1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[0]; 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_device *device; 55 u8 port_num; 56 bool enforce_security; 57 }; 58 59 union ib_gid zgid; 60 EXPORT_SYMBOL(zgid); 61 62 enum gid_attr_find_mask { 63 GID_ATTR_FIND_MASK_GID = 1UL << 0, 64 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 65 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 66 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 67 }; 68 69 enum gid_table_entry_state { 70 GID_TABLE_ENTRY_INVALID = 1, 71 GID_TABLE_ENTRY_VALID = 2, 72 /* 73 * Indicates that entry is pending to be removed, there may 74 * be active users of this GID entry. 75 * When last user of the GID entry releases reference to it, 76 * GID entry is detached from the table. 77 */ 78 GID_TABLE_ENTRY_PENDING_DEL = 3, 79 }; 80 81 struct roce_gid_ndev_storage { 82 struct rcu_head rcu_head; 83 struct net_device *ndev; 84 }; 85 86 struct ib_gid_table_entry { 87 struct kref kref; 88 struct work_struct del_work; 89 struct ib_gid_attr attr; 90 void *context; 91 /* Store the ndev pointer to release reference later on in 92 * call_rcu context because by that time gid_table_entry 93 * and attr might be already freed. So keep a copy of it. 94 * ndev_storage is freed by rcu callback. 95 */ 96 struct roce_gid_ndev_storage *ndev_storage; 97 enum gid_table_entry_state state; 98 }; 99 100 struct ib_gid_table { 101 int sz; 102 /* In RoCE, adding a GID to the table requires: 103 * (a) Find if this GID is already exists. 104 * (b) Find a free space. 105 * (c) Write the new GID 106 * 107 * Delete requires different set of operations: 108 * (a) Find the GID 109 * (b) Delete it. 110 * 111 **/ 112 /* Any writer to data_vec must hold this lock and the write side of 113 * rwlock. Readers must hold only rwlock. All writers must be in a 114 * sleepable context. 115 */ 116 struct mutex lock; 117 /* rwlock protects data_vec[ix]->state and entry pointer. 118 */ 119 rwlock_t rwlock; 120 struct ib_gid_table_entry **data_vec; 121 /* bit field, each bit indicates the index of default GID */ 122 u32 default_gid_indices; 123 }; 124 125 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) 126 { 127 struct ib_event event; 128 129 event.device = ib_dev; 130 event.element.port_num = port; 131 event.event = IB_EVENT_GID_CHANGE; 132 133 ib_dispatch_event(&event); 134 } 135 136 static const char * const gid_type_str[] = { 137 [IB_GID_TYPE_IB] = "IB/RoCE v1", 138 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 139 }; 140 141 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 142 { 143 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 144 return gid_type_str[gid_type]; 145 146 return "Invalid GID type"; 147 } 148 EXPORT_SYMBOL(ib_cache_gid_type_str); 149 150 /** rdma_is_zero_gid - Check if given GID is zero or not. 151 * @gid: GID to check 152 * Returns true if given GID is zero, returns false otherwise. 153 */ 154 bool rdma_is_zero_gid(const union ib_gid *gid) 155 { 156 return !memcmp(gid, &zgid, sizeof(*gid)); 157 } 158 EXPORT_SYMBOL(rdma_is_zero_gid); 159 160 /** is_gid_index_default - Check if a given index belongs to 161 * reserved default GIDs or not. 162 * @table: GID table pointer 163 * @index: Index to check in GID table 164 * Returns true if index is one of the reserved default GID index otherwise 165 * returns false. 166 */ 167 static bool is_gid_index_default(const struct ib_gid_table *table, 168 unsigned int index) 169 { 170 return index < 32 && (BIT(index) & table->default_gid_indices); 171 } 172 173 int ib_cache_gid_parse_type_str(const char *buf) 174 { 175 unsigned int i; 176 size_t len; 177 int err = -EINVAL; 178 179 len = strlen(buf); 180 if (len == 0) 181 return -EINVAL; 182 183 if (buf[len - 1] == '\n') 184 len--; 185 186 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 187 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 188 len == strlen(gid_type_str[i])) { 189 err = i; 190 break; 191 } 192 193 return err; 194 } 195 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 196 197 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) 198 { 199 return device->port_data[port].cache.gid; 200 } 201 202 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 203 { 204 return !entry; 205 } 206 207 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 208 { 209 return entry && entry->state == GID_TABLE_ENTRY_VALID; 210 } 211 212 static void schedule_free_gid(struct kref *kref) 213 { 214 struct ib_gid_table_entry *entry = 215 container_of(kref, struct ib_gid_table_entry, kref); 216 217 queue_work(ib_wq, &entry->del_work); 218 } 219 220 static void put_gid_ndev(struct rcu_head *head) 221 { 222 struct roce_gid_ndev_storage *storage = 223 container_of(head, struct roce_gid_ndev_storage, rcu_head); 224 225 WARN_ON(!storage->ndev); 226 /* At this point its safe to release netdev reference, 227 * as all callers working on gid_attr->ndev are done 228 * using this netdev. 