1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[0]; 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_device *device; 55 u8 port_num; 56 bool enforce_security; 57 }; 58 59 union ib_gid zgid; 60 EXPORT_SYMBOL(zgid); 61 62 enum gid_attr_find_mask { 63 GID_ATTR_FIND_MASK_GID = 1UL << 0, 64 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 65 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 66 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 67 }; 68 69 enum gid_table_entry_state { 70 GID_TABLE_ENTRY_INVALID = 1, 71 GID_TABLE_ENTRY_VALID = 2, 72 /* 73 * Indicates that entry is pending to be removed, there may 74 * be active users of this GID entry. 75 * When last user of the GID entry releases reference to it, 76 * GID entry is detached from the table. 77 */ 78 GID_TABLE_ENTRY_PENDING_DEL = 3, 79 }; 80 81 struct roce_gid_ndev_storage { 82 struct rcu_head rcu_head; 83 struct net_device *ndev; 84 }; 85 86 struct ib_gid_table_entry { 87 struct kref kref; 88 struct work_struct del_work; 89 struct ib_gid_attr attr; 90 void *context; 91 /* Store the ndev pointer to release reference later on in 92 * call_rcu context because by that time gid_table_entry 93 * and attr might be already freed. So keep a copy of it. 94 * ndev_storage is freed by rcu callback. 95 */ 96 struct roce_gid_ndev_storage *ndev_storage; 97 enum gid_table_entry_state state; 98 }; 99 100 struct ib_gid_table { 101 int sz; 102 /* In RoCE, adding a GID to the table requires: 103 * (a) Find if this GID is already exists. 104 * (b) Find a free space. 105 * (c) Write the new GID 106 * 107 * Delete requires different set of operations: 108 * (a) Find the GID 109 * (b) Delete it. 110 * 111 **/ 112 /* Any writer to data_vec must hold this lock and the write side of 113 * rwlock. Readers must hold only rwlock. All writers must be in a 114 * sleepable context. 115 */ 116 struct mutex lock; 117 /* rwlock protects data_vec[ix]->state and entry pointer. 118 */ 119 rwlock_t rwlock; 120 struct ib_gid_table_entry **data_vec; 121 /* bit field, each bit indicates the index of default GID */ 122 u32 default_gid_indices; 123 }; 124 125 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) 126 { 127 struct ib_event event; 128 129 event.device = ib_dev; 130 event.element.port_num = port; 131 event.event = IB_EVENT_GID_CHANGE; 132 133 ib_dispatch_event(&event); 134 } 135 136 static const char * const gid_type_str[] = { 137 [IB_GID_TYPE_IB] = "IB/RoCE v1", 138 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 139 }; 140 141 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 142 { 143 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 144 return gid_type_str[gid_type]; 145 146 return "Invalid GID type"; 147 } 148 EXPORT_SYMBOL(ib_cache_gid_type_str); 149 150 /** rdma_is_zero_gid - Check if given GID is zero or not. 151 * @gid: GID to check 152 * Returns true if given GID is zero, returns false otherwise. 153 */ 154 bool rdma_is_zero_gid(const union ib_gid *gid) 155 { 156 return !memcmp(gid, &zgid, sizeof(*gid)); 157 } 158 EXPORT_SYMBOL(rdma_is_zero_gid); 159 160 /** is_gid_index_default - Check if a given index belongs to 161 * reserved default GIDs or not. 162 * @table: GID table pointer 163 * @index: Index to check in GID table 164 * Returns true if index is one of the reserved default GID index otherwise 165 * returns false. 166 */ 167 static bool is_gid_index_default(const struct ib_gid_table *table, 168 unsigned int index) 169 { 170 return index < 32 && (BIT(index) & table->default_gid_indices); 171 } 172 173 int ib_cache_gid_parse_type_str(const char *buf) 174 { 175 unsigned int i; 176 size_t len; 177 int err = -EINVAL; 178 179 len = strlen(buf); 180 if (len == 0) 181 return -EINVAL; 182 183 if (buf[len - 1] == '\n') 184 len--; 185 186 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 187 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 188 len == strlen(gid_type_str[i])) { 189 err = i; 190 break; 191 } 192 193 return err; 194 } 195 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 196 197 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) 198 { 199 return device->port_data[port].cache.gid; 200 } 201 202 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 203 { 204 return !entry; 205 } 206 207 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 208 { 209 return entry && entry->state == GID_TABLE_ENTRY_VALID; 210 } 211 212 static void schedule_free_gid(struct kref *kref) 213 { 214 struct ib_gid_table_entry *entry = 215 container_of(kref, struct ib_gid_table_entry, kref); 216 217 queue_work(ib_wq, &entry->del_work); 218 } 219 220 static void put_gid_ndev(struct rcu_head *head) 221 { 222 struct roce_gid_ndev_storage *storage = 223 container_of(head, struct roce_gid_ndev_storage, rcu_head); 224 225 WARN_ON(!storage->ndev); 226 /* At this point its safe to release netdev reference, 227 * as all callers working on gid_attr->ndev are done 228 * using this netdev. 