1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[0]; 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_device *device; 55 u8 port_num; 56 bool enforce_security; 57 }; 58 59 union ib_gid zgid; 60 EXPORT_SYMBOL(zgid); 61 62 enum gid_attr_find_mask { 63 GID_ATTR_FIND_MASK_GID = 1UL << 0, 64 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 65 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 66 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 67 }; 68 69 enum gid_table_entry_state { 70 GID_TABLE_ENTRY_INVALID = 1, 71 GID_TABLE_ENTRY_VALID = 2, 72 /* 73 * Indicates that entry is pending to be removed, there may 74 * be active users of this GID entry. 75 * When last user of the GID entry releases reference to it, 76 * GID entry is detached from the table. 77 */ 78 GID_TABLE_ENTRY_PENDING_DEL = 3, 79 }; 80 81 struct ib_gid_table_entry { 82 struct kref kref; 83 struct work_struct del_work; 84 struct ib_gid_attr attr; 85 void *context; 86 enum gid_table_entry_state state; 87 }; 88 89 struct ib_gid_table { 90 int sz; 91 /* In RoCE, adding a GID to the table requires: 92 * (a) Find if this GID is already exists. 93 * (b) Find a free space. 94 * (c) Write the new GID 95 * 96 * Delete requires different set of operations: 97 * (a) Find the GID 98 * (b) Delete it. 99 * 100 **/ 101 /* Any writer to data_vec must hold this lock and the write side of 102 * rwlock. Readers must hold only rwlock. All writers must be in a 103 * sleepable context. 104 */ 105 struct mutex lock; 106 /* rwlock protects data_vec[ix]->state and entry pointer. 107 */ 108 rwlock_t rwlock; 109 struct ib_gid_table_entry **data_vec; 110 /* bit field, each bit indicates the index of default GID */ 111 u32 default_gid_indices; 112 }; 113 114 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) 115 { 116 struct ib_event event; 117 118 event.device = ib_dev; 119 event.element.port_num = port; 120 event.event = IB_EVENT_GID_CHANGE; 121 122 ib_dispatch_event(&event); 123 } 124 125 static const char * const gid_type_str[] = { 126 [IB_GID_TYPE_IB] = "IB/RoCE v1", 127 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 128 }; 129 130 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 131 { 132 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 133 return gid_type_str[gid_type]; 134 135 return "Invalid GID type"; 136 } 137 EXPORT_SYMBOL(ib_cache_gid_type_str); 138 139 /** rdma_is_zero_gid - Check if given GID is zero or not. 140 * @gid: GID to check 141 * Returns true if given GID is zero, returns false otherwise. 142 */ 143 bool rdma_is_zero_gid(const union ib_gid *gid) 144 { 145 return !memcmp(gid, &zgid, sizeof(*gid)); 146 } 147 EXPORT_SYMBOL(rdma_is_zero_gid); 148 149 /** is_gid_index_default - Check if a given index belongs to 150 * reserved default GIDs or not. 151 * @table: GID table pointer 152 * @index: Index to check in GID table 153 * Returns true if index is one of the reserved default GID index otherwise 154 * returns false. 155 */ 156 static bool is_gid_index_default(const struct ib_gid_table *table, 157 unsigned int index) 158 { 159 return index < 32 && (BIT(index) & table->default_gid_indices); 160 } 161 162 int ib_cache_gid_parse_type_str(const char *buf) 163 { 164 unsigned int i; 165 size_t len; 166 int err = -EINVAL; 167 168 len = strlen(buf); 169 if (len == 0) 170 return -EINVAL; 171 172 if (buf[len - 1] == '\n') 173 len--; 174 175 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 176 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 177 len == strlen(gid_type_str[i])) { 178 err = i; 179 break; 180 } 181 182 return err; 183 } 184 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 185 186 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) 187 { 188 return device->cache.ports[port - rdma_start_port(device)].gid; 189 } 190 191 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 192 { 193 return !entry; 194 } 195 196 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 197 { 198 return entry && entry->state == GID_TABLE_ENTRY_VALID; 199 } 200 201 static void schedule_free_gid(struct kref *kref) 202 { 203 struct ib_gid_table_entry *entry = 204 container_of(kref, struct ib_gid_table_entry, kref); 205 206 queue_work(ib_wq, &entry->del_work); 207 } 208 209 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 210 { 211 struct ib_device *device = entry->attr.device; 212 u8 port_num = entry->attr.port_num; 213 struct ib_gid_table *table = rdma_gid_table(device, port_num); 214 215 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__, 216 port_num, entry->attr.index, entry->attr.gid.raw); 217 218 if (rdma_cap_roce_gid_table(device, port_num) && 219 entry->state != GID_TABLE_ENTRY_INVALID) 220 device->del_gid(&entry->attr, &entry->context); 221 222 write_lock_irq(&table->rwlock); 223 224 /* 225 * The only way to avoid overwriting NULL in table is 226 * by comparing if it is same entry in table or not! 227 * If new entry in table is added by the time we free here, 228 * don't overwrite the table entry. 