229 */ 230 dev_put(storage->ndev); 231 kfree(storage); 232 } 233 234 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 235 { 236 struct ib_device *device = entry->attr.device; 237 u8 port_num = entry->attr.port_num; 238 struct ib_gid_table *table = rdma_gid_table(device, port_num); 239 240 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__, 241 port_num, entry->attr.index, entry->attr.gid.raw); 242 243 write_lock_irq(&table->rwlock); 244 245 /* 246 * The only way to avoid overwriting NULL in table is 247 * by comparing if it is same entry in table or not! 248 * If new entry in table is added by the time we free here, 249 * don't overwrite the table entry. 250 */ 251 if (entry == table->data_vec[entry->attr.index]) 252 table->data_vec[entry->attr.index] = NULL; 253 /* Now this index is ready to be allocated */ 254 write_unlock_irq(&table->rwlock); 255 256 if (entry->ndev_storage) 257 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); 258 kfree(entry); 259 } 260 261 static void free_gid_entry(struct kref *kref) 262 { 263 struct ib_gid_table_entry *entry = 264 container_of(kref, struct ib_gid_table_entry, kref); 265 266 free_gid_entry_locked(entry); 267 } 268 269 /** 270 * free_gid_work - Release reference to the GID entry 271 * @work: Work structure to refer to GID entry which needs to be 272 * deleted. 273 * 274 * free_gid_work() frees the entry from the HCA's hardware table 275 * if provider supports it. It releases reference to netdevice. 276 */ 277 static void free_gid_work(struct work_struct *work) 278 { 279 struct ib_gid_table_entry *entry = 280 container_of(work, struct ib_gid_table_entry, del_work); 281 struct ib_device *device = entry->attr.device; 282 u8 port_num = entry->attr.port_num; 283 struct ib_gid_table *table = rdma_gid_table(device, port_num); 284 285 mutex_lock(&table->lock); 286 free_gid_entry_locked(entry); 287 mutex_unlock(&table->lock); 288 } 289 290 static struct ib_gid_table_entry * 291 alloc_gid_entry(const struct ib_gid_attr *attr) 292 { 293 struct ib_gid_table_entry *entry; 294 struct net_device *ndev; 295 296 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 297 if (!entry) 298 return NULL; 299 300 ndev = rcu_dereference_protected(attr->ndev, 1); 301 if (ndev) { 302 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), 303 GFP_KERNEL); 304 if (!entry->ndev_storage) { 305 kfree(entry); 306 return NULL; 307 } 308 dev_hold(ndev); 309 entry->ndev_storage->ndev = ndev; 310 } 311 kref_init(&entry->kref); 312 memcpy(&entry->attr, attr, sizeof(*attr)); 313 INIT_WORK(&entry->del_work, free_gid_work); 314 entry->state = GID_TABLE_ENTRY_INVALID; 315 return entry; 316 } 317 318 static void store_gid_entry(struct ib_gid_table *table, 319 struct ib_gid_table_entry *entry) 320 { 321 entry->state = GID_TABLE_ENTRY_VALID; 322 323 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n", 324 __func__, entry->attr.port_num, entry->attr.index, 325 entry->attr.gid.raw); 326 327 lockdep_assert_held(&table->lock); 328 write_lock_irq(&table->rwlock); 329 table->data_vec[entry->attr.index] = entry; 330 write_unlock_irq(&table->rwlock); 331 } 332 333 static void get_gid_entry(struct ib_gid_table_entry *entry) 334 { 335 kref_get(&entry->kref); 336 } 337 338 static void put_gid_entry(struct ib_gid_table_entry *entry) 339 { 340 kref_put(&entry->kref, schedule_free_gid); 341 } 342 343 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 344 { 345 kref_put(&entry->kref, free_gid_entry); 346 } 347 348 static int add_roce_gid(struct ib_gid_table_entry *entry) 349 { 350 const struct ib_gid_attr *attr = &entry->attr; 351 int ret; 352 353 if (!attr->ndev) { 354 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n", 355 __func__, attr->port_num, attr->index); 356 return -EINVAL; 357 } 358 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 359 ret = attr->device->ops.add_gid(attr, &entry->context); 360 if (ret) { 361 dev_err(&attr->device->dev, 362 "%s GID add failed port=%d index=%d\n", 363 __func__, attr->port_num, attr->index); 364 return ret; 365 } 366 } 367 return 0; 368 } 369 370 /** 371 * del_gid - Delete GID table entry 372 * 373 * @ib_dev: IB device whose GID entry to be deleted 374 * @port: Port number of the IB device 375 * @table: GID table of the IB device for a port 376 * @ix: GID entry index to delete 377 * 378 */ 379 static void del_gid(struct ib_device *ib_dev, u8 port, 380 struct ib_gid_table *table, int ix) 381 { 382 struct roce_gid_ndev_storage *ndev_storage; 383 struct ib_gid_table_entry *entry; 384 385 lockdep_assert_held(&table->lock); 386 387 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port, 388 ix, table->data_vec[ix]->attr.gid.raw); 389 390 write_lock_irq(&table->rwlock); 391 entry = table->data_vec[ix]; 392 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 393 /* 394 * For non RoCE protocol, GID entry slot is ready to use. 395 */ 396 if (!rdma_protocol_roce(ib_dev, port)) 397 table->data_vec[ix] = NULL; 398 write_unlock_irq(&table->rwlock); 399 400 ndev_storage = entry->ndev_storage; 401 if (ndev_storage) { 402 entry->ndev_storage = NULL; 403 rcu_assign_pointer(entry->attr.ndev, NULL); 404 call_rcu(&ndev_storage->rcu_head, put_gid_ndev); 405 } 406 407 if (rdma_cap_roce_gid_table(ib_dev, port)) 408 ib_dev->ops.del_gid(&entry->attr, &entry->context); 409 410 put_gid_entry_locked(entry); 411 } 412 413 /** 414 * add_modify_gid - Add or modify GID table entry 415 * 416 * @table: GID table in which GID to be added or modified 417 * @attr: Attributes of the GID 418 * 419 * Returns 0 on success or appropriate error code. It accepts zero 420 * GID addition for non RoCE ports for HCA's who report them as valid 421 * GID. However such zero GIDs are not added to the cache. 