xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	struct rdma_addr_client *client;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	int status;
66 	u32 seq;
67 };
68 
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70 
71 static void process_req(struct work_struct *work);
72 
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77 
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 		.len = sizeof(struct rdma_nla_ls_gid)},
81 };
82 
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 	int ret;
87 
88 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 		return false;
90 
91 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 	if (ret)
94 		return false;
95 
96 	return true;
97 }
98 
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 	const struct nlattr *head, *curr;
102 	union ib_gid gid;
103 	struct addr_req *req;
104 	int len, rem;
105 	int found = 0;
106 
107 	head = (const struct nlattr *)nlmsg_data(nlh);
108 	len = nlmsg_len(nlh);
109 
110 	nla_for_each_attr(curr, head, len, rem) {
111 		if (curr->nla_type == LS_NLA_TYPE_DGID)
112 			memcpy(&gid, nla_data(curr), nla_len(curr));
113 	}
114 
115 	mutex_lock(&lock);
116 	list_for_each_entry(req, &req_list, list) {
117 		if (nlh->nlmsg_seq != req->seq)
118 			continue;
119 		/* We set the DGID part, the rest was set earlier */
120 		rdma_addr_set_dgid(req->addr, &gid);
121 		req->status = 0;
122 		found = 1;
123 		break;
124 	}
125 	mutex_unlock(&lock);
126 
127 	if (!found)
128 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 			&gid);
130 }
131 
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 			     struct nlmsghdr *nlh,
134 			     struct netlink_ext_ack *extack)
135 {
136 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 	    !(NETLINK_CB(skb).sk))
138 		return -EPERM;
139 
140 	if (ib_nl_is_good_ip_resp(nlh))
141 		ib_nl_process_good_ip_rsep(nlh);
142 
143 	return skb->len;
144 }
145 
146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 			     const void *daddr,
148 			     u32 seq, u16 family)
149 {
150 	struct sk_buff *skb = NULL;
151 	struct nlmsghdr *nlh;
152 	struct rdma_ls_ip_resolve_header *header;
153 	void *data;
154 	size_t size;
155 	int attrtype;
156 	int len;
157 
158 	if (family == AF_INET) {
159 		size = sizeof(struct in_addr);
160 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 	} else {
162 		size = sizeof(struct in6_addr);
163 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 	}
165 
166 	len = nla_total_size(sizeof(size));
167 	len += NLMSG_ALIGN(sizeof(*header));
168 
169 	skb = nlmsg_new(len, GFP_KERNEL);
170 	if (!skb)
171 		return -ENOMEM;
172 
173 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 	if (!data) {
176 		nlmsg_free(skb);
177 		return -ENODATA;
178 	}
179 
180 	/* Construct the family header first */
181 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 	header->ifindex = dev_addr->bound_dev_if;
183 	nla_put(skb, attrtype, size, daddr);
184 
185 	/* Repair the nlmsg header length */
186 	nlmsg_end(skb, nlh);
187 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188 
189 	/* Make the request retry, so when we get the response from userspace
190 	 * we will have something.
191 	 */
192 	return -ENODATA;
193 }
194 
195 int rdma_addr_size(struct sockaddr *addr)
196 {
197 	switch (addr->sa_family) {
198 	case AF_INET:
199 		return sizeof(struct sockaddr_in);
200 	case AF_INET6:
201 		return sizeof(struct sockaddr_in6);
202 	case AF_IB:
203 		return sizeof(struct sockaddr_ib);
204 	default:
205 		return 0;
206 	}
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209 
210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212 	int ret = rdma_addr_size((struct sockaddr *) addr);
213 
214 	return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217 
218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220 	int ret = rdma_addr_size((struct sockaddr *) addr);
221 
222 	return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225 
226 static struct rdma_addr_client self;
227 
228 void rdma_addr_register_client(struct rdma_addr_client *client)
229 {
230 	atomic_set(&client->refcount, 1);
231 	init_completion(&client->comp);
232 }
233 EXPORT_SYMBOL(rdma_addr_register_client);
