xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision de6da33e)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/ipv6_stubs.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/ib_sa.h>
50 #include <rdma/ib.h>
51 #include <rdma/rdma_netlink.h>
52 #include <net/netlink.h>
53 
54 #include "core_priv.h"
55 
56 struct addr_req {
57 	struct list_head list;
58 	struct sockaddr_storage src_addr;
59 	struct sockaddr_storage dst_addr;
60 	struct rdma_dev_addr *addr;
61 	void *context;
62 	void (*callback)(int status, struct sockaddr *src_addr,
63 			 struct rdma_dev_addr *addr, void *context);
64 	unsigned long timeout;
65 	struct delayed_work work;
66 	bool resolve_by_gid_attr;	/* Consider gid attr in resolve phase */
67 	int status;
68 	u32 seq;
69 };
70 
71 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
72 
73 static DEFINE_SPINLOCK(lock);
74 static LIST_HEAD(req_list);
75 static struct workqueue_struct *addr_wq;
76 
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 		.len = sizeof(struct rdma_nla_ls_gid),
80 		.validation_type = NLA_VALIDATE_MIN,
81 		.min = sizeof(struct rdma_nla_ls_gid)},
82 };
83 
84 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
85 {
86 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
87 	int ret;
88 
89 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
90 		return false;
91 
92 	ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
93 				   nlmsg_len(nlh), ib_nl_addr_policy, NULL);
94 	if (ret)
95 		return false;
96 
97 	return true;
98 }
99 
100 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
101 {
102 	const struct nlattr *head, *curr;
103 	union ib_gid gid;
104 	struct addr_req *req;
105 	int len, rem;
106 	int found = 0;
107 
108 	head = (const struct nlattr *)nlmsg_data(nlh);
109 	len = nlmsg_len(nlh);
110 
111 	nla_for_each_attr(curr, head, len, rem) {
112 		if (curr->nla_type == LS_NLA_TYPE_DGID)
113 			memcpy(&gid, nla_data(curr), nla_len(curr));
114 	}
115 
116 	spin_lock_bh(&lock);
117 	list_for_each_entry(req, &req_list, list) {
118 		if (nlh->nlmsg_seq != req->seq)
119 			continue;
120 		/* We set the DGID part, the rest was set earlier */
121 		rdma_addr_set_dgid(req->addr, &gid);
122 		req->status = 0;
123 		found = 1;
124 		break;
125 	}
126 	spin_unlock_bh(&lock);
127 
128 	if (!found)
129 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
130 			&gid);
131 }
132 
133 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
134 			     struct nlmsghdr *nlh,
135 			     struct netlink_ext_ack *extack)
136 {
137 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
138 	    !(NETLINK_CB(skb).sk))
139 		return -EPERM;
140 
141 	if (ib_nl_is_good_ip_resp(nlh))
142 		ib_nl_process_good_ip_rsep(nlh);
143 
144 	return 0;
145 }
146 
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 			     const void *daddr,
149 			     u32 seq, u16 family)
150 {
151 	struct sk_buff *skb = NULL;
152 	struct nlmsghdr *nlh;
153 	struct rdma_ls_ip_resolve_header *header;
154 	void *data;
155 	size_t size;
156 	int attrtype;
157 	int len;
158 
159 	if (family == AF_INET) {
160 		size = sizeof(struct in_addr);
161 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 	} else {
163 		size = sizeof(struct in6_addr);
164 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 	}
166 
167 	len = nla_total_size(sizeof(size));
168 	len += NLMSG_ALIGN(sizeof(*header));
169 
170 	skb = nlmsg_new(len, GFP_KERNEL);
171 	if (!skb)
172 		return -ENOMEM;
173 
174 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 	if (!data) {
177 		nlmsg_free(skb);
178 		return -ENODATA;
179 	}
180 
181 	/* Construct the family header first */
182 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
183 	header->ifindex = dev_addr->bound_dev_if;
184 	nla_put(skb, attrtype, size, daddr);
185 
186 	/* Repair the nlmsg header length */
187 	nlmsg_end(skb, nlh);
188 	rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
189 
190 	/* Make the request retry, so when we get the response from userspace
191 	 * we will have something.
