1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[0]; 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_event event; 55 bool enforce_security; 56 }; 57 58 union ib_gid zgid; 59 EXPORT_SYMBOL(zgid); 60 61 enum gid_attr_find_mask { 62 GID_ATTR_FIND_MASK_GID = 1UL << 0, 63 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 64 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 65 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 66 }; 67 68 enum gid_table_entry_state { 69 GID_TABLE_ENTRY_INVALID = 1, 70 GID_TABLE_ENTRY_VALID = 2, 71 /* 72 * Indicates that entry is pending to be removed, there may 73 * be active users of this GID entry. 74 * When last user of the GID entry releases reference to it, 75 * GID entry is detached from the table. 76 */ 77 GID_TABLE_ENTRY_PENDING_DEL = 3, 78 }; 79 80 struct roce_gid_ndev_storage { 81 struct rcu_head rcu_head; 82 struct net_device *ndev; 83 }; 84 85 struct ib_gid_table_entry { 86 struct kref kref; 87 struct work_struct del_work; 88 struct ib_gid_attr attr; 89 void *context; 90 /* Store the ndev pointer to release reference later on in 91 * call_rcu context because by that time gid_table_entry 92 * and attr might be already freed. So keep a copy of it. 93 * ndev_storage is freed by rcu callback. 94 */ 95 struct roce_gid_ndev_storage *ndev_storage; 96 enum gid_table_entry_state state; 97 }; 98 99 struct ib_gid_table { 100 int sz; 101 /* In RoCE, adding a GID to the table requires: 102 * (a) Find if this GID is already exists. 103 * (b) Find a free space. 104 * (c) Write the new GID 105 * 106 * Delete requires different set of operations: 107 * (a) Find the GID 108 * (b) Delete it. 109 * 110 **/ 111 /* Any writer to data_vec must hold this lock and the write side of 112 * rwlock. Readers must hold only rwlock. All writers must be in a 113 * sleepable context. 114 */ 115 struct mutex lock; 116 /* rwlock protects data_vec[ix]->state and entry pointer. 117 */ 118 rwlock_t rwlock; 119 struct ib_gid_table_entry **data_vec; 120 /* bit field, each bit indicates the index of default GID */ 121 u32 default_gid_indices; 122 }; 123 124 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) 125 { 126 struct ib_event event; 127 128 event.device = ib_dev; 129 event.element.port_num = port; 130 event.event = IB_EVENT_GID_CHANGE; 131 132 ib_dispatch_event_clients(&event); 133 } 134 135 static const char * const gid_type_str[] = { 136 [IB_GID_TYPE_IB] = "IB/RoCE v1", 137 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 138 }; 139 140 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 141 { 142 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 143 return gid_type_str[gid_type]; 144 145 return "Invalid GID type"; 146 } 147 EXPORT_SYMBOL(ib_cache_gid_type_str); 148 149 /** rdma_is_zero_gid - Check if given GID is zero or not. 150 * @gid: GID to check 151 * Returns true if given GID is zero, returns false otherwise. 152 */ 153 bool rdma_is_zero_gid(const union ib_gid *gid) 154 { 155 return !memcmp(gid, &zgid, sizeof(*gid)); 156 } 157 EXPORT_SYMBOL(rdma_is_zero_gid); 158 159 /** is_gid_index_default - Check if a given index belongs to 160 * reserved default GIDs or not. 161 * @table: GID table pointer 162 * @index: Index to check in GID table 163 * Returns true if index is one of the reserved default GID index otherwise 164 * returns false. 165 */ 166 static bool is_gid_index_default(const struct ib_gid_table *table, 167 unsigned int index) 168 { 169 return index < 32 && (BIT(index) & table->default_gid_indices); 170 } 171 172 int ib_cache_gid_parse_type_str(const char *buf) 173 { 174 unsigned int i; 175 size_t len; 176 int err = -EINVAL; 177 178 len = strlen(buf); 179 if (len == 0) 180 return -EINVAL; 181 182 if (buf[len - 1] == '\n') 183 len--; 184 185 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 186 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 187 len == strlen(gid_type_str[i])) { 188 err = i; 189 break; 190 } 191 192 return err; 193 } 194 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 195 196 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) 197 { 198 return device->port_data[port].cache.gid; 199 } 200 201 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 202 { 203 return !entry; 204 } 205 206 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 207 { 208 return entry && entry->state == GID_TABLE_ENTRY_VALID; 209 } 210 211 static void schedule_free_gid(struct kref *kref) 212 { 213 struct ib_gid_table_entry *entry = 214 container_of(kref, struct ib_gid_table_entry, kref); 215 216 queue_work(ib_wq, &entry->del_work); 217 } 218 219 static void put_gid_ndev(struct rcu_head *head) 220 { 221 struct roce_gid_ndev_storage *storage = 222 container_of(head, struct roce_gid_ndev_storage, rcu_head); 223 224 WARN_ON(!storage->ndev); 225 /* At this point its safe to release netdev reference, 226 * as all callers working on gid_attr->ndev are done 227 * using this netdev. 228 */ 229 dev_put(storage->ndev); 230 kfree(storage); 231 } 232 233 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 234 { 235 struct ib_device *device = entry->attr.device; 236 u8 port_num = entry->attr.port_num; 237 struct ib_gid_table *table = rdma_gid_table(device, port_num); 238 239 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__, 240 port_num, entry->attr.index, entry->attr.gid.raw); 241 242 write_lock_irq(&table->rwlock); 243 244 /* 245 * The only way to avoid overwriting NULL in table is 246 * by comparing if it is same entry in table or not! 247 * If new entry in table is added by the time we free here, 248 * don't overwrite the table entry. 