1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/module.h> 41 #include <net/arp.h> 42 #include <net/neighbour.h> 43 #include <net/route.h> 44 #include <net/netevent.h> 45 #include <net/addrconf.h> 46 #include <net/ip6_route.h> 47 #include <rdma/ib_addr.h> 48 #include <rdma/ib.h> 49 #include <rdma/rdma_netlink.h> 50 #include <net/netlink.h> 51 52 #include "core_priv.h" 53 54 struct addr_req { 55 struct list_head list; 56 struct sockaddr_storage src_addr; 57 struct sockaddr_storage dst_addr; 58 struct rdma_dev_addr *addr; 59 struct rdma_addr_client *client; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 int status; 65 u32 seq; 66 }; 67 68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 69 70 static void process_req(struct work_struct *work); 71 72 static DEFINE_MUTEX(lock); 73 static LIST_HEAD(req_list); 74 static DECLARE_DELAYED_WORK(work, process_req); 75 static struct workqueue_struct *addr_wq; 76 77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 79 .len = sizeof(struct rdma_nla_ls_gid)}, 80 }; 81 82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 83 { 84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 85 int ret; 86 87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 88 return false; 89 90 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 91 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 92 if (ret) 93 return false; 94 95 return true; 96 } 97 98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 99 { 100 const struct nlattr *head, *curr; 101 union ib_gid gid; 102 struct addr_req *req; 103 int len, rem; 104 int found = 0; 105 106 head = (const struct nlattr *)nlmsg_data(nlh); 107 len = nlmsg_len(nlh); 108 109 nla_for_each_attr(curr, head, len, rem) { 110 if (curr->nla_type == LS_NLA_TYPE_DGID) 111 memcpy(&gid, nla_data(curr), nla_len(curr)); 112 } 113 114 mutex_lock(&lock); 115 list_for_each_entry(req, &req_list, list) { 116 if (nlh->nlmsg_seq != req->seq) 117 continue; 118 /* We set the DGID part, the rest was set earlier */ 119 rdma_addr_set_dgid(req->addr, &gid); 120 req->status = 0; 121 found = 1; 122 break; 123 } 124 mutex_unlock(&lock); 125 126 if (!found) 127 pr_info("Couldn't find request waiting for DGID: %pI6\n", 128 &gid); 129 } 130 131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 132 struct netlink_callback *cb) 133 { 134 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh; 135 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk) || 138 !netlink_capable(skb, CAP_NET_ADMIN)) 139 return -EPERM; 140 141 if (ib_nl_is_good_ip_resp(nlh)) 142 ib_nl_process_good_ip_rsep(nlh); 143 144 return skb->len; 145 } 146 147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 148 const void *daddr, 149 u32 seq, u16 family) 150 { 151 struct sk_buff *skb = NULL; 152 struct nlmsghdr *nlh; 153 struct rdma_ls_ip_resolve_header *header; 154 void *data; 155 size_t size; 156 int attrtype; 157 int len; 158 159 if (family == AF_INET) { 160 size = sizeof(struct in_addr); 161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 162 } else { 163 size = sizeof(struct in6_addr); 164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 165 } 166 167 len = nla_total_size(sizeof(size)); 168 len += NLMSG_ALIGN(sizeof(*header)); 169 170 skb = nlmsg_new(len, GFP_KERNEL); 171 if (!skb) 172 return -ENOMEM; 173 174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 176 if (!data) { 177 nlmsg_free(skb); 178 return -ENODATA; 179 } 180 181 /* Construct the family header first */ 182 header = (struct rdma_ls_ip_resolve_header *) 183 skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 184 header->ifindex = dev_addr->bound_dev_if; 185 nla_put(skb, attrtype, size, daddr); 186 187 /* Repair the nlmsg header length */ 188 nlmsg_end(skb, nlh); 189 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL); 190 191 /* Make the request retry, so when we get the response from userspace 192 * we will have something. 