422 */ 423 static int add_modify_gid(struct ib_gid_table *table, 424 const struct ib_gid_attr *attr) 425 { 426 struct ib_gid_table_entry *entry; 427 int ret = 0; 428 429 /* 430 * Invalidate any old entry in the table to make it safe to write to 431 * this index. 432 */ 433 if (is_gid_entry_valid(table->data_vec[attr->index])) 434 del_gid(attr->device, attr->port_num, table, attr->index); 435 436 /* 437 * Some HCA's report multiple GID entries with only one valid GID, and 438 * leave other unused entries as the zero GID. Convert zero GIDs to 439 * empty table entries instead of storing them. 440 */ 441 if (rdma_is_zero_gid(&attr->gid)) 442 return 0; 443 444 entry = alloc_gid_entry(attr); 445 if (!entry) 446 return -ENOMEM; 447 448 if (rdma_protocol_roce(attr->device, attr->port_num)) { 449 ret = add_roce_gid(entry); 450 if (ret) 451 goto done; 452 } 453 454 store_gid_entry(table, entry); 455 return 0; 456 457 done: 458 put_gid_entry(entry); 459 return ret; 460 } 461 462 /* rwlock should be read locked, or lock should be held */ 463 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 464 const struct ib_gid_attr *val, bool default_gid, 465 unsigned long mask, int *pempty) 466 { 467 int i = 0; 468 int found = -1; 469 int empty = pempty ? -1 : 0; 470 471 while (i < table->sz && (found < 0 || empty < 0)) { 472 struct ib_gid_table_entry *data = table->data_vec[i]; 473 struct ib_gid_attr *attr; 474 int curr_index = i; 475 476 i++; 477 478 /* find_gid() is used during GID addition where it is expected 479 * to return a free entry slot which is not duplicate. 480 * Free entry slot is requested and returned if pempty is set, 481 * so lookup free slot only if requested. 482 */ 483 if (pempty && empty < 0) { 484 if (is_gid_entry_free(data) && 485 default_gid == 486 is_gid_index_default(table, curr_index)) { 487 /* 488 * Found an invalid (free) entry; allocate it. 489 * If default GID is requested, then our 490 * found slot must be one of the DEFAULT 491 * reserved slots or we fail. 492 * This ensures that only DEFAULT reserved 493 * slots are used for default property GIDs. 494 */ 495 empty = curr_index; 496 } 497 } 498 499 /* 500 * Additionally find_gid() is used to find valid entry during 501 * lookup operation; so ignore the entries which are marked as 502 * pending for removal and the entries which are marked as 503 * invalid. 504 */ 505 if (!is_gid_entry_valid(data)) 506 continue; 507 508 if (found >= 0) 509 continue; 510 511 attr = &data->attr; 512 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 513 attr->gid_type != val->gid_type) 514 continue; 515 516 if (mask & GID_ATTR_FIND_MASK_GID && 517 memcmp(gid, &data->attr.gid, sizeof(*gid))) 518 continue; 519 520 if (mask & GID_ATTR_FIND_MASK_NETDEV && 521 attr->ndev != val->ndev) 522 continue; 523 524 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 525 is_gid_index_default(table, curr_index) != default_gid) 526 continue; 527 528 found = curr_index; 529 } 530 531 if (pempty) 532 *pempty = empty; 533 534 return found; 535 } 536 537 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 538 { 539 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 540 addrconf_ifid_eui48(&gid->raw[8], dev); 541 } 542 543 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 544 union ib_gid *gid, struct ib_gid_attr *attr, 545 unsigned long mask, bool default_gid) 546 { 547 struct ib_gid_table *table; 548 int ret = 0; 549 int empty; 550 int ix; 551 552 /* Do not allow adding zero GID in support of 553 * IB spec version 1.3 section 4.1.1 point (6) and 554 * section 12.7.10 and section 12.7.20 555 */ 556 if (rdma_is_zero_gid(gid)) 557 return -EINVAL; 558 559 table = rdma_gid_table(ib_dev, port); 560 561 mutex_lock(&table->lock); 562 563 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 564 if (ix >= 0) 565 goto out_unlock; 566 567 if (empty < 0) { 568 ret = -ENOSPC; 569 goto out_unlock; 570 } 571 attr->device = ib_dev; 572 attr->index = empty; 573 attr->port_num = port; 574 attr->gid = *gid; 575 ret = add_modify_gid(table, attr); 576 if (!ret) 577 dispatch_gid_change_event(ib_dev, port); 578 579 out_unlock: 580 mutex_unlock(&table->lock); 581 if (ret) 582 pr_warn("%s: unable to add gid %pI6 error=%d\n", 583 __func__, gid->raw, ret); 584 return ret; 585 } 586 587 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 588 union ib_gid *gid, struct ib_gid_attr *attr) 589 { 590 unsigned long mask = GID_ATTR_FIND_MASK_GID | 591 GID_ATTR_FIND_MASK_GID_TYPE | 592 GID_ATTR_FIND_MASK_NETDEV; 593 594 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 595 } 596 597 static int 598 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 599 union ib_gid *gid, struct ib_gid_attr *attr, 600 unsigned long mask, bool default_gid) 601 { 602 struct ib_gid_table *table; 603 int ret = 0; 604 int ix; 605 606 table = rdma_gid_table(ib_dev, port); 607 608 mutex_lock(&table->lock); 609 610 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 611 if (ix < 0) { 612 ret = -EINVAL; 