229 */ 230 if (entry == table->data_vec[entry->attr.index]) 231 table->data_vec[entry->attr.index] = NULL; 232 /* Now this index is ready to be allocated */ 233 write_unlock_irq(&table->rwlock); 234 235 if (entry->attr.ndev) 236 dev_put(entry->attr.ndev); 237 kfree(entry); 238 } 239 240 static void free_gid_entry(struct kref *kref) 241 { 242 struct ib_gid_table_entry *entry = 243 container_of(kref, struct ib_gid_table_entry, kref); 244 245 free_gid_entry_locked(entry); 246 } 247 248 /** 249 * free_gid_work - Release reference to the GID entry 250 * @work: Work structure to refer to GID entry which needs to be 251 * deleted. 252 * 253 * free_gid_work() frees the entry from the HCA's hardware table 254 * if provider supports it. It releases reference to netdevice. 255 */ 256 static void free_gid_work(struct work_struct *work) 257 { 258 struct ib_gid_table_entry *entry = 259 container_of(work, struct ib_gid_table_entry, del_work); 260 struct ib_device *device = entry->attr.device; 261 u8 port_num = entry->attr.port_num; 262 struct ib_gid_table *table = rdma_gid_table(device, port_num); 263 264 mutex_lock(&table->lock); 265 free_gid_entry_locked(entry); 266 mutex_unlock(&table->lock); 267 } 268 269 static struct ib_gid_table_entry * 270 alloc_gid_entry(const struct ib_gid_attr *attr) 271 { 272 struct ib_gid_table_entry *entry; 273 274 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 275 if (!entry) 276 return NULL; 277 kref_init(&entry->kref); 278 memcpy(&entry->attr, attr, sizeof(*attr)); 279 if (entry->attr.ndev) 280 dev_hold(entry->attr.ndev); 281 INIT_WORK(&entry->del_work, free_gid_work); 282 entry->state = GID_TABLE_ENTRY_INVALID; 283 return entry; 284 } 285 286 static void store_gid_entry(struct ib_gid_table *table, 287 struct ib_gid_table_entry *entry) 288 { 289 entry->state = GID_TABLE_ENTRY_VALID; 290 291 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n", 292 __func__, entry->attr.port_num, entry->attr.index, 293 entry->attr.gid.raw); 294 295 lockdep_assert_held(&table->lock); 296 write_lock_irq(&table->rwlock); 297 table->data_vec[entry->attr.index] = entry; 298 write_unlock_irq(&table->rwlock); 299 } 300 301 static void get_gid_entry(struct ib_gid_table_entry *entry) 302 { 303 kref_get(&entry->kref); 304 } 305 306 static void put_gid_entry(struct ib_gid_table_entry *entry) 307 { 308 kref_put(&entry->kref, schedule_free_gid); 309 } 310 311 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 312 { 313 kref_put(&entry->kref, free_gid_entry); 314 } 315 316 static int add_roce_gid(struct ib_gid_table_entry *entry) 317 { 318 const struct ib_gid_attr *attr = &entry->attr; 319 int ret; 320 321 if (!attr->ndev) { 322 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n", 323 __func__, attr->port_num, attr->index); 324 return -EINVAL; 325 } 326 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 327 ret = attr->device->add_gid(attr, &entry->context); 328 if (ret) { 329 dev_err(&attr->device->dev, 330 "%s GID add failed port=%d index=%d\n", 331 __func__, attr->port_num, attr->index); 332 return ret; 333 } 334 } 335 return 0; 336 } 337 338 /** 339 * del_gid - Delete GID table entry 340 * 341 * @ib_dev: IB device whose GID entry to be deleted 342 * @port: Port number of the IB device 343 * @table: GID table of the IB device for a port 344 * @ix: GID entry index to delete 345 * 346 */ 347 static void del_gid(struct ib_device *ib_dev, u8 port, 348 struct ib_gid_table *table, int ix) 349 { 350 struct ib_gid_table_entry *entry; 351 352 lockdep_assert_held(&table->lock); 353 354 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port, 355 ix, table->data_vec[ix]->attr.gid.raw); 356 357 write_lock_irq(&table->rwlock); 358 entry = table->data_vec[ix]; 359 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 360 /* 361 * For non RoCE protocol, GID entry slot is ready to use. 362 */ 363 if (!rdma_protocol_roce(ib_dev, port)) 364 table->data_vec[ix] = NULL; 365 write_unlock_irq(&table->rwlock); 366 367 put_gid_entry_locked(entry); 368 } 369 370 /** 371 * add_modify_gid - Add or modify GID table entry 372 * 373 * @table: GID table in which GID to be added or modified 374 * @attr: Attributes of the GID 375 * 376 * Returns 0 on success or appropriate error code. It accepts zero 377 * GID addition for non RoCE ports for HCA's who report them as valid 378 * GID. However such zero GIDs are not added to the cache. 379 */ 380 static int add_modify_gid(struct ib_gid_table *table, 381 const struct ib_gid_attr *attr) 382 { 383 struct ib_gid_table_entry *entry; 384 int ret = 0; 385 386 /* 387 * Invalidate any old entry in the table to make it safe to write to 388 * this index. 