xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision bf070bb0)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	struct rdma_addr_client *client;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	int status;
66 	u32 seq;
67 };
68 
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70 
71 static void process_req(struct work_struct *work);
72 
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77 
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 		.len = sizeof(struct rdma_nla_ls_gid)},
81 };
82 
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 	int ret;
87 
88 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 		return false;
90 
91 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 	if (ret)
94 		return false;
95 
96 	return true;
97 }
98 
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 	const struct nlattr *head, *curr;
102 	union ib_gid gid;
103 	struct addr_req *req;
104 	int len, rem;
105 	int found = 0;
106 
107 	head = (const struct nlattr *)nlmsg_data(nlh);
108 	len = nlmsg_len(nlh);
109 
110 	nla_for_each_attr(curr, head, len, rem) {
111 		if (curr->nla_type == LS_NLA_TYPE_DGID)
112 			memcpy(&gid, nla_data(curr), nla_len(curr));
113 	}
114 
115 	mutex_lock(&lock);
116 	list_for_each_entry(req, &req_list, list) {
117 		if (nlh->nlmsg_seq != req->seq)
118 			continue;
119 		/* We set the DGID part, the rest was set earlier */
120 		rdma_addr_set_dgid(req->addr, &gid);
121 		req->status = 0;
122 		found = 1;
123 		break;
124 	}
125 	mutex_unlock(&lock);
126 
127 	if (!found)
128 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 			&gid);
130 }
131 
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 			     struct nlmsghdr *nlh,
134 			     struct netlink_ext_ack *extack)
135 {
136 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 	    !(NETLINK_CB(skb).sk))
138 		return -EPERM;
139 
140 	if (ib_nl_is_good_ip_resp(nlh))
141 		ib_nl_process_good_ip_rsep(nlh);
142 
143 	return skb->len;
144 }
145 
146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 			     const void *daddr,
148 			     u32 seq, u16 family)
149 {
150 	struct sk_buff *skb = NULL;
151 	struct nlmsghdr *nlh;
152 	struct rdma_ls_ip_resolve_header *header;
153 	void *data;
154 	size_t size;
155 	int attrtype;
156 	int len;
157 
158 	if (family == AF_INET) {
159 		size = sizeof(struct in_addr);
160 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 	} else {
162 		size = sizeof(struct in6_addr);
163 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 	}
165 
166 	len = nla_total_size(sizeof(size));
167 	len += NLMSG_ALIGN(sizeof(*header));
168 
169 	skb = nlmsg_new(len, GFP_KERNEL);
170 	if (!skb)
171 		return -ENOMEM;
172 
173 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 	if (!data) {
176 		nlmsg_free(skb);
177 		return -ENODATA;
178 	}
179 
180 	/* Construct the family header first */
181 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 	header->ifindex = dev_addr->bound_dev_if;
183 	nla_put(skb, attrtype, size, daddr);
184 
185 	/* Repair the nlmsg header length */
186 	nlmsg_end(skb, nlh);
187 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188 
189 	/* Make the request retry, so when we get the response from userspace
190 	 * we will have something.