249 */ 250 if (entry == table->data_vec[entry->attr.index]) 251 table->data_vec[entry->attr.index] = NULL; 252 /* Now this index is ready to be allocated */ 253 write_unlock_irq(&table->rwlock); 254 255 if (entry->ndev_storage) 256 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); 257 kfree(entry); 258 } 259 260 static void free_gid_entry(struct kref *kref) 261 { 262 struct ib_gid_table_entry *entry = 263 container_of(kref, struct ib_gid_table_entry, kref); 264 265 free_gid_entry_locked(entry); 266 } 267 268 /** 269 * free_gid_work - Release reference to the GID entry 270 * @work: Work structure to refer to GID entry which needs to be 271 * deleted. 272 * 273 * free_gid_work() frees the entry from the HCA's hardware table 274 * if provider supports it. It releases reference to netdevice. 275 */ 276 static void free_gid_work(struct work_struct *work) 277 { 278 struct ib_gid_table_entry *entry = 279 container_of(work, struct ib_gid_table_entry, del_work); 280 struct ib_device *device = entry->attr.device; 281 u8 port_num = entry->attr.port_num; 282 struct ib_gid_table *table = rdma_gid_table(device, port_num); 283 284 mutex_lock(&table->lock); 285 free_gid_entry_locked(entry); 286 mutex_unlock(&table->lock); 287 } 288 289 static struct ib_gid_table_entry * 290 alloc_gid_entry(const struct ib_gid_attr *attr) 291 { 292 struct ib_gid_table_entry *entry; 293 struct net_device *ndev; 294 295 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 296 if (!entry) 297 return NULL; 298 299 ndev = rcu_dereference_protected(attr->ndev, 1); 300 if (ndev) { 301 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), 302 GFP_KERNEL); 303 if (!entry->ndev_storage) { 304 kfree(entry); 305 return NULL; 306 } 307 dev_hold(ndev); 308 entry->ndev_storage->ndev = ndev; 309 } 310 kref_init(&entry->kref); 311 memcpy(&entry->attr, attr, sizeof(*attr)); 312 INIT_WORK(&entry->del_work, free_gid_work); 313 entry->state = GID_TABLE_ENTRY_INVALID; 314 return entry; 315 } 316 317 static void store_gid_entry(struct ib_gid_table *table, 318 struct ib_gid_table_entry *entry) 319 { 320 entry->state = GID_TABLE_ENTRY_VALID; 321 322 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n", 323 __func__, entry->attr.port_num, entry->attr.index, 324 entry->attr.gid.raw); 325 326 lockdep_assert_held(&table->lock); 327 write_lock_irq(&table->rwlock); 328 table->data_vec[entry->attr.index] = entry; 329 write_unlock_irq(&table->rwlock); 330 } 331 332 static void get_gid_entry(struct ib_gid_table_entry *entry) 333 { 334 kref_get(&entry->kref); 335 } 336 337 static void put_gid_entry(struct ib_gid_table_entry *entry) 338 { 339 kref_put(&entry->kref, schedule_free_gid); 340 } 341 342 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 343 { 344 kref_put(&entry->kref, free_gid_entry); 345 } 346 347 static int add_roce_gid(struct ib_gid_table_entry *entry) 348 { 349 const struct ib_gid_attr *attr = &entry->attr; 350 int ret; 351 352 if (!attr->ndev) { 353 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n", 354 __func__, attr->port_num, attr->index); 355 return -EINVAL; 356 } 357 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 358 ret = attr->device->ops.add_gid(attr, &entry->context); 359 if (ret) { 360 dev_err(&attr->device->dev, 361 "%s GID add failed port=%d index=%d\n", 362 __func__, attr->port_num, attr->index); 363 return ret; 364 } 365 } 366 return 0; 367 } 368 369 /** 370 * del_gid - Delete GID table entry 371 * 372 * @ib_dev: IB device whose GID entry to be deleted 373 * @port: Port number of the IB device 374 * @table: GID table of the IB device for a port 375 * @ix: GID entry index to delete 376 * 377 */ 378 static void del_gid(struct ib_device *ib_dev, u8 port, 379 struct ib_gid_table *table, int ix) 380 { 381 struct roce_gid_ndev_storage *ndev_storage; 382 struct ib_gid_table_entry *entry; 383 384 lockdep_assert_held(&table->lock); 385 386 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port, 387 ix, table->data_vec[ix]->attr.gid.raw); 388 389 write_lock_irq(&table->rwlock); 390 entry = table->data_vec[ix]; 391 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 392 /* 393 * For non RoCE protocol, GID entry slot is ready to use. 394 */ 395 if (!rdma_protocol_roce(ib_dev, port)) 396 table->data_vec[ix] = NULL; 397 write_unlock_irq(&table->rwlock); 398 399 ndev_storage = entry->ndev_storage; 400 if (ndev_storage) { 401 entry->ndev_storage = NULL; 402 rcu_assign_pointer(entry->attr.ndev, NULL); 403 call_rcu(&ndev_storage->rcu_head, put_gid_ndev); 404 } 405 406 if (rdma_cap_roce_gid_table(ib_dev, port)) 407 ib_dev->ops.del_gid(&entry->attr, &entry->context); 408 409 put_gid_entry_locked(entry); 410 } 411 412 /** 413 * add_modify_gid - Add or modify GID table entry 414 * 415 * @table: GID table in which GID to be added or modified 416 * @attr: Attributes of the GID 417 * 418 * Returns 0 on success or appropriate error code. It accepts zero 419 * GID addition for non RoCE ports for HCA's who report them as valid 420 * GID. However such zero GIDs are not added to the cache. 