1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <net/arp.h> 41 #include <net/neighbour.h> 42 #include <net/route.h> 43 #include <net/netevent.h> 44 #include <net/ipv6_stubs.h> 45 #include <net/ip6_route.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/ib_sa.h> 49 #include <rdma/ib.h> 50 #include <rdma/rdma_netlink.h> 51 #include <net/netlink.h> 52 53 #include "core_priv.h" 54 55 struct addr_req { 56 struct list_head list; 57 struct sockaddr_storage src_addr; 58 struct sockaddr_storage dst_addr; 59 struct rdma_dev_addr *addr; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 struct delayed_work work; 65 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */ 66 int status; 67 u32 seq; 68 }; 69 70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 71 72 static DEFINE_SPINLOCK(lock); 73 static LIST_HEAD(req_list); 74 static struct workqueue_struct *addr_wq; 75 76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 77 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 78 .len = sizeof(struct rdma_nla_ls_gid), 79 .validation_type = NLA_VALIDATE_MIN, 80 .min = sizeof(struct rdma_nla_ls_gid)}, 81 }; 82 83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 84 { 85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 86 int ret; 87 88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 89 return false; 90 91 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 92 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 93 if (ret) 94 return false; 95 96 return true; 97 } 98 99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 100 { 101 const struct nlattr *head, *curr; 102 union ib_gid gid; 103 struct addr_req *req; 104 int len, rem; 105 int found = 0; 106 107 head = (const struct nlattr *)nlmsg_data(nlh); 108 len = nlmsg_len(nlh); 109 110 nla_for_each_attr(curr, head, len, rem) { 111 if (curr->nla_type == LS_NLA_TYPE_DGID) 112 memcpy(&gid, nla_data(curr), nla_len(curr)); 113 } 114 115 spin_lock_bh(&lock); 116 list_for_each_entry(req, &req_list, list) { 117 if (nlh->nlmsg_seq != req->seq) 118 continue; 119 /* We set the DGID part, the rest was set earlier */ 120 rdma_addr_set_dgid(req->addr, &gid); 121 req->status = 0; 122 found = 1; 123 break; 124 } 125 spin_unlock_bh(&lock); 126 127 if (!found) 128 pr_info("Couldn't find request waiting for DGID: %pI6\n", 129 &gid); 130 } 131 132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 133 struct nlmsghdr *nlh, 134 struct netlink_ext_ack *extack) 135 { 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk)) 138 return -EPERM; 139 140 if (ib_nl_is_good_ip_resp(nlh)) 141 ib_nl_process_good_ip_rsep(nlh); 142 143 return 0; 144 } 145 146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 147 const void *daddr, 148 u32 seq, u16 family) 149 { 150 struct sk_buff *skb = NULL; 151 struct nlmsghdr *nlh; 152 struct rdma_ls_ip_resolve_header *header; 153 void *data; 154 size_t size; 155 int attrtype; 156 int len; 157 158 if (family == AF_INET) { 159 size = sizeof(struct in_addr); 160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 161 } else { 162 size = sizeof(struct in6_addr); 163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 164 } 165 166 len = nla_total_size(sizeof(size)); 167 len += NLMSG_ALIGN(sizeof(*header)); 168 169 skb = nlmsg_new(len, GFP_KERNEL); 170 if (!skb) 171 return -ENOMEM; 172 173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 175 if (!data) { 176 nlmsg_free(skb); 177 return -ENODATA; 178 } 179 180 /* Construct the family header first */ 181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 182 header->ifindex = dev_addr->bound_dev_if; 183 nla_put(skb, attrtype, size, daddr); 184 185 /* Repair the nlmsg header length */ 186 nlmsg_end(skb, nlh); 187 rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL); 188 189 /* Make the request retry, so when we get the response from userspace 190 * we will have something. 