191 	 */
192 	return -ENODATA;
193 }
194 
195 int rdma_addr_size(struct sockaddr *addr)
196 {
197 	switch (addr->sa_family) {
198 	case AF_INET:
199 		return sizeof(struct sockaddr_in);
200 	case AF_INET6:
201 		return sizeof(struct sockaddr_in6);
202 	case AF_IB:
203 		return sizeof(struct sockaddr_ib);
204 	default:
205 		return 0;
206 	}
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209 
210 static struct rdma_addr_client self;
211 
212 void rdma_addr_register_client(struct rdma_addr_client *client)
213 {
214 	atomic_set(&client->refcount, 1);
215 	init_completion(&client->comp);
216 }
217 EXPORT_SYMBOL(rdma_addr_register_client);
218 
219 static inline void put_client(struct rdma_addr_client *client)
220 {
221 	if (atomic_dec_and_test(&client->refcount))
222 		complete(&client->comp);
223 }
224 
225 void rdma_addr_unregister_client(struct rdma_addr_client *client)
226 {
227 	put_client(client);
228 	wait_for_completion(&client->comp);
229 }
230 EXPORT_SYMBOL(rdma_addr_unregister_client);
231 
232 void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
233 		    const struct net_device *dev,
234 		    const unsigned char *dst_dev_addr)
235 {
236 	dev_addr->dev_type = dev->type;
237 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
238 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
239 	if (dst_dev_addr)
240 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
241 	dev_addr->bound_dev_if = dev->ifindex;
242 }
243 EXPORT_SYMBOL(rdma_copy_addr);
244 
245 int rdma_translate_ip(const struct sockaddr *addr,
246 		      struct rdma_dev_addr *dev_addr,
247 		      u16 *vlan_id)
248 {
249 	struct net_device *dev;
250 
251 	if (dev_addr->bound_dev_if) {
252 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
253 		if (!dev)
254 			return -ENODEV;
255 		rdma_copy_addr(dev_addr, dev, NULL);
256 		dev_put(dev);
257 		return 0;
258 	}
259 
260 	switch (addr->sa_family) {
261 	case AF_INET:
262 		dev = ip_dev_find(dev_addr->net,
263 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
264 
265 		if (!dev)
266 			return -EADDRNOTAVAIL;
267 
268 		rdma_copy_addr(dev_addr, dev, NULL);
269 		dev_addr->bound_dev_if = dev->ifindex;
270 		if (vlan_id)
271 			*vlan_id = rdma_vlan_dev_vlan_id(dev);
272 		dev_put(dev);
273 		break;
274 #if IS_ENABLED(CONFIG_IPV6)
275 	case AF_INET6:
276 		rcu_read_lock();
277 		for_each_netdev_rcu(dev_addr->net, dev) {
278 			if (ipv6_chk_addr(dev_addr->net,
279 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
280 					  dev, 1)) {
281 				rdma_copy_addr(dev_addr, dev, NULL);
282 				dev_addr->bound_dev_if = dev->ifindex;
283 				if (vlan_id)
284 					*vlan_id = rdma_vlan_dev_vlan_id(dev);
285 				break;
286 			}
287 		}
288 		rcu_read_unlock();
289 		break;
290 #endif
291 	}
292 	return 0;
293 }
294 EXPORT_SYMBOL(rdma_translate_ip);
295 
296 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
297 {
298 	unsigned long delay;
299 
300 	delay = time - jiffies;
301 	if ((long)delay < 0)
302 		delay = 0;
303 
304 	mod_delayed_work(addr_wq, delayed_work, delay);
305 }
306 
307 static void queue_req(struct addr_req *req)
308 {
309 	struct addr_req *temp_req;
310 
311 	mutex_lock(&lock);
312 	list_for_each_entry_reverse(temp_req, &req_list, list) {
313 		if (time_after_eq(req->timeout, temp_req->timeout))
314 			break;
315 	}
316 
317 	list_add(&req->list, &temp_req->list);
318 
319 	set_timeout(&req->work, req->timeout);
320 	mutex_unlock(&lock);
321 }
322 
323 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
324 			  const void *daddr, u32 seq, u16 family)
325 {
326 	if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
327 		return -EADDRNOTAVAIL;
328 
329 	/* We fill in what we can, the response will fill the rest */
330 	rdma_copy_addr(dev_addr, dst->dev, NULL);
331 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
332 }
333 
334 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
335 			const void *daddr)
336 {
337 	struct neighbour *n;
338 	int ret = 0;
339 
340 	n = dst_neigh_lookup(dst, daddr);
341 
342 	rcu_read_lock();
343 	if (!n || !(n->nud_state & NUD_VALID)) {
344 		if (n)
345 			neigh_event_send(n, NULL);
346 		ret = -ENODATA;
347 	} else {
348 		rdma_copy_addr(dev_addr, dst->dev, n->ha);
349 	}
350 	rcu_read_unlock();
351 
352 	if (n)
353 		neigh_release(n);
354 
355 	return ret;
356 }
357 
358 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
359 {
360 	struct rtable *rt;
361 	struct rt6_info *rt6;
362 
363 	if (family == AF_INET) {
364 		rt = container_of(dst, struct rtable, dst);
365 		return rt->rt_uses_gateway;
366 	}
367 
368 	rt6 = container_of(dst, struct rt6_info, dst);
369 	return rt6->rt6i_flags & RTF_GATEWAY;
370 }
371 
372 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
373 		    const struct sockaddr *dst_in, u32 seq)
374 {
375 	const struct sockaddr_in *dst_in4 =
376 		(const struct sockaddr_in *)dst_in;
377 	const struct sockaddr_in6 *dst_in6 =
378 		(const struct sockaddr_in6 *)dst_in;
379 	const void *daddr = (dst_in->sa_family == AF_INET) ?