192 	 */
193 	return -ENODATA;
194 }
195 
196 int rdma_addr_size(const struct sockaddr *addr)
197 {
198 	switch (addr->sa_family) {
199 	case AF_INET:
200 		return sizeof(struct sockaddr_in);
201 	case AF_INET6:
202 		return sizeof(struct sockaddr_in6);
203 	case AF_IB:
204 		return sizeof(struct sockaddr_ib);
205 	default:
206 		return 0;
207 	}
208 }
209 EXPORT_SYMBOL(rdma_addr_size);
210 
211 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
212 {
213 	int ret = rdma_addr_size((struct sockaddr *) addr);
214 
215 	return ret <= sizeof(*addr) ? ret : 0;
216 }
217 EXPORT_SYMBOL(rdma_addr_size_in6);
218 
219 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
220 {
221 	int ret = rdma_addr_size((struct sockaddr *) addr);
222 
223 	return ret <= sizeof(*addr) ? ret : 0;
224 }
225 EXPORT_SYMBOL(rdma_addr_size_kss);
226 
227 /**
228  * rdma_copy_src_l2_addr - Copy netdevice source addresses
229  * @dev_addr:	Destination address pointer where to copy the addresses
230  * @dev:	Netdevice whose source addresses to copy
231  *
232  * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
233  * This includes unicast address, broadcast address, device type and
234  * interface index.
235  */
236 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
237 			   const struct net_device *dev)
238 {
239 	dev_addr->dev_type = dev->type;
240 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
241 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
242 	dev_addr->bound_dev_if = dev->ifindex;
243 }
244 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
245 
246 static struct net_device *
247 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
248 {
249 	struct net_device *dev = NULL;
250 	int ret = -EADDRNOTAVAIL;
251 
252 	switch (src_in->sa_family) {
253 	case AF_INET:
254 		dev = __ip_dev_find(net,
255 				    ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
256 				    false);
257 		if (dev)
258 			ret = 0;
259 		break;
260 #if IS_ENABLED(CONFIG_IPV6)
261 	case AF_INET6:
262 		for_each_netdev_rcu(net, dev) {
263 			if (ipv6_chk_addr(net,
264 					  &((const struct sockaddr_in6 *)src_in)->sin6_addr,
265 					  dev, 1)) {
266 				ret = 0;
267 				break;
268 			}
269 		}
270 		break;
271 #endif
272 	}
273 	return ret ? ERR_PTR(ret) : dev;
274 }
275 
276 int rdma_translate_ip(const struct sockaddr *addr,
277 		      struct rdma_dev_addr *dev_addr)
278 {
279 	struct net_device *dev;
280 
281 	if (dev_addr->bound_dev_if) {
282 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
283 		if (!dev)
284 			return -ENODEV;
285 		rdma_copy_src_l2_addr(dev_addr, dev);
286 		dev_put(dev);
287 		return 0;
288 	}
289 
290 	rcu_read_lock();
291 	dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
292 	if (!IS_ERR(dev))
293 		rdma_copy_src_l2_addr(dev_addr, dev);
294 	rcu_read_unlock();
295 	return PTR_ERR_OR_ZERO(dev);
296 }
297 EXPORT_SYMBOL(rdma_translate_ip);
298 
299 static void set_timeout(struct addr_req *req, unsigned long time)
300 {
301 	unsigned long delay;
302 
303 	delay = time - jiffies;
304 	if ((long)delay < 0)
305 		delay = 0;
306 
307 	mod_delayed_work(addr_wq, &req->work, delay);
308 }
309 
310 static void queue_req(struct addr_req *req)
311 {
312 	spin_lock_bh(&lock);
313 	list_add_tail(&req->list, &req_list);
314 	set_timeout(req, req->timeout);
315 	spin_unlock_bh(&lock);
316 }
317 
318 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
319 			  const void *daddr, u32 seq, u16 family)
320 {
321 	if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
322 		return -EADDRNOTAVAIL;
323 
324 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
325 }
326 
327 static int dst_fetch_ha(const struct dst_entry *dst,
328 			struct rdma_dev_addr *dev_addr,
329 			const void *daddr)
330 {
331 	struct neighbour *n;
332 	int ret = 0;
333 
334 	n = dst_neigh_lookup(dst, daddr);
335 	if (!n)
336 		return -ENODATA;
337 
338 	if (!(n->nud_state & NUD_VALID)) {
339 		neigh_event_send(n, NULL);
340 		ret = -ENODATA;
341 	} else {
342 		neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev);
343 	}
344 
345 	neigh_release(n);
346 
347 	return ret;
348 }
349 
350 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
351 {
352 	struct rtable *rt;
353 	struct rt6_info *rt6;
354 
355 	if (family == AF_INET) {
356 		rt = container_of(dst, struct rtable, dst);
357 		return rt->rt_uses_gateway;
358 	}
359 
360 	rt6 = container_of(dst, struct rt6_info, dst);
361 	return rt6->rt6i_flags & RTF_GATEWAY;
362 }
363 
364 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
365 		    const struct sockaddr *dst_in, u32 seq)
366 {
367 	const struct sockaddr_in *dst_in4 =
368 		(const struct sockaddr_in *)dst_in;
369 	const struct sockaddr_in6 *dst_in6 =
370 		(const struct sockaddr_in6 *)dst_in;
371 	const void *daddr = (dst_in->sa_family == AF_INET) ?