191 */ 192 return -ENODATA; 193 } 194 195 int rdma_addr_size(const struct sockaddr *addr) 196 { 197 switch (addr->sa_family) { 198 case AF_INET: 199 return sizeof(struct sockaddr_in); 200 case AF_INET6: 201 return sizeof(struct sockaddr_in6); 202 case AF_IB: 203 return sizeof(struct sockaddr_ib); 204 default: 205 return 0; 206 } 207 } 208 EXPORT_SYMBOL(rdma_addr_size); 209 210 int rdma_addr_size_in6(struct sockaddr_in6 *addr) 211 { 212 int ret = rdma_addr_size((struct sockaddr *) addr); 213 214 return ret <= sizeof(*addr) ? ret : 0; 215 } 216 EXPORT_SYMBOL(rdma_addr_size_in6); 217 218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr) 219 { 220 int ret = rdma_addr_size((struct sockaddr *) addr); 221 222 return ret <= sizeof(*addr) ? ret : 0; 223 } 224 EXPORT_SYMBOL(rdma_addr_size_kss); 225 226 /** 227 * rdma_copy_src_l2_addr - Copy netdevice source addresses 228 * @dev_addr: Destination address pointer where to copy the addresses 229 * @dev: Netdevice whose source addresses to copy 230 * 231 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice. 232 * This includes unicast address, broadcast address, device type and 233 * interface index. 234 */ 235 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr, 236 const struct net_device *dev) 237 { 238 dev_addr->dev_type = dev->type; 239 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 240 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 241 dev_addr->bound_dev_if = dev->ifindex; 242 } 243 EXPORT_SYMBOL(rdma_copy_src_l2_addr); 244 245 static struct net_device * 246 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in) 247 { 248 struct net_device *dev = NULL; 249 int ret = -EADDRNOTAVAIL; 250 251 switch (src_in->sa_family) { 252 case AF_INET: 253 dev = __ip_dev_find(net, 254 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr, 255 false); 256 if (dev) 257 ret = 0; 258 break; 259 #if IS_ENABLED(CONFIG_IPV6) 260 case AF_INET6: 261 for_each_netdev_rcu(net, dev) { 262 if (ipv6_chk_addr(net, 263 &((const struct sockaddr_in6 *)src_in)->sin6_addr, 264 dev, 1)) { 265 ret = 0; 266 break; 267 } 268 } 269 break; 270 #endif 271 } 272 return ret ? ERR_PTR(ret) : dev; 273 } 274 275 int rdma_translate_ip(const struct sockaddr *addr, 276 struct rdma_dev_addr *dev_addr) 277 { 278 struct net_device *dev; 279 280 if (dev_addr->bound_dev_if) { 281 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 282 if (!dev) 283 return -ENODEV; 284 rdma_copy_src_l2_addr(dev_addr, dev); 285 dev_put(dev); 286 return 0; 287 } 288 289 rcu_read_lock(); 290 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr); 291 if (!IS_ERR(dev)) 292 rdma_copy_src_l2_addr(dev_addr, dev); 293 rcu_read_unlock(); 294 return PTR_ERR_OR_ZERO(dev); 295 } 296 EXPORT_SYMBOL(rdma_translate_ip); 297 298 static void set_timeout(struct addr_req *req, unsigned long time) 299 { 300 unsigned long delay; 301 302 delay = time - jiffies; 303 if ((long)delay < 0) 304 delay = 0; 305 306 mod_delayed_work(addr_wq, &req->work, delay); 307 } 308 309 static void queue_req(struct addr_req *req) 310 { 311 spin_lock_bh(&lock); 312 list_add_tail(&req->list, &req_list); 313 set_timeout(req, req->timeout); 314 spin_unlock_bh(&lock); 315 } 316 317 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr, 318 const void *daddr, u32 seq, u16 family) 319 { 320 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) 321 return -EADDRNOTAVAIL; 322 323 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 324 } 325 326 static int dst_fetch_ha(const struct dst_entry *dst, 327 struct rdma_dev_addr *dev_addr, 328 const void *daddr) 329 { 330 struct neighbour *n; 331 int ret = 0; 332 333 n = dst_neigh_lookup(dst, daddr); 334 if (!n) 335 return -ENODATA; 336 337 if (!