xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	struct rdma_addr_client *client;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	int status;
66 	u32 seq;
67 };
68 
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70 
71 static void process_req(struct work_struct *work);
72 
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77 
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 		.len = sizeof(struct rdma_nla_ls_gid)},
81 };
82 
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 	int ret;
87 
88 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 		return false;
90 
91 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 	if (ret)
94 		return false;
95 
96 	return true;
97 }
98 
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 	const struct nlattr *head, *curr;
102 	union ib_gid gid;
103 	struct addr_req *req;
104 	int len, rem;
105 	int found = 0;
106 
107 	head = (const struct nlattr *)nlmsg_data(nlh);
108 	len = nlmsg_len(nlh);
109 
110 	nla_for_each_attr(curr, head, len, rem) {
111 		if (curr->nla_type == LS_NLA_TYPE_DGID)
112 			memcpy(&gid, nla_data(curr), nla_len(curr));
113 	}
114 
115 	mutex_lock(&lock);
116 	list_for_each_entry(req, &req_list, list) {
117 		if (nlh->nlmsg_seq != req->seq)
118 			continue;
119 		/* We set the DGID part, the rest was set earlier */
120 		rdma_addr_set_dgid(req->addr, &gid);
121 		req->status = 0;
122 		found = 1;
123 		break;
124 	}
125 	mutex_unlock(&lock);
126 
127 	if (!found)
128 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 			&gid);
130 }
131 
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 			     struct nlmsghdr *nlh,
134 			     struct netlink_ext_ack *extack)
135 {
136 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 	    !(NETLINK_CB(skb).sk))
138 		return -EPERM;
139 
140 	if (ib_nl_is_good_ip_resp(nlh))
141 		ib_nl_process_good_ip_rsep(nlh);
142 
143 	return skb->len;
144 }
145 
146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 			     const void *daddr,
148 			     u32 seq, u16 family)
149 {
150 	struct sk_buff *skb = NULL;
151 	struct nlmsghdr *nlh;
152 	struct rdma_ls_ip_resolve_header *header;
153 	void *data;
154 	size_t size;
155 	int attrtype;
156 	int len;
157 
158 	if (family == AF_INET) {
159 		size = sizeof(struct in_addr);
160 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 	} else {
162 		size = sizeof(struct in6_addr);
163 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 	}
165 
166 	len = nla_total_size(sizeof(size));
167 	len += NLMSG_ALIGN(sizeof(*header));
168 
169 	skb = nlmsg_new(len, GFP_KERNEL);
170 	if (!skb)
171 		return -ENOMEM;
172 
173 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 	if (!data) {
176 		nlmsg_free(skb);
177 		return -ENODATA;
178 	}
179 
180 	/* Construct the family header first */
181 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 	header->ifindex = dev_addr->bound_dev_if;
183 	nla_put(skb, attrtype, size, daddr);
184 
185 	/* Repair the nlmsg header length */
186 	nlmsg_end(skb, nlh);
187 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188 
189 	/* Make the request retry, so when we get the response from userspace
190 	 * we will have something.
191 	 */
192 	return -ENODATA;
193 }
194 
195 int rdma_addr_size(struct sockaddr *addr)
196 {
197 	switch (addr->sa_family) {
198 	case AF_INET:
199 		return sizeof(struct sockaddr_in);
200 	case AF_INET6:
201 		return sizeof(struct sockaddr_in6);
202 	case AF_IB:
203 		return sizeof(struct sockaddr_ib);
204 	default:
205 		return 0;
206 	}
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209 
210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212 	int ret = rdma_addr_size((struct sockaddr *) addr);
213 
214 	return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217 
218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220 	int ret = rdma_addr_size((struct sockaddr *) addr);
221 
222 	return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225 
226 static struct rdma_addr_client self;
227 
228 void rdma_addr_register_client(struct rdma_addr_client *client)
229 {
230 	atomic_set(&client->refcount, 1);
231 	init_completion(&client->comp);
232 }
