1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[0]; 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_device *device; 55 u8 port_num; 56 bool enforce_security; 57 }; 58 59 union ib_gid zgid; 60 EXPORT_SYMBOL(zgid); 61 62 enum gid_attr_find_mask { 63 GID_ATTR_FIND_MASK_GID = 1UL << 0, 64 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 65 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 66 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 67 }; 68 69 enum gid_table_entry_state { 70 GID_TABLE_ENTRY_INVALID = 1, 71 GID_TABLE_ENTRY_VALID = 2, 72 /* 73 * Indicates that entry is pending to be removed, there may 74 * be active users of this GID entry. 75 * When last user of the GID entry releases reference to it, 76 * GID entry is detached from the table. 77 */ 78 GID_TABLE_ENTRY_PENDING_DEL = 3, 79 }; 80 81 struct roce_gid_ndev_storage { 82 struct rcu_head rcu_head; 83 struct net_device *ndev; 84 }; 85 86 struct ib_gid_table_entry { 87 struct kref kref; 88 struct work_struct del_work; 89 struct ib_gid_attr attr; 90 void *context; 91 /* Store the ndev pointer to release reference later on in 92 * call_rcu context because by that time gid_table_entry 93 * and attr might be already freed. So keep a copy of it. 94 * ndev_storage is freed by rcu callback. 95 */ 96 struct roce_gid_ndev_storage *ndev_storage; 97 enum gid_table_entry_state state; 98 }; 99 100 struct ib_gid_table { 101 int sz; 102 /* In RoCE, adding a GID to the table requires: 103 * (a) Find if this GID is already exists. 104 * (b) Find a free space. 105 * (c) Write the new GID 106 * 107 * Delete requires different set of operations: 108 * (a) Find the GID 109 * (b) Delete it. 110 * 111 **/ 112 /* Any writer to data_vec must hold this lock and the write side of 113 * rwlock. Readers must hold only rwlock. All writers must be in a 114 * sleepable context. 115 */ 116 struct mutex lock; 117 /* rwlock protects data_vec[ix]->state and entry pointer. 118 */ 119 rwlock_t rwlock; 120 struct ib_gid_table_entry **data_vec; 121 /* bit field, each bit indicates the index of default GID */ 122 u32 default_gid_indices; 123 }; 124 125 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) 126 { 127 struct ib_event event; 128 129 event.device = ib_dev; 130 event.element.port_num = port; 131 event.event = IB_EVENT_GID_CHANGE; 132 133 ib_dispatch_event(&event); 134 } 135 136 static const char * const gid_type_str[] = { 137 [IB_GID_TYPE_IB] = "IB/RoCE v1", 138 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 139 }; 140 141 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 142 { 143 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 144 return gid_type_str[gid_type]; 145 146 return "Invalid GID type"; 147 } 148 EXPORT_SYMBOL(ib_cache_gid_type_str); 149 150 /** rdma_is_zero_gid - Check if given GID is zero or not. 151 * @gid: GID to check 152 * Returns true if given GID is zero, returns false otherwise. 153 */ 154 bool rdma_is_zero_gid(const union ib_gid *gid) 155 { 156 return !memcmp(gid, &zgid, sizeof(*gid)); 157 } 158 EXPORT_SYMBOL(rdma_is_zero_gid); 159 160 /** is_gid_index_default - Check if a given index belongs to 161 * reserved default GIDs or not. 162 * @table: GID table pointer 163 * @index: Index to check in GID table 164 * Returns true if index is one of the reserved default GID index otherwise 165 * returns false. 166 */ 167 static bool is_gid_index_default(const struct ib_gid_table *table, 168 unsigned int index) 169 { 170 return index < 32 && (BIT(index) & table->default_gid_indices); 171 } 172 173 int ib_cache_gid_parse_type_str(const char *buf) 174 { 175 unsigned int i; 176 size_t len; 177 int err = -EINVAL; 178 179 len = strlen(buf); 180 if (len == 0) 181 return -EINVAL; 182 183 if (buf[len - 1] == '\n') 184 len--; 185 186 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 187 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 188 len == strlen(gid_type_str[i])) { 189 err = i; 190 break; 191 } 192 193 return err; 194 } 195 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 196 197 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) 198 { 199 return device->port_data[port].cache.gid; 200 } 201 202 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 203 { 204 return !entry; 205 } 206 207 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 208 { 209 return entry && entry->state == GID_TABLE_ENTRY_VALID; 210 } 211 212 static void schedule_free_gid(struct kref *kref) 213 { 214 struct ib_gid_table_entry *entry = 215 container_of(kref, struct ib_gid_table_entry, kref); 216 217 queue_work(ib_wq, &entry->del_work); 218 } 219 220 static void put_gid_ndev(struct rcu_head *head) 221 { 222 struct roce_gid_ndev_storage *storage = 223 container_of(head, struct roce_gid_ndev_storage, rcu_head); 224 225 WARN_ON(!storage->ndev); 226 /* At this point its safe to release netdev reference, 227 * as all callers working on gid_attr->ndev are done 228 * using this netdev. 