389 */ 390 if (is_gid_entry_valid(table->data_vec[attr->index])) 391 del_gid(attr->device, attr->port_num, table, attr->index); 392 393 /* 394 * Some HCA's report multiple GID entries with only one valid GID, and 395 * leave other unused entries as the zero GID. Convert zero GIDs to 396 * empty table entries instead of storing them. 397 */ 398 if (rdma_is_zero_gid(&attr->gid)) 399 return 0; 400 401 entry = alloc_gid_entry(attr); 402 if (!entry) 403 return -ENOMEM; 404 405 if (rdma_protocol_roce(attr->device, attr->port_num)) { 406 ret = add_roce_gid(entry); 407 if (ret) 408 goto done; 409 } 410 411 store_gid_entry(table, entry); 412 return 0; 413 414 done: 415 put_gid_entry(entry); 416 return ret; 417 } 418 419 /* rwlock should be read locked, or lock should be held */ 420 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 421 const struct ib_gid_attr *val, bool default_gid, 422 unsigned long mask, int *pempty) 423 { 424 int i = 0; 425 int found = -1; 426 int empty = pempty ? -1 : 0; 427 428 while (i < table->sz && (found < 0 || empty < 0)) { 429 struct ib_gid_table_entry *data = table->data_vec[i]; 430 struct ib_gid_attr *attr; 431 int curr_index = i; 432 433 i++; 434 435 /* find_gid() is used during GID addition where it is expected 436 * to return a free entry slot which is not duplicate. 437 * Free entry slot is requested and returned if pempty is set, 438 * so lookup free slot only if requested. 439 */ 440 if (pempty && empty < 0) { 441 if (is_gid_entry_free(data) && 442 default_gid == 443 is_gid_index_default(table, curr_index)) { 444 /* 445 * Found an invalid (free) entry; allocate it. 446 * If default GID is requested, then our 447 * found slot must be one of the DEFAULT 448 * reserved slots or we fail. 449 * This ensures that only DEFAULT reserved 450 * slots are used for default property GIDs. 451 */ 452 empty = curr_index; 453 } 454 } 455 456 /* 457 * Additionally find_gid() is used to find valid entry during 458 * lookup operation; so ignore the entries which are marked as 459 * pending for removal and the entries which are marked as 460 * invalid. 461 */ 462 if (!is_gid_entry_valid(data)) 463 continue; 464 465 if (found >= 0) 466 continue; 467 468 attr = &data->attr; 469 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 470 attr->gid_type != val->gid_type) 471 continue; 472 473 if (mask & GID_ATTR_FIND_MASK_GID && 474 memcmp(gid, &data->attr.gid, sizeof(*gid))) 475 continue; 476 477 if (mask & GID_ATTR_FIND_MASK_NETDEV && 478 attr->ndev != val->ndev) 479 continue; 480 481 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 482 is_gid_index_default(table, curr_index) != default_gid) 483 continue; 484 485 found = curr_index; 486 } 487 488 if (pempty) 489 *pempty = empty; 490 491 return found; 492 } 493 494 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 495 { 496 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 497 addrconf_ifid_eui48(&gid->raw[8], dev); 498 } 499 500 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 501 union ib_gid *gid, struct ib_gid_attr *attr, 502 unsigned long mask, bool default_gid) 503 { 504 struct ib_gid_table *table; 505 int ret = 0; 506 int empty; 507 int ix; 508 509 /* Do not allow adding zero GID in support of 510 * IB spec version 1.3 section 4.1.1 point (6) and 511 * section 12.7.10 and section 12.7.20 512 */ 513 if (rdma_is_zero_gid(gid)) 514 return -EINVAL; 515 516 table = rdma_gid_table(ib_dev, port); 517 518 mutex_lock(&table->lock); 519 520 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 521 if (ix >= 0) 522 goto out_unlock; 523 524 if (empty < 0) { 525 ret = -ENOSPC; 526 goto out_unlock; 527 } 528 attr->device = ib_dev; 529 attr->index = empty; 530 attr->port_num = port; 531 attr->gid = *gid; 532 ret = add_modify_gid(table, attr); 533 if (!ret) 534 dispatch_gid_change_event(ib_dev, port); 535 536 out_unlock: 537 mutex_unlock(&table->lock); 538 if (ret) 539 pr_warn("%s: unable to add gid %pI6 error=%d\n", 540 __func__, gid->raw, ret); 541 return ret; 542 } 543 544 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 545 union ib_gid *gid, struct ib_gid_attr *attr) 546 { 547 struct net_device *idev; 548 unsigned long mask; 549 int ret; 550 551 if (ib_dev->get_netdev) { 552 idev = ib_dev->get_netdev(ib_dev, port); 553 if (idev && attr->ndev != idev) { 554 union ib_gid default_gid; 555 556 /* Adding default GIDs in not permitted */ 557 make_default_gid(idev, &default_gid); 558 if (!memcmp(gid, &default_gid, sizeof(*gid))) { 559 dev_put(idev); 560 return -EPERM; 561 } 562 } 563 if (idev) 564 dev_put(idev); 565 } 566 567 mask = GID_ATTR_FIND_MASK_GID | 568 GID_ATTR_FIND_MASK_GID_TYPE | 569 GID_ATTR_FIND_MASK_NETDEV; 570 571 ret = __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 572 return ret; 573 } 574 575 static int 576 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 577 union ib_gid *gid, struct ib_gid_attr *attr, 578 unsigned long mask, bool default_gid) 579 { 580 struct ib_gid_table *table; 581 int ret = 0; 582 int ix; 583 584 table = rdma_gid_table(ib_dev, port); 585 586 mutex_lock(&table->lock); 587 588 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 589 if (ix < 0) { 590 ret = -EINVAL; 591 goto out_unlock; 592 } 593 594 del_gid(ib_dev, port, table, ix); 595 dispatch_gid_change_event(ib_dev, port); 596 597 out_unlock: 598 mutex_unlock(&table->lock); 599 if (ret) 600 pr_debug("%s: can't delete gid %pI6 