421 */ 422 static int add_modify_gid(struct ib_gid_table *table, 423 const struct ib_gid_attr *attr) 424 { 425 struct ib_gid_table_entry *entry; 426 int ret = 0; 427 428 /* 429 * Invalidate any old entry in the table to make it safe to write to 430 * this index. 431 */ 432 if (is_gid_entry_valid(table->data_vec[attr->index])) 433 del_gid(attr->device, attr->port_num, table, attr->index); 434 435 /* 436 * Some HCA's report multiple GID entries with only one valid GID, and 437 * leave other unused entries as the zero GID. Convert zero GIDs to 438 * empty table entries instead of storing them. 439 */ 440 if (rdma_is_zero_gid(&attr->gid)) 441 return 0; 442 443 entry = alloc_gid_entry(attr); 444 if (!entry) 445 return -ENOMEM; 446 447 if (rdma_protocol_roce(attr->device, attr->port_num)) { 448 ret = add_roce_gid(entry); 449 if (ret) 450 goto done; 451 } 452 453 store_gid_entry(table, entry); 454 return 0; 455 456 done: 457 put_gid_entry(entry); 458 return ret; 459 } 460 461 /* rwlock should be read locked, or lock should be held */ 462 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 463 const struct ib_gid_attr *val, bool default_gid, 464 unsigned long mask, int *pempty) 465 { 466 int i = 0; 467 int found = -1; 468 int empty = pempty ? -1 : 0; 469 470 while (i < table->sz && (found < 0 || empty < 0)) { 471 struct ib_gid_table_entry *data = table->data_vec[i]; 472 struct ib_gid_attr *attr; 473 int curr_index = i; 474 475 i++; 476 477 /* find_gid() is used during GID addition where it is expected 478 * to return a free entry slot which is not duplicate. 479 * Free entry slot is requested and returned if pempty is set, 480 * so lookup free slot only if requested. 481 */ 482 if (pempty && empty < 0) { 483 if (is_gid_entry_free(data) && 484 default_gid == 485 is_gid_index_default(table, curr_index)) { 486 /* 487 * Found an invalid (free) entry; allocate it. 488 * If default GID is requested, then our 489 * found slot must be one of the DEFAULT 490 * reserved slots or we fail. 491 * This ensures that only DEFAULT reserved 492 * slots are used for default property GIDs. 493 */ 494 empty = curr_index; 495 } 496 } 497 498 /* 499 * Additionally find_gid() is used to find valid entry during 500 * lookup operation; so ignore the entries which are marked as 501 * pending for removal and the entries which are marked as 502 * invalid. 503 */ 504 if (!is_gid_entry_valid(data)) 505 continue; 506 507 if (found >= 0) 508 continue; 509 510 attr = &data->attr; 511 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 512 attr->gid_type != val->gid_type) 513 continue; 514 515 if (mask & GID_ATTR_FIND_MASK_GID && 516 memcmp(gid, &data->attr.gid, sizeof(*gid))) 517 continue; 518 519 if (mask & GID_ATTR_FIND_MASK_NETDEV && 520 attr->ndev != val->ndev) 521 continue; 522 523 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 524 is_gid_index_default(table, curr_index) != default_gid) 525 continue; 526 527 found = curr_index; 528 } 529 530 if (pempty) 531 *pempty = empty; 532 533 return found; 534 } 535 536 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 537 { 538 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 539 addrconf_ifid_eui48(&gid->raw[8], dev); 540 } 541 542 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 543 union ib_gid *gid, struct ib_gid_attr *attr, 544 unsigned long mask, bool default_gid) 545 { 546 struct ib_gid_table *table; 547 int ret = 0; 548 int empty; 549 int ix; 550 551 /* Do not allow adding zero GID in support of 552 * IB spec version 1.3 section 4.1.1 point (6) and 553 * section 12.7.10 and section 12.7.20 554 */ 555 if (rdma_is_zero_gid(gid)) 556 return -EINVAL; 557 558 table = rdma_gid_table(ib_dev, port); 559 560 mutex_lock(&table->lock); 561 562 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 563 if (ix >= 0) 564 goto out_unlock; 565 566 if (empty < 0) { 567 ret = -ENOSPC; 568 goto out_unlock; 569 } 570 attr->device = ib_dev; 571 attr->index = empty; 572 attr->port_num = port; 573 attr->gid = *gid; 574 ret = add_modify_gid(table, attr); 575 if (!ret) 576 dispatch_gid_change_event(ib_dev, port); 577 578 out_unlock: 579 mutex_unlock(&table->lock); 580 if (ret) 581 pr_warn("%s: unable to add gid %pI6 error=%d\n", 582 __func__, gid->raw, ret); 583 return ret; 584 } 585 586 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 587 union ib_gid *gid, struct ib_gid_attr *attr) 588 { 589 unsigned long mask = GID_ATTR_FIND_MASK_GID | 590 GID_ATTR_FIND_MASK_GID_TYPE | 591 GID_ATTR_FIND_MASK_NETDEV; 592 593 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 594 } 595 596 static int 597 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 598 union ib_gid *gid, struct ib_gid_attr *attr, 599 unsigned long mask, bool default_gid) 600 { 601 struct ib_gid_table *table; 602 int ret = 0; 603 int ix; 604 605 table = rdma_gid_table(ib_dev, port); 606 607 mutex_lock(&table->lock); 608 609 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 610 if (ix < 0) { 611 ret = -EINVAL; 612 goto out_unlock; 613 } 614 615 del_gid(ib_dev, port, table, ix); 616 dispatch_gid_change_event(ib_dev, port); 617 618 out_unlock: 619 mutex_unlock(&table->lock); 620 if (ret) 621 pr_debug("%s: can't delete gid %pI6 error=%d\n", 622 __func__, gid->raw, ret); 623 return ret; 624 } 625 626 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 