380 		(const void *)&dst_in4->sin_addr.s_addr :
381 		(const void *)&dst_in6->sin6_addr;
382 	sa_family_t family = dst_in->sa_family;
383 
384 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
385 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
386 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
387 	else
388 		return dst_fetch_ha(dst, dev_addr, daddr);
389 }
390 
391 static int addr4_resolve(struct sockaddr_in *src_in,
392 			 const struct sockaddr_in *dst_in,
393 			 struct rdma_dev_addr *addr,
394 			 struct rtable **prt)
395 {
396 	__be32 src_ip = src_in->sin_addr.s_addr;
397 	__be32 dst_ip = dst_in->sin_addr.s_addr;
398 	struct rtable *rt;
399 	struct flowi4 fl4;
400 	int ret;
401 
402 	memset(&fl4, 0, sizeof(fl4));
403 	fl4.daddr = dst_ip;
404 	fl4.saddr = src_ip;
405 	fl4.flowi4_oif = addr->bound_dev_if;
406 	rt = ip_route_output_key(addr->net, &fl4);
407 	ret = PTR_ERR_OR_ZERO(rt);
408 	if (ret)
409 		return ret;
410 
411 	src_in->sin_family = AF_INET;
412 	src_in->sin_addr.s_addr = fl4.saddr;
413 
414 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
415 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
416 	 * type accordingly.
417 	 */
418 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
419 		addr->network = RDMA_NETWORK_IPV4;
420 
421 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
422 
423 	*prt = rt;
424 	return 0;
425 }
426 
427 #if IS_ENABLED(CONFIG_IPV6)
428 static int addr6_resolve(struct sockaddr_in6 *src_in,
429 			 const struct sockaddr_in6 *dst_in,
430 			 struct rdma_dev_addr *addr,
431 			 struct dst_entry **pdst)
432 {
433 	struct flowi6 fl6;
434 	struct dst_entry *dst;
435 	struct rt6_info *rt;
436 	int ret;
437 
438 	memset(&fl6, 0, sizeof fl6);
439 	fl6.daddr = dst_in->sin6_addr;
440 	fl6.saddr = src_in->sin6_addr;
441 	fl6.flowi6_oif = addr->bound_dev_if;
442 
443 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
444 	if (ret < 0)
445 		return ret;
446 
447 	rt = (struct rt6_info *)dst;
448 	if (ipv6_addr_any(&src_in->sin6_addr)) {
449 		src_in->sin6_family = AF_INET6;
450 		src_in->sin6_addr = fl6.saddr;
451 	}
452 
453 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
454 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
455 	 * type accordingly.
