1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/module.h> 41 #include <net/arp.h> 42 #include <net/neighbour.h> 43 #include <net/route.h> 44 #include <net/netevent.h> 45 #include <net/addrconf.h> 46 #include <net/ip6_route.h> 47 #include <rdma/ib_addr.h> 48 #include <rdma/ib.h> 49 #include <rdma/rdma_netlink.h> 50 #include <net/netlink.h> 51 52 #include "core_priv.h" 53 54 struct addr_req { 55 struct list_head list; 56 struct sockaddr_storage src_addr; 57 struct sockaddr_storage dst_addr; 58 struct rdma_dev_addr *addr; 59 struct rdma_addr_client *client; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 struct delayed_work work; 65 int status; 66 u32 seq; 67 }; 68 69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 70 71 static void process_req(struct work_struct *work); 72 73 static DEFINE_MUTEX(lock); 74 static LIST_HEAD(req_list); 75 static DECLARE_DELAYED_WORK(work, process_req); 76 static struct workqueue_struct *addr_wq; 77 78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 79 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 80 .len = sizeof(struct rdma_nla_ls_gid)}, 81 }; 82 83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 84 { 85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 86 int ret; 87 88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 89 return false; 90 91 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 92 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 93 if (ret) 94 return false; 95 96 return true; 97 } 98 99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 100 { 101 const struct nlattr *head, *curr; 102 union ib_gid gid; 103 struct addr_req *req; 104 int len, rem; 105 int found = 0; 106 107 head = (const struct nlattr *)nlmsg_data(nlh); 108 len = nlmsg_len(nlh); 109 110 nla_for_each_attr(curr, head, len, rem) { 111 if (curr->nla_type == LS_NLA_TYPE_DGID) 112 memcpy(&gid, nla_data(curr), nla_len(curr)); 113 } 114 115 mutex_lock(&lock); 116 list_for_each_entry(req, &req_list, list) { 117 if (nlh->nlmsg_seq != req->seq) 118 continue; 119 /* We set the DGID part, the rest was set earlier */ 120 rdma_addr_set_dgid(req->addr, &gid); 121 req->status = 0; 122 found = 1; 123 break; 124 } 125 mutex_unlock(&lock); 126 127 if (!found) 128 pr_info("Couldn't find request waiting for DGID: %pI6\n", 129 &gid); 130 } 131 132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 133 struct nlmsghdr *nlh, 134 struct netlink_ext_ack *extack) 135 { 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk)) 138 return -EPERM; 139 140 if (ib_nl_is_good_ip_resp(nlh)) 141 ib_nl_process_good_ip_rsep(nlh); 142 143 return skb->len; 144 } 145 146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 147 const void *daddr, 148 u32 seq, u16 family) 149 { 150 struct sk_buff *skb = NULL; 151 struct nlmsghdr *nlh; 152 struct rdma_ls_ip_resolve_header *header; 153 void *data; 154 size_t size; 155 int attrtype; 156 int len; 157 158 if (family == AF_INET) { 159 size = sizeof(struct in_addr); 160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 161 } else { 162 size = sizeof(struct in6_addr); 163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 164 } 165 166 len = nla_total_size(sizeof(size)); 167 len += NLMSG_ALIGN(sizeof(*header)); 168 169 skb = nlmsg_new(len, GFP_KERNEL); 170 if (!skb) 171 return -ENOMEM; 172 173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 175 if (!data) { 176 nlmsg_free(skb); 177 return -ENODATA; 178 } 179 180 /* Construct the family header first */ 181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 182 header->ifindex = dev_addr->bound_dev_if; 183 nla_put(skb, attrtype, size, daddr); 184 185 /* Repair the nlmsg header length */ 186 nlmsg_end(skb, nlh); 187 rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL); 188 189 /* Make the request retry, so when we get the response from userspace 190 * we will have something. 