627 union ib_gid *gid, struct ib_gid_attr *attr) 628 { 629 unsigned long mask = GID_ATTR_FIND_MASK_GID | 630 GID_ATTR_FIND_MASK_GID_TYPE | 631 GID_ATTR_FIND_MASK_DEFAULT | 632 GID_ATTR_FIND_MASK_NETDEV; 633 634 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 635 } 636 637 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, 638 struct net_device *ndev) 639 { 640 struct ib_gid_table *table; 641 int ix; 642 bool deleted = false; 643 644 table = rdma_gid_table(ib_dev, port); 645 646 mutex_lock(&table->lock); 647 648 for (ix = 0; ix < table->sz; ix++) { 649 if (is_gid_entry_valid(table->data_vec[ix]) && 650 table->data_vec[ix]->attr.ndev == ndev) { 651 del_gid(ib_dev, port, table, ix); 652 deleted = true; 653 } 654 } 655 656 mutex_unlock(&table->lock); 657 658 if (deleted) 659 dispatch_gid_change_event(ib_dev, port); 660 661 return 0; 662 } 663 664 /** 665 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 666 * a valid GID entry for given search parameters. It searches for the specified 667 * GID value in the local software cache. 668 * @device: The device to query. 669 * @gid: The GID value to search for. 670 * @gid_type: The GID type to search for. 671 * @port_num: The port number of the device where the GID value should be 672 * searched. 673 * @ndev: In RoCE, the net device of the device. NULL means ignore. 674 * 675 * Returns sgid attributes if the GID is found with valid reference or 676 * returns ERR_PTR for the error. 677 * The caller must invoke rdma_put_gid_attr() to release the reference. 678 */ 679 const struct ib_gid_attr * 680 rdma_find_gid_by_port(struct ib_device *ib_dev, 681 const union ib_gid *gid, 682 enum ib_gid_type gid_type, 683 u8 port, struct net_device *ndev) 684 { 685 int local_index; 686 struct ib_gid_table *table; 687 unsigned long mask = GID_ATTR_FIND_MASK_GID | 688 GID_ATTR_FIND_MASK_GID_TYPE; 689 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 690 const struct ib_gid_attr *attr; 691 unsigned long flags; 692 693 if (!rdma_is_port_valid(ib_dev, port)) 694 return ERR_PTR(-ENOENT); 695 696 table = rdma_gid_table(ib_dev, port); 697 698 if (ndev) 699 mask |= GID_ATTR_FIND_MASK_NETDEV; 700 701 read_lock_irqsave(&table->rwlock, flags); 702 local_index = find_gid(table, gid, &val, false, mask, NULL); 703 if (local_index >= 0) { 704 get_gid_entry(table->data_vec[local_index]); 705 attr = &table->data_vec[local_index]->attr; 706 read_unlock_irqrestore(&table->rwlock, flags); 707 return attr; 708 } 709 710 read_unlock_irqrestore(&table->rwlock, flags); 711 return ERR_PTR(-ENOENT); 712 } 713 EXPORT_SYMBOL(rdma_find_gid_by_port); 714 715 /** 716 * rdma_find_gid_by_filter - Returns the GID table attribute where a 717 * specified GID value occurs 718 * @device: The device to query. 719 * @gid: The GID value to search for. 720 * @port: The port number of the device where the GID value could be 721 * searched. 722 * @filter: The filter function is executed on any matching GID in the table. 723 * If the filter function returns true, the corresponding index is returned, 724 * otherwise, we continue searching the GID table. It's guaranteed that 725 * while filter is executed, ndev field is valid and the structure won't 726 * change. filter is executed in an atomic context. filter must not be NULL. 727 * 728 * rdma_find_gid_by_filter() searches for the specified GID value 729 * of which the filter function returns true in the port's GID table. 730 * 731 */ 732 const struct ib_gid_attr *rdma_find_gid_by_filter( 733 struct ib_device *ib_dev, const union ib_gid *gid, u8 port, 734 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 735 void *), 736 void *context) 737 { 738 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 739 struct ib_gid_table *table; 740 unsigned long flags; 741 unsigned int i; 742 743 if (!rdma_is_port_valid(ib_dev, port)) 744 return ERR_PTR(-EINVAL); 745 746 table = rdma_gid_table(ib_dev, port); 747 748 read_lock_irqsave(&table->rwlock, flags); 749 for (i = 0; i < table->sz; i++) { 750 struct ib_gid_table_entry *entry = table->data_vec[i]; 751 752 if (!is_gid_entry_valid(entry)) 753 continue; 754 755 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 756 continue; 757 758 if (filter(gid, &entry->attr, context)) { 759 get_gid_entry(entry); 760 res = &entry->attr; 761 break; 762 } 763 } 764 read_unlock_irqrestore(&table->rwlock, flags); 765 return res; 766 } 767 768 static struct ib_gid_table *alloc_gid_table(int sz) 769 { 770 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 771 772 if (!table) 773 return NULL; 774 775 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 776 if (!table->data_vec) 777 goto err_free_table; 778 779 mutex_init(&table->lock); 780 781 table->sz = sz; 782 rwlock_init(&table->rwlock); 783 return table; 784 785 err_free_table: 786 kfree(table); 787 return NULL; 788 } 789 790 static void release_gid_table(struct ib_device *device, 791 struct ib_gid_table *table) 792 { 793 bool leak = false; 794 int i; 795 796 if (!table) 797 return; 798 799 for (i = 0; i < table->sz; i++) { 800 if (is_gid_entry_free(table->data_vec[i])) 801 continue; 802 if (kref_read(&table->data_vec[i]->kref) > 1) { 803 dev_err(&device->dev, 804 "GID entry ref leak for index %d ref=%d\n", i, 805 kref_read(&table->data_vec[i]->kref)); 806 leak = true; 807 } 