613 goto out_unlock; 614 } 615 616 del_gid(ib_dev, port, table, ix); 617 dispatch_gid_change_event(ib_dev, port); 618 619 out_unlock: 620 mutex_unlock(&table->lock); 621 if (ret) 622 pr_debug("%s: can't delete gid %pI6 error=%d\n", 623 __func__, gid->raw, ret); 624 return ret; 625 } 626 627 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 628 union ib_gid *gid, struct ib_gid_attr *attr) 629 { 630 unsigned long mask = GID_ATTR_FIND_MASK_GID | 631 GID_ATTR_FIND_MASK_GID_TYPE | 632 GID_ATTR_FIND_MASK_DEFAULT | 633 GID_ATTR_FIND_MASK_NETDEV; 634 635 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 636 } 637 638 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, 639 struct net_device *ndev) 640 { 641 struct ib_gid_table *table; 642 int ix; 643 bool deleted = false; 644 645 table = rdma_gid_table(ib_dev, port); 646 647 mutex_lock(&table->lock); 648 649 for (ix = 0; ix < table->sz; ix++) { 650 if (is_gid_entry_valid(table->data_vec[ix]) && 651 table->data_vec[ix]->attr.ndev == ndev) { 652 del_gid(ib_dev, port, table, ix); 653 deleted = true; 654 } 655 } 656 657 mutex_unlock(&table->lock); 658 659 if (deleted) 660 dispatch_gid_change_event(ib_dev, port); 661 662 return 0; 663 } 664 665 /** 666 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 667 * a valid GID entry for given search parameters. It searches for the specified 668 * GID value in the local software cache. 669 * @device: The device to query. 670 * @gid: The GID value to search for. 671 * @gid_type: The GID type to search for. 672 * @port_num: The port number of the device where the GID value should be 673 * searched. 674 * @ndev: In RoCE, the net device of the device. NULL means ignore. 675 * 676 * Returns sgid attributes if the GID is found with valid reference or 677 * returns ERR_PTR for the error. 678 * The caller must invoke rdma_put_gid_attr() to release the reference. 679 */ 680 const struct ib_gid_attr * 681 rdma_find_gid_by_port(struct ib_device *ib_dev, 682 const union ib_gid *gid, 683 enum ib_gid_type gid_type, 684 u8 port, struct net_device *ndev) 685 { 686 int local_index; 687 struct ib_gid_table *table; 688 unsigned long mask = GID_ATTR_FIND_MASK_GID | 689 GID_ATTR_FIND_MASK_GID_TYPE; 690 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 691 const struct ib_gid_attr *attr; 692 unsigned long flags; 693 694 if (!rdma_is_port_valid(ib_dev, port)) 695 return ERR_PTR(-ENOENT); 696 697 table = rdma_gid_table(ib_dev, port); 698 699 if (ndev) 700 mask |= GID_ATTR_FIND_MASK_NETDEV; 701 702 read_lock_irqsave(&table->rwlock, flags); 703 local_index = find_gid(table, gid, &val, false, mask, NULL); 704 if (local_index >= 0) { 705 get_gid_entry(table->data_vec[local_index]); 706 attr = &table->data_vec[local_index]->attr; 707 read_unlock_irqrestore(&table->rwlock, flags); 708 return attr; 709 } 710 711 read_unlock_irqrestore(&table->rwlock, flags); 712 return ERR_PTR(-ENOENT); 713 } 714 EXPORT_SYMBOL(rdma_find_gid_by_port); 715 716 /** 717 * rdma_find_gid_by_filter - Returns the GID table attribute where a 718 * specified GID value occurs 719 * @device: The device to query. 720 * @gid: The GID value to search for. 721 * @port: The port number of the device where the GID value could be 722 * searched. 723 * @filter: The filter function is executed on any matching GID in the table. 724 * If the filter function returns true, the corresponding index is returned, 725 * otherwise, we continue searching the GID table. It's guaranteed that 726 * while filter is executed, ndev field is valid and the structure won't 727 * change. filter is executed in an atomic context. filter must not be NULL. 728 * 729 * rdma_find_gid_by_filter() searches for the specified GID value 730 * of which the filter function returns true in the port's GID table. 731 * 732 */ 733 const struct ib_gid_attr *rdma_find_gid_by_filter( 734 struct ib_device *ib_dev, const union ib_gid *gid, u8 port, 735 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 736 void *), 737 void *context) 738 { 739 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 740 struct ib_gid_table *table; 741 unsigned long flags; 742 unsigned int i; 743 744 if (!rdma_is_port_valid(ib_dev, port)) 745 return ERR_PTR(-EINVAL); 746 747 table = rdma_gid_table(ib_dev, port); 748 749 read_lock_irqsave(&table->rwlock, flags); 750 for (i = 0; i < table->sz; i++) { 751 struct ib_gid_table_entry *entry = table->data_vec[i]; 752 753 if (!is_gid_entry_valid(entry)) 754 continue; 755 756 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 757 continue; 758 759 if (filter(gid, &entry->attr, context)) { 760 get_gid_entry(entry); 761 res = &entry->attr; 762 break; 763 } 764 } 765 read_unlock_irqrestore(&table->rwlock, flags); 766 return res; 767 } 768 769 static struct ib_gid_table *alloc_gid_table(int sz) 770 { 771 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 772 773 if (!table) 774 return NULL; 775 776 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 777 if (!table->data_vec) 778 goto err_free_table; 779 780 mutex_init(&table->lock); 781 782 table->sz = sz; 783 rwlock_init(&table->rwlock); 784 return table; 785 786 err_free_table: 787 kfree(table); 788 return NULL; 789 } 790 791 static void release_gid_table(struct