229 */ 230 dev_put(storage->ndev); 231 kfree(storage); 232 } 233 234 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 235 { 236 struct ib_device *device = entry->attr.device; 237 u8 port_num = entry->attr.port_num; 238 struct ib_gid_table *table = rdma_gid_table(device, port_num); 239 240 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__, 241 port_num, entry->attr.index, entry->attr.gid.raw); 242 243 write_lock_irq(&table->rwlock); 244 245 /* 246 * The only way to avoid overwriting NULL in table is 247 * by comparing if it is same entry in table or not! 248 * If new entry in table is added by the time we free here, 249 * don't overwrite the table entry. 250 */ 251 if (entry == table->data_vec[entry->attr.index]) 252 table->data_vec[entry->attr.index] = NULL; 253 /* Now this index is ready to be allocated */ 254 write_unlock_irq(&table->rwlock); 255 256 if (entry->ndev_storage) 257 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); 258 kfree(entry); 259 } 260 261 static void free_gid_entry(struct kref *kref) 262 { 263 struct ib_gid_table_entry *entry = 264 container_of(kref, struct ib_gid_table_entry, kref); 265 266 free_gid_entry_locked(entry); 267 } 268 269 /** 270 * free_gid_work - Release reference to the GID entry 271 * @work: Work structure to refer to GID entry which needs to be 272 * deleted. 273 * 274 * free_gid_work() frees the entry from the HCA's hardware table 275 * if provider supports it. It releases reference to netdevice. 276 */ 277 static void free_gid_work(struct work_struct *work) 278 { 279 struct ib_gid_table_entry *entry = 280 container_of(work, struct ib_gid_table_entry, del_work); 281 struct ib_device *device = entry->attr.device; 282 u8 port_num = entry->attr.port_num; 283 struct ib_gid_table *table = rdma_gid_table(device, port_num); 284 285 mutex_lock(&table->lock); 286 free_gid_entry_locked(entry); 287 mutex_unlock(&table->lock); 288 } 289 290 static struct ib_gid_table_entry * 291 alloc_gid_entry(const struct ib_gid_attr *attr) 292 { 293 struct ib_gid_table_entry *entry; 294 struct net_device *ndev; 295 296 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 297 if (!entry) 298 return NULL; 299 300 ndev = rcu_dereference_protected(attr->ndev, 1); 301 if (ndev) { 302 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), 303 GFP_KERNEL); 304 if (!entry->ndev_storage) { 305 kfree(entry); 306 return NULL; 307 } 308 dev_hold(ndev); 309 entry->ndev_storage->ndev = ndev; 310 } 311 kref_init(&entry->kref); 312 memcpy(&entry->attr, attr, sizeof(*attr)); 313 INIT_WORK(&entry->del_work, free_gid_work); 314 entry->state = GID_TABLE_ENTRY_INVALID; 315 return entry; 316 } 317 318 static void store_gid_entry(struct ib_gid_table *table, 319 struct ib_gid_table_entry *entry) 320 { 321 entry->state = GID_TABLE_ENTRY_VALID; 322 323 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n", 324 __func__, entry->attr.port_num, entry->attr.index, 325 entry->attr.gid.raw); 326 327 lockdep_assert_held(&table->lock); 328 write_lock_irq(&table->rwlock); 329 table->data_vec[entry->attr.index] = entry; 330 write_unlock_irq(&table->rwlock); 331 } 332 333 static void get_gid_entry(struct ib_gid_table_entry *entry) 334 { 335 kref_get(&entry->kref); 336 } 337 338 static void put_gid_entry(struct ib_gid_table_entry *entry) 339 { 340 kref_put(&entry->kref, schedule_free_gid); 341 } 342 343 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 344 { 345 kref_put(&entry->kref, free_gid_entry); 346 } 347 348 static int add_roce_gid(struct ib_gid_table_entry *entry) 349 { 350 const struct ib_gid_attr *attr = &entry->attr; 351 int ret; 352 353 if (!attr->ndev) { 354 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n", 355 __func__, attr->port_num, attr->index); 356 return -EINVAL; 357 } 358 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 359 ret = attr->device->ops.add_gid(attr, &entry->context); 360 if (ret) { 361 dev_err(&attr->device->dev, 362 "%s GID add failed port=%d index=%d\n", 363 __func__, attr->port_num, attr->index); 364 return ret; 365 } 366 } 367 return 0; 368 } 369 370 /** 371 * del_gid - Delete GID table entry 372 * 373 * @ib_dev: IB device whose GID entry to be deleted 374 * @port: Port number of the IB device 375 * @table: GID table of the IB device for a port 376 * @ix: GID entry index to delete 377 * 378 */ 379 static void del_gid(struct ib_device *ib_dev, u8 port, 380 struct ib_gid_table *table, int ix) 381 { 382 struct roce_gid_ndev_storage *ndev_storage; 383 struct ib_gid_table_entry *entry; 384 385 lockdep_assert_held(&table->lock); 386 387 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port, 388 ix, table->data_vec[ix]->attr.gid.raw); 389 390 write_lock_irq(&table->rwlock); 391 entry = table->data_vec[ix]; 392 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 393 /* 394 * For non RoCE protocol, GID entry slot is ready to use. 395 */ 396 if (!rdma_protocol_roce(ib_dev, port)) 397 table->data_vec[ix] = NULL; 398 write_unlock_irq(&table->rwlock); 399 400 ndev_storage = entry->ndev_storage; 401 if (ndev_storage) { 402 entry->ndev_storage = NULL; 403 rcu_assign_pointer(entry->attr.ndev, NULL); 404 call_rcu(&ndev_storage->rcu_head, put_gid_ndev); 405 } 406 407 if (rdma_cap_roce_gid_table(ib_dev, port)) 408 ib_dev->ops.del_gid(&entry->attr, &entry->context); 409 410 put_gid_entry_locked(entry); 411 } 412 413 /** 414 * add_modify_gid - Add or modify GID table entry 415 * 416 * @table: GID table in which GID to be added or modified 417 * @attr: Attributes of the GID 418 * 419 * Returns 0 on success or appropriate error code. It accepts zero 420 * GID addition for non RoCE ports for HCA's who report them as valid 421 * GID. However such zero GIDs are not added to the cache. 