error=%d\n", 601 __func__, gid->raw, ret); 602 return ret; 603 } 604 605 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 606 union ib_gid *gid, struct ib_gid_attr *attr) 607 { 608 unsigned long mask = GID_ATTR_FIND_MASK_GID | 609 GID_ATTR_FIND_MASK_GID_TYPE | 610 GID_ATTR_FIND_MASK_DEFAULT | 611 GID_ATTR_FIND_MASK_NETDEV; 612 613 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 614 } 615 616 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, 617 struct net_device *ndev) 618 { 619 struct ib_gid_table *table; 620 int ix; 621 bool deleted = false; 622 623 table = rdma_gid_table(ib_dev, port); 624 625 mutex_lock(&table->lock); 626 627 for (ix = 0; ix < table->sz; ix++) { 628 if (is_gid_entry_valid(table->data_vec[ix]) && 629 table->data_vec[ix]->attr.ndev == ndev) { 630 del_gid(ib_dev, port, table, ix); 631 deleted = true; 632 } 633 } 634 635 mutex_unlock(&table->lock); 636 637 if (deleted) 638 dispatch_gid_change_event(ib_dev, port); 639 640 return 0; 641 } 642 643 /** 644 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 645 * a valid GID entry for given search parameters. It searches for the specified 646 * GID value in the local software cache. 647 * @device: The device to query. 648 * @gid: The GID value to search for. 649 * @gid_type: The GID type to search for. 650 * @port_num: The port number of the device where the GID value should be 651 * searched. 652 * @ndev: In RoCE, the net device of the device. NULL means ignore. 653 * 654 * Returns sgid attributes if the GID is found with valid reference or 655 * returns ERR_PTR for the error. 656 * The caller must invoke rdma_put_gid_attr() to release the reference. 657 */ 658 const struct ib_gid_attr * 659 rdma_find_gid_by_port(struct ib_device *ib_dev, 660 const union ib_gid *gid, 661 enum ib_gid_type gid_type, 662 u8 port, struct net_device *ndev) 663 { 664 int local_index; 665 struct ib_gid_table *table; 666 unsigned long mask = GID_ATTR_FIND_MASK_GID | 667 GID_ATTR_FIND_MASK_GID_TYPE; 668 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 669 const struct ib_gid_attr *attr; 670 unsigned long flags; 671 672 if (!rdma_is_port_valid(ib_dev, port)) 673 return ERR_PTR(-ENOENT); 674 675 table = rdma_gid_table(ib_dev, port); 676 677 if (ndev) 678 mask |= GID_ATTR_FIND_MASK_NETDEV; 679 680 read_lock_irqsave(&table->rwlock, flags); 681 local_index = find_gid(table, gid, &val, false, mask, NULL); 682 if (local_index >= 0) { 683 get_gid_entry(table->data_vec[local_index]); 684 attr = &table->data_vec[local_index]->attr; 685 read_unlock_irqrestore(&table->rwlock, flags); 686 return attr; 687 } 688 689 read_unlock_irqrestore(&table->rwlock, flags); 690 return ERR_PTR(-ENOENT); 691 } 692 EXPORT_SYMBOL(rdma_find_gid_by_port); 693 694 /** 695 * rdma_find_gid_by_filter - Returns the GID table attribute where a 696 * specified GID value occurs 697 * @device: The device to query. 698 * @gid: The GID value to search for. 699 * @port: The port number of the device where the GID value could be 700 * searched. 701 * @filter: The filter function is executed on any matching GID in the table. 702 * If the filter function returns true, the corresponding index is returned, 703 * otherwise, we continue searching the GID table. It's guaranteed that 704 * while filter is executed, ndev field is valid and the structure won't 705 * change. filter is executed in an atomic context. filter must not be NULL. 706 * 707 * rdma_find_gid_by_filter() searches for the specified GID value 708 * of which the filter function returns true in the port's GID table. 709 * 710 */ 711 const struct ib_gid_attr *rdma_find_gid_by_filter( 712 struct ib_device *ib_dev, const union ib_gid *gid, u8 port, 713 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 714 void *), 715 void *context) 716 { 717 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 718 struct ib_gid_table *table; 719 unsigned long flags; 720 unsigned int i; 721 722 if (!rdma_is_port_valid(ib_dev, port)) 723 return ERR_PTR(-EINVAL); 724 725 table = rdma_gid_table(ib_dev, port); 726 727 read_lock_irqsave(&table->rwlock, flags); 728 for (i = 0; i < table->sz; i++) { 729 struct ib_gid_table_entry *entry = table->data_vec[i]; 730 731 if (!is_gid_entry_valid(entry)) 732 continue; 733 734 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 735 continue; 736 737 if (filter(gid, &entry->attr, context)) { 738 get_gid_entry(entry); 739 res = &entry->attr; 740 break; 741 } 742 } 743 read_unlock_irqrestore(&table->rwlock, flags); 744 return res; 745 } 746 747 static struct ib_gid_table *alloc_gid_table(int sz) 748 { 749 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 750 751 if (!table) 752 return NULL; 753 754 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 755 if (!table->data_vec) 756 goto err_free_table; 757 758 mutex_init(&table->lock); 759 760 table->sz = sz; 761 rwlock_init(&table->rwlock); 762 return table; 763 764 err_free_table: 765 kfree(table); 766 return NULL; 767 } 768 769 static void release_gid_table(struct ib_device *device, u8 port, 770 struct ib_gid_table *table) 771 { 772 bool leak = false; 773 int i; 774 775 if (!table) 776 return; 777 778 for (i = 0; i < table->sz; i++) { 779 if (is_gid_entry_free(table->data_vec[i])) 780 continue; 781 if (kref_read(&table->data_vec[i]->kref) > 1) { 782 dev_err(&device->dev, 783 "GID entry ref leak for index %d ref=%d\n", i, 784 kref_read(&table->data_vec[i]->kref)); 785 leak = true; 786 } 787 } 788 if (leak) 789 return; 790 791 kfree(table->data_vec); 792 kfree(table); 793 } 794 795 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, 796 struct ib_gid_table *table) 797 { 798 int i; 799 bool deleted = false; 800 801 if (!table) 802 return; 803 804 mutex_lock(&table->lock); 805 for (i = 0; i < table->sz; ++i) { 806 if (is_gid_entry_valid(table->data_vec[i])) { 807 del_gid(ib_dev, port, table, i); 808 deleted = true; 809 } 810 } 811 mutex_unlock(&table->lock); 812 813 if (deleted) 814 dispatch_gid_change_event(ib_dev, port); 815 } 816 817 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, 818 struct net_device *ndev, 819 unsigned long gid_type_mask, 820 enum ib_cache_gid_default_mode mode) 821 { 822 union ib_gid gid = { }; 823 struct ib_gid_attr gid_attr; 824 unsigned int gid_type; 825 unsigned long mask; 826 827 mask = GID_ATTR_FIND_MASK_GID_TYPE | 828 GID_ATTR_FIND_MASK_DEFAULT | 829 GID_ATTR_FIND_MASK_NETDEV; 830 memset(&gid_attr, 0, sizeof(gid_attr)); 831 gid_attr.ndev = ndev; 832 833 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 834 if (1UL << gid_type & ~gid_type_mask) 835 continue; 836 837 gid_attr.gid_type = gid_type; 838 839 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 840 make_default_gid(ndev, &gid); 841 __ib_cache_gid_add(ib_dev, port, &gid, 842 &gid_attr, mask, true); 843 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 844 _ib_cache_gid_del(ib_dev, port, &gid, 845 &gid_attr, mask, true); 846 } 847 } 848 } 849 850 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, 851 struct ib_gid_table *table) 852 { 853 unsigned int i; 854 unsigned long roce_gid_type_mask; 855 unsigned int num_default_gids; 856 857 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 858 num_default_gids = hweight_long(roce_gid_type_mask); 859 /* Reserve starting indices for default GIDs */ 860 for (i = 0; i < num_default_gids && i < table->sz; i++) 861 table->default_gid_indices |= BIT(i); 862 } 863 864 865 static void gid_table_release_one(struct ib_device *ib_dev) 866 { 867 struct ib_gid_table *table; 868 u8 port; 869 870 for (port = 0; port < ib_dev->phys_port_cnt; port++) { 871 table = ib_dev->cache.ports[port].gid; 872 release_gid_table(ib_dev, port, table); 873 ib_dev->cache.ports[port].gid = NULL; 874 } 875 } 876 877 static int _gid_table_setup_one(struct ib_device *ib_dev) 878 { 879 u8 port; 880 struct ib_gid_table *table; 881 882 for (port = 0; port < ib_dev->phys_port_cnt; port++) { 883 u8 rdma_port = port + rdma_start_port(ib_dev); 884 885 table = alloc_gid_table( 886 ib_dev->port_immutable[rdma_port].gid_tbl_len); 887 if (!table) 888 goto rollback_table_setup; 889 890 gid_table_reserve_default(ib_dev, rdma_port, table); 891 ib_dev->cache.ports[port].gid = table; 892 } 893 return 0; 894 895 rollback_table_setup: 896 gid_table_release_one(ib_dev); 897 return -ENOMEM; 898 } 899 900 static void gid_table_cleanup_one(struct ib_device *ib_dev) 901 { 902 struct ib_gid_table *table; 903 u8 port; 904 905 for (port = 0; port < ib_dev->phys_port_cnt; port++) { 906 table = ib_dev->cache.ports[port].gid; 907 cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev), 908 table); 909 } 910 } 911 912 static int gid_table_setup_one(struct ib_device *ib_dev) 913 { 914 int err; 915 916 err = _gid_table_setup_one(ib_dev); 917 918 if (err) 919 return err; 920 921 rdma_roce_rescan_device(ib_dev); 922 923 return err; 924 } 925 926 /** 927 * rdma_query_gid - Read the GID content from the GID software cache 928 * @device: Device to query the GID 929 * @port_num: Port number of the device 930 * @index: Index of the GID table entry to read 931 * @gid: Pointer to GID where to store the entry's GID 932 * 933 * rdma_query_gid() only reads the GID entry content for requested device, 934 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 935 * hold any reference to the GID table entry in the HCA or software cache. 936 * 937 * Returns 0 on success or appropriate error code. 938 * 939 */ 940 int rdma_query_gid(struct ib_device *device, u8 port_num, 941 int index, union ib_gid *gid) 942 { 943 struct ib_gid_table *table; 944 unsigned long flags; 945 int res = -EINVAL; 946 947 if (!rdma_is_port_valid(device, port_num)) 948 return -EINVAL; 949 950 table = rdma_gid_table(device, port_num); 951 read_lock_irqsave(&table->rwlock, flags); 952 953 if (index < 0 || index >= table->sz || 954 !is_gid_entry_valid(table->data_vec[index])) 955 goto done; 956 957 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 958 res = 0; 959 960 done: 961 read_unlock_irqrestore(&table->rwlock, flags); 962 return res; 963 } 964 EXPORT_SYMBOL(rdma_query_gid); 965 966 /** 967 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 968 * @device: The device to query. 