ib_device *device, 792 struct ib_gid_table *table) 793 { 794 bool leak = false; 795 int i; 796 797 if (!table) 798 return; 799 800 for (i = 0; i < table->sz; i++) { 801 if (is_gid_entry_free(table->data_vec[i])) 802 continue; 803 if (kref_read(&table->data_vec[i]->kref) > 1) { 804 dev_err(&device->dev, 805 "GID entry ref leak for index %d ref=%d\n", i, 806 kref_read(&table->data_vec[i]->kref)); 807 leak = true; 808 } 809 } 810 if (leak) 811 return; 812 813 mutex_destroy(&table->lock); 814 kfree(table->data_vec); 815 kfree(table); 816 } 817 818 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, 819 struct ib_gid_table *table) 820 { 821 int i; 822 823 if (!table) 824 return; 825 826 mutex_lock(&table->lock); 827 for (i = 0; i < table->sz; ++i) { 828 if (is_gid_entry_valid(table->data_vec[i])) 829 del_gid(ib_dev, port, table, i); 830 } 831 mutex_unlock(&table->lock); 832 } 833 834 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, 835 struct net_device *ndev, 836 unsigned long gid_type_mask, 837 enum ib_cache_gid_default_mode mode) 838 { 839 union ib_gid gid = { }; 840 struct ib_gid_attr gid_attr; 841 unsigned int gid_type; 842 unsigned long mask; 843 844 mask = GID_ATTR_FIND_MASK_GID_TYPE | 845 GID_ATTR_FIND_MASK_DEFAULT | 846 GID_ATTR_FIND_MASK_NETDEV; 847 memset(&gid_attr, 0, sizeof(gid_attr)); 848 gid_attr.ndev = ndev; 849 850 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 851 if (1UL << gid_type & ~gid_type_mask) 852 continue; 853 854 gid_attr.gid_type = gid_type; 855 856 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 857 make_default_gid(ndev, &gid); 858 __ib_cache_gid_add(ib_dev, port, &gid, 859 &gid_attr, mask, true); 860 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 861 _ib_cache_gid_del(ib_dev, port, &gid, 862 &gid_attr, mask, true); 863 } 864 } 865 } 866 867 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, 868 struct ib_gid_table *table) 869 { 870 unsigned int i; 871 unsigned long roce_gid_type_mask; 872 unsigned int num_default_gids; 873 874 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 875 num_default_gids = hweight_long(roce_gid_type_mask); 876 /* Reserve starting indices for default GIDs */ 877 for (i = 0; i < num_default_gids && i < table->sz; i++) 878 table->default_gid_indices |= BIT(i); 879 } 880 881 882 static void gid_table_release_one(struct ib_device *ib_dev) 883 { 884 unsigned int p; 885 886 rdma_for_each_port (ib_dev, p) { 887 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); 888 ib_dev->port_data[p].cache.gid = NULL; 889 } 890 } 891 892 static int _gid_table_setup_one(struct ib_device *ib_dev) 893 { 894 struct ib_gid_table *table; 895 unsigned int rdma_port; 896 897 rdma_for_each_port (ib_dev, rdma_port) { 898 table = alloc_gid_table( 899 ib_dev->port_data[rdma_port].immutable.gid_tbl_len); 900 if (!table) 901 goto rollback_table_setup; 902 903 gid_table_reserve_default(ib_dev, rdma_port, table); 904 ib_dev->port_data[rdma_port].cache.gid = table; 905 } 906 return 0; 907 908 rollback_table_setup: 909 gid_table_release_one(ib_dev); 910 return -ENOMEM; 911 } 912 913 static void gid_table_cleanup_one(struct ib_device *ib_dev) 914 { 915 unsigned int p; 916 917 rdma_for_each_port (ib_dev, p) 918 cleanup_gid_table_port(ib_dev, p, 919 ib_dev->port_data[p].cache.gid); 920 } 921 922 static int gid_table_setup_one(struct ib_device *ib_dev) 923 { 924 int err; 925 926 err = _gid_table_setup_one(ib_dev); 927 928 if (err) 929 return err; 930 931 rdma_roce_rescan_device(ib_dev); 932 933 return err; 934 } 935 936 /** 937 * rdma_query_gid - Read the GID content from the GID software cache 938 * @device: Device to query the GID 939 * @port_num: Port number of the device 940 * @index: Index of the GID table entry to read 941 * @gid: Pointer to GID where to store the entry's GID 942 * 943 * rdma_query_gid() only reads the GID entry content for requested device, 944 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 945 * hold any reference to the GID table entry in the HCA or software cache. 946 * 947 * Returns 0 on success or appropriate error code. 948 * 949 */ 950 int rdma_query_gid(struct ib_device *device, u8 port_num, 951 int index, union ib_gid *gid) 952 { 953 struct ib_gid_table *table; 954 unsigned long flags; 955 int res = -EINVAL; 956 957 if (!rdma_is_port_valid(device, port_num)) 958 return -EINVAL; 959 960 table = rdma_gid_table(device, port_num); 961 read_lock_irqsave(&table->rwlock, flags); 962 963 if (index < 0 || index >= table->sz || 964 !is_gid_entry_valid(table->data_vec[index])) 965 goto done; 966 967 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 968 res = 0; 969 970 done: 971 read_unlock_irqrestore(&table->rwlock, flags); 972 return res; 973 } 974 EXPORT_SYMBOL(rdma_query_gid); 975 976 /** 977 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 978 * @device: The device to query. 979 * @gid: The GID value to search for. 980 * @gid_type: The GID type to search for. 981 * @ndev: In RoCE, the net device of the device. NULL means ignore. 982 * 983 * rdma_find_gid() searches for the specified GID value in the software cache. 