808 } 809 if (leak) 810 return; 811 812 mutex_destroy(&table->lock); 813 kfree(table->data_vec); 814 kfree(table); 815 } 816 817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, 818 struct ib_gid_table *table) 819 { 820 int i; 821 822 if (!table) 823 return; 824 825 mutex_lock(&table->lock); 826 for (i = 0; i < table->sz; ++i) { 827 if (is_gid_entry_valid(table->data_vec[i])) 828 del_gid(ib_dev, port, table, i); 829 } 830 mutex_unlock(&table->lock); 831 } 832 833 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, 834 struct net_device *ndev, 835 unsigned long gid_type_mask, 836 enum ib_cache_gid_default_mode mode) 837 { 838 union ib_gid gid = { }; 839 struct ib_gid_attr gid_attr; 840 unsigned int gid_type; 841 unsigned long mask; 842 843 mask = GID_ATTR_FIND_MASK_GID_TYPE | 844 GID_ATTR_FIND_MASK_DEFAULT | 845 GID_ATTR_FIND_MASK_NETDEV; 846 memset(&gid_attr, 0, sizeof(gid_attr)); 847 gid_attr.ndev = ndev; 848 849 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 850 if (1UL << gid_type & ~gid_type_mask) 851 continue; 852 853 gid_attr.gid_type = gid_type; 854 855 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 856 make_default_gid(ndev, &gid); 857 __ib_cache_gid_add(ib_dev, port, &gid, 858 &gid_attr, mask, true); 859 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 860 _ib_cache_gid_del(ib_dev, port, &gid, 861 &gid_attr, mask, true); 862 } 863 } 864 } 865 866 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, 867 struct ib_gid_table *table) 868 { 869 unsigned int i; 870 unsigned long roce_gid_type_mask; 871 unsigned int num_default_gids; 872 873 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 874 num_default_gids = hweight_long(roce_gid_type_mask); 875 /* Reserve starting indices for default GIDs */ 876 for (i = 0; i < num_default_gids && i < table->sz; i++) 877 table->default_gid_indices |= BIT(i); 878 } 879 880 881 static void gid_table_release_one(struct ib_device *ib_dev) 882 { 883 unsigned int p; 884 885 rdma_for_each_port (ib_dev, p) { 886 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); 887 ib_dev->port_data[p].cache.gid = NULL; 888 } 889 } 890 891 static int _gid_table_setup_one(struct ib_device *ib_dev) 892 { 893 struct ib_gid_table *table; 894 unsigned int rdma_port; 895 896 rdma_for_each_port (ib_dev, rdma_port) { 897 table = alloc_gid_table( 898 ib_dev->port_data[rdma_port].immutable.gid_tbl_len); 899 if (!table) 900 goto rollback_table_setup; 901 902 gid_table_reserve_default(ib_dev, rdma_port, table); 903 ib_dev->port_data[rdma_port].cache.gid = table; 904 } 905 return 0; 906 907 rollback_table_setup: 908 gid_table_release_one(ib_dev); 909 return -ENOMEM; 910 } 911 912 static void gid_table_cleanup_one(struct ib_device *ib_dev) 913 { 914 unsigned int p; 915 916 rdma_for_each_port (ib_dev, p) 917 cleanup_gid_table_port(ib_dev, p, 918 ib_dev->port_data[p].cache.gid); 919 } 920 921 static int gid_table_setup_one(struct ib_device *ib_dev) 922 { 923 int err; 924 925 err = _gid_table_setup_one(ib_dev); 926 927 if (err) 928 return err; 929 930 rdma_roce_rescan_device(ib_dev); 931 932 return err; 933 } 934 935 /** 936 * rdma_query_gid - Read the GID content from the GID software cache 937 * @device: Device to query the GID 938 * @port_num: Port number of the device 939 * @index: Index of the GID table entry to read 940 * @gid: Pointer to GID where to store the entry's GID 941 * 942 * rdma_query_gid() only reads the GID entry content for requested device, 943 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 944 * hold any reference to the GID table entry in the HCA or software cache. 945 * 946 * Returns 0 on success or appropriate error code. 947 * 948 */ 949 int rdma_query_gid(struct ib_device *device, u8 port_num, 950 int index, union ib_gid *gid) 951 { 952 struct ib_gid_table *table; 953 unsigned long flags; 954 int res = -EINVAL; 955 956 if (!rdma_is_port_valid(device, port_num)) 957 return -EINVAL; 958 959 table = rdma_gid_table(device, port_num); 960 read_lock_irqsave(&table->rwlock, flags); 961 962 if (index < 0 || index >= table->sz || 963 !is_gid_entry_valid(table->data_vec[index])) 964 goto done; 965 966 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 967 res = 0; 968 969 done: 970 read_unlock_irqrestore(&table->rwlock, flags); 971 return res; 972 } 973 EXPORT_SYMBOL(rdma_query_gid); 974 975 /** 976 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 977 * @device: The device to query. 978 * @gid: The GID value to search for. 979 * @gid_type: The GID type to search for. 980 * @ndev: In RoCE, the net device of the device. NULL means ignore. 981 * 982 * rdma_find_gid() searches for the specified GID value in the software cache. 