372 		(const void *)&dst_in4->sin_addr.s_addr :
373 		(const void *)&dst_in6->sin6_addr;
374 	sa_family_t family = dst_in->sa_family;
375 
376 	might_sleep();
377 
378 	/* If we have a gateway in IB mode then it must be an IB network */
379 	if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
380 		return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
381 	else
382 		return dst_fetch_ha(dst, dev_addr, daddr);
383 }
384 
385 static int addr4_resolve(struct sockaddr *src_sock,
386 			 const struct sockaddr *dst_sock,
387 			 struct rdma_dev_addr *addr,
388 			 struct rtable **prt)
389 {
390 	struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
391 	const struct sockaddr_in *dst_in =
392 			(const struct sockaddr_in *)dst_sock;
393 
394 	__be32 src_ip = src_in->sin_addr.s_addr;
395 	__be32 dst_ip = dst_in->sin_addr.s_addr;
396 	struct rtable *rt;
397 	struct flowi4 fl4;
398 	int ret;
399 
400 	memset(&fl4, 0, sizeof(fl4));
401 	fl4.daddr = dst_ip;
402 	fl4.saddr = src_ip;
403 	fl4.flowi4_oif = addr->bound_dev_if;
404 	rt = ip_route_output_key(addr->net, &fl4);
405 	ret = PTR_ERR_OR_ZERO(rt);
406 	if (ret)
407 		return ret;
408 
409 	src_in->sin_addr.s_addr = fl4.saddr;
410 
411 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
412 
413 	*prt = rt;
414 	return 0;
415 }
416 
417 #if IS_ENABLED(CONFIG_IPV6)
418 static int addr6_resolve(struct sockaddr *src_sock,
419 			 const struct sockaddr *dst_sock,
420 			 struct rdma_dev_addr *addr,
421 			 struct dst_entry **pdst)
422 {
423 	struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
424 	const struct sockaddr_in6 *dst_in =
425 				(const struct sockaddr_in6 *)dst_sock;
426 	struct flowi6 fl6;
427 	struct dst_entry *dst;
428 
429 	memset(&fl6, 0, sizeof fl6);
430 	fl6.daddr = dst_in->sin6_addr;
431 	fl6.saddr = src_in->sin6_addr;
432 	fl6.flowi6_oif = addr->bound_dev_if;
433 
434 	dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL);
435 	if (IS_ERR(dst))
436 		return PTR_ERR(dst);
437 
438 	if (ipv6_addr_any(&src_in->sin6_addr))
439 		src_in->sin6_addr = fl6.saddr;
440 
441 	addr->hoplimit = ip6_dst_hoplimit(dst);
442 
443 	*pdst = dst;
444 	return 0;
445 }
446 #else
447 static int addr6_resolve(struct sockaddr *src_sock,
448 			 const struct sockaddr *dst_sock,
449 			 struct rdma_dev_addr *addr,
450 			 struct dst_entry **pdst)
451 {
452 	return -EADDRNOTAVAIL;
453 }
454 #endif
455 
456 static int addr_resolve_neigh(const struct dst_entry *dst,
457 			      const struct sockaddr *dst_in,
458 			      struct rdma_dev_addr *addr,
459 			      unsigned int ndev_flags,
460 			      u32 seq)
461 {
462 	int ret = 0;
463 
464 	if (ndev_flags & IFF_LOOPBACK) {
465 		memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
466 	} else {
467 		if (!(ndev_flags & IFF_NOARP)) {
468 			/* If the device doesn't do ARP internally */
469 			ret = fetch_ha(dst, addr, dst_in, seq);
470 		}
471 	}
472 	return ret;
473 }
474 
475 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
476 			    const struct sockaddr *dst_in,
477 			    const struct dst_entry *dst,
478 			    const struct net_device *ndev)
479 {
480 	int ret = 0;
481 
482 	if (dst->dev->flags & IFF_LOOPBACK)
483 		ret = rdma_translate_ip(dst_in, dev_addr);
484 	else
485 		rdma_copy_src_l2_addr(dev_addr, dst->dev);
486 
487 	/*
488 	 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
489 	 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
490 	 * network type accordingly.