234 
235 static inline void put_client(struct rdma_addr_client *client)
236 {
237 	if (atomic_dec_and_test(&client->refcount))
238 		complete(&client->comp);
239 }
240 
241 void rdma_addr_unregister_client(struct rdma_addr_client *client)
242 {
243 	put_client(client);
244 	wait_for_completion(&client->comp);
245 }
246 EXPORT_SYMBOL(rdma_addr_unregister_client);
247 
248 void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
249 		    const struct net_device *dev,
250 		    const unsigned char *dst_dev_addr)
251 {
252 	dev_addr->dev_type = dev->type;
253 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
254 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
255 	if (dst_dev_addr)
256 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
257 	dev_addr->bound_dev_if = dev->ifindex;
258 }
259 EXPORT_SYMBOL(rdma_copy_addr);
260 
261 int rdma_translate_ip(const struct sockaddr *addr,
262 		      struct rdma_dev_addr *dev_addr)
263 {
264 	struct net_device *dev;
265 
266 	if (dev_addr->bound_dev_if) {
267 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
268 		if (!dev)
269 			return -ENODEV;
270 		rdma_copy_addr(dev_addr, dev, NULL);
271 		dev_put(dev);
272 		return 0;
273 	}
274 
275 	switch (addr->sa_family) {
276 	case AF_INET:
277 		dev = ip_dev_find(dev_addr->net,
278 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
279 
280 		if (!dev)
281 			return -EADDRNOTAVAIL;
282 
283 		rdma_copy_addr(dev_addr, dev, NULL);
284 		dev_put(dev);
285 		break;
286 #if IS_ENABLED(CONFIG_IPV6)
287 	case AF_INET6:
288 		rcu_read_lock();
289 		for_each_netdev_rcu(dev_addr->net, dev) {
290 			if (ipv6_chk_addr(dev_addr->net,
291 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
292 					  dev, 1)) {
293 				rdma_copy_addr(dev_addr, dev, NULL);
294 				break;
295 			}
296 		}
297 		rcu_read_unlock();
298 		break;
299 #endif
300 	}
301 	return 0;
302 }
303 EXPORT_SYMBOL(rdma_translate_ip);
304 
305 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
306 {
307 	unsigned long delay;
308 
309 	delay = time - jiffies;
310 	if ((long)delay < 0)
311 		delay = 0;
312 
313 	mod_delayed_work(addr_wq, delayed_work, delay);
314 }
315 
316 static void queue_req(struct addr_req *req)
317 {
318 	struct addr_req *temp_req;
319 
320 	mutex_lock(&lock);
321 	list_for_each_entry_reverse(temp_req, &req_list, list) {
322 		if (time_after_eq(req->timeout, temp_req->timeout))
323 			break;
324 	}
325 
326 	list_add(&req->list, &temp_req->list);
327 
328 	set_timeout(&req->work, req->timeout);
329 	mutex_unlock(&lock);
330 }
331 
332 static int ib_nl_fetch_ha(const struct dst_entry *dst,
333 			  struct rdma_dev_addr *dev_addr,
334 			  const void *daddr, u32 seq, u16 family)
335 {
336 	if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
337 		return -EADDRNOTAVAIL;
338 
339 	/* We fill in what we can, the response will fill the rest */
340 	rdma_copy_addr(dev_addr, dst->dev, NULL);
341 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
342 }
343 
344 static int dst_fetch_ha(const struct dst_entry *dst,
345 			struct rdma_dev_addr *dev_addr,
346 			const void *daddr)
347 {
348 	struct neighbour *n;
349 	int ret = 0;
350 
351 	n = dst_neigh_lookup(dst, daddr);
352 
353 	rcu_read_lock();
354 	if (!n || !(n->nud_state & NUD_VALID)) {
355 		if (n)
356 			neigh_event_send(n, NULL);
357 		ret = -ENODATA;
358 	} else {
359 		rdma_copy_addr(dev_addr, dst->dev, n->ha);
360 	}
361 	rcu_read_unlock();
362 
363 	if (n)
364 		neigh_release(n);
365 
366 	return ret;
367 }
368 
369 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
370 {
371 	struct rtable *rt;
372 	struct rt6_info *rt6;
373 
374 	if (family == AF_INET) {
375 		rt = container_of(dst, struct rtable, dst);
376 		return rt->rt_uses_gateway;
377 	}
378 
379 	rt6 = container_of(dst, struct rt6_info, dst);
380 	return rt6->rt6i_flags & RTF_GATEWAY;
381 }
382 
383 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
384 		    const struct sockaddr *dst_in, u32 seq)
385 {
386 	const struct sockaddr_in *dst_in4 =
387 		(const struct sockaddr_in *)dst_in;
388 	const struct sockaddr_in6 *dst_in6 =
389 		(const struct sockaddr_in6 *)dst_in;
390 	const void *daddr = (dst_in->sa_family == AF_INET) ?