193 */ 194 return -ENODATA; 195 } 196 197 int rdma_addr_size(struct sockaddr *addr) 198 { 199 switch (addr->sa_family) { 200 case AF_INET: 201 return sizeof(struct sockaddr_in); 202 case AF_INET6: 203 return sizeof(struct sockaddr_in6); 204 case AF_IB: 205 return sizeof(struct sockaddr_ib); 206 default: 207 return 0; 208 } 209 } 210 EXPORT_SYMBOL(rdma_addr_size); 211 212 static struct rdma_addr_client self; 213 214 void rdma_addr_register_client(struct rdma_addr_client *client) 215 { 216 atomic_set(&client->refcount, 1); 217 init_completion(&client->comp); 218 } 219 EXPORT_SYMBOL(rdma_addr_register_client); 220 221 static inline void put_client(struct rdma_addr_client *client) 222 { 223 if (atomic_dec_and_test(&client->refcount)) 224 complete(&client->comp); 225 } 226 227 void rdma_addr_unregister_client(struct rdma_addr_client *client) 228 { 229 put_client(client); 230 wait_for_completion(&client->comp); 231 } 232 EXPORT_SYMBOL(rdma_addr_unregister_client); 233 234 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, 235 const unsigned char *dst_dev_addr) 236 { 237 dev_addr->dev_type = dev->type; 238 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 239 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 240 if (dst_dev_addr) 241 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN); 242 dev_addr->bound_dev_if = dev->ifindex; 243 return 0; 244 } 245 EXPORT_SYMBOL(rdma_copy_addr); 246 247 int rdma_translate_ip(const struct sockaddr *addr, 248 struct rdma_dev_addr *dev_addr, 249 u16 *vlan_id) 250 { 251 struct net_device *dev; 252 int ret = -EADDRNOTAVAIL; 253 254 if (dev_addr->bound_dev_if) { 255 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 256 if (!dev) 257 return -ENODEV; 258 ret = rdma_copy_addr(dev_addr, dev, NULL); 259 dev_put(dev); 260 return ret; 261 } 262 263 switch (addr->sa_family) { 264 case AF_INET: 265 dev = ip_dev_find(dev_addr->net, 266 ((const struct sockaddr_in *)addr)->sin_addr.s_addr); 267 268 if (!dev) 269 return ret; 270 271 ret = rdma_copy_addr(dev_addr, dev, NULL); 272 if (vlan_id) 273 *vlan_id = rdma_vlan_dev_vlan_id(dev); 274 dev_put(dev); 275 break; 276 #if IS_ENABLED(CONFIG_IPV6) 277 case AF_INET6: 278 rcu_read_lock(); 279 for_each_netdev_rcu(dev_addr->net, dev) { 280 if (ipv6_chk_addr(dev_addr->net, 281 &((const struct sockaddr_in6 *)addr)->sin6_addr, 282 dev, 1)) { 283 ret = rdma_copy_addr(dev_addr, dev, NULL); 284 if (vlan_id) 285 *vlan_id = rdma_vlan_dev_vlan_id(dev); 286 break; 287 } 288 } 289 rcu_read_unlock(); 290 break; 291 #endif 292 } 293 return ret; 294 } 295 EXPORT_SYMBOL(rdma_translate_ip); 296 297 static void set_timeout(unsigned long time) 298 { 299 unsigned long delay; 300 301 delay = time - jiffies; 302 if ((long)delay < 0) 303 delay = 0; 304 305 mod_delayed_work(addr_wq, &work, delay); 306 } 307 308 static void queue_req(struct addr_req *req) 309 { 310 struct addr_req *temp_req; 311 312 mutex_lock(&lock); 313 list_for_each_entry_reverse(temp_req, &req_list, list) { 314 if (time_after_eq(req->timeout, temp_req->timeout)) 315 break; 316 } 317 318 list_add(&req->list, &temp_req->list); 319 320 if (req_list.next == &req->list) 321 set_timeout(req->timeout); 322 mutex_unlock(&lock); 323 } 324 325 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 326 const void *daddr, u32 seq, u16 family) 327 { 328 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS)) 329 return -EADDRNOTAVAIL; 330 331 /* We fill in what we can, the response will fill the rest */ 332 rdma_copy_addr(dev_addr, dst->dev, NULL); 333 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 334 } 335 336 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 337 const void *daddr) 338 { 339 struct neighbour *n; 340 int ret; 341 342 n = dst_neigh_lookup(dst, daddr); 343 344 rcu_read_lock(); 345 if (!n || !