422 */ 423 static int add_modify_gid(struct ib_gid_table *table, 424 const struct ib_gid_attr *attr) 425 { 426 struct ib_gid_table_entry *entry; 427 int ret = 0; 428 429 /* 430 * Invalidate any old entry in the table to make it safe to write to 431 * this index. 432 */ 433 if (is_gid_entry_valid(table->data_vec[attr->index])) 434 del_gid(attr->device, attr->port_num, table, attr->index); 435 436 /* 437 * Some HCA's report multiple GID entries with only one valid GID, and 438 * leave other unused entries as the zero GID. Convert zero GIDs to 439 * empty table entries instead of storing them. 440 */ 441 if (rdma_is_zero_gid(&attr->gid)) 442 return 0; 443 444 entry = alloc_gid_entry(attr); 445 if (!entry) 446 return -ENOMEM; 447 448 if (rdma_protocol_roce(attr->device, attr->port_num)) { 449 ret = add_roce_gid(entry); 450 if (ret) 451 goto done; 452 } 453 454 store_gid_entry(table, entry); 455 return 0; 456 457 done: 458 put_gid_entry(entry); 459 return ret; 460 } 461 462 /* rwlock should be read locked, or lock should be held */ 463 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 464 const struct ib_gid_attr *val, bool default_gid, 465 unsigned long mask, int *pempty) 466 { 467 int i = 0; 468 int found = -1; 469 int empty = pempty ? -1 : 0; 470 471 while (i < table->sz && (found < 0 || empty < 0)) { 472 struct ib_gid_table_entry *data = table->data_vec[i]; 473 struct ib_gid_attr *attr; 474 int curr_index = i; 475 476 i++; 477 478 /* find_gid() is used during GID addition where it is expected 479 * to return a free entry slot which is not duplicate. 480 * Free entry slot is requested and returned if pempty is set, 481 * so lookup free slot only if requested. 482 */ 483 if (pempty && empty < 0) { 484 if (is_gid_entry_free(data) && 485 default_gid == 486 is_gid_index_default(table, curr_index)) { 487 /* 488 * Found an invalid (free) entry; allocate it. 489 * If default GID is requested, then our 490 * found slot must be one of the DEFAULT 491 * reserved slots or we fail. 492 * This ensures that only DEFAULT reserved 493 * slots are used for default property GIDs. 494 */ 495 empty = curr_index; 496 } 497 } 498 499 /* 500 * Additionally find_gid() is used to find valid entry during 501 * lookup operation; so ignore the entries which are marked as 502 * pending for removal and the entries which are marked as 503 * invalid. 504 */ 505 if (!is_gid_entry_valid(data)) 506 continue; 507 508 if (found >= 0) 509 continue; 510 511 attr = &data->attr; 512 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 513 attr->gid_type != val->gid_type) 514 continue; 515 516 if (mask & GID_ATTR_FIND_MASK_GID && 517 memcmp(gid, &data->attr.gid, sizeof(*gid))) 518 continue; 519 520 if (mask & GID_ATTR_FIND_MASK_NETDEV && 521 attr->ndev != val->ndev) 522 continue; 523 524 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 525 is_gid_index_default(table, curr_index) != default_gid) 526 continue; 527 528 found = curr_index; 529 } 530 531 if (pempty) 532 *pempty = empty; 533 534 return found; 535 } 536 537 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 538 { 539 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 540 addrconf_ifid_eui48(&gid->raw[8], dev); 541 } 542 543 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 544 union ib_gid *gid, struct ib_gid_attr *attr, 545 unsigned long mask, bool default_gid) 546 { 547 struct ib_gid_table *table; 548 int ret = 0; 549 int empty; 550 int ix; 551 552 /* Do not allow adding zero GID in support of 553 * IB spec version 1.3 section 4.1.1 point (6) and 554 * section 12.7.10 and section 12.7.20 555 */ 556 if (rdma_is_zero_gid(gid)) 557 return -EINVAL; 558 559 table = rdma_gid_table(ib_dev, port); 560 561 mutex_lock(&table->lock); 562 563 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 564 if (ix >= 0) 565 goto out_unlock; 566 567 if (empty < 0) { 568 ret = -ENOSPC; 569 goto out_unlock; 570 } 571 attr->device = ib_dev; 572 attr->index = empty; 573 attr->port_num = port; 574 attr->gid = *gid; 575 ret = add_modify_gid(table, attr); 576 if (!ret) 577 dispatch_gid_change_event(ib_dev, port); 578 579 out_unlock: 580 mutex_unlock(&table->lock); 581 if (ret) 582 pr_warn("%s: unable to add gid %pI6 error=%d\n", 583 __func__, gid->raw, ret); 584 return ret; 585 } 586 587 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 588 union ib_gid *gid, struct ib_gid_attr *attr) 589 { 590 unsigned long mask = GID_ATTR_FIND_MASK_GID | 591 GID_ATTR_FIND_MASK_GID_TYPE | 592 GID_ATTR_FIND_MASK_NETDEV; 593 594 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 595 } 596 597 static int 598 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 599 union ib_gid *gid, struct ib_gid_attr *attr, 600 unsigned long mask, bool default_gid) 601 { 602 struct ib_gid_table *table; 603 int ret = 0; 604 int ix; 605 606 table = rdma_gid_table(ib_dev, port); 607 608 mutex_lock(&table->lock); 609 610 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 611 if (ix < 0) { 612 ret = -EINVAL; 613 goto out_unlock; 614 } 615 