391 		(const void *)&dst_in4->sin_addr.s_addr :
392 		(const void *)&dst_in6->sin6_addr;
393 	sa_family_t family = dst_in->sa_family;
394 
395 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
396 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
397 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
398 	else
399 		return dst_fetch_ha(dst, dev_addr, daddr);
400 }
401 
402 static int addr4_resolve(struct sockaddr_in *src_in,
403 			 const struct sockaddr_in *dst_in,
404 			 struct rdma_dev_addr *addr,
405 			 struct rtable **prt)
406 {
407 	__be32 src_ip = src_in->sin_addr.s_addr;
408 	__be32 dst_ip = dst_in->sin_addr.s_addr;
409 	struct rtable *rt;
410 	struct flowi4 fl4;
411 	int ret;
412 
413 	memset(&fl4, 0, sizeof(fl4));
414 	fl4.daddr = dst_ip;
415 	fl4.saddr = src_ip;
416 	fl4.flowi4_oif = addr->bound_dev_if;
417 	rt = ip_route_output_key(addr->net, &fl4);
418 	ret = PTR_ERR_OR_ZERO(rt);
419 	if (ret)
420 		return ret;
421 
422 	src_in->sin_family = AF_INET;
423 	src_in->sin_addr.s_addr = fl4.saddr;
424 
425 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
426 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
427 	 * type accordingly.
428 	 */
429 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
430 		addr->network = RDMA_NETWORK_IPV4;
431 
432 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
433 
434 	*prt = rt;
435 	return 0;
436 }
437 
438 #if IS_ENABLED(CONFIG_IPV6)
439 static int addr6_resolve(struct sockaddr_in6 *src_in,
440 			 const struct sockaddr_in6 *dst_in,
441 			 struct rdma_dev_addr *addr,
442 			 struct dst_entry **pdst)
443 {
444 	struct flowi6 fl6;
445 	struct dst_entry *dst;
446 	struct rt6_info *rt;
447 	int ret;
448 
449 	memset(&fl6, 0, sizeof fl6);
450 	fl6.daddr = dst_in->sin6_addr;
451 	fl6.saddr = src_in->sin6_addr;
452 	fl6.flowi6_oif = addr->bound_dev_if;
453 
454 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
455 	if (ret < 0)
456 		return ret;
457 
458 	rt = (struct rt6_info *)dst;
459 	if (ipv6_addr_any(&src_in->sin6_addr)) {
460 		src_in->sin6_family = AF_INET6;
461 		src_in->sin6_addr = fl6.saddr;
462 	}
463 
464 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
465 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
466 	 * type accordingly.
467 	 */
468 	if (rt->rt6i_flags & RTF_GATEWAY &&
469 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
470 		addr->network = RDMA_NETWORK_IPV6;
471 
472 	addr->hoplimit = ip6_dst_hoplimit(dst);
473 
474 	*pdst = dst;
475 	return 0;
476 }
477 #else
478 static int addr6_resolve(struct sockaddr_in6 *src_in,
479 			 const struct sockaddr_in6 *dst_in,
480 			 struct rdma_dev_addr *addr,
481 			 struct dst_entry **pdst)
482 {
483 	return -EADDRNOTAVAIL;
484 }
485 #endif
486 
487 static int addr_resolve_neigh(const struct dst_entry *dst,
488 			      const struct sockaddr *dst_in,
489 			      struct rdma_dev_addr *addr,
490 			      u32 seq)
491 {
492 	if (dst->dev->flags & IFF_LOOPBACK) {
493 		int ret;
494 
495 		ret = rdma_translate_ip(dst_in, addr);
496 		if (!ret)
497 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
498 			       MAX_ADDR_LEN);
499 
500 		return ret;
501 	}
502 
503 	/* If the device doesn't do ARP internally */
504 	if (!(dst->dev->flags & IFF_NOARP))
505 		return fetch_ha(dst, addr, dst_in, seq);
506 
507 	rdma_copy_addr(addr, dst->dev, NULL);
508 
509 	return 0;
510 }
511 
512 static int addr_resolve(struct sockaddr *src_in,
513 			const struct sockaddr *dst_in,
514 			struct rdma_dev_addr *addr,
515 			bool resolve_neigh,
516 			u32 seq)
517 {
518 	struct net_device *ndev;
519 	struct dst_entry *dst;
520 	int ret;
521 
522 	if (!addr->net) {
523 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
524 		return -EINVAL;
525 	}
526 