191 */ 192 return -ENODATA; 193 } 194 195 int rdma_addr_size(struct sockaddr *addr) 196 { 197 switch (addr->sa_family) { 198 case AF_INET: 199 return sizeof(struct sockaddr_in); 200 case AF_INET6: 201 return sizeof(struct sockaddr_in6); 202 case AF_IB: 203 return sizeof(struct sockaddr_ib); 204 default: 205 return 0; 206 } 207 } 208 EXPORT_SYMBOL(rdma_addr_size); 209 210 int rdma_addr_size_in6(struct sockaddr_in6 *addr) 211 { 212 int ret = rdma_addr_size((struct sockaddr *) addr); 213 214 return ret <= sizeof(*addr) ? ret : 0; 215 } 216 EXPORT_SYMBOL(rdma_addr_size_in6); 217 218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) 219 { 220 int ret = rdma_addr_size((struct sockaddr *) addr); 221 222 return ret <= sizeof(*addr) ? ret : 0; 223 } 224 EXPORT_SYMBOL(rdma_addr_size_kss); 225 226 static struct rdma_addr_client self; 227 228 void rdma_addr_register_client(struct rdma_addr_client *client) 229 { 230 atomic_set(&client->refcount, 1); 231 init_completion(&client->comp); 232 } 233 EXPORT_SYMBOL(rdma_addr_register_client); 234 235 static inline void put_client(struct rdma_addr_client *client) 236 { 237 if (atomic_dec_and_test(&client->refcount)) 238 complete(&client->comp); 239 } 240 241 void rdma_addr_unregister_client(struct rdma_addr_client *client) 242 { 243 put_client(client); 244 wait_for_completion(&client->comp); 245 } 246 EXPORT_SYMBOL(rdma_addr_unregister_client); 247 248 void rdma_copy_addr(struct rdma_dev_addr *dev_addr, 249 const struct net_device *dev, 250 const unsigned char *dst_dev_addr) 251 { 252 dev_addr->dev_type = dev->type; 253 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 254 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 255 if (dst_dev_addr) 256 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN); 257 dev_addr->bound_dev_if = dev->ifindex; 258 } 259 EXPORT_SYMBOL(rdma_copy_addr); 260 261 int rdma_translate_ip(const struct sockaddr *addr, 262 struct rdma_dev_addr *dev_addr) 263 { 264 struct net_device *dev; 265 266 if (dev_addr->bound_dev_if) { 267 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 268 if (!dev) 269 return -ENODEV; 270 rdma_copy_addr(dev_addr, dev, NULL); 271 dev_put(dev); 272 return 0; 273 } 274 275 switch (addr->sa_family) { 276 case AF_INET: 277 dev = ip_dev_find(dev_addr->net, 278 ((const struct sockaddr_in *)addr)->sin_addr.s_addr); 279 280 if (!dev) 281 return -EADDRNOTAVAIL; 282 283 rdma_copy_addr(dev_addr, dev, NULL); 284 dev_put(dev); 285 break; 286 #if IS_ENABLED(CONFIG_IPV6) 287 case AF_INET6: 288 rcu_read_lock(); 289 for_each_netdev_rcu(dev_addr->net, dev) { 290 if (ipv6_chk_addr(dev_addr->net, 291 &((const struct sockaddr_in6 *)addr)->sin6_addr, 292 dev, 1)) { 293 rdma_copy_addr(dev_addr, dev, NULL); 294 break; 295 } 296 } 297 rcu_read_unlock(); 298 break; 299 #endif 300 } 301 return 0; 302 } 303 EXPORT_SYMBOL(rdma_translate_ip); 304 305 static void set_timeout(struct delayed_work *delayed_work, unsigned long time) 306 { 307 unsigned long delay; 308 309 delay = time - jiffies; 310 if ((long)delay < 0) 311 delay = 0; 312 313 mod_delayed_work(addr_wq, delayed_work, delay); 