616 del_gid(ib_dev, port, table, ix); 617 dispatch_gid_change_event(ib_dev, port); 618 619 out_unlock: 620 mutex_unlock(&table->lock); 621 if (ret) 622 pr_debug("%s: can't delete gid %pI6 error=%d\n", 623 __func__, gid->raw, ret); 624 return ret; 625 } 626 627 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 628 union ib_gid *gid, struct ib_gid_attr *attr) 629 { 630 unsigned long mask = GID_ATTR_FIND_MASK_GID | 631 GID_ATTR_FIND_MASK_GID_TYPE | 632 GID_ATTR_FIND_MASK_DEFAULT | 633 GID_ATTR_FIND_MASK_NETDEV; 634 635 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 636 } 637 638 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, 639 struct net_device *ndev) 640 { 641 struct ib_gid_table *table; 642 int ix; 643 bool deleted = false; 644 645 table = rdma_gid_table(ib_dev, port); 646 647 mutex_lock(&table->lock); 648 649 for (ix = 0; ix < table->sz; ix++) { 650 if (is_gid_entry_valid(table->data_vec[ix]) && 651 table->data_vec[ix]->attr.ndev == ndev) { 652 del_gid(ib_dev, port, table, ix); 653 deleted = true; 654 } 655 } 656 657 mutex_unlock(&table->lock); 658 659 if (deleted) 660 dispatch_gid_change_event(ib_dev, port); 661 662 return 0; 663 } 664 665 /** 666 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 667 * a valid GID entry for given search parameters. It searches for the specified 668 * GID value in the local software cache. 669 * @device: The device to query. 670 * @gid: The GID value to search for. 671 * @gid_type: The GID type to search for. 672 * @port_num: The port number of the device where the GID value should be 673 * searched. 674 * @ndev: In RoCE, the net device of the device. NULL means ignore. 675 * 676 * Returns sgid attributes if the GID is found with valid reference or 677 * returns ERR_PTR for the error. 678 * The caller must invoke rdma_put_gid_attr() to release the reference. 679 */ 680 const struct ib_gid_attr * 681 rdma_find_gid_by_port(struct ib_device *ib_dev, 682 const union ib_gid *gid, 683 enum ib_gid_type gid_type, 684 u8 port, struct net_device *ndev) 685 { 686 int local_index; 687 struct ib_gid_table *table; 688 unsigned long mask = GID_ATTR_FIND_MASK_GID | 689 GID_ATTR_FIND_MASK_GID_TYPE; 690 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 691 const struct ib_gid_attr *attr; 692 unsigned long flags; 693 694 if (!rdma_is_port_valid(ib_dev, port)) 695 return ERR_PTR(-ENOENT); 696 697 table = rdma_gid_table(ib_dev, port); 698 699 if (ndev) 700 mask |= GID_ATTR_FIND_MASK_NETDEV; 701 702 read_lock_irqsave(&table->rwlock, flags); 703 local_index = find_gid(table, gid, &val, false, mask, NULL); 704 if (local_index >= 0) { 705 get_gid_entry(table->data_vec[local_index]); 706 attr = &table->data_vec[local_index]->attr; 707 read_unlock_irqrestore(&table->rwlock, flags); 708 return attr; 709 } 710 711 read_unlock_irqrestore(&table->rwlock, flags); 712 return ERR_PTR(-ENOENT); 713 } 714 EXPORT_SYMBOL(rdma_find_gid_by_port); 715 716 /** 717 * rdma_find_gid_by_filter - Returns the GID table attribute where a 718 * specified GID value occurs 719 * @device: The device to query. 720 * @gid: The GID value to search for. 721 * @port: The port number of the device where the GID value could be 722 * searched. 723 * @filter: The filter function is executed on any matching GID in the table. 724 * If the filter function returns true, the corresponding index is returned, 725 * otherwise, we continue searching the GID table. It's guaranteed that 726 * while filter is executed, ndev field is valid and the structure won't 727 * change. filter is executed in an atomic context. filter must not be NULL. 728 * 729 * rdma_find_gid_by_filter() searches for the specified GID value 730 * of which the filter function returns true in the port's GID table. 731 * 732 */ 733 const struct ib_gid_attr *rdma_find_gid_by_filter( 734 struct ib_device *ib_dev, const union ib_gid *gid, u8 port, 735 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 736 void *), 737 void *context) 738 { 739 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 740 struct ib_gid_table *table; 741 unsigned long flags; 742 unsigned int i; 743 744 if (!rdma_is_port_valid(ib_dev, port)) 745 return ERR_PTR(-EINVAL); 746 747 table = rdma_gid_table(ib_dev, port); 748 749 read_lock_irqsave(&table->rwlock, flags); 750 for (i = 0; i < table->sz; i++) { 751 struct ib_gid_table_entry *entry = table->data_vec[i]; 752 753 if (!is_gid_entry_valid(entry)) 754 continue; 755 756 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 757 continue; 758 759 if (filter(gid, &entry->attr, context)) { 760 get_gid_entry(entry); 761 res = &entry->attr; 762 break; 763 } 764 } 765 read_unlock_irqrestore(&table->rwlock, flags); 766 return res; 767 } 768 769 static struct ib_gid_table *alloc_gid_table(int sz) 770 { 771 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 772 773 if (!table) 774 return NULL; 775 776 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 777 if (!table->data_vec) 778 goto err_free_table; 779 780 mutex_init(&table->lock); 781 782 table->sz = sz; 783 rwlock_init(&table->rwlock); 784 return table; 785 786 err_free_table: 787 kfree(table); 788 return NULL; 789 } 790 791 static void release_gid_table(struct ib_device *device, 792 struct