229 */ 230 dev_put(storage->ndev); 231 kfree(storage); 232 } 233 234 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 235 { 236 struct ib_device *device = entry->attr.device; 237 u8 port_num = entry->attr.port_num; 238 struct ib_gid_table *table = rdma_gid_table(device, port_num); 239 240 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__, 241 port_num, entry->attr.index, entry->attr.gid.raw); 242 243 write_lock_irq(&table->rwlock); 244 245 /* 246 * The only way to avoid overwriting NULL in table is 247 * by comparing if it is same entry in table or not! 248 * If new entry in table is added by the time we free here, 249 * don't overwrite the table entry. 250 */ 251 if (entry == table->data_vec[entry->attr.index]) 252 table->data_vec[entry->attr.index] = NULL; 253 /* Now this index is ready to be allocated */ 254 write_unlock_irq(&table->rwlock); 255 256 if (entry->ndev_storage) 257 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); 258 kfree(entry); 259 } 260 261 static void free_gid_entry(struct kref *kref) 262 { 263 struct ib_gid_table_entry *entry = 264 container_of(kref, struct ib_gid_table_entry, kref); 265 266 free_gid_entry_locked(entry); 267 } 268 269 /** 270 * free_gid_work - Release reference to the GID entry 271 * @work: Work structure to refer to GID entry which needs to be 272 * deleted. 273 * 274 * free_gid_work() frees the entry from the HCA's hardware table 275 * if provider supports it. It releases reference to netdevice. 276 */ 277 static void free_gid_work(struct work_struct *work) 278 { 279 struct ib_gid_table_entry *entry = 280 container_of(work, struct ib_gid_table_entry, del_work); 281 struct ib_device *device = entry->attr.device; 282 u8 port_num = entry->attr.port_num; 283 struct ib_gid_table *table = rdma_gid_table(device, port_num); 284 285 mutex_lock(&table->lock); 286 free_gid_entry_locked(entry); 287 mutex_unlock(&table->lock); 288 } 289 290 static struct ib_gid_table_entry * 291 alloc_gid_entry(const struct ib_gid_attr *attr) 292 { 293 struct ib_gid_table_entry *entry; 294 struct net_device *ndev; 295 296 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 297 if (!entry) 298 return NULL; 299 300 ndev = rcu_dereference_protected(attr->ndev, 1); 301 if (ndev) { 302 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), 303 GFP_KERNEL); 304 if (!entry->ndev_storage) { 305 kfree(entry); 306 return NULL; 307 } 308 dev_hold(ndev); 309 entry->ndev_storage->ndev = ndev; 310 } 311 kref_init(&entry->kref); 312 memcpy(&entry->attr, attr, sizeof(*attr)); 313 INIT_WORK(&entry->del_work, free_gid_work); 314 entry->state = GID_TABLE_ENTRY_INVALID; 315 return entry; 316 } 317 318 static void store_gid_entry(struct ib_gid_table *table, 319 struct ib_gid_table_entry *entry) 320 { 321 entry->state = GID_TABLE_ENTRY_VALID; 322 323 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n", 324 __func__, entry->attr.port_num, entry->attr.index, 325 entry->attr.gid.raw); 326 327 lockdep_assert_held(&table->lock); 328 write_lock_irq(&table->rwlock); 329 table->data_vec[entry->attr.index] = entry; 330 write_unlock_irq(&table->rwlock); 331 } 332 333 static void get_gid_entry(struct ib_gid_table_entry *entry) 334 { 335 kref_get(&entry->kref); 336 } 337 338 static void put_gid_entry(struct ib_gid_table_entry *entry) 339 { 340 kref_put(&entry->kref, schedule_free_gid); 341 } 342 343 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 344 { 345 kref_put(&entry->kref, free_gid_entry); 346 } 347 348 static int add_roce_gid(struct ib_gid_table_entry *entry) 349 { 350 const struct ib_gid_attr *attr = &entry->attr; 351 int ret; 352 353 if (!attr->ndev) { 354 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n", 355 __func__, attr->port_num, attr->index); 356 return -EINVAL; 357 } 358 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 359 ret = attr->device->ops.add_gid(attr, &entry->context); 360 if (ret) { 361 dev_err(&attr->device->dev, 362 "%s GID add failed port=%d index=%d\n", 363 __func__, attr->port_num, attr->index); 364 return ret; 365 } 366 } 367 return 0; 368 } 369 370 /** 371 * del_gid - Delete GID table entry 372 * 373 * @ib_dev: IB device whose GID entry to be deleted 374 * @port: Port number of the IB device 375 * @table: GID table of the IB device for a port 376 * @ix: GID entry index to delete 377 * 378 */ 379 static void del_gid(struct ib_device *ib_dev, u8 port, 380 struct ib_gid_table *table, int ix) 381 { 382 struct roce_gid_ndev_storage *ndev_storage; 383 struct ib_gid_table_entry *entry; 384 385 lockdep_assert_held(&table->lock); 386 387 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port, 388 ix, table->data_vec[ix]->attr.gid.raw); 389 390 write_lock_irq(&table->rwlock); 391 entry = table->data_vec[ix]; 392 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 393 /* 394 * For non RoCE protocol, GID entry slot is ready to use. 395 */ 396 if (!rdma_protocol_roce(ib_dev, port)) 397 table->data_vec[ix] = NULL; 398 write_unlock_irq(&table->rwlock); 399 400 ndev_storage = entry->ndev_storage; 401 if (ndev_storage) { 402 entry->ndev_storage = NULL; 403 rcu_assign_pointer(entry->attr.ndev, NULL); 404 call_rcu(&ndev_storage->rcu_head, put_gid_ndev); 405 } 406 407 if (rdma_cap_roce_gid_table(ib_dev, port)) 408 ib_dev->ops.del_gid(&entry->attr, &entry->context); 409 410 put_gid_entry_locked(entry); 411 } 412 413 /** 414 * add_modify_gid - Add or modify GID table entry 415 * 416 * @table: GID table in which GID to be added or modified 417 * @attr: Attributes of the GID 418 * 419 * Returns 0 on success or appropriate error code. It accepts zero 420 * GID addition for non RoCE ports for HCA's who report them as valid 421 * GID. However such zero GIDs are not added to the cache. 