314 } 315 316 static void queue_req(struct addr_req *req) 317 { 318 struct addr_req *temp_req; 319 320 mutex_lock(&lock); 321 list_for_each_entry_reverse(temp_req, &req_list, list) { 322 if (time_after_eq(req->timeout, temp_req->timeout)) 323 break; 324 } 325 326 list_add(&req->list, &temp_req->list); 327 328 set_timeout(&req->work, req->timeout); 329 mutex_unlock(&lock); 330 } 331 332 static int ib_nl_fetch_ha(const struct dst_entry *dst, 333 struct rdma_dev_addr *dev_addr, 334 const void *daddr, u32 seq, u16 family) 335 { 336 if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) 337 return -EADDRNOTAVAIL; 338 339 /* We fill in what we can, the response will fill the rest */ 340 rdma_copy_addr(dev_addr, dst->dev, NULL); 341 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 342 } 343 344 static int dst_fetch_ha(const struct dst_entry *dst, 345 struct rdma_dev_addr *dev_addr, 346 const void *daddr) 347 { 348 struct neighbour *n; 349 int ret = 0; 350 351 n = dst_neigh_lookup(dst, daddr); 352 353 rcu_read_lock(); 354 if (!n || !(n->nud_state & NUD_VALID)) { 355 if (n) 356 neigh_event_send(n, NULL); 357 ret = -ENODATA; 358 } else { 359 rdma_copy_addr(dev_addr, dst->dev, n->ha); 360 } 361 rcu_read_unlock(); 362 363 if (n) 364 neigh_release(n); 365 366 return ret; 367 } 368 369 static bool has_gateway(const struct dst_entry *dst, sa_family_t family) 370 { 371 struct rtable *rt; 372 struct rt6_info *rt6; 373 374 if (family == AF_INET) { 375 rt = container_of(dst, struct rtable, dst); 376 return rt->rt_uses_gateway; 377 } 378 379 rt6 = container_of(dst, struct rt6_info, dst); 380 return rt6->rt6i_flags & RTF_GATEWAY; 381 } 382 383 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 384 const struct sockaddr *dst_in, u32 seq) 385 { 386 const struct sockaddr_in *dst_in4 = 387 (const struct sockaddr_in *)dst_in; 388 const struct sockaddr_in6 *dst_in6 = 389 (const struct sockaddr_in6 *)dst_in; 390 const void *daddr = (dst_in->sa_family == AF_INET) ? 391 (const void *)&dst_in4->sin_addr.s_addr : 392 (const void *)&dst_in6->sin6_addr; 393 sa_family_t family = dst_in->sa_family; 394 395 /* Gateway + ARPHRD_INFINIBAND -> IB router */ 396 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND) 397 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family); 398 else 399 return dst_fetch_ha(dst, dev_addr, daddr); 400 } 401 402 static int addr4_resolve(struct sockaddr_in *src_in, 403 const struct sockaddr_in *dst_in, 404 struct rdma_dev_addr *addr, 405 struct rtable **prt) 406 { 407 __be32 src_ip = src_in->sin_addr.s_addr; 408 __be32 dst_ip = dst_in->sin_addr.s_addr; 409 struct rtable *rt; 410 struct flowi4 fl4; 411 int ret; 412 413 memset(&fl4, 0, sizeof(fl4)); 414 fl4.daddr = dst_ip; 415 fl4.saddr = src_ip; 416 fl4.flowi4_oif = addr->bound_dev_if; 417 rt = ip_route_output_key(addr->net, &fl4); 418 ret = PTR_ERR_OR_ZERO(rt); 419 if (ret) 420 return ret; 421 422 src_in->sin_family = AF_INET; 423 src_in->sin_addr.s_addr = fl4.saddr; 424 425 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 426 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 427 * type accordingly. 