ib_gid_table *table) 793 { 794 bool leak = false; 795 int i; 796 797 if (!table) 798 return; 799 800 for (i = 0; i < table->sz; i++) { 801 if (is_gid_entry_free(table->data_vec[i])) 802 continue; 803 if (kref_read(&table->data_vec[i]->kref) > 1) { 804 dev_err(&device->dev, 805 "GID entry ref leak for index %d ref=%d\n", i, 806 kref_read(&table->data_vec[i]->kref)); 807 leak = true; 808 } 809 } 810 if (leak) 811 return; 812 813 mutex_destroy(&table->lock); 814 kfree(table->data_vec); 815 kfree(table); 816 } 817 818 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, 819 struct ib_gid_table *table) 820 { 821 int i; 822 bool deleted = false; 823 824 if (!table) 825 return; 826 827 mutex_lock(&table->lock); 828 for (i = 0; i < table->sz; ++i) { 829 if (is_gid_entry_valid(table->data_vec[i])) { 830 del_gid(ib_dev, port, table, i); 831 deleted = true; 832 } 833 } 834 mutex_unlock(&table->lock); 835 836 if (deleted) 837 dispatch_gid_change_event(ib_dev, port); 838 } 839 840 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, 841 struct net_device *ndev, 842 unsigned long gid_type_mask, 843 enum ib_cache_gid_default_mode mode) 844 { 845 union ib_gid gid = { }; 846 struct ib_gid_attr gid_attr; 847 unsigned int gid_type; 848 unsigned long mask; 849 850 mask = GID_ATTR_FIND_MASK_GID_TYPE | 851 GID_ATTR_FIND_MASK_DEFAULT | 852 GID_ATTR_FIND_MASK_NETDEV; 853 memset(&gid_attr, 0, sizeof(gid_attr)); 854 gid_attr.ndev = ndev; 855 856 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 857 if (1UL << gid_type & ~gid_type_mask) 858 continue; 859 860 gid_attr.gid_type = gid_type; 861 862 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 863 make_default_gid(ndev, &gid); 864 __ib_cache_gid_add(ib_dev, port, &gid, 865 &gid_attr, mask, true); 866 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 867 _ib_cache_gid_del(ib_dev, port, &gid, 868 &gid_attr, mask, true); 869 } 870 } 871 } 872 873 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, 874 struct ib_gid_table *table) 875 { 876 unsigned int i; 877 unsigned long roce_gid_type_mask; 878 unsigned int num_default_gids; 879 880 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 881 num_default_gids = hweight_long(roce_gid_type_mask); 882 /* Reserve starting indices for default GIDs */ 883 for (i = 0; i < num_default_gids && i < table->sz; i++) 884 table->default_gid_indices |= BIT(i); 885 } 886 887 888 static void gid_table_release_one(struct ib_device *ib_dev) 889 { 890 unsigned int p; 891 892 rdma_for_each_port (ib_dev, p) { 893 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); 894 ib_dev->port_data[p].cache.gid = NULL; 895 } 896 } 897 898 static int _gid_table_setup_one(struct ib_device *ib_dev) 899 { 900 struct ib_gid_table *table; 901 unsigned int rdma_port; 902 903 rdma_for_each_port (ib_dev, rdma_port) { 904 table = alloc_gid_table( 905 ib_dev->port_data[rdma_port].immutable.gid_tbl_len); 906 if (!table) 907 goto rollback_table_setup; 908 909 gid_table_reserve_default(ib_dev, rdma_port, table); 910 ib_dev->port_data[rdma_port].cache.gid = table; 911 } 912 return 0; 913 914 rollback_table_setup: 915 gid_table_release_one(ib_dev); 916 return -ENOMEM; 917 } 918 919 static void gid_table_cleanup_one(struct ib_device *ib_dev) 920 { 921 unsigned int p; 922 923 rdma_for_each_port (ib_dev, p) 924 cleanup_gid_table_port(ib_dev, p, 925 ib_dev->port_data[p].cache.gid); 926 } 927 928 static int gid_table_setup_one(struct ib_device *ib_dev) 929 { 930 int err; 931 932 err = _gid_table_setup_one(ib_dev); 933 934 if (err) 935 return err; 936 937 rdma_roce_rescan_device(ib_dev); 938 939 return err; 940 } 941 942 /** 943 * rdma_query_gid - Read the GID content from the GID software cache 944 * @device: Device to query the GID 945 * @port_num: Port number of the device 946 * @index: Index of the GID table entry to read 947 * @gid: Pointer to GID where to store the entry's GID 948 * 949 * rdma_query_gid() only reads the GID entry content for requested device, 950 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 951 * hold any reference to the GID table entry in the HCA or software cache. 952 * 953 * Returns 0 on success or appropriate error code. 954 * 955 */ 956 int rdma_query_gid(struct ib_device *device, u8 port_num, 957 int index, union ib_gid *gid) 958 { 959 struct ib_gid_table *table; 960 unsigned long flags; 961 int res = -EINVAL; 962 963 if (!rdma_is_port_valid(device, port_num)) 964 return -EINVAL; 965 966 table = rdma_gid_table(device, port_num); 967 read_lock_irqsave(&table->rwlock, flags); 968 969 if (index < 0 || index >= table->sz || 970 !is_gid_entry_valid(table->data_vec[index])) 971 goto done; 972 973 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 974 res = 0; 975 976 done: 977 read_unlock_irqrestore(&table->rwlock, flags); 978 return res; 979 } 980 EXPORT_SYMBOL(rdma_query_gid); 981 982 /** 983 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 984 * @device: The device to query. 985 * @gid: The GID value to search for. 986 * @gid_type: The GID type to search for. 987 * @ndev: In RoCE, the net device of the device. NULL means ignore. 988 * 989 * rdma_find_gid() searches for the specified GID value in the software cache. 