(n->nud_state & NUD_VALID)) { 338 neigh_event_send(n, NULL); 339 ret = -ENODATA; 340 } else { 341 neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev); 342 } 343 344 neigh_release(n); 345 346 return ret; 347 } 348 349 static bool has_gateway(const struct dst_entry *dst, sa_family_t family) 350 { 351 const struct rtable *rt; 352 const struct rt6_info *rt6; 353 354 if (family == AF_INET) { 355 rt = container_of(dst, struct rtable, dst); 356 return rt->rt_uses_gateway; 357 } 358 359 rt6 = dst_rt6_info(dst); 360 return rt6->rt6i_flags & RTF_GATEWAY; 361 } 362 363 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 364 const struct sockaddr *dst_in, u32 seq) 365 { 366 const struct sockaddr_in *dst_in4 = 367 (const struct sockaddr_in *)dst_in; 368 const struct sockaddr_in6 *dst_in6 = 369 (const struct sockaddr_in6 *)dst_in; 370 const void *daddr = (dst_in->sa_family == AF_INET) ? 371 (const void *)&dst_in4->sin_addr.s_addr : 372 (const void *)&dst_in6->sin6_addr; 373 sa_family_t family = dst_in->sa_family; 374 375 might_sleep(); 376 377 /* If we have a gateway in IB mode then it must be an IB network */ 378 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB) 379 return ib_nl_fetch_ha(dev_addr, daddr, seq, family); 380 else 381 return dst_fetch_ha(dst, dev_addr, daddr); 382 } 383 384 static int addr4_resolve(struct sockaddr *src_sock, 385 const struct sockaddr *dst_sock, 386 struct rdma_dev_addr *addr, 387 struct rtable **prt) 388 { 389 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock; 390 const struct sockaddr_in *dst_in = 391 (const struct sockaddr_in *)dst_sock; 392 393 __be32 src_ip = src_in->sin_addr.s_addr; 394 __be32 dst_ip = dst_in->sin_addr.s_addr; 395 struct rtable *rt; 396 struct flowi4 fl4; 397 int ret; 398 399 memset(&fl4, 0, sizeof(fl4)); 400 fl4.daddr = dst_ip; 401 fl4.saddr = src_ip; 402 fl4.flowi4_oif = addr->bound_dev_if; 403 rt = ip_route_output_key(addr->net, &fl4); 404 ret = PTR_ERR_OR_ZERO(rt); 405 if (ret) 406 return ret; 407 408 src_in->sin_addr.s_addr = fl4.saddr; 409 410 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 411 412 *prt = rt; 413 return 0; 414 } 415 416 #if IS_ENABLED(CONFIG_IPV6) 417 static int addr6_resolve(struct sockaddr *src_sock, 418 const struct sockaddr *dst_sock, 419 struct rdma_dev_addr *addr, 420 struct dst_entry **pdst) 421 { 422 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock; 423 const struct sockaddr_in6 *dst_in = 424 (const struct sockaddr_in6 *)dst_sock; 425 struct flowi6 fl6; 426 struct dst_entry *dst; 427 428 memset(&fl6, 0, sizeof fl6); 429 fl6.daddr = dst_in->sin6_addr; 430 fl6.saddr = src_in->sin6_addr; 431 fl6.flowi6_oif = addr->bound_dev_if; 432 433 dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL); 434 if (IS_ERR(dst)) 435 return PTR_ERR(dst); 436 437 if (ipv6_addr_any(&src_in->sin6_addr)) 438 src_in->sin6_addr = fl6.saddr; 439 440 addr->hoplimit = ip6_dst_hoplimit(dst); 441 442 *pdst = dst; 443 return 0; 444 } 445 #else 446 static int addr6_resolve(struct sockaddr *src_sock, 447 const struct sockaddr *dst_sock, 448 struct rdma_dev_addr *addr, 449 struct dst_entry **pdst) 450 { 451 return -EADDRNOTAVAIL; 452 } 453 #endif 454 455 static int addr_resolve_neigh(const struct dst_entry *dst, 456 const struct sockaddr *dst_in, 457 struct rdma_dev_addr *addr, 458 unsigned int ndev_flags, 459 u32 seq) 460 { 461 int ret = 0; 462 463 if (ndev_flags & IFF_LOOPBACK) { 464 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); 465 } else { 466 if (!