlock(id_priv);
5137 		return;
5138 	}
5139 
5140 out_unlock:
5141 	mutex_unlock(&id_priv->handler_mutex);
5142 	cma_id_put(id_priv);
5143 }
5144 
5145 static int cma_netevent_callback(struct notifier_block *self,
5146 				 unsigned long event, void *ctx)
5147 {
5148 	struct id_table_entry *ips_node = NULL;
5149 	struct rdma_id_private *current_id;
5150 	struct neighbour *neigh = ctx;
5151 	unsigned long flags;
5152 
5153 	if (event != NETEVENT_NEIGH_UPDATE)
5154 		return NOTIFY_DONE;
5155 
5156 	spin_lock_irqsave(&id_table_lock, flags);
5157 	if (neigh->tbl->family == AF_INET6) {
5158 		struct sockaddr_in6 neigh_sock_6;
5159 
5160 		neigh_sock_6.sin6_family = AF_INET6;
5161 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5162 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5163 					     (struct sockaddr *)&neigh_sock_6);
5164 	} else if (neigh->tbl->family == AF_INET) {
5165 		struct sockaddr_in neigh_sock_4;
5166 
5167 		neigh_sock_4.sin_family = AF_INET;
5168 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5169 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5170 					     (struct sockaddr *)&neigh_sock_4);
5171 	} else
5172 		goto out;
5173 
5174 	if (!ips_node)
5175 		goto out;
5176 
5177 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5178 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5179 			   neigh->ha, ETH_ALEN))
5180 			continue;
5181 		INIT_WORK(&current_id->id.net_work, cma_netevent_work_handler);
5182 		cma_id_get(current_id);
5183 		queue_work(cma_wq, &current_id->id.net_work);
5184 	}
5185 out:
5186 	spin_unlock_irqrestore(&id_table_lock, flags);
5187 	return NOTIFY_DONE;
5188 }
5189 
5190 static struct notifier_block cma_nb = {
5191 	.notifier_call = cma_netdev_callback
5192 };
5193 
5194 static struct notifier_block cma_netevent_cb = {
5195 	.notifier_call = cma_netevent_callback
5196 };
5197 
5198 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5199 {
5200 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5201 	enum rdma_cm_state state;
5202 	unsigned long flags;
5203 
5204 	mutex_lock(&id_priv->handler_mutex);
5205 	/* Record that we want to remove the device */
5206 	spin_lock_irqsave(&id_priv->lock, flags);
5207 	state = id_priv->state;
5208 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5209 		spin_unlock_irqrestore(&id_priv->lock, flags);
5210 		mutex_unlock(&id_priv->handler_mutex);
5211 		cma_id_put(id_priv);
5212 		return;
5213 	}
5214 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5215 	spin_unlock_irqrestore(&id_priv->lock, flags);
5216 
5217 	if (cma_cm_event_handler(id_priv, &event)) {
5218 		/*
5219 		 * At this point the ULP promises it won't call
5220 		 * rdma_destroy_id() concurrently
5221 		 */
5222 		cma_id_put(id_priv);
5223 		mutex_unlock(&id_priv->handler_mutex);
5224 		trace_cm_id_destroy(id_priv);
5225 		_destroy_id(id_priv, state);
5226 		return;
5227 	}
5228 	mutex_unlock(&id_priv->handler_mutex);
5229 
5230 	/*
5231 	 * If this races with destroy then the thread that first assigns state
5232 	 * to a destroying does the cancel.
5233 	 */
5234 	cma_cancel_operation(id_priv, state);
5235 	cma_id_put(id_priv);
5236 }
5237 
5238 static void cma_process_remove(struct cma_device *cma_dev)
5239 {
5240 	mutex_lock(&lock);
5241 	while (!list_empty(&cma_dev->id_list)) {
5242 		struct rdma_id_private *id_priv = list_first_entry(
5243 			&cma_dev->id_list, struct rdma_id_private, device_item);
5244 
5245 		list_del_init(&id_priv->listen_item);
5246 		list_del_init(&id_priv->device_item);
5247 		cma_id_get(id_priv);
5248 		mutex_unlock(&lock);
5249 
5250 		cma_send_device_removal_put(id_priv);
5251 
5252 		mutex_lock(&lock);
5253 	}
5254 	mutex_unlock(&lock);
5255 
5256 	cma_dev_put(cma_dev);
5257 	wait_for_completion(&cma_dev->comp);
5258 }
5259 
5260 static bool cma_supported(struct ib_device *device)
5261 {
5262 	u32 i;
5263 
5264 	rdma_for_each_port(device, i) {
5265 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5266 			return true;
5267 	}
5268 	return false;
5269 }
5270 
5271 static int cma_add_one(struct ib_device *device)
5272 {
5273 	struct rdma_id_private *to_destroy;
5274 	struct cma_device *cma_dev;
5275 	struct rdma_id_private *id_priv;
5276 	unsigned long supported_gids = 0;
5277 	int ret;
5278 	u32 i;
5279 
5280 	if (!cma_supported(device))
5281 		return -EOPNOTSUPP;
5282 
5283 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5284 	if (!cma_dev)
5285 		return -ENOMEM;
5286 
5287 	cma_dev->device = device;
5288 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5289 					    sizeof(*cma_dev->default_gid_type),
5290 					    GFP_KERNEL);
5291 	if (!cma_dev->default_gid_type) {