(n->nud_state & NUD_VALID)) { 346 if (n) 347 neigh_event_send(n, NULL); 348 ret = -ENODATA; 349 } else { 350 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha); 351 } 352 rcu_read_unlock(); 353 354 if (n) 355 neigh_release(n); 356 357 return ret; 358 } 359 360 static bool has_gateway(struct dst_entry *dst, sa_family_t family) 361 { 362 struct rtable *rt; 363 struct rt6_info *rt6; 364 365 if (family == AF_INET) { 366 rt = container_of(dst, struct rtable, dst); 367 return rt->rt_uses_gateway; 368 } 369 370 rt6 = container_of(dst, struct rt6_info, dst); 371 return rt6->rt6i_flags & RTF_GATEWAY; 372 } 373 374 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 375 const struct sockaddr *dst_in, u32 seq) 376 { 377 const struct sockaddr_in *dst_in4 = 378 (const struct sockaddr_in *)dst_in; 379 const struct sockaddr_in6 *dst_in6 = 380 (const struct sockaddr_in6 *)dst_in; 381 const void *daddr = (dst_in->sa_family == AF_INET) ? 382 (const void *)&dst_in4->sin_addr.s_addr : 383 (const void *)&dst_in6->sin6_addr; 384 sa_family_t family = dst_in->sa_family; 385 386 /* Gateway + ARPHRD_INFINIBAND -> IB router */ 387 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND) 388 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family); 389 else 390 return dst_fetch_ha(dst, dev_addr, daddr); 391 } 392 393 static int addr4_resolve(struct sockaddr_in *src_in, 394 const struct sockaddr_in *dst_in, 395 struct rdma_dev_addr *addr, 396 struct rtable **prt) 397 { 398 __be32 src_ip = src_in->sin_addr.s_addr; 399 __be32 dst_ip = dst_in->sin_addr.s_addr; 400 struct rtable *rt; 401 struct flowi4 fl4; 402 int ret; 403 404 memset(&fl4, 0, sizeof(fl4)); 405 fl4.daddr = dst_ip; 406 fl4.saddr = src_ip; 407 fl4.flowi4_oif = addr->bound_dev_if; 408 rt = ip_route_output_key(addr->net, &fl4); 409 if (IS_ERR(rt)) { 410 ret = PTR_ERR(rt); 411 goto out; 412 } 413 src_in->sin_family = AF_INET; 414 src_in->sin_addr.s_addr = fl4.saddr; 415 416 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 417 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 418 * type accordingly. 419 */ 420 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND) 421 addr->network = RDMA_NETWORK_IPV4; 422 423 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 424 425 *prt = rt; 426 return 0; 427 out: 428 return ret; 429 } 430 431 #if IS_ENABLED(CONFIG_IPV6) 432 static int addr6_resolve(struct sockaddr_in6 *src_in, 433 const struct sockaddr_in6 *dst_in, 434 struct rdma_dev_addr *addr, 435 struct dst_entry **pdst) 436 { 437 struct flowi6 fl6; 438 struct dst_entry *dst; 439 struct rt6_info *rt; 440 int ret; 441 442 memset(&fl6, 0, sizeof fl6); 443 fl6.daddr = dst_in->sin6_addr; 444 fl6.saddr = src_in->sin6_addr; 445 fl6.flowi6_oif = addr->bound_dev_if; 446 447 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); 448 if (ret < 0) 449 return ret; 450 451 rt = (struct rt6_info *)dst; 452 if (ipv6_addr_any(&src_in->sin6_addr)) { 453 src_in->sin6_family = AF_INET6; 454 src_in->sin6_addr = fl6.saddr; 455 } 456 457 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 458 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 459 * type accordingly. 460 */ 461 if (rt->rt6i_flags & RTF_GATEWAY && 462 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND) 463 addr->network = RDMA_NETWORK_IPV6; 464 465 addr->hoplimit = ip6_dst_hoplimit(dst); 466 467 *pdst = dst; 468 return 0; 469 } 470 #else 471 static int addr6_resolve(struct sockaddr_in6 *src_in, 472 const struct sockaddr_in6 *dst_in, 473 struct rdma_dev_addr *addr, 474 struct dst_entry **pdst) 475 { 476 return -EADDRNOTAVAIL; 477 } 478 #endif 479 480 static int addr_resolve_neigh(struct dst_entry *dst, 481 const struct sockaddr *dst_in, 482 struct rdma_dev_addr *addr, 483 u32 seq) 484 { 485 if (dst->dev->flags & IFF_LOOPBACK) { 486 int ret; 487 488 ret = rdma_translate_ip(dst_in, addr, NULL); 489 if (!ret) 490 memcpy(addr->dst_dev_addr, addr->src_dev_addr, 491 MAX_ADDR_LEN); 492 493 return ret; 494 } 495 496 /* If the device doesn't do ARP internally */ 497 if (!