428 */ 429 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND) 430 addr->network = RDMA_NETWORK_IPV4; 431 432 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 433 434 *prt = rt; 435 return 0; 436 } 437 438 #if IS_ENABLED(CONFIG_IPV6) 439 static int addr6_resolve(struct sockaddr_in6 *src_in, 440 const struct sockaddr_in6 *dst_in, 441 struct rdma_dev_addr *addr, 442 struct dst_entry **pdst) 443 { 444 struct flowi6 fl6; 445 struct dst_entry *dst; 446 struct rt6_info *rt; 447 int ret; 448 449 memset(&fl6, 0, sizeof fl6); 450 fl6.daddr = dst_in->sin6_addr; 451 fl6.saddr = src_in->sin6_addr; 452 fl6.flowi6_oif = addr->bound_dev_if; 453 454 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); 455 if (ret < 0) 456 return ret; 457 458 rt = (struct rt6_info *)dst; 459 if (ipv6_addr_any(&src_in->sin6_addr)) { 460 src_in->sin6_family = AF_INET6; 461 src_in->sin6_addr = fl6.saddr; 462 } 463 464 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 465 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 466 * type accordingly. 467 */ 468 if (rt->rt6i_flags & RTF_GATEWAY && 469 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND) 470 addr->network = RDMA_NETWORK_IPV6; 471 472 addr->hoplimit = ip6_dst_hoplimit(dst); 473 474 *pdst = dst; 475 return 0; 476 } 477 #else 478 static int addr6_resolve(struct sockaddr_in6 *src_in, 479 const struct sockaddr_in6 *dst_in, 480 struct rdma_dev_addr *addr, 481 struct dst_entry **pdst) 482 { 483 return -EADDRNOTAVAIL; 484 } 485 #endif 486 487 static int addr_resolve_neigh(const struct dst_entry *dst, 488 const struct sockaddr *dst_in, 489 struct rdma_dev_addr *addr, 490 u32 seq) 491 { 492 if (dst->dev->flags & IFF_LOOPBACK) { 493 int ret; 494 495 ret = rdma_translate_ip(dst_in, addr); 496 if (!ret) 497 memcpy(addr->dst_dev_addr, addr->src_dev_addr, 498 MAX_ADDR_LEN); 499 500 return ret; 501 } 502 503 /* If the device doesn't do ARP internally */ 504 if (!(dst->dev->flags & IFF_NOARP)) 505 return fetch_ha(dst, addr, dst_in, seq); 506 507 rdma_copy_addr(addr, dst->dev, NULL); 508 509 return 0; 510 } 511 512 static int addr_resolve(struct sockaddr *src_in, 513 const struct sockaddr *dst_in, 514 struct rdma_dev_addr *addr, 515 bool resolve_neigh, 516 u32 seq) 517 { 518 struct net_device *ndev; 519 struct dst_entry *dst; 520 int ret; 521 522 if (!addr->net) { 523 pr_warn_ratelimited("%s: missing namespace\n", __func__); 524 return -EINVAL; 525 } 526 527 if (src_in->sa_family == AF_INET) { 528 struct rtable *rt = NULL; 529 const struct sockaddr_in *dst_in4 = 530 (const struct sockaddr_in *)dst_in; 531 532 ret = addr4_resolve((struct sockaddr_in *)src_in, 533 dst_in4, addr, &rt); 534 if (ret) 535 return ret; 536 537 if (resolve_neigh) 538 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq); 539 540 if (addr->bound_dev_if) { 541 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 542 } else { 543 ndev = rt->dst.dev; 544 dev_hold(ndev); 545 } 546 547 ip_rt_put(rt); 548 } else { 549 const struct sockaddr_in6 *dst_in6 = 550 (const struct sockaddr_in6 *)dst_in; 551 552 ret = addr6_resolve((struct sockaddr_in6 *)src_in, 553 dst_in6, addr, 554 &dst); 555 if (ret) 556 return ret; 557 558 if (resolve_neigh) 559 ret = addr_resolve_neigh(dst, dst_in, addr, seq); 560 561 if (addr->bound_dev_if) { 562 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 563 } else { 564 ndev = dst->dev; 565 dev_hold(ndev); 566 } 567 568 dst_release(dst); 569 } 570 571 if (ndev) { 572 if (ndev->flags & IFF_LOOPBACK) 573 ret = rdma_translate_ip(dst_in, addr); 574 else 575 addr->bound_dev_if = ndev->ifindex; 576 dev_put(ndev); 577 } 578 579 return ret; 580 } 581 582 static void process_one_req(struct work_struct *_work) 583 { 584 struct addr_req *req; 585 struct sockaddr *src_in, *dst_in; 586 587 mutex_lock(&lock); 588 req = container_of(_work, struct