422 */ 423 static int add_modify_gid(struct ib_gid_table *table, 424 const struct ib_gid_attr *attr) 425 { 426 struct ib_gid_table_entry *entry; 427 int ret = 0; 428 429 /* 430 * Invalidate any old entry in the table to make it safe to write to 431 * this index. 432 */ 433 if (is_gid_entry_valid(table->data_vec[attr->index])) 434 del_gid(attr->device, attr->port_num, table, attr->index); 435 436 /* 437 * Some HCA's report multiple GID entries with only one valid GID, and 438 * leave other unused entries as the zero GID. Convert zero GIDs to 439 * empty table entries instead of storing them. 440 */ 441 if (rdma_is_zero_gid(&attr->gid)) 442 return 0; 443 444 entry = alloc_gid_entry(attr); 445 if (!entry) 446 return -ENOMEM; 447 448 if (rdma_protocol_roce(attr->device, attr->port_num)) { 449 ret = add_roce_gid(entry); 450 if (ret) 451 goto done; 452 } 453 454 store_gid_entry(table, entry); 455 return 0; 456 457 done: 458 put_gid_entry(entry); 459 return ret; 460 } 461 462 /* rwlock should be read locked, or lock should be held */ 463 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 464 const struct ib_gid_attr *val, bool default_gid, 465 unsigned long mask, int *pempty) 466 { 467 int i = 0; 468 int found = -1; 469 int empty = pempty ? -1 : 0; 470 471 while (i < table->sz && (found < 0 || empty < 0)) { 472 struct ib_gid_table_entry *data = table->data_vec[i]; 473 struct ib_gid_attr *attr; 474 int curr_index = i; 475 476 i++; 477 478 /* find_gid() is used during GID addition where it is expected 479 * to return a free entry slot which is not duplicate. 480 * Free entry slot is requested and returned if pempty is set, 481 * so lookup free slot only if requested. 482 */ 483 if (pempty && empty < 0) { 484 if (is_gid_entry_free(data) && 485 default_gid == 486 is_gid_index_default(table, curr_index)) { 487 /* 488 * Found an invalid (free) entry; allocate it. 489 * If default GID is requested, then our 490 * found slot must be one of the DEFAULT 491 * reserved slots or we fail. 492 * This ensures that only DEFAULT reserved 493 * slots are used for default property GIDs. 494 */ 495 empty = curr_index; 496 } 497 } 498 499 /* 500 * Additionally find_gid() is used to find valid entry during 501 * lookup operation; so ignore the entries which are marked as 502 * pending for removal and the entries which are marked as 503 * invalid. 504 */ 505 if (!is_gid_entry_valid(data)) 506 continue; 507 508 if (found >= 0) 509 continue; 510 511 attr = &data->attr; 512 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 513 attr->gid_type != val->gid_type) 514 continue; 515 516 if (mask & GID_ATTR_FIND_MASK_GID && 517 memcmp(gid, &data->attr.gid, sizeof(*gid))) 518 continue; 519 520 if (mask & GID_ATTR_FIND_MASK_NETDEV && 521 attr->ndev != val->ndev) 522 continue; 523 524 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 525 is_gid_index_default(table, curr_index) != default_gid) 526 continue; 527 528 found = curr_index; 529 } 530 531 if (pempty) 532 *pempty = empty; 533 534 return found; 535 } 536 537 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 538 { 539 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 540 addrconf_ifid_eui48(&gid->raw[8], dev); 541 } 542 543 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 544 union ib_gid *gid, struct ib_gid_attr *attr, 545 unsigned long mask, bool default_gid) 546 { 547 struct ib_gid_table *table; 548 int ret = 0; 549 int empty; 550 int ix; 551 552 /* Do not allow adding zero GID in support of 553 * IB spec version 1.3 section 4.1.1 point (6) and 554 * section 12.7.10 and section 12.7.20 555 */ 556 if (rdma_is_zero_gid(gid)) 557 return -EINVAL; 558 559 table = rdma_gid_table(ib_dev, port); 560 561 mutex_lock(&table->lock); 562 563 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 564 if (ix >= 0) 565 goto out_unlock; 566 567 if (empty < 0) { 568 ret = -ENOSPC; 569 goto out_unlock; 570 } 571 attr->device = ib_dev; 572 attr->index = empty; 573 attr->port_num = port; 574 attr->gid = *gid; 575 ret = add_modify_gid(table, attr); 576 if (!ret) 577 dispatch_gid_change_event(ib_dev, port); 578 579 out_unlock: 580 mutex_unlock(&table->lock); 581 if (ret) 582 pr_warn("%s: unable to add gid %pI6 error=%d\n", 583 __func__, gid->raw, ret); 584 return ret; 585 } 586 587 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 588 union ib_gid *gid, struct ib_gid_attr *attr) 589 { 590 unsigned long mask = GID_ATTR_FIND_MASK_GID | 591 GID_ATTR_FIND_MASK_GID_TYPE | 592 GID_ATTR_FIND_MASK_NETDEV; 593 594 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 595 } 596 597 static int 598 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 599 union ib_gid *gid, struct ib_gid_attr *attr, 600 unsigned long mask, bool default_gid) 601 { 602 struct ib_gid_table *table; 603 int ret = 0; 604 int ix; 605 606 table = rdma_gid_table(ib_dev, port); 607 608 mutex_lock(&table->lock); 609 610 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 611 if (ix < 0) { 612 ret = -EINVAL; 613 goto out_unlock; 614 } 615 616 