(ndev_flags & IFF_NOARP)) { 467 /* If the device doesn't do ARP internally */ 468 ret = fetch_ha(dst, addr, dst_in, seq); 469 } 470 } 471 return ret; 472 } 473 474 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr, 475 const struct sockaddr *dst_in, 476 const struct dst_entry *dst, 477 const struct net_device *ndev) 478 { 479 int ret = 0; 480 481 if (dst->dev->flags & IFF_LOOPBACK) 482 ret = rdma_translate_ip(dst_in, dev_addr); 483 else 484 rdma_copy_src_l2_addr(dev_addr, dst->dev); 485 486 /* 487 * If there's a gateway and type of device not ARPHRD_INFINIBAND, 488 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the 489 * network type accordingly. 490 */ 491 if (has_gateway(dst, dst_in->sa_family) && 492 ndev->type != ARPHRD_INFINIBAND) 493 dev_addr->network = dst_in->sa_family == AF_INET ? 494 RDMA_NETWORK_IPV4 : 495 RDMA_NETWORK_IPV6; 496 else 497 dev_addr->network = RDMA_NETWORK_IB; 498 499 return ret; 500 } 501 502 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr, 503 unsigned int *ndev_flags, 504 const struct sockaddr *dst_in, 505 const struct dst_entry *dst) 506 { 507 struct net_device *ndev = READ_ONCE(dst->dev); 508 509 *ndev_flags = ndev->flags; 510 /* A physical device must be the RDMA device to use */ 511 if (ndev->flags & IFF_LOOPBACK) { 512 /* 513 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or 514 * loopback IP address. So if route is resolved to loopback 515 * interface, translate that to a real ndev based on non 516 * loopback IP address. 517 */ 518 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in); 519 if (IS_ERR(ndev)) 520 return -ENODEV; 521 } 522 523 return copy_src_l2_addr(dev_addr, dst_in, dst, ndev); 524 } 525 526 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr) 527 { 528 struct net_device *ndev; 529 530 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr); 531 if (IS_ERR(ndev)) 532 return PTR_ERR(ndev); 533 534 /* 535 * Since we are holding the rcu, reading net and ifindex 536 * are safe without any additional reference; because 537 * change_net_namespace() in net/core/dev.c does rcu sync 538 * after it changes the state to IFF_DOWN and before 539 * updating netdev fields {net, ifindex}. 540 */ 541 addr->net = dev_net(ndev); 542 addr->bound_dev_if = ndev->ifindex; 543 return 0; 544 } 545 546 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr) 547 { 548 addr->net = &init_net; 549 addr->bound_dev_if = 0; 550 } 551 552 static int addr_resolve(struct sockaddr *src_in, 553 const struct sockaddr *dst_in, 554 struct rdma_dev_addr *addr, 555 bool resolve_neigh, 556 bool resolve_by_gid_attr, 557 u32 seq) 558 { 559 struct dst_entry *dst = NULL; 560 unsigned int ndev_flags = 0; 561 struct rtable *rt = NULL; 562 int ret; 563 564 if (!addr->net) { 565 pr_warn_ratelimited("%s: missing namespace\n", __func__); 566 return -EINVAL; 567 } 568 569 rcu_read_lock(); 570 if (resolve_by_gid_attr) { 571 if (!addr->sgid_attr) { 572 rcu_read_unlock(); 573 pr_warn_ratelimited("%s: missing gid_attr\n", __func__); 574 return -EINVAL; 575 } 576 /* 577 * If the request is for a specific gid attribute of the 578 * rdma_dev_addr, derive net from the netdevice of the 579 * GID attribute. 580 */ 581 ret = set_addr_netns_by_gid_rcu(addr); 582 if (ret) { 583 rcu_read_unlock(); 584 return ret; 585 } 586 } 587 if (src_in->sa_family == AF_INET) { 588 ret = addr4_resolve(src_in, dst_in, addr, &rt); 589 dst = &rt->dst; 590 } else { 591 ret = addr6_resolve(src_in, dst_in, addr, &dst); 592 } 593 if (ret) { 594 rcu_read_unlock(); 595 goto done; 596 } 597 ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst); 598 rcu_read_unlock(); 599 600 /* 601 * Resolve neighbor destination address if requested and 602 * only if src addr translation didn't fail. 603 */ 604 if (!ret && resolve_neigh) 605 ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq); 606 607 if (src_in->sa_family == AF_INET) 608 ip_rt_put(rt); 609 else 610 dst_release(dst); 611 done: 612 /* 613 * Clear the addr net to go back to its original state, only if it was 614 * derived from GID attribute in this context. 