(dst->dev->flags & IFF_NOARP)) 498 return fetch_ha(dst, addr, dst_in, seq); 499 500 return rdma_copy_addr(addr, dst->dev, NULL); 501 } 502 503 static int addr_resolve(struct sockaddr *src_in, 504 const struct sockaddr *dst_in, 505 struct rdma_dev_addr *addr, 506 bool resolve_neigh, 507 u32 seq) 508 { 509 struct net_device *ndev; 510 struct dst_entry *dst; 511 int ret; 512 513 if (src_in->sa_family == AF_INET) { 514 struct rtable *rt = NULL; 515 const struct sockaddr_in *dst_in4 = 516 (const struct sockaddr_in *)dst_in; 517 518 ret = addr4_resolve((struct sockaddr_in *)src_in, 519 dst_in4, addr, &rt); 520 if (ret) 521 return ret; 522 523 if (resolve_neigh) 524 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq); 525 526 ndev = rt->dst.dev; 527 dev_hold(ndev); 528 529 ip_rt_put(rt); 530 } else { 531 const struct sockaddr_in6 *dst_in6 = 532 (const struct sockaddr_in6 *)dst_in; 533 534 ret = addr6_resolve((struct sockaddr_in6 *)src_in, 535 dst_in6, addr, 536 &dst); 537 if (ret) 538 return ret; 539 540 if (resolve_neigh) 541 ret = addr_resolve_neigh(dst, dst_in, addr, seq); 542 543 ndev = dst->dev; 544 dev_hold(ndev); 545 546 dst_release(dst); 547 } 548 549 addr->bound_dev_if = ndev->ifindex; 550 addr->net = dev_net(ndev); 551 dev_put(ndev); 552 553 return ret; 554 } 555 556 static void process_req(struct work_struct *work) 557 { 558 struct addr_req *req, *temp_req; 559 struct sockaddr *src_in, *dst_in; 560 struct list_head done_list; 561 562 INIT_LIST_HEAD(&done_list); 563 564 mutex_lock(&lock); 565 list_for_each_entry_safe(req, temp_req, &req_list, list) { 566 if (req->status == -ENODATA) { 567 src_in = (struct sockaddr *) &req->src_addr; 568 dst_in = (struct sockaddr *) &req->dst_addr; 569 req->status = addr_resolve(src_in, dst_in, req->addr, 570 true, req->seq); 571 if (req->status && time_after_eq(jiffies, req->timeout)) 572 req->status = -ETIMEDOUT; 573 else if (req->status == -ENODATA) 574 continue; 575 } 576 list_move_tail(&req->list, &done_list); 577 } 578 579 if (!list_empty(&req_list)) { 580 req = list_entry(req_list.next, struct addr_req, list); 581 set_timeout(req->timeout); 582 } 583 mutex_unlock(&lock); 584 585 list_for_each_entry_safe(req, temp_req, &done_list, list) { 586 list_del(&req->list); 587 req->callback(req->status, (struct sockaddr *) &req->src_addr, 588 req->addr, req->context); 589 put_client(req->client); 590 kfree(req); 591 } 592 } 593 594 int rdma_resolve_ip(struct rdma_addr_client *client, 595 struct sockaddr *src_addr, struct sockaddr *dst_addr, 596 struct rdma_dev_addr *addr, int timeout_ms, 597 void (*callback)(int status, struct sockaddr *src_addr, 598 struct rdma_dev_addr *addr, void *context), 599 void *context) 600 { 601 struct sockaddr *src_in, *dst_in; 602 struct addr_req *req; 603 int ret = 0; 604 605 req = kzalloc(sizeof *req, GFP_KERNEL); 606 if (!req) 607 return -ENOMEM; 608 609 src_in = (struct sockaddr *) &req->src_addr; 610 dst_in = (struct sockaddr *) &req->dst_addr; 611 612 if (src_addr) { 613 if (src_addr->sa_family != dst_addr->sa_family) { 614 ret = -EINVAL; 615 goto err; 616 } 617 618 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 619 } else { 620 src_in->sa_family = dst_addr->sa_family; 621 } 622 623 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 624 req->addr = addr; 625 req->callback = callback; 626 req->context = context; 627 req->client = client; 628 atomic_inc(&client->refcount); 629 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 630 631 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq); 632 switch (req->status) { 633 case 0: 634 req->timeout = jiffies; 635 queue_req(req); 636 break; 637 case -ENODATA: 638 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 639 queue_req(req); 640 break; 641 default: 642 ret = req->status; 643 atomic_dec(&client->refcount); 644 goto err; 645 } 646 return ret; 647 err: 648 kfree(req); 649 return ret; 650 } 651 EXPORT_SYMBOL(rdma_resolve_ip); 652 653 int rdma_resolve_ip_route(struct sockaddr *src_addr, 654 const struct sockaddr *dst_addr, 655 struct rdma_dev_addr *addr) 656 { 657 struct sockaddr_storage ssrc_addr = {}; 658 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; 659 660 if (src_addr) { 661 if (src_addr->sa_family != dst_addr->sa_family) 662 return -EINVAL; 663 664 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 665 } else { 666 src_in->sa_family = dst_addr->sa_family; 667 } 668 669 return addr_resolve(src_in, dst_addr, addr, false, 0); 670 } 671 EXPORT_SYMBOL(rdma_resolve_ip_route); 672 673 void rdma_addr_cancel(struct rdma_dev_addr *addr) 674 { 675 struct addr_req *req, *temp_req; 676 677 mutex_lock(&lock); 678 list_for_each_entry_safe(req, temp_req, &req_list, list) { 679 if (req->addr == addr) { 680 req->status = -ECANCELED; 681 req->timeout = jiffies; 682 list_move(&req->list, &req_list); 683 set_timeout(req->timeout); 684 break; 685 } 686 } 687 mutex_unlock(&lock); 688 } 689 EXPORT_SYMBOL(rdma_addr_cancel); 690 691 struct resolve_cb_context { 692 struct rdma_dev_addr *addr; 693 struct completion comp; 694 int status; 695 }; 696 697 static void resolve_cb(int status, struct sockaddr *src_addr, 698 struct rdma_dev_addr *addr, void *context) 699 { 700 if (!status) 701 memcpy(((struct resolve_cb_context *)context)->addr, 702 addr, sizeof(struct rdma_dev_addr)); 703 ((struct resolve_cb_context *)context)->status = status; 704 complete(&((struct resolve_cb_context *)context)->comp); 705 } 706 707 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 708 const union ib_gid *dgid, 709 u8 *dmac, u16 *vlan_id, int *if_index, 710 int *hoplimit) 711 { 712 int ret = 0; 713 struct rdma_dev_addr dev_addr; 714 struct resolve_cb_context ctx; 715 struct net_device *dev; 716 717 union { 718 struct sockaddr _sockaddr; 719 struct sockaddr_in _sockaddr_in; 720 struct sockaddr_in6 _sockaddr_in6; 721 } sgid_addr, dgid_addr; 722 723 724 rdma_gid2ip(&sgid_addr._sockaddr, sgid); 725 rdma_gid2ip(&dgid_addr._sockaddr, dgid); 726 727 memset(&dev_addr, 0, sizeof(dev_addr)); 728 if (if_index) 729 dev_addr.bound_dev_if = *if_index; 730 dev_addr.net = &init_net; 731 732 ctx.addr = &dev_addr; 733 init_completion(&ctx.comp); 734 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, 735 &dev_addr, 1000, resolve_cb, &ctx); 736 if (ret) 737 return ret; 738 739 wait_for_completion(&ctx.comp); 740 741 ret = ctx.status; 742 if (ret) 743 return ret; 744 745 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 746 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if); 747 if (!dev) 748 return -ENODEV; 749 if (if_index) 750 *if_index = dev_addr.bound_dev_if; 751 if (vlan_id) 752 *vlan_id = rdma_vlan_dev_vlan_id(dev); 753 if (hoplimit) 754 *hoplimit = dev_addr.hoplimit; 755 dev_put(dev); 756 return ret; 757 } 758 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh); 759 760 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id) 761 { 762 int ret = 0; 763 struct rdma_dev_addr dev_addr; 764 union { 765 struct sockaddr _sockaddr; 766 struct sockaddr_in _sockaddr_in; 767 struct sockaddr_in6 _sockaddr_in6; 768 } gid_addr; 769 770 rdma_gid2ip(&gid_addr._sockaddr, sgid); 771 772 memset(&dev_addr, 0, sizeof(dev_addr)); 773 dev_addr.net = &init_net; 774 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id); 775 if (ret) 776 return ret; 777 778 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN); 779 return ret; 780 } 781 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid); 782 783 static int netevent_callback(struct notifier_block *self, unsigned long event, 784 void *ctx) 785 { 786 if (event == NETEVENT_NEIGH_UPDATE) { 787 struct neighbour *neigh = ctx; 788 789 if (neigh->nud_state & NUD_VALID) { 790 set_timeout(jiffies); 791 } 792 } 793 return 0; 794 } 795 796 static struct notifier_block nb = { 797 .notifier_call = netevent_callback 798 }; 799 800 int addr_init(void) 801 { 802 addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0); 803 if (!addr_wq) 804 return -ENOMEM; 805 806 register_netevent_notifier(&nb); 807 rdma_addr_register_client(&self); 808 809 return 0; 810 } 811 812 void addr_cleanup(void) 813 { 814 rdma_addr_unregister_client(&self); 815 unregister_netevent_notifier(&nb); 816 destroy_workqueue(addr_wq); 817 } 818