456 	 */
457 	if (rt->rt6i_flags & RTF_GATEWAY &&
458 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
459 		addr->network = RDMA_NETWORK_IPV6;
460 
461 	addr->hoplimit = ip6_dst_hoplimit(dst);
462 
463 	*pdst = dst;
464 	return 0;
465 }
466 #else
467 static int addr6_resolve(struct sockaddr_in6 *src_in,
468 			 const struct sockaddr_in6 *dst_in,
469 			 struct rdma_dev_addr *addr,
470 			 struct dst_entry **pdst)
471 {
472 	return -EADDRNOTAVAIL;
473 }
474 #endif
475 
476 static int addr_resolve_neigh(struct dst_entry *dst,
477 			      const struct sockaddr *dst_in,
478 			      struct rdma_dev_addr *addr,
479 			      u32 seq)
480 {
481 	if (dst->dev->flags & IFF_LOOPBACK) {
482 		int ret;
483 
484 		ret = rdma_translate_ip(dst_in, addr, NULL);
485 		if (!ret)
486 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
487 			       MAX_ADDR_LEN);
488 
489 		return ret;
490 	}
491 
492 	/* If the device doesn't do ARP internally */
493 	if (!(dst->dev->flags & IFF_NOARP))
494 		return fetch_ha(dst, addr, dst_in, seq);
495 
496 	rdma_copy_addr(addr, dst->dev, NULL);
497 
498 	return 0;
499 }
500 
501 static int addr_resolve(struct sockaddr *src_in,
502 			const struct sockaddr *dst_in,
503 			struct rdma_dev_addr *addr,
504 			bool resolve_neigh,
505 			u32 seq)
506 {
507 	struct net_device *ndev;
508 	struct dst_entry *dst;
509 	int ret;
510 
511 	if (!addr->net) {
512 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
513 		return -EINVAL;
514 	}
515 
516 	if (src_in->sa_family == AF_INET) {
517 		struct rtable *rt = NULL;
518 		const struct sockaddr_in *dst_in4 =
519 			(const struct sockaddr_in *)dst_in;
520 
521 		ret = addr4_resolve((struct sockaddr_in *)src_in,
522 				    dst_in4, addr, &rt);
523 		if (ret)
524 			return ret;
525 
526 		if (resolve_neigh)
527 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
528 
529 		if (addr->bound_dev_if) {
530 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
531 		} else {
532 			ndev = rt->dst.dev;
533 			dev_hold(ndev);
534 		}
535 
536 		ip_rt_put(rt);
537 	} else {
538 		const struct sockaddr_in6 *dst_in6 =
539 			(const struct sockaddr_in6 *)dst_in;
540 
541 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
542 				    dst_in6, addr,
543 				    &dst);
544 		if (ret)
545 			return ret;
546 
547 		if (resolve_neigh)
548 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
549 
550 		if (addr->bound_dev_if) {
551 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
552 		} else {
553 			ndev = dst->dev;
554 			dev_hold(ndev);
555 		}
556 
557 		dst_release(dst);
558 	}
559 
560 	if (ndev->flags & IFF_LOOPBACK) {
561 		ret = rdma_translate_ip(dst_in, addr, NULL);
562 		/*
563 		 * Put the loopback device and get the translated
564 		 * device instead.
565 		 */
566 		dev_put(ndev);
567 		ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
568 	} else {
569 		addr->bound_dev_if = ndev->ifindex;
570 	}
571 	dev_put(ndev);
572 
573 	return ret;
574 }
575 
576 static void process_one_req(struct work_struct *_work)
577 {
578 	struct addr_req *req;
579 	struct sockaddr *src_in, *dst_in;
580 
581 	mutex_lock(&lock);
582 	req = container_of(_work, struct addr_req, work.work);
583 
584 	if (req->status == -ENODATA) {
585 		src_in = (struct sockaddr *)&req->src_addr;
586 		dst_in = (struct sockaddr *)&req->dst_addr;
587 		req->status = addr_resolve(src_in, dst_in, req->addr,
588 					   true, req->seq);
589 		if (req->status && time_after_eq(jiffies, req->timeout)) {
590 			req->status = -ETIMEDOUT;
591 		} else if (req->status == -ENODATA) {
592 			/* requeue the work for retrying again */
593 			set_timeout(&req->work, req->timeout);
594 			mutex_unlock(&lock);
595 			return;
596 		}
597 	}
598 	list_del(&req->list);
599 	mutex_unlock(&lock);
600 
601 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
602 		req->addr, req->context);
603 	put_client(req->client);
604 	kfree(req);
605 }
606 
607 static void process_req(struct work_struct *work)
608 {
609 	struct addr_req *req, *temp_req;
610 	struct sockaddr *src_in, *dst_in;
611 	struct list_head done_list;
612 
613 	INIT_LIST_HEAD(&done_list);
614 
615 	mutex_lock(&lock);
616 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
617 		if (req->status == -ENODATA) {
618 			src_in = (struct sockaddr *) &req->src_addr;
619 			dst_in = (struct sockaddr *) &req->dst_addr;
620 			req->status = addr_resolve(src_in, dst_in, req->addr,
621 						   true, req->seq);
622 			if (req->status && time_after_eq(jiffies, req->timeout))
623 				req->status = -ETIMEDOUT;
624 			else if (req->status == -ENODATA) {
625 				set_timeout(&req->work, req->timeout);
626 				continue;
627 			}
628 		}
629 		list_move_tail(&req->list, &done_list);
630 	}
631 
632 	mutex_unlock(&lock);
633 
634 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
635 		list_del(&req->list);
636 		/* It is safe to cancel other work items from this work item
637 		 * because at a time there can be only one work item running
638 		 * with this single threaded work queue.