983 * 984 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 985 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 986 * 987 */ 988 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 989 const union ib_gid *gid, 990 enum ib_gid_type gid_type, 991 struct net_device *ndev) 992 { 993 unsigned long mask = GID_ATTR_FIND_MASK_GID | 994 GID_ATTR_FIND_MASK_GID_TYPE; 995 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 996 unsigned int p; 997 998 if (ndev) 999 mask |= GID_ATTR_FIND_MASK_NETDEV; 1000 1001 rdma_for_each_port(device, p) { 1002 struct ib_gid_table *table; 1003 unsigned long flags; 1004 int index; 1005 1006 table = device->port_data[p].cache.gid; 1007 read_lock_irqsave(&table->rwlock, flags); 1008 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1009 if (index >= 0) { 1010 const struct ib_gid_attr *attr; 1011 1012 get_gid_entry(table->data_vec[index]); 1013 attr = &table->data_vec[index]->attr; 1014 read_unlock_irqrestore(&table->rwlock, flags); 1015 return attr; 1016 } 1017 read_unlock_irqrestore(&table->rwlock, flags); 1018 } 1019 1020 return ERR_PTR(-ENOENT); 1021 } 1022 EXPORT_SYMBOL(rdma_find_gid); 1023 1024 int ib_get_cached_pkey(struct ib_device *device, 1025 u8 port_num, 1026 int index, 1027 u16 *pkey) 1028 { 1029 struct ib_pkey_cache *cache; 1030 unsigned long flags; 1031 int ret = 0; 1032 1033 if (!rdma_is_port_valid(device, port_num)) 1034 return -EINVAL; 1035 1036 read_lock_irqsave(&device->cache_lock, flags); 1037 1038 cache = device->port_data[port_num].cache.pkey; 1039 1040 if (index < 0 || index >= cache->table_len) 1041 ret = -EINVAL; 1042 else 1043 *pkey = cache->table[index]; 1044 1045 read_unlock_irqrestore(&device->cache_lock, flags); 1046 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(ib_get_cached_pkey); 1050 1051 int ib_get_cached_subnet_prefix(struct ib_device *device, 1052 u8 port_num, 1053 u64 *sn_pfx) 1054 { 1055 unsigned long flags; 1056 1057 if (!rdma_is_port_valid(device, port_num)) 1058 return -EINVAL; 1059 1060 read_lock_irqsave(&device->cache_lock, flags); 1061 *sn_pfx = device->port_data[port_num].cache.subnet_prefix; 1062 read_unlock_irqrestore(&device->cache_lock, flags); 1063 1064 return 0; 1065 } 1066 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1067 1068 int ib_find_cached_pkey(struct ib_device *device, 1069 u8 port_num, 1070 u16 pkey, 1071 u16 *index) 1072 { 1073 struct ib_pkey_cache *cache; 1074 unsigned long flags; 1075 int i; 1076 int ret = -ENOENT; 1077 int partial_ix = -1; 1078 1079 if (!rdma_is_port_valid(device, port_num)) 1080 return -EINVAL; 1081 1082 read_lock_irqsave(&device->cache_lock, flags); 1083 1084 cache = device->port_data[port_num].cache.pkey; 1085 1086 *index = -1; 1087 1088 for (i = 0; i < cache->table_len; ++i) 1089 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1090 if (cache->table[i] & 0x8000) { 1091 *index = i; 1092 ret = 0; 1093 break; 1094 } else 1095 partial_ix = i; 1096 } 1097 1098 if (ret && partial_ix >= 0) { 1099 *index = partial_ix; 1100 ret = 0; 1101 } 1102 1103 read_unlock_irqrestore(&device->cache_lock, flags); 1104 1105 return ret; 1106 } 1107 EXPORT_SYMBOL(ib_find_cached_pkey); 1108 1109 int ib_find_exact_cached_pkey(struct ib_device *device, 1110 u8 port_num, 1111 u16 pkey, 1112 u16 *index) 1113 { 1114 struct ib_pkey_cache *cache; 1115 unsigned long flags; 1116 int i; 1117 int ret = -ENOENT; 1118 1119 if (!rdma_is_port_valid(device, port_num)) 1120 return -EINVAL; 1121 1122 read_lock_irqsave(&device->cache_lock, flags); 1123 1124 cache = device->port_data[port_num].cache.pkey; 1125 1126 *index = -1; 1127 1128 for (i = 0; i < cache->table_len; ++i) 1129 if (cache->table[i] == pkey) { 1130 *index = i; 1131 ret = 0; 1132 break; 1133 } 1134 1135 read_unlock_irqrestore(&device->cache_lock, flags); 1136 1137 return ret; 1138 } 1139 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1140 1141 int ib_get_cached_lmc(struct ib_device *device, 1142 u8 port_num, 1143 u8 *lmc) 1144 { 1145 unsigned long flags; 1146 int ret = 0; 1147 1148 if (!rdma_is_port_valid(device, port_num)) 1149 return -EINVAL; 1150 1151 read_lock_irqsave(&device->cache_lock, flags); 1152 *lmc = device->port_data[port_num].cache.lmc; 1153 read_unlock_irqrestore(&device->cache_lock, flags); 1154 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(ib_get_cached_lmc); 1158 1159 int ib_get_cached_port_state(struct ib_device *device, 1160 u8 port_num, 1161 enum ib_port_state *port_state) 1162 { 1163 unsigned long flags; 1164 int ret = 0; 1165 1166 if (!rdma_is_port_valid(device, port_num)) 1167 return -EINVAL; 1168 1169 read_lock_irqsave(&device->cache_lock, flags); 1170 *port_state = device->port_data[port_num].cache.port_state; 1171 read_unlock_irqrestore(&device->cache_lock, flags); 1172 1173 return ret; 1174 } 1175 EXPORT_SYMBOL(ib_get_cached_port_state); 1176 1177 /** 1178 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1179 * at a requested gid_index, if a valid GID entry exists. 1180 * @device: The device to query. 1181 * @port_num: The port number on the device where the GID value 1182 * is to be queried. 1183 * @index: Index of the GID table entry whose attributes are to 1184 * be queried. 1185 * 1186 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1187 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1188 * reference to gid attribute regardless of link layer. 1189 * 1190 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1191 * code. 1192 */ 1193 const struct ib_gid_attr * 1194 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index) 1195 { 1196 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL); 1197 struct ib_gid_table *table; 1198 unsigned long flags; 1199 1200 if (!rdma_is_port_valid(device, port_num)) 1201 return ERR_PTR(-EINVAL); 1202 1203 table = rdma_gid_table(device, port_num); 1204 if (index < 0 || index >= table->sz) 1205 return ERR_PTR(-EINVAL); 1206 1207 read_lock_irqsave(&table->rwlock, flags); 1208 if (!is_gid_entry_valid(table->data_vec[index])) 1209 goto done; 1210 1211 get_gid_entry(table->data_vec[index]); 1212 attr = &table->data_vec[index]->attr; 1213 done: 1214 read_unlock_irqrestore(&table->rwlock, flags); 1215 return attr; 1216 } 1217 EXPORT_SYMBOL(rdma_get_gid_attr); 1218 1219 /** 1220 * rdma_put_gid_attr - Release reference to the GID attribute 1221 * @attr: Pointer to the GID attribute whose reference 1222 * needs to be released. 