5292 		ret = -ENOMEM;
5293 		goto free_cma_dev;
5294 	}
5295 
5296 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5297 					    sizeof(*cma_dev->default_roce_tos),
5298 					    GFP_KERNEL);
5299 	if (!cma_dev->default_roce_tos) {
5300 		ret = -ENOMEM;
5301 		goto free_gid_type;
5302 	}
5303 
5304 	rdma_for_each_port (device, i) {
5305 		supported_gids = roce_gid_type_mask_support(device, i);
5306 		WARN_ON(!supported_gids);
5307 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5308 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5309 				CMA_PREFERRED_ROCE_GID_TYPE;
5310 		else
5311 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5312 				find_first_bit(&supported_gids, BITS_PER_LONG);
5313 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5314 	}
5315 
5316 	init_completion(&cma_dev->comp);
5317 	refcount_set(&cma_dev->refcount, 1);
5318 	INIT_LIST_HEAD(&cma_dev->id_list);
5319 	ib_set_client_data(device, &cma_client, cma_dev);
5320 
5321 	mutex_lock(&lock);
5322 	list_add_tail(&cma_dev->list, &dev_list);
5323 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5324 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5325 		if (ret)
5326 			goto free_listen;
5327 	}
5328 	mutex_unlock(&lock);
5329 
5330 	trace_cm_add_one(device);
5331 	return 0;
5332 
5333 free_listen:
5334 	list_del(&cma_dev->list);
5335 	mutex_unlock(&lock);
5336 
5337 	/* cma_process_remove() will delete to_destroy */
5338 	cma_process_remove(cma_dev);
5339 	kfree(cma_dev->default_roce_tos);
5340 free_gid_type:
5341 	kfree(cma_dev->default_gid_type);
5342 
5343 free_cma_dev:
5344 	kfree(cma_dev);
5345 	return ret;
5346 }
5347 
5348 static void cma_remove_one(struct ib_device *device, void *client_data)
5349 {
5350 	struct cma_device *cma_dev = client_data;
5351 
5352 	trace_cm_remove_one(device);
5353 
5354 	mutex_lock(&lock);
5355 	list_del(&cma_dev->list);
5356 	mutex_unlock(&lock);
5357 
5358 	cma_process_remove(cma_dev);
5359 	kfree(cma_dev->default_roce_tos);
5360 	kfree(cma_dev->default_gid_type);
5361 	kfree(cma_dev);
5362 }
5363 
5364 static int cma_init_net(struct net *net)
5365 {
5366 	struct cma_pernet *pernet = cma_pernet(net);
5367 
5368 	xa_init(&pernet->tcp_ps);
5369 	xa_init(&pernet->udp_ps);
5370 	xa_init(&pernet->ipoib_ps);
5371 	xa_init(&pernet->ib_ps);
5372 
5373 	return 0;
5374 }
5375 
5376 static void cma_exit_net(struct net *net)
5377 {
5378 	struct cma_pernet *pernet = cma_pernet(net);
5379 
5380 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5381 	WARN_ON(!xa_empty(&pernet->udp_ps));
5382 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5383 	WARN_ON(!xa_empty(&pernet->ib_ps));
5384 }
5385 
5386 static struct pernet_operations cma_pernet_operations = {
5387 	.init = cma_init_net,
5388 	.exit = cma_exit_net,
5389 	.id = &cma_pernet_id,
5390 	.size = sizeof(struct cma_pernet),
5391 };
5392 
5393 static int __init cma_init(void)
5394 {
5395 	int ret;
5396 
5397 	/*
5398 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5399 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5400 	 * must never be nested under lock so it can find these without having
5401 	 * to test with bonding.
5402 	 */
5403 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5404 		rtnl_lock();
5405 		mutex_lock(&lock);
5406 		mutex_unlock(&lock);
5407 		rtnl_unlock();
5408 	}
5409 
5410 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5411 	if (!cma_wq)
5412 		return -ENOMEM;
5413 
5414 	ret = register_pernet_subsys(&cma_pernet_operations);
5415 	if (ret)
5416 		goto err_wq;
5417 
5418 	ib_sa_register_client(&sa_client);
5419 	register_netdevice_notifier(&cma_nb);
5420 	register_netevent_notifier(&cma_netevent_cb);
5421 
5422 	ret = ib_register_client(&cma_client);
5423 	if (ret)
5424 		goto err;
5425 
5426 	ret = cma_configfs_init();
5427 	if (ret)
5428 		goto err_ib;
5429 
5430 	return 0;
5431 
5432 err_ib:
5433 	ib_unregister_client(&cma_client);
5434 err:
5435 	unregister_netevent_notifier(&cma_netevent_cb);
5436 	unregister_netdevice_notifier(&cma_nb);
5437 	ib_sa_unregister_client(&sa_client);
5438 	unregister_pernet_subsys(&cma_pernet_operations);
5439 err_wq:
5440 	destroy_workqueue(cma_wq);
5441 	return ret;
5442 }
5443 
5444 static void __exit cma_cleanup(void)
5445 {
5446 	cma_configfs_exit();
5447 	ib_unregister_client(&cma_client);
5448 	unregister_netevent_notifier(&cma_netevent_cb);
5449 	unregister_netdevice_notifier(&cma_nb);
5450 	ib_sa_unregister_client(&sa_client);
5451 	unregister_pernet_subsys(&cma_pernet_operations);
5452 	destroy_workqueue(cma_wq);
5453 }
5454 
5455 module_init(cma_init);
5456 module_exit(cma_cleanup);
5457