615 */ 616 if (resolve_by_gid_attr) 617 rdma_addr_set_net_defaults(addr); 618 return ret; 619 } 620 621 static void process_one_req(struct work_struct *_work) 622 { 623 struct addr_req *req; 624 struct sockaddr *src_in, *dst_in; 625 626 req = container_of(_work, struct addr_req, work.work); 627 628 if (req->status == -ENODATA) { 629 src_in = (struct sockaddr *)&req->src_addr; 630 dst_in = (struct sockaddr *)&req->dst_addr; 631 req->status = addr_resolve(src_in, dst_in, req->addr, 632 true, req->resolve_by_gid_attr, 633 req->seq); 634 if (req->status && time_after_eq(jiffies, req->timeout)) { 635 req->status = -ETIMEDOUT; 636 } else if (req->status == -ENODATA) { 637 /* requeue the work for retrying again */ 638 spin_lock_bh(&lock); 639 if (!list_empty(&req->list)) 640 set_timeout(req, req->timeout); 641 spin_unlock_bh(&lock); 642 return; 643 } 644 } 645 646 req->callback(req->status, (struct sockaddr *)&req->src_addr, 647 req->addr, req->context); 648 req->callback = NULL; 649 650 spin_lock_bh(&lock); 651 /* 652 * Although the work will normally have been canceled by the workqueue, 653 * it can still be requeued as long as it is on the req_list. 654 */ 655 cancel_delayed_work(&req->work); 656 if (!list_empty(&req->list)) { 657 list_del_init(&req->list); 658 kfree(req); 659 } 660 spin_unlock_bh(&lock); 661 } 662 663 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr, 664 struct rdma_dev_addr *addr, unsigned long timeout_ms, 665 void (*callback)(int status, struct sockaddr *src_addr, 666 struct rdma_dev_addr *addr, void *context), 667 bool resolve_by_gid_attr, void *context) 668 { 669 struct sockaddr *src_in, *dst_in; 670 struct addr_req *req; 671 int ret = 0; 672 673 req = kzalloc(sizeof *req, GFP_KERNEL); 674 if (!req) 675 return -ENOMEM; 676 677 src_in = (struct sockaddr *) &req->src_addr; 678 dst_in = (struct sockaddr *) &req->dst_addr; 679 680 if (src_addr) { 681 if (src_addr->sa_family != dst_addr->sa_family) { 682 ret = -EINVAL; 683 goto err; 684 } 685 686 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 687 } else { 688 src_in->sa_family = dst_addr->sa_family; 689 } 690 691 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 692 req->addr = addr; 693 req->callback = callback; 694 req->context = context; 695 req->resolve_by_gid_attr = resolve_by_gid_attr; 696 INIT_DELAYED_WORK(&req->work, process_one_req); 697 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 698 699 req->status = addr_resolve(src_in, dst_in, addr, true, 700 req->resolve_by_gid_attr, req->seq); 701 switch (req->status) { 702 case 0: 703 req->timeout = jiffies; 704 queue_req(req); 705 break; 706 case -ENODATA: 707 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 708 queue_req(req); 709 break; 710 default: 711 ret = req->status; 712 goto err; 713 } 714 return ret; 715 err: 716 kfree(req); 717 return ret; 718 } 719 EXPORT_SYMBOL(rdma_resolve_ip); 720 721 int roce_resolve_route_from_path(struct sa_path_rec *rec, 722 const struct ib_gid_attr *attr) 723 { 724 union { 725 struct sockaddr _sockaddr; 726 struct sockaddr_in _sockaddr_in; 727 struct sockaddr_in6 _sockaddr_in6; 728 } sgid, dgid; 729 struct rdma_dev_addr dev_addr = {}; 730 int ret; 731 732 might_sleep(); 733 734 if (rec->roce.route_resolved) 735 return 0; 736 737 rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid); 738 rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid); 739 740 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family) 