1223 * 1224 * rdma_put_gid_attr() must be used to release reference whose 1225 * reference is acquired using rdma_get_gid_attr() or any APIs 1226 * which returns a pointer to the ib_gid_attr regardless of link layer 1227 * of IB or RoCE. 1228 * 1229 */ 1230 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1231 { 1232 struct ib_gid_table_entry *entry = 1233 container_of(attr, struct ib_gid_table_entry, attr); 1234 1235 put_gid_entry(entry); 1236 } 1237 EXPORT_SYMBOL(rdma_put_gid_attr); 1238 1239 /** 1240 * rdma_hold_gid_attr - Get reference to existing GID attribute 1241 * 1242 * @attr: Pointer to the GID attribute whose reference 1243 * needs to be taken. 1244 * 1245 * Increase the reference count to a GID attribute to keep it from being 1246 * freed. Callers are required to already be holding a reference to attribute. 1247 * 1248 */ 1249 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1250 { 1251 struct ib_gid_table_entry *entry = 1252 container_of(attr, struct ib_gid_table_entry, attr); 1253 1254 get_gid_entry(entry); 1255 } 1256 EXPORT_SYMBOL(rdma_hold_gid_attr); 1257 1258 /** 1259 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1260 * which must be in UP state. 1261 * 1262 * @attr:Pointer to the GID attribute 1263 * 1264 * Returns pointer to netdevice if the netdevice was attached to GID and 1265 * netdevice is in UP state. Caller must hold RCU lock as this API 1266 * reads the netdev flags which can change while netdevice migrates to 1267 * different net namespace. Returns ERR_PTR with error code otherwise. 1268 * 1269 */ 1270 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1271 { 1272 struct ib_gid_table_entry *entry = 1273 container_of(attr, struct ib_gid_table_entry, attr); 1274 struct ib_device *device = entry->attr.device; 1275 struct net_device *ndev = ERR_PTR(-ENODEV); 1276 u8 port_num = entry->attr.port_num; 1277 struct ib_gid_table *table; 1278 unsigned long flags; 1279 bool valid; 1280 1281 table = rdma_gid_table(device, port_num); 1282 1283 read_lock_irqsave(&table->rwlock, flags); 1284 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1285 if (valid) { 1286 ndev = rcu_dereference(attr->ndev); 1287 if (!ndev || 1288 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0))) 1289 ndev = ERR_PTR(-ENODEV); 1290 } 1291 read_unlock_irqrestore(&table->rwlock, flags); 1292 return ndev; 1293 } 1294 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); 1295 1296 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data) 1297 { 1298 u16 *vlan_id = data; 1299 1300 if (is_vlan_dev(lower_dev)) 1301 *vlan_id = vlan_dev_vlan_id(lower_dev); 1302 1303 /* We are interested only in first level vlan device, so 1304 * always return 1 to stop iterating over next level devices. 1305 */ 1306 return 1; 1307 } 1308 1309 /** 1310 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address 1311 * of a GID entry. 1312 * 1313 * @attr: GID attribute pointer whose L2 fields to be read 1314 * @vlan_id: Pointer to vlan id to fill up if the GID entry has 1315 * vlan id. It is optional. 1316 * @smac: Pointer to smac to fill up for a GID entry. It is optional. 1317 * 1318 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id 1319 * (if gid entry has vlan) and source MAC, or returns error. 1320 */ 1321 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, 1322 u16 *vlan_id, u8 *smac) 1323 { 1324 struct net_device *ndev; 1325 1326 rcu_read_lock(); 1327 ndev = rcu_dereference(attr->ndev); 1328 if (!ndev) { 1329 rcu_read_unlock(); 1330 return -ENODEV; 1331 } 1332 if (smac) 1333 ether_addr_copy(smac, ndev->dev_addr); 1334 if (vlan_id) { 1335 *vlan_id = 0xffff; 1336 if (is_vlan_dev(ndev)) { 1337 *vlan_id = vlan_dev_vlan_id(ndev); 1338 } else { 1339 /* If the netdev is upper device and if it's lower 1340 * device is vlan device, consider vlan id of the 1341 * the lower vlan device for this gid entry. 1342 */ 1343 netdev_walk_all_lower_dev_rcu(attr->ndev, 1344 get_lower_dev_vlan, vlan_id); 1345 } 1346 } 1347 rcu_read_unlock(); 1348 return 0; 1349 } 1350 EXPORT_SYMBOL(rdma_read_gid_l2_fields); 1351 1352 static int config_non_roce_gid_cache(struct ib_device *device, 1353 u8 port, int gid_tbl_len) 1354 { 1355 struct ib_gid_attr gid_attr = {}; 1356 struct ib_gid_table *table; 1357 int ret = 0; 1358 int i; 1359 1360 gid_attr.device = device; 1361 gid_attr.port_num = port; 1362 table = rdma_gid_table(device, port); 1363 1364 mutex_lock(&table->lock); 1365 for (i = 0; i < gid_tbl_len; ++i) { 1366 if (!device->ops.query_gid) 1367 continue; 1368 ret = device->ops.query_gid(device, port, i, &gid_attr.gid); 1369 if (ret) { 1370 dev_warn(&device->dev, 1371 "query_gid failed (%d) for index %d\n", ret, 1372 i); 1373 goto err; 1374 } 1375 gid_attr.index = i; 1376 add_modify_gid(table, &gid_attr); 1377 } 1378 err: 1379 mutex_unlock(&table->lock); 1380 return ret; 1381 } 1382 1383 static int 1384 ib_cache_update(struct