233 EXPORT_SYMBOL(rdma_addr_register_client);
234 
235 static inline void put_client(struct rdma_addr_client *client)
236 {
237 	if (atomic_dec_and_test(&client->refcount))
238 		complete(&client->comp);
239 }
240 
241 void rdma_addr_unregister_client(struct rdma_addr_client *client)
242 {
243 	put_client(client);
244 	wait_for_completion(&client->comp);
245 }
246 EXPORT_SYMBOL(rdma_addr_unregister_client);
247 
248 void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
249 		    const struct net_device *dev,
250 		    const unsigned char *dst_dev_addr)
251 {
252 	dev_addr->dev_type = dev->type;
253 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
254 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
255 	if (dst_dev_addr)
256 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
257 	dev_addr->bound_dev_if = dev->ifindex;
258 }
259 EXPORT_SYMBOL(rdma_copy_addr);
260 
261 int rdma_translate_ip(const struct sockaddr *addr,
262 		      struct rdma_dev_addr *dev_addr)
263 {
264 	struct net_device *dev;
265 
266 	if (dev_addr->bound_dev_if) {
267 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
268 		if (!dev)
269 			return -ENODEV;
270 		rdma_copy_addr(dev_addr, dev, NULL);
271 		dev_put(dev);
272 		return 0;
273 	}
274 
275 	switch (addr->sa_family) {
276 	case AF_INET:
277 		dev = ip_dev_find(dev_addr->net,
278 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
279 
280 		if (!dev)
281 			return -EADDRNOTAVAIL;
282 
283 		rdma_copy_addr(dev_addr, dev, NULL);
284 		dev_put(dev);
285 		break;
286 #if IS_ENABLED(CONFIG_IPV6)
287 	case AF_INET6:
288 		rcu_read_lock();
289 		for_each_netdev_rcu(dev_addr->net, dev) {
290 			if (ipv6_chk_addr(dev_addr->net,
291 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
292 					  dev, 1)) {
293 				rdma_copy_addr(dev_addr, dev, NULL);
294 				break;
295 			}
296 		}
297 		rcu_read_unlock();
298 		break;
299 #endif
300 	}
301 	return 0;
302 }
303 EXPORT_SYMBOL(rdma_translate_ip);
304 
305 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
306 {
307 	unsigned long delay;
308 
309 	delay = time - jiffies;
310 	if ((long)delay < 0)
311 		delay = 0;
312 
313 	mod_delayed_work(addr_wq, delayed_work, delay);
314 }
315 
316 static void queue_req(struct addr_req *req)
317 {
318 	struct addr_req *temp_req;
319 
320 	mutex_lock(&lock);
321 	list_for_each_entry_reverse(temp_req, &req_list, list) {
322 		if (time_after_eq(req->timeout, temp_req->timeout))
323 			break;
324 	}
325 
326 	list_add(&req->list, &temp_req->list);
327 
328 	set_timeout(&req->work, req->timeout);
329 	mutex_unlock(&lock);
330 }
331 
332 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
333 			  const void *daddr, u32 seq, u16 family)
334 {
335 	if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
336 		return -EADDRNOTAVAIL;
337 
338 	/* We fill in what we can, the response will fill the rest */
339 	rdma_copy_addr(dev_addr, dst->dev, NULL);
340 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
341 }
342 
343 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
344 			const void *daddr)
345 {
346 	struct neighbour *n;
347 	int ret = 0;
348 
349 	n = dst_neigh_lookup(dst, daddr);
350 
351 	rcu_read_lock();
352 	if (!n || !(n->nud_state & NUD_VALID)) {
353 		if (n)
354 			neigh_event_send(n, NULL);
355 		ret = -ENODATA;
356 	} else {
357 		rdma_copy_addr(dev_addr, dst->dev, n->ha);
358 	}
359 	rcu_read_unlock();
360 
361 	if (n)
362 		neigh_release(n);
363 
364 	return ret;
365 }
366 
367 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
368 {
369 	struct rtable *rt;
370 	struct rt6_info *rt6;
371 
372 	if (family == AF_INET) {
373 		rt = container_of(dst, struct rtable, dst);
374 		return rt->rt_uses_gateway;
375 	}
376 
377 	rt6 = container_of(dst, struct rt6_info, dst);
378 	return rt6->rt6i_flags & RTF_GATEWAY;
379 }
380 
381 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
382 		    const struct sockaddr *dst_in, u32 seq)
383 {
384 	const struct sockaddr_in *dst_in4 =
385 		(const struct sockaddr_in *)dst_in;
386 	const struct sockaddr_in6 *dst_in6 =
387 		(const struct sockaddr_in6 *)dst_in;
388 	const void *daddr = (dst_in->sa_family == AF_INET) ?
