1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/module.h> 41 #include <net/arp.h> 42 #include <net/neighbour.h> 43 #include <net/route.h> 44 #include <net/netevent.h> 45 #include <net/addrconf.h> 46 #include <net/ip6_route.h> 47 #include <rdma/ib_addr.h> 48 #include <rdma/ib.h> 49 #include <rdma/rdma_netlink.h> 50 #include <net/netlink.h> 51 52 #include "core_priv.h" 53 54 struct addr_req { 55 struct list_head list; 56 struct sockaddr_storage src_addr; 57 struct sockaddr_storage dst_addr; 58 struct rdma_dev_addr *addr; 59 struct rdma_addr_client *client; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 struct delayed_work work; 65 int status; 66 u32 seq; 67 }; 68 69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 70 71 static void process_req(struct work_struct *work); 72 73 static DEFINE_MUTEX(lock); 74 static LIST_HEAD(req_list); 75 static DECLARE_DELAYED_WORK(work, process_req); 76 static struct workqueue_struct *addr_wq; 77 78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 79 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 80 .len = sizeof(struct rdma_nla_ls_gid)}, 81 }; 82 83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 84 { 85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 86 int ret; 87 88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 89 return false; 90 91 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 92 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 93 if (ret) 94 return false; 95 96 return true; 97 } 98 99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 100 { 101 const struct nlattr *head, *curr; 102 union ib_gid gid; 103 struct addr_req *req; 104 int len, rem; 105 int found = 0; 106 107 head = (const struct nlattr *)nlmsg_data(nlh); 108 len = nlmsg_len(nlh); 109 110 nla_for_each_attr(curr, head, len, rem) { 111 if (curr->nla_type == LS_NLA_TYPE_DGID) 112 memcpy(&gid, nla_data(curr), nla_len(curr)); 113 } 114 115 mutex_lock(&lock); 116 list_for_each_entry(req, &req_list, list) { 117 if (nlh->nlmsg_seq != req->seq) 118 continue; 119 /* We set the DGID part, the rest was set earlier */ 120 rdma_addr_set_dgid(req->addr, &gid); 121 req->status = 0; 122 found = 1; 123 break; 124 } 125 mutex_unlock(&lock); 126 127 if (!found) 128 pr_info("Couldn't find request waiting for DGID: %pI6\n", 129 &gid); 130 } 131 132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 133 struct netlink_callback *cb) 134 { 135 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh; 136 137 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 138 !(NETLINK_CB(skb).sk) || 139 !netlink_capable(skb, CAP_NET_ADMIN)) 140 return -EPERM; 141 142 if (ib_nl_is_good_ip_resp(nlh)) 143 ib_nl_process_good_ip_rsep(nlh); 144 145 return skb->len; 146 } 147 148 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 149 const void *daddr, 150 u32 seq, u16 family) 151 { 152 struct sk_buff *skb = NULL; 153 struct nlmsghdr *nlh; 154 struct rdma_ls_ip_resolve_header *header; 155 void *data; 156 size_t size; 157 int attrtype; 158 int len; 159 160 if (family == AF_INET) { 161 size = sizeof(struct in_addr); 162 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 163 } else { 164 size = sizeof(struct in6_addr); 165 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 166 } 167 168 len = nla_total_size(sizeof(size)); 169 len += NLMSG_ALIGN(sizeof(*header)); 170 171 skb = nlmsg_new(len, GFP_KERNEL); 172 if (!skb) 173 return -ENOMEM; 174 175 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 176 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 177 if (!data) { 178 nlmsg_free(skb); 179 return -ENODATA; 180 } 181 182 /* Construct the family header first */ 183 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 184 header->ifindex = dev_addr->bound_dev_if; 185 nla_put(skb, attrtype, size, daddr); 186 187 /* Repair the nlmsg header length */ 188 nlmsg_end(skb, nlh); 189 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL); 190 191 /* Make the request retry, so when we get the response from userspace 192 * we will have something. 