527 	if (src_in->sa_family == AF_INET) {
528 		struct rtable *rt = NULL;
529 		const struct sockaddr_in *dst_in4 =
530 			(const struct sockaddr_in *)dst_in;
531 
532 		ret = addr4_resolve((struct sockaddr_in *)src_in,
533 				    dst_in4, addr, &rt);
534 		if (ret)
535 			return ret;
536 
537 		if (resolve_neigh)
538 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
539 
540 		if (addr->bound_dev_if) {
541 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
542 		} else {
543 			ndev = rt->dst.dev;
544 			dev_hold(ndev);
545 		}
546 
547 		ip_rt_put(rt);
548 	} else {
549 		const struct sockaddr_in6 *dst_in6 =
550 			(const struct sockaddr_in6 *)dst_in;
551 
552 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
553 				    dst_in6, addr,
554 				    &dst);
555 		if (ret)
556 			return ret;
557 
558 		if (resolve_neigh)
559 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
560 
561 		if (addr->bound_dev_if) {
562 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
563 		} else {
564 			ndev = dst->dev;
565 			dev_hold(ndev);
566 		}
567 
568 		dst_release(dst);
569 	}
570 
571 	if (ndev) {
572 		if (ndev->flags & IFF_LOOPBACK)
573 			ret = rdma_translate_ip(dst_in, addr);
574 		else
575 			addr->bound_dev_if = ndev->ifindex;
576 		dev_put(ndev);
577 	}
578 
579 	return ret;
580 }
581 
582 static void process_one_req(struct work_struct *_work)
583 {
584 	struct addr_req *req;
585 	struct sockaddr *src_in, *dst_in;
586 
587 	mutex_lock(&lock);
588 	req = container_of(_work, struct addr_req, work.work);
589 
590 	if (req->status == -ENODATA) {
591 		src_in = (struct sockaddr *)&req->src_addr;
592 		dst_in = (struct sockaddr *)&req->dst_addr;
593 		req->status = addr_resolve(src_in, dst_in, req->addr,
594 					   true, req->seq);
595 		if (req->status && time_after_eq(jiffies, req->timeout)) {
596 			req->status = -ETIMEDOUT;
597 		} else if (req->status == -ENODATA) {
598 			/* requeue the work for retrying again */
599 			set_timeout(&req->work, req->timeout);
600 			mutex_unlock(&lock);
601 			return;
602 		}
603 	}
604 	list_del(&req->list);
605 	mutex_unlock(&lock);
606 
607 	/*
608 	 * Although the work will normally have been canceled by the
609 	 * workqueue, it can still be requeued as long as it is on the
610 	 * req_list, so it could have been requeued before we grabbed &lock.
611 	 * We need to cancel it after it is removed from req_list to really be
612 	 * sure it is safe to free.
613 	 */
614 	cancel_delayed_work(&req->work);
615 
616 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
617 		req->addr, req->context);
618 	put_client(req->client);
619 	kfree(req);
620 }
621 
622 static void process_req(struct work_struct *work)
623 {
624 	struct addr_req *req, *temp_req;
625 	struct sockaddr *src_in, *dst_in;
626 	struct list_head done_list;
627 
628 	INIT_LIST_HEAD(&done_list);
629 
630 	mutex_lock(&lock);
631 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
632 		if (req->status == -ENODATA) {
633 			src_in = (struct sockaddr *) &req->src_addr;
634 			dst_in = (struct sockaddr *) &req->dst_addr;
635 			req->status = addr_resolve(src_in, dst_in, req->addr,
636 						   true, req->seq);
637 			if (req->status && time_after_eq(jiffies, req->timeout))
638 				req->status = -ETIMEDOUT;
639 			else if (req->status == -ENODATA) {
640 				set_timeout(&req->work, req->timeout);
641 				continue;
642 			}
643 		}
644 		list_move_tail(&req->list, &done_list);
645 	}
646 
647 	mutex_unlock(&lock);
648 
649 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
650 		list_del(&req->list);
651 		/* It is safe to cancel other work items from this work item
652 		 * because at a time there can be only one work item running
653 		 * with this single threaded work queue.