del_gid(ib_dev, port, table, ix); 617 dispatch_gid_change_event(ib_dev, port); 618 619 out_unlock: 620 mutex_unlock(&table->lock); 621 if (ret) 622 pr_debug("%s: can't delete gid %pI6 error=%d\n", 623 __func__, gid->raw, ret); 624 return ret; 625 } 626 627 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 628 union ib_gid *gid, struct ib_gid_attr *attr) 629 { 630 unsigned long mask = GID_ATTR_FIND_MASK_GID | 631 GID_ATTR_FIND_MASK_GID_TYPE | 632 GID_ATTR_FIND_MASK_DEFAULT | 633 GID_ATTR_FIND_MASK_NETDEV; 634 635 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 636 } 637 638 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, 639 struct net_device *ndev) 640 { 641 struct ib_gid_table *table; 642 int ix; 643 bool deleted = false; 644 645 table = rdma_gid_table(ib_dev, port); 646 647 mutex_lock(&table->lock); 648 649 for (ix = 0; ix < table->sz; ix++) { 650 if (is_gid_entry_valid(table->data_vec[ix]) && 651 table->data_vec[ix]->attr.ndev == ndev) { 652 del_gid(ib_dev, port, table, ix); 653 deleted = true; 654 } 655 } 656 657 mutex_unlock(&table->lock); 658 659 if (deleted) 660 dispatch_gid_change_event(ib_dev, port); 661 662 return 0; 663 } 664 665 /** 666 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 667 * a valid GID entry for given search parameters. It searches for the specified 668 * GID value in the local software cache. 669 * @device: The device to query. 670 * @gid: The GID value to search for. 671 * @gid_type: The GID type to search for. 672 * @port_num: The port number of the device where the GID value should be 673 * searched. 674 * @ndev: In RoCE, the net device of the device. NULL means ignore. 675 * 676 * Returns sgid attributes if the GID is found with valid reference or 677 * returns ERR_PTR for the error. 678 * The caller must invoke rdma_put_gid_attr() to release the reference. 679 */ 680 const struct ib_gid_attr * 681 rdma_find_gid_by_port(struct ib_device *ib_dev, 682 const union ib_gid *gid, 683 enum ib_gid_type gid_type, 684 u8 port, struct net_device *ndev) 685 { 686 int local_index; 687 struct ib_gid_table *table; 688 unsigned long mask = GID_ATTR_FIND_MASK_GID | 689 GID_ATTR_FIND_MASK_GID_TYPE; 690 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 691 const struct ib_gid_attr *attr; 692 unsigned long flags; 693 694 if (!rdma_is_port_valid(ib_dev, port)) 695 return ERR_PTR(-ENOENT); 696 697 table = rdma_gid_table(ib_dev, port); 698 699 if (ndev) 700 mask |= GID_ATTR_FIND_MASK_NETDEV; 701 702 read_lock_irqsave(&table->rwlock, flags); 703 local_index = find_gid(table, gid, &val, false, mask, NULL); 704 if (local_index >= 0) { 705 get_gid_entry(table->data_vec[local_index]); 706 attr = &table->data_vec[local_index]->attr; 707 read_unlock_irqrestore(&table->rwlock, flags); 708 return attr; 709 } 710 711 read_unlock_irqrestore(&table->rwlock, flags); 712 return ERR_PTR(-ENOENT); 713 } 714 EXPORT_SYMBOL(rdma_find_gid_by_port); 715 716 /** 717 * rdma_find_gid_by_filter - Returns the GID table attribute where a 718 * specified GID value occurs 719 * @device: The device to query. 720 * @gid: The GID value to search for. 721 * @port: The port number of the device where the GID value could be 722 * searched. 723 * @filter: The filter function is executed on any matching GID in the table. 724 * If the filter function returns true, the corresponding index is returned, 725 * otherwise, we continue searching the GID table. It's guaranteed that 726 * while filter is executed, ndev field is valid and the structure won't 727 * change. filter is executed in an atomic context. filter must not be NULL. 728 * 729 * rdma_find_gid_by_filter() searches for the specified GID value 730 * of which the filter function returns true in the port's GID table. 731 * 732 */ 733 const struct ib_gid_attr *rdma_find_gid_by_filter( 734 struct ib_device *ib_dev, const union ib_gid *gid, u8 port, 735 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 736 void *), 737 void *context) 738 { 739 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 740 struct ib_gid_table *table; 741 unsigned long flags; 742 unsigned int i; 743 744 if (!rdma_is_port_valid(ib_dev, port)) 745 return ERR_PTR(-EINVAL); 746 747 table = rdma_gid_table(ib_dev, port); 748 749 read_lock_irqsave(&table->rwlock, flags); 750 for (i = 0; i < table->sz; i++) { 751 struct ib_gid_table_entry *entry = table->data_vec[i]; 752 753 if (!is_gid_entry_valid(entry)) 754 continue; 755 756 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 757 continue; 758 759 if (filter(gid, &entry->attr, context)) { 760 get_gid_entry(entry); 761 res = &entry->attr; 762 break; 763 } 764 } 765 read_unlock_irqrestore(&table->rwlock, flags); 766 return res; 767 } 768 769 static struct ib_gid_table *alloc_gid_table(int sz) 770 { 771 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 772 773 if (!table) 774 return NULL; 775 776 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 777 if (!table->data_vec) 778 goto err_free_table; 779 780 mutex_init(&table->lock); 781 782 table->sz = sz; 783 rwlock_init(&table->rwlock); 784 return table; 785 786 err_free_table: 787 kfree(table); 788 return NULL; 789 } 790 791 static void release_gid_table(struct ib_device *device, 792 struct ib_gid_table *table) 793 { 794 bool leak = false; 795 int i; 796 797 if (!table) 798 return; 799 800 for (i = 0; i < table->sz; i++) { 801 if (is_gid_entry_free(table->data_vec[i])) 802 continue; 803 if (kref_read(&table->data_vec[i]->kref) > 1) { 804 dev_err(&device->dev, 805 "GID entry ref leak for index %d ref=%d\n", i, 806 kref_read(&table->data_vec[i]->kref)); 807 leak = true; 808 } 809 } 810 if (leak) 811 return; 812 813 kfree(table->data_vec); 814 kfree(table); 815 } 816 817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, 818 struct ib_gid_table *table) 819 { 820 int i; 821 bool deleted = false; 822 823 if (!table) 824 return; 825 826 mutex_lock(&table->lock); 827 for (i = 0; i < table->sz; ++i) { 828 if (is_gid_entry_valid(table->data_vec[i])) { 829 del_gid(ib_dev, port, table, i); 830 deleted = true; 831 } 832 } 833 mutex_unlock(&table->lock); 834 835 if (deleted) 836 dispatch_gid_change_event(ib_dev, port); 837 } 838 839 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, 840 struct net_device *ndev, 841 unsigned long gid_type_mask, 842 enum ib_cache_gid_default_mode mode) 843 { 844 union ib_gid gid = { }; 845 struct ib_gid_attr gid_attr; 846 unsigned int gid_type; 847 unsigned long mask; 848 849 mask = GID_ATTR_FIND_MASK_GID_TYPE | 850 GID_ATTR_FIND_MASK_DEFAULT | 851 GID_ATTR_FIND_MASK_NETDEV; 852 memset(&gid_attr, 0, sizeof(gid_attr)); 853 gid_attr.ndev = ndev; 854 855 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 856 if (1UL << gid_type & ~gid_type_mask) 857 continue; 858 859 gid_attr.gid_type = gid_type; 860 861 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 862 make_default_gid(ndev, &gid); 863 __ib_cache_gid_add(ib_dev, port, &gid, 864 &gid_attr, mask, true); 865 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 866 _ib_cache_gid_del(ib_dev, port, &gid, 867 &gid_attr, mask, true); 868 } 869 } 870 } 871 872 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, 873 struct ib_gid_table *table) 874 { 875 unsigned int i; 876 unsigned long roce_gid_type_mask; 877 unsigned int num_default_gids; 878 879 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 880 num_default_gids = hweight_long(roce_gid_type_mask); 881 /* Reserve starting indices for default GIDs */ 882 for (i = 0; i < num_default_gids && i < table->sz; i++) 883 table->default_gid_indices |= BIT(i); 884 } 885 886 887 static void gid_table_release_one(struct ib_device *ib_dev) 888 { 889 unsigned int p; 890 891 rdma_for_each_port (ib_dev, p) { 892 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); 893 ib_dev->port_data[p].cache.gid = NULL; 894 } 895 } 896 897 static int _gid_table_setup_one(struct ib_device *ib_dev) 898 { 899 struct ib_gid_table *table; 900 unsigned int rdma_port; 901 902 rdma_for_each_port (ib_dev, rdma_port) { 903 table = alloc_gid_table( 904 ib_dev->port_data[rdma_port].immutable.gid_tbl_len); 905 if (!table) 906 goto rollback_table_setup; 907 908 gid_table_reserve_default(ib_dev, rdma_port, table); 909 ib_dev->port_data[rdma_port].cache.gid = table; 910 } 911 return 0; 912 913 rollback_table_setup: 914 gid_table_release_one(ib_dev); 915 return -ENOMEM; 916 } 917 918 static void gid_table_cleanup_one(struct ib_device *ib_dev) 919 { 920 unsigned int p; 921 922 rdma_for_each_port (ib_dev, p) 923 cleanup_gid_table_port(ib_dev, p, 924 ib_dev->port_data[p].cache.gid); 925 } 926 927 static int gid_table_setup_one(struct ib_device *ib_dev) 928 { 929 int err; 930 931 err = _gid_table_setup_one(ib_dev); 932 933 if (err) 934 return err; 935 936 rdma_roce_rescan_device(ib_dev); 937 938 return err; 939 } 940 941 /** 942 * rdma_query_gid - Read the GID content from the GID software cache 943 * @device: Device to query the GID 944 * @port_num: Port number of the device 945 * @index: Index of the GID table entry to read 946 * @gid: Pointer to GID where to store the entry's GID 947 * 948 * rdma_query_gid() only reads the GID entry content for requested device, 949 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 950 * hold any reference to the GID table entry in the HCA or software cache. 951 * 952 * Returns 0 on success or appropriate error code. 953 * 954 */ 955 int rdma_query_gid(struct ib_device *device, u8 port_num, 956 int index, union ib_gid *gid) 957 { 958 struct ib_gid_table *table; 959 unsigned long flags; 960 int res = -EINVAL; 961 962 if (!rdma_is_port_valid(device, port_num)) 963 return -EINVAL; 964 965 table = rdma_gid_table(device, port_num); 966 read_lock_irqsave(&table->rwlock, flags); 967 968 if (index < 0 || index >= table->sz || 969 !is_gid_entry_valid(table->data_vec[index])) 970 goto done; 971 972 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 973 res = 0; 974 975 done: 976 read_unlock_irqrestore(&table->rwlock, flags); 977 return res; 978 } 979 EXPORT_SYMBOL(rdma_query_gid); 980 981 /** 982 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 983 * @device: The device to query. 984 * @gid: The GID value to search for. 985 * @gid_type: The GID type to search for. 986 * @ndev: In RoCE, the net device of the device. NULL means ignore. 987 * 988 * rdma_find_gid() searches for the specified GID value in the software cache. 