389 		(const void *)&dst_in4->sin_addr.s_addr :
390 		(const void *)&dst_in6->sin6_addr;
391 	sa_family_t family = dst_in->sa_family;
392 
393 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
394 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
395 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
396 	else
397 		return dst_fetch_ha(dst, dev_addr, daddr);
398 }
399 
400 static int addr4_resolve(struct sockaddr_in *src_in,
401 			 const struct sockaddr_in *dst_in,
402 			 struct rdma_dev_addr *addr,
403 			 struct rtable **prt)
404 {
405 	__be32 src_ip = src_in->sin_addr.s_addr;
406 	__be32 dst_ip = dst_in->sin_addr.s_addr;
407 	struct rtable *rt;
408 	struct flowi4 fl4;
409 	int ret;
410 
411 	memset(&fl4, 0, sizeof(fl4));
412 	fl4.daddr = dst_ip;
413 	fl4.saddr = src_ip;
414 	fl4.flowi4_oif = addr->bound_dev_if;
415 	rt = ip_route_output_key(addr->net, &fl4);
416 	ret = PTR_ERR_OR_ZERO(rt);
417 	if (ret)
418 		return ret;
419 
420 	src_in->sin_family = AF_INET;
421 	src_in->sin_addr.s_addr = fl4.saddr;
422 
423 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
424 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
425 	 * type accordingly.
426 	 */
427 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
428 		addr->network = RDMA_NETWORK_IPV4;
429 
430 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
431 
432 	*prt = rt;
433 	return 0;
434 }
435 
436 #if IS_ENABLED(CONFIG_IPV6)
437 static int addr6_resolve(struct sockaddr_in6 *src_in,
438 			 const struct sockaddr_in6 *dst_in,
439 			 struct rdma_dev_addr *addr,
440 			 struct dst_entry **pdst)
441 {
442 	struct flowi6 fl6;
443 	struct dst_entry *dst;
444 	struct rt6_info *rt;
445 	int ret;
446 
447 	memset(&fl6, 0, sizeof fl6);
448 	fl6.daddr = dst_in->sin6_addr;
449 	fl6.saddr = src_in->sin6_addr;
450 	fl6.flowi6_oif = addr->bound_dev_if;
451 
452 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
453 	if (ret < 0)
454 		return ret;
455 
456 	rt = (struct rt6_info *)dst;
457 	if (ipv6_addr_any(&src_in->sin6_addr)) {
458 		src_in->sin6_family = AF_INET6;
459 		src_in->sin6_addr = fl6.saddr;
460 	}
461 
462 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
463 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
464 	 * type accordingly.
465 	 */
466 	if (rt->rt6i_flags & RTF_GATEWAY &&
467 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
468 		addr->network = RDMA_NETWORK_IPV6;
469 
470 	addr->hoplimit = ip6_dst_hoplimit(dst);
471 
472 	*pdst = dst;
473 	return 0;
474 }
475 #else
476 static int addr6_resolve(struct sockaddr_in6 *src_in,
477 			 const struct sockaddr_in6 *dst_in,
478 			 struct rdma_dev_addr *addr,
479 			 struct dst_entry **pdst)
480 {
481 	return -EADDRNOTAVAIL;
482 }
483 #endif
484 
485 static int addr_resolve_neigh(struct dst_entry *dst,
486 			      const struct sockaddr *dst_in,
487 			      struct rdma_dev_addr *addr,
488 			      u32 seq)
489 {
490 	if (dst->dev->flags & IFF_LOOPBACK) {
491 		int ret;
492 
493 		ret = rdma_translate_ip(dst_in, addr);
494 		if (!ret)
495 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
496 			       MAX_ADDR_LEN);
497 
498 		return ret;
499 	}
500 
501 	/* If the device doesn't do ARP internally */
502 	if (!(dst->dev->flags & IFF_NOARP))
503 		return fetch_ha(dst, addr, dst_in, seq);
504 
505 	rdma_copy_addr(addr, dst->dev, NULL);
506 
507 	return 0;
508 }
509 
510 static int addr_resolve(struct sockaddr *src_in,
511 			const struct sockaddr *dst_in,
512 			struct rdma_dev_addr *addr,
513 			bool resolve_neigh,
514 			u32 seq)
515 {
516 	struct net_device *ndev;
517 	struct dst_entry *dst;
518 	int ret;
519 
520 	if (!addr->net) {
521 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
522 		return -EINVAL;
523 	}
524 