639 		 */
640 		cancel_delayed_work(&req->work);
641 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
642 			req->addr, req->context);
643 		put_client(req->client);
644 		kfree(req);
645 	}
646 }
647 
648 int rdma_resolve_ip(struct rdma_addr_client *client,
649 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
650 		    struct rdma_dev_addr *addr, int timeout_ms,
651 		    void (*callback)(int status, struct sockaddr *src_addr,
652 				     struct rdma_dev_addr *addr, void *context),
653 		    void *context)
654 {
655 	struct sockaddr *src_in, *dst_in;
656 	struct addr_req *req;
657 	int ret = 0;
658 
659 	req = kzalloc(sizeof *req, GFP_KERNEL);
660 	if (!req)
661 		return -ENOMEM;
662 
663 	src_in = (struct sockaddr *) &req->src_addr;
664 	dst_in = (struct sockaddr *) &req->dst_addr;
665 
666 	if (src_addr) {
667 		if (src_addr->sa_family != dst_addr->sa_family) {
668 			ret = -EINVAL;
669 			goto err;
670 		}
671 
672 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
673 	} else {
674 		src_in->sa_family = dst_addr->sa_family;
675 	}
676 
677 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
678 	req->addr = addr;
679 	req->callback = callback;
680 	req->context = context;
681 	req->client = client;
682 	atomic_inc(&client->refcount);
683 	INIT_DELAYED_WORK(&req->work, process_one_req);
684 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
685 
686 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
687 	switch (req->status) {
688 	case 0:
689 		req->timeout = jiffies;
690 		queue_req(req);
691 		break;
692 	case -ENODATA:
693 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
694 		queue_req(req);
695 		break;
696 	default:
697 		ret = req->status;
698 		atomic_dec(&client->refcount);
699 		goto err;
700 	}
701 	return ret;
702 err:
703 	kfree(req);
704 	return ret;
705 }
706 EXPORT_SYMBOL(rdma_resolve_ip);
707 
708 int rdma_resolve_ip_route(struct sockaddr *src_addr,
709 			  const struct sockaddr *dst_addr,
710 			  struct rdma_dev_addr *addr)
711 {
712 	struct sockaddr_storage ssrc_addr = {};
713 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
714 
715 	if (src_addr) {
716 		if (src_addr->sa_family != dst_addr->sa_family)
717 			return -EINVAL;
718 
719 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
720 	} else {
721 		src_in->sa_family = dst_addr->sa_family;
722 	}
723 
724 	return addr_resolve(src_in, dst_addr, addr, false, 0);
725 }
726 EXPORT_SYMBOL(rdma_resolve_ip_route);
727 
728 void rdma_addr_cancel(struct rdma_dev_addr *addr)
729 {
730 	struct addr_req *req, *temp_req;
731 
732 	mutex_lock(&lock);
733 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
734 		if (req->addr == addr) {
735 			req->status = -ECANCELED;
736 			req->timeout = jiffies;
737 			list_move(&req->list, &req_list);
738 			set_timeout(&req->work, req->timeout);
739 			break;
740 		}
741 	}
742 	mutex_unlock(&lock);
743 }
744 EXPORT_SYMBOL(rdma_addr_cancel);
745 
746 struct resolve_cb_context {
747 	struct rdma_dev_addr *addr;
748 	struct completion comp;
749 	int status;
750 };
751 
752 static void resolve_cb(int status, struct sockaddr *src_addr,
753 	     struct rdma_dev_addr *addr, void *context)