741 return -EINVAL; 742 743 if (!attr || !attr->ndev) 744 return -EINVAL; 745 746 dev_addr.net = &init_net; 747 dev_addr.sgid_attr = attr; 748 749 ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid, 750 &dev_addr, false, true, 0); 751 if (ret) 752 return ret; 753 754 if ((dev_addr.network == RDMA_NETWORK_IPV4 || 755 dev_addr.network == RDMA_NETWORK_IPV6) && 756 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2) 757 return -EINVAL; 758 759 rec->roce.route_resolved = true; 760 return 0; 761 } 762 763 /** 764 * rdma_addr_cancel - Cancel resolve ip request 765 * @addr: Pointer to address structure given previously 766 * during rdma_resolve_ip(). 767 * rdma_addr_cancel() is synchronous function which cancels any pending 768 * request if there is any. 769 */ 770 void rdma_addr_cancel(struct rdma_dev_addr *addr) 771 { 772 struct addr_req *req, *temp_req; 773 struct addr_req *found = NULL; 774 775 spin_lock_bh(&lock); 776 list_for_each_entry_safe(req, temp_req, &req_list, list) { 777 if (req->addr == addr) { 778 /* 779 * Removing from the list means we take ownership of 780 * the req 781 */ 782 list_del_init(&req->list); 783 found = req; 784 break; 785 } 786 } 787 spin_unlock_bh(&lock); 788 789 if (!found) 790 return; 791 792 /* 793 * sync canceling the work after removing it from the req_list 794 * guarentees no work is running and none will be started. 795 */ 796 cancel_delayed_work_sync(&found->work); 797 kfree(found); 798 } 799 EXPORT_SYMBOL(rdma_addr_cancel); 800 801 struct resolve_cb_context { 802 struct completion comp; 803 int status; 804 }; 805 806 static void resolve_cb(int status, struct sockaddr *src_addr, 807 struct rdma_dev_addr *addr, void *context) 808 { 809 ((struct resolve_cb_context *)context)->status = status; 810 complete(&((struct resolve_cb_context *)context)->comp); 811 } 812 813 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 814 const union ib_gid *dgid, 815 u8 *dmac, const struct ib_gid_attr *sgid_attr, 816 int *hoplimit) 817 { 818 struct rdma_dev_addr dev_addr; 819 struct resolve_cb_context ctx; 820 union { 821 struct sockaddr_in _sockaddr_in; 822 struct sockaddr_in6 _sockaddr_in6; 823 } sgid_addr, dgid_addr; 824 int ret; 825 826 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid); 827 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid); 828 829 memset(&dev_addr, 0, sizeof(dev_addr)); 830 dev_addr.net = &init_net; 831 dev_addr.sgid_attr = sgid_attr; 832 833 init_completion(&ctx.comp); 834 ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr, 835 (struct sockaddr *)&dgid_addr, &dev_addr, 1000, 836 resolve_cb, true, &ctx); 837 if (ret) 838 return ret; 839 840 wait_for_completion(&ctx.comp); 841 842 ret = ctx.status; 843 if (ret) 844 return ret; 845 846 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 847 *hoplimit = dev_addr.hoplimit; 848 return 0; 849 } 850 851 static int netevent_callback(struct notifier_block *self, unsigned long event, 852 void *ctx) 853 { 854 struct addr_req *req; 855 856 if (event == NETEVENT_NEIGH_UPDATE) { 857 struct neighbour *neigh = ctx; 858 859 if (neigh->nud_state & NUD_VALID) { 860 spin_lock_bh(&lock); 861 list_for_each_entry(req, &req_list, list) 862 set_timeout(req, jiffies); 863 spin_unlock_bh(&lock); 864 } 865 } 866 return 0; 867 } 868 869 static struct notifier_block nb = { 870 .notifier_call = netevent_callback 871 }; 872 873 int addr_init(void) 874 { 875 addr_wq = alloc_ordered_workqueue("ib_addr", 0); 876 if (!addr_wq) 877 return -ENOMEM; 878 879 register_netevent_notifier(&nb); 880 881 return 0; 882 } 883 884 void addr_cleanup(void) 885 { 886 unregister_netevent_notifier(&nb); 887 destroy_workqueue(addr_wq); 888 WARN_ON(!list_empty(&req_list)); 889 } 890