984 * 985 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 986 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 987 * 988 */ 989 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 990 const union ib_gid *gid, 991 enum ib_gid_type gid_type, 992 struct net_device *ndev) 993 { 994 unsigned long mask = GID_ATTR_FIND_MASK_GID | 995 GID_ATTR_FIND_MASK_GID_TYPE; 996 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 997 unsigned int p; 998 999 if (ndev) 1000 mask |= GID_ATTR_FIND_MASK_NETDEV; 1001 1002 rdma_for_each_port(device, p) { 1003 struct ib_gid_table *table; 1004 unsigned long flags; 1005 int index; 1006 1007 table = device->port_data[p].cache.gid; 1008 read_lock_irqsave(&table->rwlock, flags); 1009 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1010 if (index >= 0) { 1011 const struct ib_gid_attr *attr; 1012 1013 get_gid_entry(table->data_vec[index]); 1014 attr = &table->data_vec[index]->attr; 1015 read_unlock_irqrestore(&table->rwlock, flags); 1016 return attr; 1017 } 1018 read_unlock_irqrestore(&table->rwlock, flags); 1019 } 1020 1021 return ERR_PTR(-ENOENT); 1022 } 1023 EXPORT_SYMBOL(rdma_find_gid); 1024 1025 int ib_get_cached_pkey(struct ib_device *device, 1026 u8 port_num, 1027 int index, 1028 u16 *pkey) 1029 { 1030 struct ib_pkey_cache *cache; 1031 unsigned long flags; 1032 int ret = 0; 1033 1034 if (!rdma_is_port_valid(device, port_num)) 1035 return -EINVAL; 1036 1037 read_lock_irqsave(&device->cache.lock, flags); 1038 1039 cache = device->port_data[port_num].cache.pkey; 1040 1041 if (index < 0 || index >= cache->table_len) 1042 ret = -EINVAL; 1043 else 1044 *pkey = cache->table[index]; 1045 1046 read_unlock_irqrestore(&device->cache.lock, flags); 1047 1048 return ret; 1049 } 1050 EXPORT_SYMBOL(ib_get_cached_pkey); 1051 1052 int ib_get_cached_subnet_prefix(struct ib_device *device, 1053 u8 port_num, 1054 u64 *sn_pfx) 1055 { 1056 unsigned long flags; 1057 1058 if (!rdma_is_port_valid(device, port_num)) 1059 return -EINVAL; 1060 1061 read_lock_irqsave(&device->cache.lock, flags); 1062 *sn_pfx = device->port_data[port_num].cache.subnet_prefix; 1063 read_unlock_irqrestore(&device->cache.lock, flags); 1064 1065 return 0; 1066 } 1067 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1068 1069 int ib_find_cached_pkey(struct ib_device *device, 1070 u8 port_num, 1071 u16 pkey, 1072 u16 *index) 1073 { 1074 struct ib_pkey_cache *cache; 1075 unsigned long flags; 1076 int i; 1077 int ret = -ENOENT; 1078 int partial_ix = -1; 1079 1080 if (!rdma_is_port_valid(device, port_num)) 1081 return -EINVAL; 1082 1083 read_lock_irqsave(&device->cache.lock, flags); 1084 1085 cache = device->port_data[port_num].cache.pkey; 1086 1087 *index = -1; 1088 1089 for (i = 0; i < cache->table_len; ++i) 1090 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1091 if (cache->table[i] & 0x8000) { 1092 *index = i; 1093 ret = 0; 1094 break; 1095 } else 1096 partial_ix = i; 1097 } 1098 1099 if (ret && partial_ix >= 0) { 1100 *index = partial_ix; 1101 ret = 0; 1102 } 1103 1104 read_unlock_irqrestore(&device->cache.lock, flags); 1105 1106 return ret; 1107 } 1108 EXPORT_SYMBOL(ib_find_cached_pkey); 1109 1110 int ib_find_exact_cached_pkey(struct ib_device *device, 1111 u8 port_num, 1112 u16 pkey, 1113 u16 *index) 1114 { 1115 struct ib_pkey_cache *cache; 1116 unsigned long flags; 1117 int i; 1118 int ret = -ENOENT; 1119 1120 if (!rdma_is_port_valid(device, port_num)) 1121 return -EINVAL; 1122 1123 read_lock_irqsave(&device->cache.lock, flags); 1124 1125 cache = device->port_data[port_num].cache.pkey; 1126 1127 *index = -1; 1128 1129 for (i = 0; i < cache->table_len; ++i) 1130 if (cache->table[i] == pkey) { 1131 *index = i; 1132 ret = 0; 1133 break; 1134 } 1135 1136 read_unlock_irqrestore(&device->cache.lock, flags); 1137 1138 return ret; 1139 } 1140 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1141 1142 int ib_get_cached_lmc(struct ib_device *device, 1143 u8 port_num, 1144 u8 *lmc) 1145 { 1146 unsigned long flags; 1147 int ret = 0; 1148 1149 if (!rdma_is_port_valid(device, port_num)) 1150 return -EINVAL; 1151 1152 read_lock_irqsave(&device->cache.lock, flags); 1153 *lmc = device->port_data[port_num].cache.lmc; 1154 read_unlock_irqrestore(&device->cache.lock, flags); 1155 1156 return ret; 1157 } 1158 EXPORT_SYMBOL(ib_get_cached_lmc); 1159 1160 int ib_get_cached_port_state(struct ib_device *device, 1161 u8 port_num, 1162 enum ib_port_state *port_state) 1163 { 1164 unsigned long flags; 1165 int ret = 0; 1166 1167 if (!rdma_is_port_valid(device, port_num)) 1168 return -EINVAL; 1169 1170 read_lock_irqsave(&device->cache.lock, flags); 1171 *port_state = device->port_data[port_num].cache.port_state; 1172 read_unlock_irqrestore(&device->cache.lock, flags); 1173 1174 return ret; 1175 } 1176 EXPORT_SYMBOL(ib_get_cached_port_state); 1177 1178 /** 1179 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1180 * at a requested gid_index, if a valid GID entry exists. 1181 * @device: The device to query. 1182 * @port_num: The port number on the device where the GID value 1183 * is to be queried. 1184 * @index: Index of the GID table entry whose attributes are to 1185 * be queried. 1186 * 1187 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1188 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1189 * reference to gid attribute regardless of link layer. 