990 * 991 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 992 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 993 * 994 */ 995 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 996 const union ib_gid *gid, 997 enum ib_gid_type gid_type, 998 struct net_device *ndev) 999 { 1000 unsigned long mask = GID_ATTR_FIND_MASK_GID | 1001 GID_ATTR_FIND_MASK_GID_TYPE; 1002 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 1003 unsigned int p; 1004 1005 if (ndev) 1006 mask |= GID_ATTR_FIND_MASK_NETDEV; 1007 1008 rdma_for_each_port(device, p) { 1009 struct ib_gid_table *table; 1010 unsigned long flags; 1011 int index; 1012 1013 table = device->port_data[p].cache.gid; 1014 read_lock_irqsave(&table->rwlock, flags); 1015 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1016 if (index >= 0) { 1017 const struct ib_gid_attr *attr; 1018 1019 get_gid_entry(table->data_vec[index]); 1020 attr = &table->data_vec[index]->attr; 1021 read_unlock_irqrestore(&table->rwlock, flags); 1022 return attr; 1023 } 1024 read_unlock_irqrestore(&table->rwlock, flags); 1025 } 1026 1027 return ERR_PTR(-ENOENT); 1028 } 1029 EXPORT_SYMBOL(rdma_find_gid); 1030 1031 int ib_get_cached_pkey(struct ib_device *device, 1032 u8 port_num, 1033 int index, 1034 u16 *pkey) 1035 { 1036 struct ib_pkey_cache *cache; 1037 unsigned long flags; 1038 int ret = 0; 1039 1040 if (!rdma_is_port_valid(device, port_num)) 1041 return -EINVAL; 1042 1043 read_lock_irqsave(&device->cache.lock, flags); 1044 1045 cache = device->port_data[port_num].cache.pkey; 1046 1047 if (index < 0 || index >= cache->table_len) 1048 ret = -EINVAL; 1049 else 1050 *pkey = cache->table[index]; 1051 1052 read_unlock_irqrestore(&device->cache.lock, flags); 1053 1054 return ret; 1055 } 1056 EXPORT_SYMBOL(ib_get_cached_pkey); 1057 1058 int ib_get_cached_subnet_prefix(struct ib_device *device, 1059 u8 port_num, 1060 u64 *sn_pfx) 1061 { 1062 unsigned long flags; 1063 1064 if (!rdma_is_port_valid(device, port_num)) 1065 return -EINVAL; 1066 1067 read_lock_irqsave(&device->cache.lock, flags); 1068 *sn_pfx = device->port_data[port_num].cache.subnet_prefix; 1069 read_unlock_irqrestore(&device->cache.lock, flags); 1070 1071 return 0; 1072 } 1073 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1074 1075 int ib_find_cached_pkey(struct ib_device *device, 1076 u8 port_num, 1077 u16 pkey, 1078 u16 *index) 1079 { 1080 struct ib_pkey_cache *cache; 1081 unsigned long flags; 1082 int i; 1083 int ret = -ENOENT; 1084 int partial_ix = -1; 1085 1086 if (!rdma_is_port_valid(device, port_num)) 1087 return -EINVAL; 1088 1089 read_lock_irqsave(&device->cache.lock, flags); 1090 1091 cache = device->port_data[port_num].cache.pkey; 1092 1093 *index = -1; 1094 1095 for (i = 0; i < cache->table_len; ++i) 1096 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1097 if (cache->table[i] & 0x8000) { 1098 *index = i; 1099 ret = 0; 1100 break; 1101 } else 1102 partial_ix = i; 1103 } 1104 1105 if (ret && partial_ix >= 0) { 1106 *index = partial_ix; 1107 ret = 0; 1108 } 1109 1110 read_unlock_irqrestore(&device->cache.lock, flags); 1111 1112 return ret; 1113 } 1114 EXPORT_SYMBOL(ib_find_cached_pkey); 1115 1116 int ib_find_exact_cached_pkey(struct ib_device *device, 1117 u8 port_num, 1118 u16 pkey, 1119 u16 *index) 1120 { 1121 struct ib_pkey_cache *cache; 1122 unsigned long flags; 1123 int i; 1124 int ret = -ENOENT; 1125 1126 if (!rdma_is_port_valid(device, port_num)) 1127 return -EINVAL; 1128 1129 read_lock_irqsave(&device->cache.lock, flags); 1130 1131 cache = device->port_data[port_num].cache.pkey; 1132 1133 *index = -1; 1134 1135 for (i = 0; i < cache->table_len; ++i) 1136 if (cache->table[i] == pkey) { 1137 *index = i; 1138 ret = 0; 1139 break; 1140 } 1141 1142 read_unlock_irqrestore(&device->cache.lock, flags); 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1147 1148 int ib_get_cached_lmc(struct ib_device *device, 1149 u8 port_num, 1150 u8 *lmc) 1151 { 1152 unsigned long flags; 1153 int ret = 0; 1154 1155 if (!rdma_is_port_valid(device, port_num)) 1156 return -EINVAL; 1157 1158 read_lock_irqsave(&device->cache.lock, flags); 1159 *lmc = device->port_data[port_num].cache.lmc; 1160 read_unlock_irqrestore(&device->cache.lock, flags); 1161 1162 return ret; 1163 } 1164 EXPORT_SYMBOL(ib_get_cached_lmc); 1165 1166 int ib_get_cached_port_state(struct ib_device *device, 1167 u8 port_num, 1168 enum ib_port_state *port_state) 1169 { 1170 unsigned long flags; 1171 int ret = 0; 1172 1173 if (!rdma_is_port_valid(device, port_num)) 1174 return -EINVAL; 1175 1176 read_lock_irqsave(&device->cache.lock, flags); 1177 *port_state = device->port_data[port_num].cache.port_state; 1178 read_unlock_irqrestore(&device->cache.lock, flags); 1179 1180 return ret; 1181 } 1182 EXPORT_SYMBOL(ib_get_cached_port_state); 1183 1184 /** 1185 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1186 * at a requested gid_index, if a valid GID entry exists. 1187 * @device: The device to query. 1188 * @port_num: The port number on the device where the GID value 1189 * is to be queried. 1190 * @index: Index of the GID table entry whose attributes are to 1191 * be queried. 1192 * 1193 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1194 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1195 * reference to gid attribute regardless of link layer. 