ib_device *device, u8 port, bool enforce_security) 1385 { 1386 struct ib_port_attr *tprops = NULL; 1387 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; 1388 int i; 1389 int ret; 1390 1391 if (!rdma_is_port_valid(device, port)) 1392 return -EINVAL; 1393 1394 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1395 if (!tprops) 1396 return -ENOMEM; 1397 1398 ret = ib_query_port(device, port, tprops); 1399 if (ret) { 1400 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1401 goto err; 1402 } 1403 1404 if (!rdma_protocol_roce(device, port)) { 1405 ret = config_non_roce_gid_cache(device, port, 1406 tprops->gid_tbl_len); 1407 if (ret) 1408 goto err; 1409 } 1410 1411 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1412 tprops->pkey_tbl_len), 1413 GFP_KERNEL); 1414 if (!pkey_cache) { 1415 ret = -ENOMEM; 1416 goto err; 1417 } 1418 1419 pkey_cache->table_len = tprops->pkey_tbl_len; 1420 1421 for (i = 0; i < pkey_cache->table_len; ++i) { 1422 ret = ib_query_pkey(device, port, i, pkey_cache->table + i); 1423 if (ret) { 1424 dev_warn(&device->dev, 1425 "ib_query_pkey failed (%d) for index %d\n", 1426 ret, i); 1427 goto err; 1428 } 1429 } 1430 1431 write_lock_irq(&device->cache_lock); 1432 1433 old_pkey_cache = device->port_data[port].cache.pkey; 1434 1435 device->port_data[port].cache.pkey = pkey_cache; 1436 device->port_data[port].cache.lmc = tprops->lmc; 1437 device->port_data[port].cache.port_state = tprops->state; 1438 1439 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; 1440 write_unlock_irq(&device->cache_lock); 1441 1442 if (enforce_security) 1443 ib_security_cache_change(device, 1444 port, 1445 tprops->subnet_prefix); 1446 1447 kfree(old_pkey_cache); 1448 kfree(tprops); 1449 return 0; 1450 1451 err: 1452 kfree(pkey_cache); 1453 kfree(tprops); 1454 return ret; 1455 } 1456 1457 static void ib_cache_event_task(struct work_struct *_work) 1458 { 1459 struct ib_update_work *work = 1460 container_of(_work, struct ib_update_work, work); 1461 int ret; 1462 1463 /* Before distributing the cache update event, first sync 1464 * the cache. 1465 */ 1466 ret = ib_cache_update(work->event.device, work->event.element.port_num, 1467 work->enforce_security); 1468 1469 /* GID event is notified already for individual GID entries by 1470 * dispatch_gid_change_event(). Hence, notifiy for rest of the 1471 * events. 1472 */ 1473 if (!ret && work->event.event != IB_EVENT_GID_CHANGE) 1474 ib_dispatch_event_clients(&work->event); 1475 1476 kfree(work); 1477 } 1478 1479 static void ib_generic_event_task(struct work_struct *_work) 1480 { 1481 struct ib_update_work *work = 1482 container_of(_work, struct ib_update_work, work); 1483 1484 ib_dispatch_event_clients(&work->event); 1485 kfree(work); 1486 } 1487 1488 static bool is_cache_update_event(const struct ib_event *event) 1489 { 1490 return (event->event == IB_EVENT_PORT_ERR || 1491 event->event == IB_EVENT_PORT_ACTIVE || 1492 event->event == IB_EVENT_LID_CHANGE || 1493 event->event == IB_EVENT_PKEY_CHANGE || 1494 event->event == IB_EVENT_CLIENT_REREGISTER || 1495 event->event == IB_EVENT_GID_CHANGE); 1496 } 1497 1498 /** 1499 * ib_dispatch_event - Dispatch an asynchronous event 1500 * @event:Event to dispatch 1501 * 1502 * Low-level drivers must call ib_dispatch_event() to dispatch the 1503 * event to all registered event handlers when an asynchronous event 1504 * occurs. 1505 */ 1506 void ib_dispatch_event(const struct ib_event *event) 1507 { 1508 struct ib_update_work *work; 1509 1510 work = kzalloc(sizeof(*work), GFP_ATOMIC); 1511 if (!work) 1512 return; 1513 1514 if (is_cache_update_event(event)) 1515 INIT_WORK(&work->work, ib_cache_event_task); 1516 else 1517 INIT_WORK(&work->work, ib_generic_event_task); 1518 1519 work->event = *event; 1520 if (event->event == IB_EVENT_PKEY_CHANGE || 1521 event->event == IB_EVENT_GID_CHANGE) 1522 work->enforce_security = true; 1523 1524 queue_work(ib_wq, &work->work); 1525 } 1526 EXPORT_SYMBOL(ib_dispatch_event); 1527 1528 int ib_cache_setup_one(struct ib_device *device) 1529 { 1530 unsigned int p; 1531 int err; 1532 1533 rwlock_init(&device->cache_lock); 1534 1535 err = gid_table_setup_one(device); 1536 if (err) 1537 return err; 1538 1539 rdma_for_each_port (device, p) 1540 ib_cache_update(device, p, true); 1541 1542 return 0; 1543 } 1544 1545 void ib_cache_release_one(struct ib_device *device) 1546 { 1547 unsigned int p; 1548 1549 /* 1550 * The release function frees all the cache elements. 1551 * This function should be called as part of freeing 1552 * all the device's resources when the cache could no 1553 * longer be accessed. 1554 */ 1555 rdma_for_each_port (device, p) 1556 kfree(device->port_data[p].cache.pkey); 1557 1558 gid_table_release_one(device); 1559 } 1560 1561 void ib_cache_cleanup_one(struct ib_device *device) 1562 { 1563 /* The cleanup function waits for all in-progress workqueue 1564 * elements and cleans up the GID cache. This function should be 1565 * called after the device was removed from the devices list and 1566 * all clients were removed, so the cache exists but is 1567 * non-functional and shouldn't be updated anymore. 1568 */ 1569 flush_workqueue(ib_wq); 1570 gid_table_cleanup_one(device); 1571 1572 /* 1573 * Flush the wq second time for any pending GID delete work. 1574 */ 1575 flush_workqueue(ib_wq); 1576 } 1577