969 * @gid: The GID value to search for. 970 * @gid_type: The GID type to search for. 971 * @ndev: In RoCE, the net device of the device. NULL means ignore. 972 * 973 * rdma_find_gid() searches for the specified GID value in the software cache. 974 * 975 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 976 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 977 * 978 */ 979 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 980 const union ib_gid *gid, 981 enum ib_gid_type gid_type, 982 struct net_device *ndev) 983 { 984 unsigned long mask = GID_ATTR_FIND_MASK_GID | 985 GID_ATTR_FIND_MASK_GID_TYPE; 986 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 987 u8 p; 988 989 if (ndev) 990 mask |= GID_ATTR_FIND_MASK_NETDEV; 991 992 for (p = 0; p < device->phys_port_cnt; p++) { 993 struct ib_gid_table *table; 994 unsigned long flags; 995 int index; 996 997 table = device->cache.ports[p].gid; 998 read_lock_irqsave(&table->rwlock, flags); 999 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1000 if (index >= 0) { 1001 const struct ib_gid_attr *attr; 1002 1003 get_gid_entry(table->data_vec[index]); 1004 attr = &table->data_vec[index]->attr; 1005 read_unlock_irqrestore(&table->rwlock, flags); 1006 return attr; 1007 } 1008 read_unlock_irqrestore(&table->rwlock, flags); 1009 } 1010 1011 return ERR_PTR(-ENOENT); 1012 } 1013 EXPORT_SYMBOL(rdma_find_gid); 1014 1015 int ib_get_cached_pkey(struct ib_device *device, 1016 u8 port_num, 1017 int index, 1018 u16 *pkey) 1019 { 1020 struct ib_pkey_cache *cache; 1021 unsigned long flags; 1022 int ret = 0; 1023 1024 if (!rdma_is_port_valid(device, port_num)) 1025 return -EINVAL; 1026 1027 read_lock_irqsave(&device->cache.lock, flags); 1028 1029 cache = device->cache.ports[port_num - rdma_start_port(device)].pkey; 1030 1031 if (index < 0 || index >= cache->table_len) 1032 ret = -EINVAL; 1033 else 1034 *pkey = cache->table[index]; 1035 1036 read_unlock_irqrestore(&device->cache.lock, flags); 1037 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(ib_get_cached_pkey); 1041 1042 int ib_get_cached_subnet_prefix(struct ib_device *device, 1043 u8 port_num, 1044 u64 *sn_pfx) 1045 { 1046 unsigned long flags; 1047 int p; 1048 1049 if (!rdma_is_port_valid(device, port_num)) 1050 return -EINVAL; 1051 1052 p = port_num - rdma_start_port(device); 1053 read_lock_irqsave(&device->cache.lock, flags); 1054 *sn_pfx = device->cache.ports[p].subnet_prefix; 1055 read_unlock_irqrestore(&device->cache.lock, flags); 1056 1057 return 0; 1058 } 1059 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1060 1061 int ib_find_cached_pkey(struct ib_device *device, 1062 u8 port_num, 1063 u16 pkey, 1064 u16 *index) 1065 { 1066 struct ib_pkey_cache *cache; 1067 unsigned long flags; 1068 int i; 1069 int ret = -ENOENT; 1070 int partial_ix = -1; 1071 1072 if (!rdma_is_port_valid(device, port_num)) 1073 return -EINVAL; 1074 1075 read_lock_irqsave(&device->cache.lock, flags); 1076 1077 cache = device->cache.ports[port_num - rdma_start_port(device)].pkey; 1078 1079 *index = -1; 1080 1081 for (i = 0; i < cache->table_len; ++i) 1082 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1083 if (cache->table[i] & 0x8000) { 1084 *index = i; 1085 ret = 0; 1086 break; 1087 } else 1088 partial_ix = i; 1089 } 1090 1091 if (ret && partial_ix >= 0) { 1092 *index = partial_ix; 1093 ret = 0; 1094 } 1095 1096 read_unlock_irqrestore(&device->cache.lock, flags); 1097 1098 return ret; 1099 } 1100 EXPORT_SYMBOL(ib_find_cached_pkey); 1101 1102 int ib_find_exact_cached_pkey(struct ib_device *device, 1103 u8 port_num, 1104 u16 pkey, 1105 u16 *index) 1106 { 1107 struct ib_pkey_cache *cache; 1108 unsigned long flags; 1109 int i; 1110 int ret = -ENOENT; 1111 1112 if (!rdma_is_port_valid(device, port_num)) 1113 return -EINVAL; 1114 1115 read_lock_irqsave(&device->cache.lock, flags); 1116 1117 cache = device->cache.ports[port_num - rdma_start_port(device)].pkey; 1118 1119 *index = -1; 1120 1121 for (i = 0; i < cache->table_len; ++i) 1122 if (cache->table[i] == pkey) { 1123 *index = i; 1124 ret = 0; 1125 break; 1126 } 1127 1128 read_unlock_irqrestore(&device->cache.lock, flags); 1129 1130 return ret; 1131 } 1132 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1133 1134 int ib_get_cached_lmc(struct ib_device *device, 1135 u8 port_num, 1136 u8 *lmc) 1137 { 1138 unsigned long flags; 1139 int ret = 0; 1140 1141 if (!rdma_is_port_valid(device, port_num)) 1142 return -EINVAL; 1143 1144 read_lock_irqsave(&device->cache.lock, flags); 1145 *lmc = device->cache.ports[port_num - rdma_start_port(device)].lmc; 1146 read_unlock_irqrestore(&device->cache.lock, flags); 1147 1148 return ret; 1149 } 1150 EXPORT_SYMBOL(ib_get_cached_lmc); 1151 1152 int ib_get_cached_port_state(struct ib_device *device, 1153 u8 port_num, 1154 enum ib_port_state *port_state) 1155 { 1156 unsigned long flags; 1157 int ret = 0; 1158 1159 if (!rdma_is_port_valid(device, port_num)) 1160 return -EINVAL; 1161 1162 read_lock_irqsave(&device->cache.lock, flags); 1163 *port_state = device->cache.ports[port_num 1164 - rdma_start_port(device)].port_state; 1165 read_unlock_irqrestore(&device->cache.lock, flags); 1166 1167 return ret; 1168 } 1169 EXPORT_SYMBOL(ib_get_cached_port_state); 1170 1171 /** 1172 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1173 * at a requested gid_index, if a valid GID entry exists. 