989 * 990 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 991 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 992 * 993 */ 994 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 995 const union ib_gid *gid, 996 enum ib_gid_type gid_type, 997 struct net_device *ndev) 998 { 999 unsigned long mask = GID_ATTR_FIND_MASK_GID | 1000 GID_ATTR_FIND_MASK_GID_TYPE; 1001 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 1002 unsigned int p; 1003 1004 if (ndev) 1005 mask |= GID_ATTR_FIND_MASK_NETDEV; 1006 1007 rdma_for_each_port(device, p) { 1008 struct ib_gid_table *table; 1009 unsigned long flags; 1010 int index; 1011 1012 table = device->port_data[p].cache.gid; 1013 read_lock_irqsave(&table->rwlock, flags); 1014 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1015 if (index >= 0) { 1016 const struct ib_gid_attr *attr; 1017 1018 get_gid_entry(table->data_vec[index]); 1019 attr = &table->data_vec[index]->attr; 1020 read_unlock_irqrestore(&table->rwlock, flags); 1021 return attr; 1022 } 1023 read_unlock_irqrestore(&table->rwlock, flags); 1024 } 1025 1026 return ERR_PTR(-ENOENT); 1027 } 1028 EXPORT_SYMBOL(rdma_find_gid); 1029 1030 int ib_get_cached_pkey(struct ib_device *device, 1031 u8 port_num, 1032 int index, 1033 u16 *pkey) 1034 { 1035 struct ib_pkey_cache *cache; 1036 unsigned long flags; 1037 int ret = 0; 1038 1039 if (!rdma_is_port_valid(device, port_num)) 1040 return -EINVAL; 1041 1042 read_lock_irqsave(&device->cache.lock, flags); 1043 1044 cache = device->port_data[port_num].cache.pkey; 1045 1046 if (index < 0 || index >= cache->table_len) 1047 ret = -EINVAL; 1048 else 1049 *pkey = cache->table[index]; 1050 1051 read_unlock_irqrestore(&device->cache.lock, flags); 1052 1053 return ret; 1054 } 1055 EXPORT_SYMBOL(ib_get_cached_pkey); 1056 1057 int ib_get_cached_subnet_prefix(struct ib_device *device, 1058 u8 port_num, 1059 u64 *sn_pfx) 1060 { 1061 unsigned long flags; 1062 1063 if (!rdma_is_port_valid(device, port_num)) 1064 return -EINVAL; 1065 1066 read_lock_irqsave(&device->cache.lock, flags); 1067 *sn_pfx = device->port_data[port_num].cache.subnet_prefix; 1068 read_unlock_irqrestore(&device->cache.lock, flags); 1069 1070 return 0; 1071 } 1072 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1073 1074 int ib_find_cached_pkey(struct ib_device *device, 1075 u8 port_num, 1076 u16 pkey, 1077 u16 *index) 1078 { 1079 struct ib_pkey_cache *cache; 1080 unsigned long flags; 1081 int i; 1082 int ret = -ENOENT; 1083 int partial_ix = -1; 1084 1085 if (!rdma_is_port_valid(device, port_num)) 1086 return -EINVAL; 1087 1088 read_lock_irqsave(&device->cache.lock, flags); 1089 1090 cache = device->port_data[port_num].cache.pkey; 1091 1092 *index = -1; 1093 1094 for (i = 0; i < cache->table_len; ++i) 1095 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1096 if (cache->table[i] & 0x8000) { 1097 *index = i; 1098 ret = 0; 1099 break; 1100 } else 1101 partial_ix = i; 1102 } 1103 1104 if (ret && partial_ix >= 0) { 1105 *index = partial_ix; 1106 ret = 0; 1107 } 1108 1109 read_unlock_irqrestore(&device->cache.lock, flags); 1110 1111 return ret; 1112 } 1113 EXPORT_SYMBOL(ib_find_cached_pkey); 1114 1115 int ib_find_exact_cached_pkey(struct ib_device *device, 1116 u8 port_num, 1117 u16 pkey, 1118 u16 *index) 1119 { 1120 struct ib_pkey_cache *cache; 1121 unsigned long flags; 1122 int i; 1123 int ret = -ENOENT; 1124 1125 if (!rdma_is_port_valid(device, port_num)) 1126 return -EINVAL; 1127 1128 read_lock_irqsave(&device->cache.lock, flags); 1129 1130 cache = device->port_data[port_num].cache.pkey; 1131 1132 *index = -1; 1133 1134 for (i = 0; i < cache->table_len; ++i) 1135 if (cache->table[i] == pkey) { 1136 *index = i; 1137 ret = 0; 1138 break; 1139 } 1140 1141 read_unlock_irqrestore(&device->cache.lock, flags); 1142 1143 return ret; 1144 } 1145 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1146 1147 int ib_get_cached_lmc(struct ib_device *device, 1148 u8 port_num, 1149 u8 *lmc) 1150 { 1151 unsigned long flags; 1152 int ret = 0; 1153 1154 if (!rdma_is_port_valid(device, port_num)) 1155 return -EINVAL; 1156 1157 read_lock_irqsave(&device->cache.lock, flags); 1158 *lmc = device->port_data[port_num].cache.lmc; 1159 read_unlock_irqrestore(&device->cache.lock, flags); 1160 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(ib_get_cached_lmc); 1164 1165 int ib_get_cached_port_state(struct ib_device *device, 1166 u8 port_num, 1167 enum ib_port_state *port_state) 1168 { 1169 unsigned long flags; 1170 int ret = 0; 1171 1172 if (!rdma_is_port_valid(device, port_num)) 1173 return -EINVAL; 1174 1175 read_lock_irqsave(&device->cache.lock, flags); 1176 *port_state = device->port_data[port_num].cache.port_state; 1177 read_unlock_irqrestore(&device->cache.lock, flags); 1178 1179 return ret; 1180 } 1181 EXPORT_SYMBOL(ib_get_cached_port_state); 1182 1183 /** 1184 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1185 * at a requested gid_index, if a valid GID entry exists. 1186 * @device: The device to query. 1187 * @port_num: The port number on the device where the GID value 1188 * is to be queried. 1189 * @index: Index of the GID table entry whose attributes are to 1190 * be queried. 1191 * 1192 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1193 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1194 * reference to gid attribute regardless of link layer. 