1196 * 1197 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1198 * code. 1199 */ 1200 const struct ib_gid_attr * 1201 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index) 1202 { 1203 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL); 1204 struct ib_gid_table *table; 1205 unsigned long flags; 1206 1207 if (!rdma_is_port_valid(device, port_num)) 1208 return ERR_PTR(-EINVAL); 1209 1210 table = rdma_gid_table(device, port_num); 1211 if (index < 0 || index >= table->sz) 1212 return ERR_PTR(-EINVAL); 1213 1214 read_lock_irqsave(&table->rwlock, flags); 1215 if (!is_gid_entry_valid(table->data_vec[index])) 1216 goto done; 1217 1218 get_gid_entry(table->data_vec[index]); 1219 attr = &table->data_vec[index]->attr; 1220 done: 1221 read_unlock_irqrestore(&table->rwlock, flags); 1222 return attr; 1223 } 1224 EXPORT_SYMBOL(rdma_get_gid_attr); 1225 1226 /** 1227 * rdma_put_gid_attr - Release reference to the GID attribute 1228 * @attr: Pointer to the GID attribute whose reference 1229 * needs to be released. 1230 * 1231 * rdma_put_gid_attr() must be used to release reference whose 1232 * reference is acquired using rdma_get_gid_attr() or any APIs 1233 * which returns a pointer to the ib_gid_attr regardless of link layer 1234 * of IB or RoCE. 1235 * 1236 */ 1237 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1238 { 1239 struct ib_gid_table_entry *entry = 1240 container_of(attr, struct ib_gid_table_entry, attr); 1241 1242 put_gid_entry(entry); 1243 } 1244 EXPORT_SYMBOL(rdma_put_gid_attr); 1245 1246 /** 1247 * rdma_hold_gid_attr - Get reference to existing GID attribute 1248 * 1249 * @attr: Pointer to the GID attribute whose reference 1250 * needs to be taken. 1251 * 1252 * Increase the reference count to a GID attribute to keep it from being 1253 * freed. Callers are required to already be holding a reference to attribute. 1254 * 1255 */ 1256 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1257 { 1258 struct ib_gid_table_entry *entry = 1259 container_of(attr, struct ib_gid_table_entry, attr); 1260 1261 get_gid_entry(entry); 1262 } 1263 EXPORT_SYMBOL(rdma_hold_gid_attr); 1264 1265 /** 1266 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1267 * which must be in UP state. 1268 * 1269 * @attr:Pointer to the GID attribute 1270 * 1271 * Returns pointer to netdevice if the netdevice was attached to GID and 1272 * netdevice is in UP state. Caller must hold RCU lock as this API 1273 * reads the netdev flags which can change while netdevice migrates to 1274 * different net namespace. Returns ERR_PTR with error code otherwise. 1275 * 1276 */ 1277 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1278 { 1279 struct ib_gid_table_entry *entry = 1280 container_of(attr, struct ib_gid_table_entry, attr); 1281 struct ib_device *device = entry->attr.device; 1282 struct net_device *ndev = ERR_PTR(-ENODEV); 1283 u8 port_num = entry->attr.port_num; 1284 struct ib_gid_table *table; 1285 unsigned long flags; 1286 bool valid; 1287 1288 table = rdma_gid_table(device, port_num); 1289 1290 read_lock_irqsave(&table->rwlock, flags); 1291 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1292 if (valid) { 1293 ndev = rcu_dereference(attr->ndev); 1294 if (!ndev || 1295 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0))) 1296 ndev = ERR_PTR(-ENODEV); 1297 } 1298 read_unlock_irqrestore(&table->rwlock, flags); 1299 return ndev; 1300 } 1301 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); 1302 1303 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data) 1304 { 1305 u16 *vlan_id = data; 1306 1307 if (is_vlan_dev(lower_dev)) 1308 *vlan_id = vlan_dev_vlan_id(lower_dev); 1309 1310 /* We are interested only in first level vlan device, so 1311 * always return 1 to stop iterating over next level devices. 1312 */ 1313 return 1; 1314 } 1315 1316 /** 1317 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address 1318 * of a GID entry. 1319 * 1320 * @attr: GID attribute pointer whose L2 fields to be read 1321 * @vlan_id: Pointer to vlan id to fill up if the GID entry has 1322 * vlan id. It is optional. 1323 * @smac: Pointer to smac to fill up for a GID entry. It is optional. 1324 * 1325 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id 1326 * (if gid entry has vlan) and source MAC, or returns error. 1327 */ 1328 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, 1329 u16 *vlan_id, u8 *smac) 1330 { 1331 struct net_device *ndev; 1332 1333 rcu_read_lock(); 1334 ndev = rcu_dereference(attr->ndev); 1335 if (!ndev) { 1336 rcu_read_unlock(); 1337 return -ENODEV; 1338 } 1339 if (smac) 1340 ether_addr_copy(smac, ndev->dev_addr); 1341 if (vlan_id) { 1342 *vlan_id = 0xffff; 1343 if (is_vlan_dev(ndev)) { 1344 *vlan_id = vlan_dev_vlan_id(ndev); 1345 } else { 1346 /* If the netdev is upper device and if it's lower 1347 * device is vlan device, consider vlan id of the 1348 * the lower vlan device for this gid entry. 