1174 * @device: The device to query. 1175 * @port_num: The port number on the device where the GID value 1176 * is to be queried. 1177 * @index: Index of the GID table entry whose attributes are to 1178 * be queried. 1179 * 1180 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1181 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1182 * reference to gid attribute regardless of link layer. 1183 * 1184 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1185 * code. 1186 */ 1187 const struct ib_gid_attr * 1188 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index) 1189 { 1190 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL); 1191 struct ib_gid_table *table; 1192 unsigned long flags; 1193 1194 if (!rdma_is_port_valid(device, port_num)) 1195 return ERR_PTR(-EINVAL); 1196 1197 table = rdma_gid_table(device, port_num); 1198 if (index < 0 || index >= table->sz) 1199 return ERR_PTR(-EINVAL); 1200 1201 read_lock_irqsave(&table->rwlock, flags); 1202 if (!is_gid_entry_valid(table->data_vec[index])) 1203 goto done; 1204 1205 get_gid_entry(table->data_vec[index]); 1206 attr = &table->data_vec[index]->attr; 1207 done: 1208 read_unlock_irqrestore(&table->rwlock, flags); 1209 return attr; 1210 } 1211 EXPORT_SYMBOL(rdma_get_gid_attr); 1212 1213 /** 1214 * rdma_put_gid_attr - Release reference to the GID attribute 1215 * @attr: Pointer to the GID attribute whose reference 1216 * needs to be released. 1217 * 1218 * rdma_put_gid_attr() must be used to release reference whose 1219 * reference is acquired using rdma_get_gid_attr() or any APIs 1220 * which returns a pointer to the ib_gid_attr regardless of link layer 1221 * of IB or RoCE. 1222 * 1223 */ 1224 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1225 { 1226 struct ib_gid_table_entry *entry = 1227 container_of(attr, struct ib_gid_table_entry, attr); 1228 1229 put_gid_entry(entry); 1230 } 1231 EXPORT_SYMBOL(rdma_put_gid_attr); 1232 1233 /** 1234 * rdma_hold_gid_attr - Get reference to existing GID attribute 1235 * 1236 * @attr: Pointer to the GID attribute whose reference 1237 * needs to be taken. 1238 * 1239 * Increase the reference count to a GID attribute to keep it from being 1240 * freed. Callers are required to already be holding a reference to attribute. 1241 * 1242 */ 1243 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1244 { 1245 struct ib_gid_table_entry *entry = 1246 container_of(attr, struct ib_gid_table_entry, attr); 1247 1248 get_gid_entry(entry); 1249 } 1250 EXPORT_SYMBOL(rdma_hold_gid_attr); 1251 1252 /** 1253 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1254 * which must be in UP state. 1255 * 1256 * @attr:Pointer to the GID attribute 1257 * 1258 * Returns pointer to netdevice if the netdevice was attached to GID and 1259 * netdevice is in UP state. Caller must hold RCU lock as this API 1260 * reads the netdev flags which can change while netdevice migrates to 1261 * different net namespace. Returns ERR_PTR with error code otherwise. 1262 * 1263 */ 1264 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1265 { 1266 struct ib_gid_table_entry *entry = 1267 container_of(attr, struct ib_gid_table_entry, attr); 1268 struct ib_device *device = entry->attr.device; 1269 struct net_device *ndev = ERR_PTR(-ENODEV); 1270 u8 port_num = entry->attr.port_num; 1271 struct ib_gid_table *table; 1272 unsigned long flags; 1273 bool valid; 1274 1275 table = rdma_gid_table(device, port_num); 1276 1277 read_lock_irqsave(&table->rwlock, flags); 1278 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1279 if (valid && attr->ndev && (READ_ONCE(attr->ndev->flags) & IFF_UP)) 1280 ndev = attr->ndev; 1281 read_unlock_irqrestore(&table->rwlock, flags); 1282 return ndev; 1283 } 1284 1285 static int config_non_roce_gid_cache(struct ib_device *device, 1286 u8 port, int gid_tbl_len) 1287 { 1288 struct ib_gid_attr gid_attr = {}; 1289 struct ib_gid_table *table; 1290 int ret = 0; 1291 int i; 1292 1293 gid_attr.device = device; 1294 gid_attr.port_num = port; 1295 table = rdma_gid_table(device, port); 1296 1297 mutex_lock(&table->lock); 1298 for (i = 0; i < gid_tbl_len; ++i) { 1299 if (!device->query_gid) 1300 continue; 1301 ret = device->query_gid(device, port, i, &gid_attr.gid); 1302 if (ret) { 1303 dev_warn(&device->dev, 1304 "query_gid failed (%d) for index %d\n", ret, 1305 i); 1306 goto err; 1307 } 1308 gid_attr.index = i; 1309 add_modify_gid(table, &gid_attr); 1310 } 1311 err: 1312 mutex_unlock(&table->lock); 1313 return ret; 1314 } 1315 1316 static void ib_cache_update(struct ib_device *device, 1317 