addr_req, work.work); 589 590 if (req->status == -ENODATA) { 591 src_in = (struct sockaddr *)&req->src_addr; 592 dst_in = (struct sockaddr *)&req->dst_addr; 593 req->status = addr_resolve(src_in, dst_in, req->addr, 594 true, req->seq); 595 if (req->status && time_after_eq(jiffies, req->timeout)) { 596 req->status = -ETIMEDOUT; 597 } else if (req->status == -ENODATA) { 598 /* requeue the work for retrying again */ 599 set_timeout(&req->work, req->timeout); 600 mutex_unlock(&lock); 601 return; 602 } 603 } 604 list_del(&req->list); 605 mutex_unlock(&lock); 606 607 /* 608 * Although the work will normally have been canceled by the 609 * workqueue, it can still be requeued as long as it is on the 610 * req_list, so it could have been requeued before we grabbed &lock. 611 * We need to cancel it after it is removed from req_list to really be 612 * sure it is safe to free. 613 */ 614 cancel_delayed_work(&req->work); 615 616 req->callback(req->status, (struct sockaddr *)&req->src_addr, 617 req->addr, req->context); 618 put_client(req->client); 619 kfree(req); 620 } 621 622 static void process_req(struct work_struct *work) 623 { 624 struct addr_req *req, *temp_req; 625 struct sockaddr *src_in, *dst_in; 626 struct list_head done_list; 627 628 INIT_LIST_HEAD(&done_list); 629 630 mutex_lock(&lock); 631 list_for_each_entry_safe(req, temp_req, &req_list, list) { 632 if (req->status == -ENODATA) { 633 src_in = (struct sockaddr *) &req->src_addr; 634 dst_in = (struct sockaddr *) &req->dst_addr; 635 req->status = addr_resolve(src_in, dst_in, req->addr, 636 true, req->seq); 637 if (req->status && time_after_eq(jiffies, req->timeout)) 638 req->status = -ETIMEDOUT; 639 else if (req->status == -ENODATA) { 640 set_timeout(&req->work, req->timeout); 641 continue; 642 } 643 } 644 list_move_tail(&req->list, &done_list); 645 } 646 647 mutex_unlock(&lock); 648 649 list_for_each_entry_safe(req, temp_req, &done_list, list) { 650 list_del(&req->list); 651 /* It is safe to cancel other work items from this work item 652 * because at a time there can be only one work item running 653 * with this single threaded work queue. 654 */ 655 cancel_delayed_work(&req->work); 656 req->callback(req->status, (struct sockaddr *) &req->src_addr, 657 req->addr, req->context); 658 put_client(req->client); 659 kfree(req); 660 } 661 } 662 663 int rdma_resolve_ip(struct rdma_addr_client *client, 664 struct sockaddr *src_addr, struct sockaddr *dst_addr, 665 struct rdma_dev_addr *addr, int timeout_ms, 666 void (*callback)(int status, struct sockaddr *src_addr, 667 struct rdma_dev_addr *addr, void *context), 668 void *context) 669 { 670 struct sockaddr *src_in, *dst_in; 671 struct addr_req *req; 672 int ret = 0; 673 674 req = kzalloc(sizeof *req, GFP_KERNEL); 675 if (!req) 676 return -ENOMEM; 677 678 src_in = (struct sockaddr *) &req->src_addr; 679 dst_in = (struct sockaddr *) &req->dst_addr; 680 681 if (src_addr) { 682 if (src_addr->sa_family != dst_addr->sa_family) { 683 ret = -EINVAL; 684 goto err; 685 } 686 687 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 688 } else { 689 src_in->sa_family = dst_addr->sa_family; 690 } 691 692 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 693 req->addr = addr; 694 req->callback = callback; 695 req->context = context; 696 req->client = client; 697 atomic_inc(&client->refcount); 698 INIT_DELAYED_WORK(&req->work, process_one_req); 699 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 700 701 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq); 