1349 */ 1350 netdev_walk_all_lower_dev_rcu(attr->ndev, 1351 get_lower_dev_vlan, vlan_id); 1352 } 1353 } 1354 rcu_read_unlock(); 1355 return 0; 1356 } 1357 EXPORT_SYMBOL(rdma_read_gid_l2_fields); 1358 1359 static int config_non_roce_gid_cache(struct ib_device *device, 1360 u8 port, int gid_tbl_len) 1361 { 1362 struct ib_gid_attr gid_attr = {}; 1363 struct ib_gid_table *table; 1364 int ret = 0; 1365 int i; 1366 1367 gid_attr.device = device; 1368 gid_attr.port_num = port; 1369 table = rdma_gid_table(device, port); 1370 1371 mutex_lock(&table->lock); 1372 for (i = 0; i < gid_tbl_len; ++i) { 1373 if (!device->ops.query_gid) 1374 continue; 1375 ret = device->ops.query_gid(device, port, i, &gid_attr.gid); 1376 if (ret) { 1377 dev_warn(&device->dev, 1378 "query_gid failed (%d) for index %d\n", ret, 1379 i); 1380 goto err; 1381 } 1382 gid_attr.index = i; 1383 add_modify_gid(table, &gid_attr); 1384 } 1385 err: 1386 mutex_unlock(&table->lock); 1387 return ret; 1388 } 1389 1390 static void ib_cache_update(struct ib_device *device, 1391 u8 port, 1392 bool enforce_security) 1393 { 1394 struct ib_port_attr *tprops = NULL; 1395 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; 1396 int i; 1397 int ret; 1398 1399 if (!rdma_is_port_valid(device, port)) 1400 return; 1401 1402 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1403 if (!tprops) 1404 return; 1405 1406 ret = ib_query_port(device, port, tprops); 1407 if (ret) { 1408 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1409 goto err; 1410 } 1411 1412 if (!rdma_protocol_roce(device, port)) { 1413 ret = config_non_roce_gid_cache(device, port, 1414 tprops->gid_tbl_len); 1415 if (ret) 1416 goto err; 1417 } 1418 1419 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1420 tprops->pkey_tbl_len), 1421 GFP_KERNEL); 1422 if (!pkey_cache) 1423 goto err; 1424 1425 pkey_cache->table_len = tprops->pkey_tbl_len; 1426 1427 for (i = 0; i < pkey_cache->table_len; ++i) { 1428 ret = ib_query_pkey(device, port, i, pkey_cache->table + i); 1429 if (ret) { 1430 dev_warn(&device->dev, 1431 "ib_query_pkey failed (%d) for index %d\n", 1432 ret, i); 1433 goto err; 1434 } 1435 } 1436 1437 write_lock_irq(&device->cache.lock); 1438 1439 old_pkey_cache = device->port_data[port].cache.pkey; 1440 1441 device->port_data[port].cache.pkey = pkey_cache; 1442 device->port_data[port].cache.lmc = tprops->lmc; 1443 device->port_data[port].cache.port_state = tprops->state; 1444 1445 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; 1446 write_unlock_irq(&device->cache.lock); 1447 1448 if (enforce_security) 1449 ib_security_cache_change(device, 1450 port, 1451 tprops->subnet_prefix); 1452 1453 kfree(old_pkey_cache); 1454 kfree(tprops); 1455 return; 1456 1457 err: 1458 kfree(pkey_cache); 1459 kfree(tprops); 1460 } 1461 1462 static void ib_cache_task(struct work_struct *_work) 1463 { 1464 struct ib_update_work *work = 1465 container_of(_work, struct ib_update_work, work); 1466 1467 ib_cache_update(work->device, 1468 work->port_num, 1469 work->enforce_security); 1470 kfree(work); 1471 } 1472 1473 static void ib_cache_event(struct ib_event_handler *handler, 1474 struct ib_event *event) 1475 { 1476 struct ib_update_work *work; 1477 1478 if (event->event == IB_EVENT_PORT_ERR || 1479 event->event == IB_EVENT_PORT_ACTIVE || 1480 event->event == IB_EVENT_LID_CHANGE || 1481 event->event == IB_EVENT_PKEY_CHANGE || 1482 event->event == IB_EVENT_CLIENT_REREGISTER || 1483 event->event == IB_EVENT_GID_CHANGE) { 1484 work = kmalloc(sizeof *work, GFP_ATOMIC); 1485 if (work) { 1486 INIT_WORK(&work->work, ib_cache_task); 1487 work->device = event->device; 1488 work->port_num = event->element.port_num; 1489 if (event->event == IB_EVENT_PKEY_CHANGE || 1490 event->event == IB_EVENT_GID_CHANGE) 1491 work->enforce_security = true; 1492 else 1493 work->enforce_security = false; 1494 1495 queue_work(ib_wq, &work->work); 1496 } 1497 } 1498 } 1499 1500 int ib_cache_setup_one(struct ib_device *device) 1501 { 1502 unsigned int p; 1503 int err; 1504 1505 rwlock_init(&device->cache.lock); 1506 1507 err = gid_table_setup_one(device); 1508 if (err) 1509 return err; 1510 1511 rdma_for_each_port (device, p) 1512 ib_cache_update(device, p, true); 1513 1514 INIT_IB_EVENT_HANDLER(&device->cache.event_handler, 1515 device, ib_cache_event); 1516 ib_register_event_handler(&device->cache.event_handler); 1517 return 0; 1518 } 1519 1520 void ib_cache_release_one(struct ib_device *device) 1521 { 1522 unsigned int p; 1523 1524 /* 1525 * The release function frees all the cache elements. 1526 * This function should be called as part of freeing 1527 * all the device's resources when the cache could no 1528 * longer be accessed. 1529 */ 1530 rdma_for_each_port (device, p) 1531 kfree(device->port_data[p].cache.pkey); 1532 1533 gid_table_release_one(device); 1534 } 1535 1536 void ib_cache_cleanup_one(struct ib_device *device) 1537 { 1538 /* The cleanup function unregisters the event handler, 1539 * waits for all in-progress workqueue elements and cleans 1540 * up the GID cache. This function should be called after 1541 * the device was removed from the devices list and all 1542 * clients were removed, so the cache exists but is 1543 * non-functional and shouldn't be updated anymore. 1544 */ 1545 ib_unregister_event_handler(&device->cache.event_handler); 1546 flush_workqueue(ib_wq); 1547 gid_table_cleanup_one(device); 1548 1549 /* 1550 * Flush the wq second time for any pending GID delete work. 1551 */ 1552 flush_workqueue(ib_wq); 1553 } 1554