1190 * 1191 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1192 * code. 1193 */ 1194 const struct ib_gid_attr * 1195 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index) 1196 { 1197 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL); 1198 struct ib_gid_table *table; 1199 unsigned long flags; 1200 1201 if (!rdma_is_port_valid(device, port_num)) 1202 return ERR_PTR(-EINVAL); 1203 1204 table = rdma_gid_table(device, port_num); 1205 if (index < 0 || index >= table->sz) 1206 return ERR_PTR(-EINVAL); 1207 1208 read_lock_irqsave(&table->rwlock, flags); 1209 if (!is_gid_entry_valid(table->data_vec[index])) 1210 goto done; 1211 1212 get_gid_entry(table->data_vec[index]); 1213 attr = &table->data_vec[index]->attr; 1214 done: 1215 read_unlock_irqrestore(&table->rwlock, flags); 1216 return attr; 1217 } 1218 EXPORT_SYMBOL(rdma_get_gid_attr); 1219 1220 /** 1221 * rdma_put_gid_attr - Release reference to the GID attribute 1222 * @attr: Pointer to the GID attribute whose reference 1223 * needs to be released. 1224 * 1225 * rdma_put_gid_attr() must be used to release reference whose 1226 * reference is acquired using rdma_get_gid_attr() or any APIs 1227 * which returns a pointer to the ib_gid_attr regardless of link layer 1228 * of IB or RoCE. 1229 * 1230 */ 1231 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1232 { 1233 struct ib_gid_table_entry *entry = 1234 container_of(attr, struct ib_gid_table_entry, attr); 1235 1236 put_gid_entry(entry); 1237 } 1238 EXPORT_SYMBOL(rdma_put_gid_attr); 1239 1240 /** 1241 * rdma_hold_gid_attr - Get reference to existing GID attribute 1242 * 1243 * @attr: Pointer to the GID attribute whose reference 1244 * needs to be taken. 1245 * 1246 * Increase the reference count to a GID attribute to keep it from being 1247 * freed. Callers are required to already be holding a reference to attribute. 1248 * 1249 */ 1250 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1251 { 1252 struct ib_gid_table_entry *entry = 1253 container_of(attr, struct ib_gid_table_entry, attr); 1254 1255 get_gid_entry(entry); 1256 } 1257 EXPORT_SYMBOL(rdma_hold_gid_attr); 1258 1259 /** 1260 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1261 * which must be in UP state. 1262 * 1263 * @attr:Pointer to the GID attribute 1264 * 1265 * Returns pointer to netdevice if the netdevice was attached to GID and 1266 * netdevice is in UP state. Caller must hold RCU lock as this API 1267 * reads the netdev flags which can change while netdevice migrates to 1268 * different net namespace. Returns ERR_PTR with error code otherwise. 1269 * 1270 */ 1271 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1272 { 1273 struct ib_gid_table_entry *entry = 1274 container_of(attr, struct ib_gid_table_entry, attr); 1275 struct ib_device *device = entry->attr.device; 1276 struct net_device *ndev = ERR_PTR(-ENODEV); 1277 u8 port_num = entry->attr.port_num; 1278 struct ib_gid_table *table; 1279 unsigned long flags; 1280 bool valid; 1281 1282 table = rdma_gid_table(device, port_num); 1283 1284 read_lock_irqsave(&table->rwlock, flags); 1285 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1286 if (valid) { 1287 ndev = rcu_dereference(attr->ndev); 1288 if (!ndev || 1289 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0))) 1290 ndev = ERR_PTR(-ENODEV); 1291 } 1292 read_unlock_irqrestore(&table->rwlock, flags); 1293 return ndev; 1294 } 1295 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); 1296 1297 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data) 1298 { 1299 u16 *vlan_id = data; 1300 1301 if (is_vlan_dev(lower_dev)) 1302 *vlan_id = vlan_dev_vlan_id(lower_dev); 1303 1304 /* We are interested only in first level vlan device, so 1305 * always return 1 to stop iterating over next level devices. 1306 */ 1307 return 1; 1308 } 1309 1310 /** 1311 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address 1312 * of a GID entry. 1313 * 1314 * @attr: GID attribute pointer whose L2 fields to be read 1315 * @vlan_id: Pointer to vlan id to fill up if the GID entry has 1316 * vlan id. It is optional. 1317 * @smac: Pointer to smac to fill up for a GID entry. It is optional. 1318 * 1319 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id 1320 * (if gid entry has vlan) and source MAC, or returns error. 1321 */ 1322 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, 1323 u16 *vlan_id, u8 *smac) 1324 { 1325 struct net_device *ndev; 1326 1327 rcu_read_lock(); 1328 ndev = rcu_dereference(attr->ndev); 1329 if (!ndev) { 1330 rcu_read_unlock(); 1331 return -ENODEV; 1332 } 1333 if (smac) 1334 ether_addr_copy(smac, ndev->dev_addr); 1335 if (vlan_id) { 1336 *vlan_id = 0xffff; 1337 if (is_vlan_dev(ndev)) { 1338 *vlan_id = vlan_dev_vlan_id(ndev); 1339 } else { 1340 /* If the netdev is upper device and if it's lower 1341 * device is vlan device, consider vlan id of the 1342 * the lower vlan device for this gid entry. 