525 	if (src_in->sa_family == AF_INET) {
526 		struct rtable *rt = NULL;
527 		const struct sockaddr_in *dst_in4 =
528 			(const struct sockaddr_in *)dst_in;
529 
530 		ret = addr4_resolve((struct sockaddr_in *)src_in,
531 				    dst_in4, addr, &rt);
532 		if (ret)
533 			return ret;
534 
535 		if (resolve_neigh)
536 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
537 
538 		if (addr->bound_dev_if) {
539 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
540 		} else {
541 			ndev = rt->dst.dev;
542 			dev_hold(ndev);
543 		}
544 
545 		ip_rt_put(rt);
546 	} else {
547 		const struct sockaddr_in6 *dst_in6 =
548 			(const struct sockaddr_in6 *)dst_in;
549 
550 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
551 				    dst_in6, addr,
552 				    &dst);
553 		if (ret)
554 			return ret;
555 
556 		if (resolve_neigh)
557 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
558 
559 		if (addr->bound_dev_if) {
560 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
561 		} else {
562 			ndev = dst->dev;
563 			dev_hold(ndev);
564 		}
565 
566 		dst_release(dst);
567 	}
568 
569 	if (ndev) {
570 		if (ndev->flags & IFF_LOOPBACK)
571 			ret = rdma_translate_ip(dst_in, addr);
572 		else
573 			addr->bound_dev_if = ndev->ifindex;
574 		dev_put(ndev);
575 	}
576 
577 	return ret;
578 }
579 
580 static void process_one_req(struct work_struct *_work)
581 {
582 	struct addr_req *req;
583 	struct sockaddr *src_in, *dst_in;
584 
585 	mutex_lock(&lock);
586 	req = container_of(_work, struct addr_req, work.work);
587 
588 	if (req->status == -ENODATA) {
589 		src_in = (struct sockaddr *)&req->src_addr;
590 		dst_in = (struct sockaddr *)&req->dst_addr;
591 		req->status = addr_resolve(src_in, dst_in, req->addr,
592 					   true, req->seq);
593 		if (req->status && time_after_eq(jiffies, req->timeout)) {
594 			req->status = -ETIMEDOUT;
595 		} else if (req->status == -ENODATA) {
596 			/* requeue the work for retrying again */
597 			set_timeout(&req->work, req->timeout);
598 			mutex_unlock(&lock);
599 			return;
600 		}
601 	}
602 	list_del(&req->list);
603 	mutex_unlock(&lock);
604 
605 	/*
606 	 * Although the work will normally have been canceled by the
607 	 * workqueue, it can still be requeued as long as it is on the
608 	 * req_list, so it could have been requeued before we grabbed &lock.
609 	 * We need to cancel it after it is removed from req_list to really be
610 	 * sure it is safe to free.
611 	 */
612 	cancel_delayed_work(&req->work);
613 
614 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
615 		req->addr, req->context);
616 	put_client(req->client);
617 	kfree(req);
618 }
619 
620 static void process_req(struct work_struct *work)
621 {
622 	struct addr_req *req, *temp_req;
623 	struct sockaddr *src_in, *dst_in;
624 	struct list_head done_list;
625 
626 	INIT_LIST_HEAD(&done_list);
627 
628 	mutex_lock(&lock);
629 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
630 		if (req->status == -ENODATA) {
631 			src_in = (struct sockaddr *) &req->src_addr;
632 			dst_in = (struct sockaddr *) &req->dst_addr;
633 			req->status = addr_resolve(src_in, dst_in, req->addr,
634 						   true, req->seq);
635 			if (req->status && time_after_eq(jiffies, req->timeout))
636 				req->status = -ETIMEDOUT;
637 			else if (req->status == -ENODATA) {
638 				set_timeout(&req->work, req->timeout);
639 				continue;
640 			}
641 		}
642 		list_move_tail(&req->list, &done_list);
643 	}
644 
645 	mutex_unlock(&lock);
646 
647 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
648 		list_del(&req->list);
649 		/* It is safe to cancel other work items from this work item
650 		 * because at a time there can be only one work item running
651 		 * with this single threaded work queue.