1195 * 1196 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1197 * code. 1198 */ 1199 const struct ib_gid_attr * 1200 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index) 1201 { 1202 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL); 1203 struct ib_gid_table *table; 1204 unsigned long flags; 1205 1206 if (!rdma_is_port_valid(device, port_num)) 1207 return ERR_PTR(-EINVAL); 1208 1209 table = rdma_gid_table(device, port_num); 1210 if (index < 0 || index >= table->sz) 1211 return ERR_PTR(-EINVAL); 1212 1213 read_lock_irqsave(&table->rwlock, flags); 1214 if (!is_gid_entry_valid(table->data_vec[index])) 1215 goto done; 1216 1217 get_gid_entry(table->data_vec[index]); 1218 attr = &table->data_vec[index]->attr; 1219 done: 1220 read_unlock_irqrestore(&table->rwlock, flags); 1221 return attr; 1222 } 1223 EXPORT_SYMBOL(rdma_get_gid_attr); 1224 1225 /** 1226 * rdma_put_gid_attr - Release reference to the GID attribute 1227 * @attr: Pointer to the GID attribute whose reference 1228 * needs to be released. 1229 * 1230 * rdma_put_gid_attr() must be used to release reference whose 1231 * reference is acquired using rdma_get_gid_attr() or any APIs 1232 * which returns a pointer to the ib_gid_attr regardless of link layer 1233 * of IB or RoCE. 1234 * 1235 */ 1236 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1237 { 1238 struct ib_gid_table_entry *entry = 1239 container_of(attr, struct ib_gid_table_entry, attr); 1240 1241 put_gid_entry(entry); 1242 } 1243 EXPORT_SYMBOL(rdma_put_gid_attr); 1244 1245 /** 1246 * rdma_hold_gid_attr - Get reference to existing GID attribute 1247 * 1248 * @attr: Pointer to the GID attribute whose reference 1249 * needs to be taken. 1250 * 1251 * Increase the reference count to a GID attribute to keep it from being 1252 * freed. Callers are required to already be holding a reference to attribute. 1253 * 1254 */ 1255 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1256 { 1257 struct ib_gid_table_entry *entry = 1258 container_of(attr, struct ib_gid_table_entry, attr); 1259 1260 get_gid_entry(entry); 1261 } 1262 EXPORT_SYMBOL(rdma_hold_gid_attr); 1263 1264 /** 1265 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1266 * which must be in UP state. 1267 * 1268 * @attr:Pointer to the GID attribute 1269 * 1270 * Returns pointer to netdevice if the netdevice was attached to GID and 1271 * netdevice is in UP state. Caller must hold RCU lock as this API 1272 * reads the netdev flags which can change while netdevice migrates to 1273 * different net namespace. Returns ERR_PTR with error code otherwise. 1274 * 1275 */ 1276 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1277 { 1278 struct ib_gid_table_entry *entry = 1279 container_of(attr, struct ib_gid_table_entry, attr); 1280 struct ib_device *device = entry->attr.device; 1281 struct net_device *ndev = ERR_PTR(-ENODEV); 1282 u8 port_num = entry->attr.port_num; 1283 struct ib_gid_table *table; 1284 unsigned long flags; 1285 bool valid; 1286 1287 table = rdma_gid_table(device, port_num); 1288 1289 read_lock_irqsave(&table->rwlock, flags); 1290 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1291 if (valid) { 1292 ndev = rcu_dereference(attr->ndev); 1293 if (!ndev || 1294 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0))) 1295 ndev = ERR_PTR(-ENODEV); 1296 } 1297 read_unlock_irqrestore(&table->rwlock, flags); 1298 return ndev; 1299 } 1300 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); 1301 1302 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data) 1303 { 1304 u16 *vlan_id = data; 1305 1306 if (is_vlan_dev(lower_dev)) 1307 *vlan_id = vlan_dev_vlan_id(lower_dev); 1308 1309 /* We are interested only in first level vlan device, so 1310 * always return 1 to stop iterating over next level devices. 1311 */ 1312 return 1; 1313 } 1314 1315 /** 1316 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address 1317 * of a GID entry. 1318 * 1319 * @attr: GID attribute pointer whose L2 fields to be read 1320 * @vlan_id: Pointer to vlan id to fill up if the GID entry has 1321 * vlan id. It is optional. 1322 * @smac: Pointer to smac to fill up for a GID entry. It is optional. 1323 * 1324 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id 1325 * (if gid entry has vlan) and source MAC, or returns error. 1326 */ 1327 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, 1328 u16 *vlan_id, u8 *smac) 1329 { 1330 struct net_device *ndev; 1331 1332 rcu_read_lock(); 1333 ndev = rcu_dereference(attr->ndev); 1334 if (!ndev) { 1335 rcu_read_unlock(); 1336 return -ENODEV; 1337 } 1338 if (smac) 1339 ether_addr_copy(smac, ndev->dev_addr); 1340 if (vlan_id) { 1341 *vlan_id = 0xffff; 1342 if (is_vlan_dev(ndev)) { 1343 *vlan_id = vlan_dev_vlan_id(ndev); 1344 } else { 1345 /* If the netdev is upper device and if it's lower 1346 * device is vlan device, consider vlan id of the 1347 * the lower vlan device for this gid entry. 