491 	 */
492 	if (has_gateway(dst, dst_in->sa_family) &&
493 	    ndev->type != ARPHRD_INFINIBAND)
494 		dev_addr->network = dst_in->sa_family == AF_INET ?
495 						RDMA_NETWORK_IPV4 :
496 						RDMA_NETWORK_IPV6;
497 	else
498 		dev_addr->network = RDMA_NETWORK_IB;
499 
500 	return ret;
501 }
502 
503 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
504 				 unsigned int *ndev_flags,
505 				 const struct sockaddr *dst_in,
506 				 const struct dst_entry *dst)
507 {
508 	struct net_device *ndev = READ_ONCE(dst->dev);
509 
510 	*ndev_flags = ndev->flags;
511 	/* A physical device must be the RDMA device to use */
512 	if (ndev->flags & IFF_LOOPBACK) {
513 		/*
514 		 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
515 		 * loopback IP address. So if route is resolved to loopback
516 		 * interface, translate that to a real ndev based on non
517 		 * loopback IP address.
518 		 */
519 		ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
520 		if (IS_ERR(ndev))
521 			return -ENODEV;
522 	}
523 
524 	return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
525 }
526 
527 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
528 {
529 	struct net_device *ndev;
530 
531 	ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
532 	if (IS_ERR(ndev))
533 		return PTR_ERR(ndev);
534 
535 	/*
536 	 * Since we are holding the rcu, reading net and ifindex
537 	 * are safe without any additional reference; because
538 	 * change_net_namespace() in net/core/dev.c does rcu sync
539 	 * after it changes the state to IFF_DOWN and before
540 	 * updating netdev fields {net, ifindex}.
541 	 */
542 	addr->net = dev_net(ndev);
543 	addr->bound_dev_if = ndev->ifindex;
544 	return 0;
545 }
546 
547 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
548 {
549 	addr->net = &init_net;
550 	addr->bound_dev_if = 0;
551 }
552 
553 static int addr_resolve(struct sockaddr *src_in,
554 			const struct sockaddr *dst_in,
555 			struct rdma_dev_addr *addr,
556 			bool resolve_neigh,
557 			bool resolve_by_gid_attr,
558 			u32 seq)
559 {
560 	struct dst_entry *dst = NULL;
561 	unsigned int ndev_flags = 0;
562 	struct rtable *rt = NULL;
563 	int ret;
564 
565 	if (!addr->net) {
566 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
567 		return -EINVAL;
568 	}
569 
570 	rcu_read_lock();
571 	if (resolve_by_gid_attr) {
572 		if (!addr->sgid_attr) {
573 			rcu_read_unlock();
574 			pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
575 			return -EINVAL;
576 		}
577 		/*
578 		 * If the request is for a specific gid attribute of the
579 		 * rdma_dev_addr, derive net from the netdevice of the
580 		 * GID attribute.
581 		 */
582 		ret = set_addr_netns_by_gid_rcu(addr);
583 		if (ret) {
584 			rcu_read_unlock();
585 			return ret;
586 		}
587 	}
588 	if (src_in->sa_family == AF_INET) {
589 		ret = addr4_resolve(src_in, dst_in, addr, &rt);
590 		dst = &rt->dst;
591 	} else {
592 		ret = addr6_resolve(src_in, dst_in, addr, &dst);
593 	}
594 	if (ret) {
595 		rcu_read_unlock();
596 		goto done;
597 	}
598 	ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
599 	rcu_read_unlock();
600 
601 	/*
602 	 * Resolve neighbor destination address if requested and
603 	 * only if src addr translation didn't fail.