u8 port, 1318 bool enforce_security) 1319 { 1320 struct ib_port_attr *tprops = NULL; 1321 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; 1322 int i; 1323 int ret; 1324 1325 if (!rdma_is_port_valid(device, port)) 1326 return; 1327 1328 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1329 if (!tprops) 1330 return; 1331 1332 ret = ib_query_port(device, port, tprops); 1333 if (ret) { 1334 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1335 goto err; 1336 } 1337 1338 if (!rdma_protocol_roce(device, port)) { 1339 ret = config_non_roce_gid_cache(device, port, 1340 tprops->gid_tbl_len); 1341 if (ret) 1342 goto err; 1343 } 1344 1345 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1346 tprops->pkey_tbl_len), 1347 GFP_KERNEL); 1348 if (!pkey_cache) 1349 goto err; 1350 1351 pkey_cache->table_len = tprops->pkey_tbl_len; 1352 1353 for (i = 0; i < pkey_cache->table_len; ++i) { 1354 ret = ib_query_pkey(device, port, i, pkey_cache->table + i); 1355 if (ret) { 1356 dev_warn(&device->dev, 1357 "ib_query_pkey failed (%d) for index %d\n", 1358 ret, i); 1359 goto err; 1360 } 1361 } 1362 1363 write_lock_irq(&device->cache.lock); 1364 1365 old_pkey_cache = device->cache.ports[port - 1366 rdma_start_port(device)].pkey; 1367 1368 device->cache.ports[port - rdma_start_port(device)].pkey = pkey_cache; 1369 device->cache.ports[port - rdma_start_port(device)].lmc = tprops->lmc; 1370 device->cache.ports[port - rdma_start_port(device)].port_state = 1371 tprops->state; 1372 1373 device->cache.ports[port - rdma_start_port(device)].subnet_prefix = 1374 tprops->subnet_prefix; 1375 write_unlock_irq(&device->cache.lock); 1376 1377 if (enforce_security) 1378 ib_security_cache_change(device, 1379 port, 1380 tprops->subnet_prefix); 1381 1382 kfree(old_pkey_cache); 1383 kfree(tprops); 1384 return; 1385 1386 err: 1387 kfree(pkey_cache); 1388 kfree(tprops); 1389 } 1390 1391 static void ib_cache_task(struct work_struct *_work) 1392 { 1393 struct ib_update_work *work = 1394 container_of(_work, struct ib_update_work, work); 1395 1396 ib_cache_update(work->device, 1397 work->port_num, 1398 work->enforce_security); 1399 kfree(work); 1400 } 1401 1402 static void ib_cache_event(struct ib_event_handler *handler, 1403 struct ib_event *event) 1404 { 1405 struct ib_update_work *work; 1406 1407 if (event->event == IB_EVENT_PORT_ERR || 1408 event->event == IB_EVENT_PORT_ACTIVE || 1409 event->event == IB_EVENT_LID_CHANGE || 1410 event->event == IB_EVENT_PKEY_CHANGE || 1411 event->event == IB_EVENT_SM_CHANGE || 1412 event->event == IB_EVENT_CLIENT_REREGISTER || 1413 event->event == IB_EVENT_GID_CHANGE) { 1414 work = kmalloc(sizeof *work, GFP_ATOMIC); 1415 if (work) { 1416 INIT_WORK(&work->work, ib_cache_task); 1417 work->device = event->device; 1418 work->port_num = event->element.port_num; 1419 if (event->event == IB_EVENT_PKEY_CHANGE || 1420 event->event == IB_EVENT_GID_CHANGE) 1421 work->enforce_security = true; 1422 else 1423 work->enforce_security = false; 1424 1425 queue_work(ib_wq, &work->work); 1426 } 1427 } 1428 } 1429 1430 int ib_cache_setup_one(struct ib_device *device) 1431 { 1432 int p; 1433 int err; 1434 1435 rwlock_init(&device->cache.lock); 1436 1437 device->cache.ports = 1438 kcalloc(rdma_end_port(device) - rdma_start_port(device) + 1, 1439 sizeof(*device->cache.ports), 1440 GFP_KERNEL); 1441 if (!device->cache.ports) 1442 return -ENOMEM; 1443 1444 err = gid_table_setup_one(device); 1445 if (err) { 1446 kfree(device->cache.ports); 1447 device->cache.ports = NULL; 1448 return err; 1449 } 1450 1451 for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) 1452 ib_cache_update(device, p + rdma_start_port(device), true); 1453 1454 INIT_IB_EVENT_HANDLER(&device->cache.event_handler, 1455 device, ib_cache_event); 1456 ib_register_event_handler(&device->cache.event_handler); 1457 return 0; 1458 } 1459 1460 void ib_cache_release_one(struct ib_device *device) 1461 { 1462 int p; 1463 1464 /* 1465 * The release function frees all the cache elements. 1466 * This function should be called as part of freeing 1467 * all the device's resources when the cache could no 1468 * longer be accessed. 1469 */ 1470 for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) 1471 kfree(device->cache.ports[p].pkey); 1472 1473 gid_table_release_one(device); 1474 kfree(device->cache.ports); 1475 } 1476 1477 void ib_cache_cleanup_one(struct ib_device *device) 1478 { 1479 /* The cleanup function unregisters the event handler, 1480 * waits for all in-progress workqueue elements and cleans 1481 * up the GID cache. This function should be called after 1482 * the device was removed from the devices list and all 1483 * clients were removed, so the cache exists but is 1484 * non-functional and shouldn't be updated anymore. 1485 */ 1486 ib_unregister_event_handler(&device->cache.event_handler); 1487 flush_workqueue(ib_wq); 1488 gid_table_cleanup_one(device); 1489 1490 /* 1491 * Flush the wq second time for any pending GID delete work. 1492 */ 1493 flush_workqueue(ib_wq); 1494 } 1495