1348 */ 1349 netdev_walk_all_lower_dev_rcu(attr->ndev, 1350 get_lower_dev_vlan, vlan_id); 1351 } 1352 } 1353 rcu_read_unlock(); 1354 return 0; 1355 } 1356 EXPORT_SYMBOL(rdma_read_gid_l2_fields); 1357 1358 static int config_non_roce_gid_cache(struct ib_device *device, 1359 u8 port, int gid_tbl_len) 1360 { 1361 struct ib_gid_attr gid_attr = {}; 1362 struct ib_gid_table *table; 1363 int ret = 0; 1364 int i; 1365 1366 gid_attr.device = device; 1367 gid_attr.port_num = port; 1368 table = rdma_gid_table(device, port); 1369 1370 mutex_lock(&table->lock); 1371 for (i = 0; i < gid_tbl_len; ++i) { 1372 if (!device->ops.query_gid) 1373 continue; 1374 ret = device->ops.query_gid(device, port, i, &gid_attr.gid); 1375 if (ret) { 1376 dev_warn(&device->dev, 1377 "query_gid failed (%d) for index %d\n", ret, 1378 i); 1379 goto err; 1380 } 1381 gid_attr.index = i; 1382 add_modify_gid(table, &gid_attr); 1383 } 1384 err: 1385 mutex_unlock(&table->lock); 1386 return ret; 1387 } 1388 1389 static void ib_cache_update(struct ib_device *device, 1390 u8 port, 1391 bool enforce_security) 1392 { 1393 struct ib_port_attr *tprops = NULL; 1394 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; 1395 int i; 1396 int ret; 1397 1398 if (!rdma_is_port_valid(device, port)) 1399 return; 1400 1401 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1402 if (!tprops) 1403 return; 1404 1405 ret = ib_query_port(device, port, tprops); 1406 if (ret) { 1407 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1408 goto err; 1409 } 1410 1411 if (!rdma_protocol_roce(device, port)) { 1412 ret = config_non_roce_gid_cache(device, port, 1413 tprops->gid_tbl_len); 1414 if (ret) 1415 goto err; 1416 } 1417 1418 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1419 tprops->pkey_tbl_len), 1420 GFP_KERNEL); 1421 if (!pkey_cache) 1422 goto err; 1423 1424 pkey_cache->table_len = tprops->pkey_tbl_len; 1425 1426 for (i = 0; i < pkey_cache->table_len; ++i) { 1427 ret = ib_query_pkey(device, port, i, pkey_cache->table + i); 1428 if (ret) { 1429 dev_warn(&device->dev, 1430 "ib_query_pkey failed (%d) for index %d\n", 1431 ret, i); 1432 goto err; 1433 } 1434 } 1435 1436 write_lock_irq(&device->cache.lock); 1437 1438 old_pkey_cache = device->port_data[port].cache.pkey; 1439 1440 device->port_data[port].cache.pkey = pkey_cache; 1441 device->port_data[port].cache.lmc = tprops->lmc; 1442 device->port_data[port].cache.port_state = tprops->state; 1443 1444 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; 1445 write_unlock_irq(&device->cache.lock); 1446 1447 if (enforce_security) 1448 ib_security_cache_change(device, 1449 port, 1450 tprops->subnet_prefix); 1451 1452 kfree(old_pkey_cache); 1453 kfree(tprops); 1454 return; 1455 1456 err: 1457 kfree(pkey_cache); 1458 kfree(tprops); 1459 } 1460 1461 static void ib_cache_task(struct work_struct *_work) 1462 { 1463 struct ib_update_work *work = 1464 container_of(_work, struct ib_update_work, work); 1465 1466 ib_cache_update(work->device, 1467 work->port_num, 1468 work->enforce_security); 1469 kfree(work); 1470 } 1471 1472 static void ib_cache_event(struct ib_event_handler *handler, 1473 struct ib_event *event) 1474 { 1475 struct ib_update_work *work; 1476 1477 if (event->event == IB_EVENT_PORT_ERR || 1478 event->event == IB_EVENT_PORT_ACTIVE || 1479 event->event == IB_EVENT_LID_CHANGE || 1480 event->event == IB_EVENT_PKEY_CHANGE || 1481 event->event == IB_EVENT_CLIENT_REREGISTER || 1482 event->event == IB_EVENT_GID_CHANGE) { 1483 work = kmalloc(sizeof *work, GFP_ATOMIC); 1484 if (work) { 1485 INIT_WORK(&work->work, ib_cache_task); 1486 work->device = event->device; 1487 work->port_num = event->element.port_num; 1488 if (event->event == IB_EVENT_PKEY_CHANGE || 1489 event->event == IB_EVENT_GID_CHANGE) 1490 work->enforce_security = true; 1491 else 1492 work->enforce_security = false; 1493 1494 queue_work(ib_wq, &work->work); 1495 } 1496 } 1497 } 1498 1499 int ib_cache_setup_one(struct ib_device *device) 1500 { 1501 unsigned int p; 1502 int err; 1503 1504 rwlock_init(&device->cache.lock); 1505 1506 err = gid_table_setup_one(device); 1507 if (err) 1508 return err; 1509 1510 rdma_for_each_port (device, p) 1511 ib_cache_update(device, p, true); 1512 1513 INIT_IB_EVENT_HANDLER(&device->cache.event_handler, 1514 device, ib_cache_event); 1515 ib_register_event_handler(&device->cache.event_handler); 1516 return 0; 1517 } 1518 1519 void ib_cache_release_one(struct ib_device *device) 1520 { 1521 unsigned int p; 1522 1523 /* 1524 * The release function frees all the cache elements. 1525 * This function should be called as part of freeing 1526 * all the device's resources when the cache could no 1527 * longer be accessed. 1528 */ 1529 rdma_for_each_port (device, p) 1530 kfree(device->port_data[p].cache.pkey); 1531 1532 gid_table_release_one(device); 1533 } 1534 1535 void ib_cache_cleanup_one(struct ib_device *device) 1536 { 1537 /* The cleanup function unregisters the event handler, 1538 * waits for all in-progress workqueue elements and cleans 1539 * up the GID cache. This function should be called after 1540 * the device was removed from the devices list and all 1541 * clients were removed, so the cache exists but is 1542 * non-functional and shouldn't be updated anymore. 1543 */ 1544 ib_unregister_event_handler(&device->cache.event_handler); 1545 flush_workqueue(ib_wq); 1546 gid_table_cleanup_one(device); 1547 1548 /* 1549 * Flush the wq second time for any pending GID delete work. 1550 */ 1551 flush_workqueue(ib_wq); 1552 } 1553