604 	 */
605 	if (!ret && resolve_neigh)
606 		ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
607 
608 	if (src_in->sa_family == AF_INET)
609 		ip_rt_put(rt);
610 	else
611 		dst_release(dst);
612 done:
613 	/*
614 	 * Clear the addr net to go back to its original state, only if it was
615 	 * derived from GID attribute in this context.
616 	 */
617 	if (resolve_by_gid_attr)
618 		rdma_addr_set_net_defaults(addr);
619 	return ret;
620 }
621 
622 static void process_one_req(struct work_struct *_work)
623 {
624 	struct addr_req *req;
625 	struct sockaddr *src_in, *dst_in;
626 
627 	req = container_of(_work, struct addr_req, work.work);
628 
629 	if (req->status == -ENODATA) {
630 		src_in = (struct sockaddr *)&req->src_addr;
631 		dst_in = (struct sockaddr *)&req->dst_addr;
632 		req->status = addr_resolve(src_in, dst_in, req->addr,
633 					   true, req->resolve_by_gid_attr,
634 					   req->seq);
635 		if (req->status && time_after_eq(jiffies, req->timeout)) {
636 			req->status = -ETIMEDOUT;
637 		} else if (req->status == -ENODATA) {
638 			/* requeue the work for retrying again */
639 			spin_lock_bh(&lock);
640 			if (!list_empty(&req->list))
641 				set_timeout(req, req->timeout);
642 			spin_unlock_bh(&lock);
643 			return;
644 		}
645 	}
646 
647 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
648 		req->addr, req->context);
649 	req->callback = NULL;
650 
651 	spin_lock_bh(&lock);
652 	/*
653 	 * Although the work will normally have been canceled by the workqueue,
654 	 * it can still be requeued as long as it is on the req_list.
655 	 */
656 	cancel_delayed_work(&req->work);
657 	if (!list_empty(&req->list)) {
658 		list_del_init(&req->list);
659 		kfree(req);
660 	}
661 	spin_unlock_bh(&lock);
662 }
663 
664 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
665 		    struct rdma_dev_addr *addr, unsigned long timeout_ms,
666 		    void (*callback)(int status, struct sockaddr *src_addr,
667 				     struct rdma_dev_addr *addr, void *context),
668 		    bool resolve_by_gid_attr, void *context)
669 {
670 	struct sockaddr *src_in, *dst_in;
671 	struct addr_req *req;
672 	int ret = 0;
673 
674 	req = kzalloc(sizeof *req, GFP_KERNEL);
675 	if (!req)
676 		return -ENOMEM;
677 
678 	src_in = (struct sockaddr *) &req->src_addr;
679 	dst_in = (struct sockaddr *) &req->dst_addr;
680 
681 	if (src_addr) {
682 		if (src_addr->sa_family != dst_addr->sa_family) {
683 			ret = -EINVAL;
684 			goto err;
685 		}
686 
687 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
688 	} else {
689 		src_in->sa_family = dst_addr->sa_family;
690 	}
691 
692 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
693 	req->addr = addr;
694 	req->callback = callback;
695 	req->context = context;
696 	req->resolve_by_gid_attr = resolve_by_gid_attr;
697 	INIT_DELAYED_WORK(&req->work, process_one_req);
698 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
699 
700 	req->status = addr_resolve(src_in, dst_in, addr, true,
701 				   req->resolve_by_gid_attr, req->seq);
702 	switch (req->status) {
703 	case 0:
704 		req->timeout = jiffies;
705 		queue_req(req);
706 		break;
707 	case -ENODATA:
708 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
709 		queue_req(req);
710 		break;
711 	default:
712 		ret = req->status;
713 		goto err;
714 	}
715 	return ret;
716 err:
717 	kfree(req);
718 	return ret;
719 }
720 EXPORT_SYMBOL(rdma_resolve_ip);
721 
722 int roce_resolve_route_from_path(struct sa_path_rec *rec,
723 				 const struct ib_gid_attr *attr)
724 {
725 	union {
726 		struct sockaddr     _sockaddr;
727 		struct sockaddr_in  _sockaddr_in;
728 		struct sockaddr_in6 _sockaddr_in6;
729 	} sgid, dgid;
730 	struct rdma_dev_addr dev_addr = {};
731 	int ret;
732 
733 	might_sleep();
734 
735 	if (rec->roce.route_resolved)
736 		return 0;
737 
738 	rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
739 	rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
740 
741 	if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
742 		return -EINVAL;
743 
744 	if (!attr || !attr->ndev)
745 		return -EINVAL;
746 
747 	dev_addr.net = &init_net;
748 	dev_addr.sgid_attr = attr;
749 
750 	ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
751 			   &dev_addr, false, true, 0);
752 	if (ret)
753 		return ret;
754 
755 	if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
756 	     dev_addr.network == RDMA_NETWORK_IPV6) &&
757 	    rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
758 		return -EINVAL;
759 
760 	rec->roce.route_resolved = true;
761 	return 0;
762 }
763 
764 /**
765  * rdma_addr_cancel - Cancel resolve ip request
766  * @addr:	Pointer to address structure given previously
767  *		during rdma_resolve_ip().