754 {
755 	if (!status)
756 		memcpy(((struct resolve_cb_context *)context)->addr,
757 		       addr, sizeof(struct rdma_dev_addr));
758 	((struct resolve_cb_context *)context)->status = status;
759 	complete(&((struct resolve_cb_context *)context)->comp);
760 }
761 
762 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
763 				 const union ib_gid *dgid,
764 				 u8 *dmac, u16 *vlan_id, int *if_index,
765 				 int *hoplimit)
766 {
767 	int ret = 0;
768 	struct rdma_dev_addr dev_addr;
769 	struct resolve_cb_context ctx;
770 	struct net_device *dev;
771 
772 	union {
773 		struct sockaddr     _sockaddr;
774 		struct sockaddr_in  _sockaddr_in;
775 		struct sockaddr_in6 _sockaddr_in6;
776 	} sgid_addr, dgid_addr;
777 
778 
779 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
780 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
781 
782 	memset(&dev_addr, 0, sizeof(dev_addr));
783 	if (if_index)
784 		dev_addr.bound_dev_if = *if_index;
785 	dev_addr.net = &init_net;
786 
787 	ctx.addr = &dev_addr;
788 	init_completion(&ctx.comp);
789 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
790 			&dev_addr, 1000, resolve_cb, &ctx);
791 	if (ret)
792 		return ret;
793 
794 	wait_for_completion(&ctx.comp);
795 
796 	ret = ctx.status;
797 	if (ret)
798 		return ret;
799 
800 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
801 	dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
802 	if (!dev)
803 		return -ENODEV;
804 	if (if_index)
805 		*if_index = dev_addr.bound_dev_if;
806 	if (vlan_id)
807 		*vlan_id = rdma_vlan_dev_vlan_id(dev);
808 	if (hoplimit)
809 		*hoplimit = dev_addr.hoplimit;
810 	dev_put(dev);
811 	return ret;
812 }
813 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
814 
815 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
816 {
817 	int ret = 0;
818 	struct rdma_dev_addr dev_addr;
819 	union {
820 		struct sockaddr     _sockaddr;
821 		struct sockaddr_in  _sockaddr_in;
822 		struct sockaddr_in6 _sockaddr_in6;
823 	} gid_addr;
824 
825 	rdma_gid2ip(&gid_addr._sockaddr, sgid);
826 
827 	memset(&dev_addr, 0, sizeof(dev_addr));
828 	dev_addr.net = &init_net;
829 	ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
830 	if (ret)
831 		return ret;
832 
833 	memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
834 	return ret;
835 }
836 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
837 
838 static int netevent_callback(struct notifier_block *self, unsigned long event,
839 	void *ctx)
840 {
841 	if (event == NETEVENT_NEIGH_UPDATE) {
842 		struct neighbour *neigh = ctx;
843 
844 		if (neigh->nud_state & NUD_VALID)
845 			set_timeout(&work, jiffies);
846 	}
847 	return 0;
848 }
849 
850 static struct notifier_block nb = {
851 	.notifier_call = netevent_callback
852 };
853 
854 int addr_init(void)
855 {
856 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
857 	if (!addr_wq)
858 		return -ENOMEM;
859 
860 	register_netevent_notifier(&nb);
861 	rdma_addr_register_client(&self);
862 
863 	return 0;
864 }
865 
866 void addr_cleanup(void)
867 {
868 	rdma_addr_unregister_client(&self);
869 	unregister_netevent_notifier(&nb);
870 	destroy_workqueue(addr_wq);
871 }
872