702 switch (req->status) { 703 case 0: 704 req->timeout = jiffies; 705 queue_req(req); 706 break; 707 case -ENODATA: 708 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 709 queue_req(req); 710 break; 711 default: 712 ret = req->status; 713 atomic_dec(&client->refcount); 714 goto err; 715 } 716 return ret; 717 err: 718 kfree(req); 719 return ret; 720 } 721 EXPORT_SYMBOL(rdma_resolve_ip); 722 723 int rdma_resolve_ip_route(struct sockaddr *src_addr, 724 const struct sockaddr *dst_addr, 725 struct rdma_dev_addr *addr) 726 { 727 struct sockaddr_storage ssrc_addr = {}; 728 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; 729 730 if (src_addr) { 731 if (src_addr->sa_family != dst_addr->sa_family) 732 return -EINVAL; 733 734 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 735 } else { 736 src_in->sa_family = dst_addr->sa_family; 737 } 738 739 return addr_resolve(src_in, dst_addr, addr, false, 0); 740 } 741 742 void rdma_addr_cancel(struct rdma_dev_addr *addr) 743 { 744 struct addr_req *req, *temp_req; 745 746 mutex_lock(&lock); 747 list_for_each_entry_safe(req, temp_req, &req_list, list) { 748 if (req->addr == addr) { 749 req->status = -ECANCELED; 750 req->timeout = jiffies; 751 list_move(&req->list, &req_list); 752 set_timeout(&req->work, req->timeout); 753 break; 754 } 755 } 756 mutex_unlock(&lock); 757 } 758 EXPORT_SYMBOL(rdma_addr_cancel); 759 760 struct resolve_cb_context { 761 struct completion comp; 762 int status; 763 }; 764 765 static void resolve_cb(int status, struct sockaddr *src_addr, 766 struct rdma_dev_addr *addr, void *context) 767 { 768 ((struct resolve_cb_context *)context)->status = status; 769 complete(&((struct resolve_cb_context *)context)->comp); 770 } 771 772 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 773 const union ib_gid *dgid, 774 u8 *dmac, const struct net_device *ndev, 775 int *hoplimit) 776 { 777 struct rdma_dev_addr dev_addr; 778 struct resolve_cb_context ctx; 779 union { 780 struct sockaddr _sockaddr; 781 struct sockaddr_in _sockaddr_in; 782 struct sockaddr_in6 _sockaddr_in6; 783 } sgid_addr, dgid_addr; 784 int ret; 785 786 rdma_gid2ip(&sgid_addr._sockaddr, sgid); 787 rdma_gid2ip(&dgid_addr._sockaddr, dgid); 788 789 memset(&dev_addr, 0, sizeof(dev_addr)); 790 dev_addr.bound_dev_if = ndev->ifindex; 791 dev_addr.net = &init_net; 792 793 init_completion(&ctx.comp); 794 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, 795 &dev_addr, 1000, resolve_cb, &ctx); 796 if (ret) 797 return ret; 798 799 wait_for_completion(&ctx.comp); 800 801 ret = ctx.status; 802 if (ret) 803 return ret; 804 805 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 806 *hoplimit = dev_addr.hoplimit; 807 return 0; 808 } 809 810 static int netevent_callback(struct notifier_block *self, unsigned long event, 811 void *ctx) 812 { 813 if (event == NETEVENT_NEIGH_UPDATE) { 814 struct neighbour *neigh = ctx; 815 816 if (neigh->nud_state & NUD_VALID) 817 set_timeout(&work, jiffies); 818 } 819 return 0; 820 } 821 822 static struct notifier_block nb = { 823 .notifier_call = netevent_callback 824 }; 825 826 int addr_init(void) 827 { 828 addr_wq = alloc_ordered_workqueue("ib_addr", 0); 829 if (!addr_wq) 830 return -ENOMEM; 831 832 register_netevent_notifier(&nb); 833 rdma_addr_register_client(&self); 834 835 return 0; 836 } 837 838 void addr_cleanup(void) 839 { 840 rdma_addr_unregister_client(&self); 841 unregister_netevent_notifier(&nb); 842 destroy_workqueue(addr_wq); 843 } 844