654 		 */
655 		cancel_delayed_work(&req->work);
656 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
657 			req->addr, req->context);
658 		put_client(req->client);
659 		kfree(req);
660 	}
661 }
662 
663 int rdma_resolve_ip(struct rdma_addr_client *client,
664 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
665 		    struct rdma_dev_addr *addr, int timeout_ms,
666 		    void (*callback)(int status, struct sockaddr *src_addr,
667 				     struct rdma_dev_addr *addr, void *context),
668 		    void *context)
669 {
670 	struct sockaddr *src_in, *dst_in;
671 	struct addr_req *req;
672 	int ret = 0;
673 
674 	req = kzalloc(sizeof *req, GFP_KERNEL);
675 	if (!req)
676 		return -ENOMEM;
677 
678 	src_in = (struct sockaddr *) &req->src_addr;
679 	dst_in = (struct sockaddr *) &req->dst_addr;
680 
681 	if (src_addr) {
682 		if (src_addr->sa_family != dst_addr->sa_family) {
683 			ret = -EINVAL;
684 			goto err;
685 		}
686 
687 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
688 	} else {
689 		src_in->sa_family = dst_addr->sa_family;
690 	}
691 
692 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
693 	req->addr = addr;
694 	req->callback = callback;
695 	req->context = context;
696 	req->client = client;
697 	atomic_inc(&client->refcount);
698 	INIT_DELAYED_WORK(&req->work, process_one_req);
699 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
700 
701 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
702 	switch (req->status) {
703 	case 0:
704 		req->timeout = jiffies;
705 		queue_req(req);
706 		break;
707 	case -ENODATA:
708 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
709 		queue_req(req);
710 		break;
711 	default:
712 		ret = req->status;
713 		atomic_dec(&client->refcount);
714 		goto err;
715 	}
716 	return ret;
717 err:
718 	kfree(req);
719 	return ret;
720 }
721 EXPORT_SYMBOL(rdma_resolve_ip);
722 
723 int rdma_resolve_ip_route(struct sockaddr *src_addr,
724 			  const struct sockaddr *dst_addr,
725 			  struct rdma_dev_addr *addr)
726 {
727 	struct sockaddr_storage ssrc_addr = {};
728 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
729 
730 	if (src_addr) {
731 		if (src_addr->sa_family != dst_addr->sa_family)
732 			return -EINVAL;
733 
734 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
735 	} else {
736 		src_in->sa_family = dst_addr->sa_family;
737 	}
738 
739 	return addr_resolve(src_in, dst_addr, addr, false, 0);
740 }
741 
742 void rdma_addr_cancel(struct rdma_dev_addr *addr)
743 {
744 	struct addr_req *req, *temp_req;
745 
746 	mutex_lock(&lock);
747 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
748 		if (req->addr == addr) {
749 			req->status = -ECANCELED;
750 			req->timeout = jiffies;
751 			list_move(&req->list, &req_list);
752 			set_timeout(&req->work, req->timeout);
753 			break;
754 		}
755 	}
756 	mutex_unlock(&lock);
757 }
758 EXPORT_SYMBOL(rdma_addr_cancel);
759 
760 struct resolve_cb_context {
761 	struct completion comp;
762 	int status;
763 };
764 
765 static void resolve_cb(int status, struct sockaddr *src_addr,
766 	     struct rdma_dev_addr *addr, void *context)
767 {
768 	((struct resolve_cb_context *)context)->status = status;
769 	complete(&((struct resolve_cb_context *)context)->comp);
770 }
771 
772 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
773 				 const union ib_gid *dgid,
774 				 u8 *dmac, const struct net_device *ndev,
775 				 int *hoplimit)
776 {
777 	struct rdma_dev_addr dev_addr;
778 	struct resolve_cb_context ctx;
779 	union {
780 		struct sockaddr     _sockaddr;
781 		struct sockaddr_in  _sockaddr_in;
782 		struct sockaddr_in6 _sockaddr_in6;
783 	} sgid_addr, dgid_addr;
784 	int ret;
785 
786 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
787 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
788 
789 	memset(&dev_addr, 0, sizeof(dev_addr));
790 	dev_addr.bound_dev_if = ndev->ifindex;
791 	dev_addr.net = &init_net;
792 
793 	init_completion(&ctx.comp);
794 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
795 			&dev_addr, 1000, resolve_cb, &ctx);
796 	if (ret)
797 		return ret;
798 
799 	wait_for_completion(&ctx.comp);
800 
801 	ret = ctx.status;
802 	if (ret)
803 		return ret;
804 
805 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
806 	*hoplimit = dev_addr.hoplimit;
807 	return 0;
808 }
809 
810 static int netevent_callback(struct notifier_block *self, unsigned long event,
811 	void *ctx)
812 {
813 	if (event == NETEVENT_NEIGH_UPDATE) {
814 		struct neighbour *neigh = ctx;
815 
816 		if (neigh->nud_state & NUD_VALID)
817 			set_timeout(&work, jiffies);
818 	}
819 	return 0;
820 }
821 
822 static struct notifier_block nb = {
823 	.notifier_call = netevent_callback
824 };
825 
826 int addr_init(void)
827 {
828 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
829 	if (!addr_wq)
830 		return -ENOMEM;
831 
832 	register_netevent_notifier(&nb);
833 	rdma_addr_register_client(&self);
834 
835 	return 0;
836 }
837 
838 void addr_cleanup(void)
839 {
840 	rdma_addr_unregister_client(&self);
841 	unregister_netevent_notifier(&nb);
842 	destroy_workqueue(addr_wq);
843 }
844