768  * rdma_addr_cancel() is synchronous function which cancels any pending
769  * request if there is any.
770  */
771 void rdma_addr_cancel(struct rdma_dev_addr *addr)
772 {
773 	struct addr_req *req, *temp_req;
774 	struct addr_req *found = NULL;
775 
776 	spin_lock_bh(&lock);
777 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
778 		if (req->addr == addr) {
779 			/*
780 			 * Removing from the list means we take ownership of
781 			 * the req
782 			 */
783 			list_del_init(&req->list);
784 			found = req;
785 			break;
786 		}
787 	}
788 	spin_unlock_bh(&lock);
789 
790 	if (!found)
791 		return;
792 
793 	/*
794 	 * sync canceling the work after removing it from the req_list
795 	 * guarentees no work is running and none will be started.
796 	 */
797 	cancel_delayed_work_sync(&found->work);
798 	kfree(found);
799 }
800 EXPORT_SYMBOL(rdma_addr_cancel);
801 
802 struct resolve_cb_context {
803 	struct completion comp;
804 	int status;
805 };
806 
807 static void resolve_cb(int status, struct sockaddr *src_addr,
808 	     struct rdma_dev_addr *addr, void *context)
809 {
810 	((struct resolve_cb_context *)context)->status = status;
811 	complete(&((struct resolve_cb_context *)context)->comp);
812 }
813 
814 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
815 				 const union ib_gid *dgid,
816 				 u8 *dmac, const struct ib_gid_attr *sgid_attr,
817 				 int *hoplimit)
818 {
819 	struct rdma_dev_addr dev_addr;
820 	struct resolve_cb_context ctx;
821 	union {
822 		struct sockaddr_in  _sockaddr_in;
823 		struct sockaddr_in6 _sockaddr_in6;
824 	} sgid_addr, dgid_addr;
825 	int ret;
826 
827 	rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
828 	rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
829 
830 	memset(&dev_addr, 0, sizeof(dev_addr));
831 	dev_addr.net = &init_net;
832 	dev_addr.sgid_attr = sgid_attr;
833 
834 	init_completion(&ctx.comp);
835 	ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
836 			      (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
837 			      resolve_cb, true, &ctx);
838 	if (ret)
839 		return ret;
840 
841 	wait_for_completion(&ctx.comp);
842 
843 	ret = ctx.status;
844 	if (ret)
845 		return ret;
846 
847 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
848 	*hoplimit = dev_addr.hoplimit;
849 	return 0;
850 }
851 
852 static int netevent_callback(struct notifier_block *self, unsigned long event,
853 	void *ctx)
854 {
855 	struct addr_req *req;
856 
857 	if (event == NETEVENT_NEIGH_UPDATE) {
858 		struct neighbour *neigh = ctx;
859 
860 		if (neigh->nud_state & NUD_VALID) {
861 			spin_lock_bh(&lock);
862 			list_for_each_entry(req, &req_list, list)
863 				set_timeout(req, jiffies);
864 			spin_unlock_bh(&lock);
865 		}
866 	}
867 	return 0;
868 }
869 
870 static struct notifier_block nb = {
871 	.notifier_call = netevent_callback
872 };
873 
874 int addr_init(void)
875 {
876 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
877 	if (!addr_wq)
878 		return -ENOMEM;
879 
880 	register_netevent_notifier(&nb);
881 
882 	return 0;
883 }
884 
885 void addr_cleanup(void)
886 {
887 	unregister_netevent_notifier(&nb);
888 	destroy_workqueue(addr_wq);
889 	WARN_ON(!list_empty(&req_list));
890 }
891