652 		 */
653 		cancel_delayed_work(&req->work);
654 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
655 			req->addr, req->context);
656 		put_client(req->client);
657 		kfree(req);
658 	}
659 }
660 
661 int rdma_resolve_ip(struct rdma_addr_client *client,
662 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
663 		    struct rdma_dev_addr *addr, int timeout_ms,
664 		    void (*callback)(int status, struct sockaddr *src_addr,
665 				     struct rdma_dev_addr *addr, void *context),
666 		    void *context)
667 {
668 	struct sockaddr *src_in, *dst_in;
669 	struct addr_req *req;
670 	int ret = 0;
671 
672 	req = kzalloc(sizeof *req, GFP_KERNEL);
673 	if (!req)
674 		return -ENOMEM;
675 
676 	src_in = (struct sockaddr *) &req->src_addr;
677 	dst_in = (struct sockaddr *) &req->dst_addr;
678 
679 	if (src_addr) {
680 		if (src_addr->sa_family != dst_addr->sa_family) {
681 			ret = -EINVAL;
682 			goto err;
683 		}
684 
685 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
686 	} else {
687 		src_in->sa_family = dst_addr->sa_family;
688 	}
689 
690 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
691 	req->addr = addr;
692 	req->callback = callback;
693 	req->context = context;
694 	req->client = client;
695 	atomic_inc(&client->refcount);
696 	INIT_DELAYED_WORK(&req->work, process_one_req);
697 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
698 
699 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
700 	switch (req->status) {
701 	case 0:
702 		req->timeout = jiffies;
703 		queue_req(req);
704 		break;
705 	case -ENODATA:
706 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
707 		queue_req(req);
708 		break;
709 	default:
710 		ret = req->status;
711 		atomic_dec(&client->refcount);
712 		goto err;
713 	}
714 	return ret;
715 err:
716 	kfree(req);
717 	return ret;
718 }
719 EXPORT_SYMBOL(rdma_resolve_ip);
720 
721 int rdma_resolve_ip_route(struct sockaddr *src_addr,
722 			  const struct sockaddr *dst_addr,
723 			  struct rdma_dev_addr *addr)
724 {
725 	struct sockaddr_storage ssrc_addr = {};
726 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
727 
728 	if (src_addr) {
729 		if (src_addr->sa_family != dst_addr->sa_family)
730 			return -EINVAL;
731 
732 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
733 	} else {
734 		src_in->sa_family = dst_addr->sa_family;
735 	}
736 
737 	return addr_resolve(src_in, dst_addr, addr, false, 0);
738 }
739 EXPORT_SYMBOL(rdma_resolve_ip_route);
740 
741 void rdma_addr_cancel(struct rdma_dev_addr *addr)
742 {
743 	struct addr_req *req, *temp_req;
744 
745 	mutex_lock(&lock);
746 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
747 		if (req->addr == addr) {
748 			req->status = -ECANCELED;
749 			req->timeout = jiffies;
750 			list_move(&req->list, &req_list);
751 			set_timeout(&req->work, req->timeout);
752 			break;
753 		}
754 	}
755 	mutex_unlock(&lock);
756 }
757 EXPORT_SYMBOL(rdma_addr_cancel);
758 
759 struct resolve_cb_context {
760 	struct completion comp;
761 	int status;
762 };
763 
764 static void resolve_cb(int status, struct sockaddr *src_addr,
765 	     struct rdma_dev_addr *addr, void *context)
766 {
767 	((struct resolve_cb_context *)context)->status = status;
768 	complete(&((struct resolve_cb_context *)context)->comp);
769 }
770 
771 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
772 				 const union ib_gid *dgid,
773 				 u8 *dmac, const struct net_device *ndev,
774 				 int *hoplimit)
775 {
776 	struct rdma_dev_addr dev_addr;
777 	struct resolve_cb_context ctx;
778 	union {
779 		struct sockaddr     _sockaddr;
780 		struct sockaddr_in  _sockaddr_in;
781 		struct sockaddr_in6 _sockaddr_in6;
782 	} sgid_addr, dgid_addr;
783 	int ret;
784 
785 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
786 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
787 
788 	memset(&dev_addr, 0, sizeof(dev_addr));
789 	dev_addr.bound_dev_if = ndev->ifindex;
790 	dev_addr.net = &init_net;
791 
792 	init_completion(&ctx.comp);
793 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
794 			&dev_addr, 1000, resolve_cb, &ctx);
795 	if (ret)
796 		return ret;
797 
798 	wait_for_completion(&ctx.comp);
799 
800 	ret = ctx.status;
801 	if (ret)
802 		return ret;
803 
804 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
805 	*hoplimit = dev_addr.hoplimit;
806 	return 0;
807 }
808 
809 static int netevent_callback(struct notifier_block *self, unsigned long event,
810 	void *ctx)
811 {
812 	if (event == NETEVENT_NEIGH_UPDATE) {
813 		struct neighbour *neigh = ctx;
814 
815 		if (neigh->nud_state & NUD_VALID)
816 			set_timeout(&work, jiffies);
817 	}
818 	return 0;
819 }
820 
821 static struct notifier_block nb = {
822 	.notifier_call = netevent_callback
823 };
824 
825 int addr_init(void)
826 {
827 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
828 	if (!addr_wq)
829 		return -ENOMEM;
830 
831 	register_netevent_notifier(&nb);
832 	rdma_addr_register_client(&self);
833 
834 	return 0;
835 }
836 
837 void addr_cleanup(void)
838 {
839 	rdma_addr_unregister_client(&self);
840 	unregister_netevent_notifier(&nb);
841 	destroy_workqueue(addr_wq);
842 }
843