1343 */ 1344 netdev_walk_all_lower_dev_rcu(attr->ndev, 1345 get_lower_dev_vlan, vlan_id); 1346 } 1347 } 1348 rcu_read_unlock(); 1349 return 0; 1350 } 1351 EXPORT_SYMBOL(rdma_read_gid_l2_fields); 1352 1353 static int config_non_roce_gid_cache(struct ib_device *device, 1354 u8 port, int gid_tbl_len) 1355 { 1356 struct ib_gid_attr gid_attr = {}; 1357 struct ib_gid_table *table; 1358 int ret = 0; 1359 int i; 1360 1361 gid_attr.device = device; 1362 gid_attr.port_num = port; 1363 table = rdma_gid_table(device, port); 1364 1365 mutex_lock(&table->lock); 1366 for (i = 0; i < gid_tbl_len; ++i) { 1367 if (!device->ops.query_gid) 1368 continue; 1369 ret = device->ops.query_gid(device, port, i, &gid_attr.gid); 1370 if (ret) { 1371 dev_warn(&device->dev, 1372 "query_gid failed (%d) for index %d\n", ret, 1373 i); 1374 goto err; 1375 } 1376 gid_attr.index = i; 1377 add_modify_gid(table, &gid_attr); 1378 } 1379 err: 1380 mutex_unlock(&table->lock); 1381 return ret; 1382 } 1383 1384 static void ib_cache_update(struct ib_device *device, 1385 u8 port, 1386 bool enforce_security) 1387 { 1388 struct ib_port_attr *tprops = NULL; 1389 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; 1390 int i; 1391 int ret; 1392 1393 if (!rdma_is_port_valid(device, port)) 1394 return; 1395 1396 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1397 if (!tprops) 1398 return; 1399 1400 ret = ib_query_port(device, port, tprops); 1401 if (ret) { 1402 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1403 goto err; 1404 } 1405 1406 if (!rdma_protocol_roce(device, port)) { 1407 ret = config_non_roce_gid_cache(device, port, 1408 tprops->gid_tbl_len); 1409 if (ret) 1410 goto err; 1411 } 1412 1413 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1414 tprops->pkey_tbl_len), 1415 GFP_KERNEL); 1416 if (!pkey_cache) 1417 goto err; 1418 1419 pkey_cache->table_len = tprops->pkey_tbl_len; 1420 1421 for (i = 0; i < pkey_cache->table_len; ++i) { 1422 ret = ib_query_pkey(device, port, i, pkey_cache->table + i); 1423 if (ret) { 1424 dev_warn(&device->dev, 1425 "ib_query_pkey failed (%d) for index %d\n", 1426 ret, i); 1427 goto err; 1428 } 1429 } 1430 1431 write_lock_irq(&device->cache.lock); 1432 1433 old_pkey_cache = device->port_data[port].cache.pkey; 1434 1435 device->port_data[port].cache.pkey = pkey_cache; 1436 device->port_data[port].cache.lmc = tprops->lmc; 1437 device->port_data[port].cache.port_state = tprops->state; 1438 1439 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; 1440 write_unlock_irq(&device->cache.lock); 1441 1442 if (enforce_security) 1443 ib_security_cache_change(device, 1444 port, 1445 tprops->subnet_prefix); 1446 1447 kfree(old_pkey_cache); 1448 kfree(tprops); 1449 return; 1450 1451 err: 1452 kfree(pkey_cache); 1453 kfree(tprops); 1454 } 1455 1456 static void ib_cache_task(struct work_struct *_work) 1457 { 1458 struct ib_update_work *work = 1459 container_of(_work, struct ib_update_work, work); 1460 1461 ib_cache_update(work->device, 1462 work->port_num, 1463 work->enforce_security); 1464 kfree(work); 1465 } 1466 1467 static void ib_cache_event(struct ib_event_handler *handler, 1468 struct ib_event *event) 1469 { 1470 struct ib_update_work *work; 1471 1472 if (event->event == IB_EVENT_PORT_ERR || 1473 event->event == IB_EVENT_PORT_ACTIVE || 1474 event->event == IB_EVENT_LID_CHANGE || 1475 event->event == IB_EVENT_PKEY_CHANGE || 1476 event->event == IB_EVENT_CLIENT_REREGISTER || 1477 event->event == IB_EVENT_GID_CHANGE) { 1478 work = kmalloc(sizeof *work, GFP_ATOMIC); 1479 if (work) { 1480 INIT_WORK(&work->work, ib_cache_task); 1481 work->device = event->device; 1482 work->port_num = event->element.port_num; 1483 if (event->event == IB_EVENT_PKEY_CHANGE || 1484 event->event == IB_EVENT_GID_CHANGE) 1485 work->enforce_security = true; 1486 else 1487 work->enforce_security = false; 1488 1489 queue_work(ib_wq, &work->work); 1490 } 1491 } 1492 } 1493 1494 int ib_cache_setup_one(struct ib_device *device) 1495 { 1496 unsigned int p; 1497 int err; 1498 1499 rwlock_init(&device->cache.lock); 1500 1501 err = gid_table_setup_one(device); 1502 if (err) 1503 return err; 1504 1505 rdma_for_each_port (device, p) 1506 ib_cache_update(device, p, true); 1507 1508 INIT_IB_EVENT_HANDLER(&device->cache.event_handler, 1509 device, ib_cache_event); 1510 ib_register_event_handler(&device->cache.event_handler); 1511 return 0; 1512 } 1513 1514 void ib_cache_release_one(struct ib_device *device) 1515 { 1516 unsigned int p; 1517 1518 /* 1519 * The release function frees all the cache elements. 1520 * This function should be called as part of freeing 1521 * all the device's resources when the cache could no 1522 * longer be accessed. 1523 */ 1524 rdma_for_each_port (device, p) 1525 kfree(device->port_data[p].cache.pkey); 1526 1527 gid_table_release_one(device); 1528 } 1529 1530 void ib_cache_cleanup_one(struct ib_device *device) 1531 { 1532 /* The cleanup function unregisters the event handler, 1533 * waits for all in-progress workqueue elements and cleans 1534 * up the GID cache. This function should be called after 1535 * the device was removed from the devices list and all 1536 * clients were removed, so the cache exists but is 1537 * non-functional and shouldn't be updated anymore. 1538 */ 1539 ib_unregister_event_handler(&device->cache.event_handler); 1540 flush_workqueue(ib_wq); 1541 gid_table_cleanup_one(device); 1542 1543 /* 1544 * Flush the wq second time for any pending GID delete work. 1545 */ 1546 flush_workqueue(ib_wq); 1547 } 1548