193 */ 194 return -ENODATA; 195 } 196 197 int rdma_addr_size(struct sockaddr *addr) 198 { 199 switch (addr->sa_family) { 200 case AF_INET: 201 return sizeof(struct sockaddr_in); 202 case AF_INET6: 203 return sizeof(struct sockaddr_in6); 204 case AF_IB: 205 return sizeof(struct sockaddr_ib); 206 default: 207 return 0; 208 } 209 } 210 EXPORT_SYMBOL(rdma_addr_size); 211 212 static struct rdma_addr_client self; 213 214 void rdma_addr_register_client(struct rdma_addr_client *client) 215 { 216 atomic_set(&client->refcount, 1); 217 init_completion(&client->comp); 218 } 219 EXPORT_SYMBOL(rdma_addr_register_client); 220 221 static inline void put_client(struct rdma_addr_client *client) 222 { 223 if (atomic_dec_and_test(&client->refcount)) 224 complete(&client->comp); 225 } 226 227 void rdma_addr_unregister_client(struct rdma_addr_client *client) 228 { 229 put_client(client); 230 wait_for_completion(&client->comp); 231 } 232 EXPORT_SYMBOL(rdma_addr_unregister_client); 233 234 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, 235 const unsigned char *dst_dev_addr) 236 { 237 dev_addr->dev_type = dev->type; 238 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 239 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 240 if (dst_dev_addr) 241 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN); 242 dev_addr->bound_dev_if = dev->ifindex; 243 return 0; 244 } 245 EXPORT_SYMBOL(rdma_copy_addr); 246 247 int rdma_translate_ip(const struct sockaddr *addr, 248 struct rdma_dev_addr *dev_addr, 249 u16 *vlan_id) 250 { 251 struct net_device *dev; 252 int ret = -EADDRNOTAVAIL; 253 254 if (dev_addr->bound_dev_if) { 255 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 256 if (!dev) 257 return -ENODEV; 258 ret = rdma_copy_addr(dev_addr, dev, NULL); 259 dev_put(dev); 260 return ret; 261 } 262 263 switch (addr->sa_family) { 264 case AF_INET: 265 dev = ip_dev_find(dev_addr->net, 266 ((const struct sockaddr_in *)addr)->sin_addr.s_addr); 267 268 if (!dev) 269 return ret; 270 271 ret = rdma_copy_addr(dev_addr, dev, NULL); 272 dev_addr->bound_dev_if = dev->ifindex; 273 if (vlan_id) 274 *vlan_id = rdma_vlan_dev_vlan_id(dev); 275 dev_put(dev); 276 break; 277 #if IS_ENABLED(CONFIG_IPV6) 278 case AF_INET6: 279 rcu_read_lock(); 280 for_each_netdev_rcu(dev_addr->net, dev) { 281 if (ipv6_chk_addr(dev_addr->net, 282 &((const struct sockaddr_in6 *)addr)->sin6_addr, 283 dev, 1)) { 284 ret = rdma_copy_addr(dev_addr, dev, NULL); 285 dev_addr->bound_dev_if = dev->ifindex; 286 if (vlan_id) 287 *vlan_id = rdma_vlan_dev_vlan_id(dev); 288 break; 289 } 290 } 291 rcu_read_unlock(); 292 break; 293 #endif 294 } 295 return ret; 296 } 297 EXPORT_SYMBOL(rdma_translate_ip); 298 299 static void set_timeout(struct delayed_work *delayed_work, unsigned long time) 300 { 301 unsigned long delay; 302 303 delay = time - jiffies; 304 if ((long)delay < 0) 305 delay = 0; 306 307 mod_delayed_work(addr_wq, delayed_work, delay); 308 } 309 310 static void queue_req(struct addr_req *req) 311 { 312 struct addr_req *temp_req; 313 314 mutex_lock(&lock); 315 list_for_each_entry_reverse(temp_req, &req_list, list) { 316 if (time_after_eq(req->timeout, temp_req->timeout)) 317 break; 318 } 319 320 list_add(&req->list, &temp_req->list); 321 322 set_timeout(&req->work, req->timeout); 323 mutex_unlock(&lock); 324 } 325 326 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 327 const void *daddr, u32 seq, u16 family) 328 { 329 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS)) 330 return -EADDRNOTAVAIL; 331 332 /* We fill in what we can, the response will fill the rest */ 333 rdma_copy_addr(dev_addr, dst->dev, NULL); 334 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 335 } 336 337 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 338 const void *daddr) 339 { 340 struct neighbour *n; 341 int ret; 342 343 n = dst_neigh_lookup(dst, daddr); 344 345 rcu_read_lock(); 346 if (!n || !(n->nud_state & NUD_VALID)) { 347 if (n) 348 neigh_event_send(n, NULL); 349 ret = -ENODATA; 350 } else { 351 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha); 352 } 353 rcu_read_unlock(); 354 355 if (n) 356 neigh_release(n); 357 358 return ret; 359 } 360 361 static bool has_gateway(struct dst_entry *dst, sa_family_t family) 362 { 363 struct rtable *rt; 364 struct rt6_info *rt6; 365 366 if (family == AF_INET) { 367 rt = container_of(dst, struct rtable, dst); 368 return rt->rt_uses_gateway; 369 } 370 371 rt6 = container_of(dst, struct rt6_info, dst); 372 return rt6->rt6i_flags & RTF_GATEWAY; 373 } 374 375 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 376 const struct sockaddr *dst_in, u32 seq) 377 { 378 const struct sockaddr_in *dst_in4 = 379 (const struct sockaddr_in *)dst_in; 380 const struct sockaddr_in6 *dst_in6 = 381 (const struct sockaddr_in6 *)dst_in; 382 const void *daddr = (dst_in->sa_family == AF_INET) ? 383 (const void *)&dst_in4->sin_addr.s_addr : 384 (const void *)&dst_in6->sin6_addr; 385 sa_family_t family = dst_in->sa_family; 386 387 /* Gateway + ARPHRD_INFINIBAND -> IB router */ 388 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND) 389 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family); 390 else 391 return dst_fetch_ha(dst, dev_addr, daddr); 392 } 393 394 static int addr4_resolve(struct sockaddr_in *src_in, 395 const struct sockaddr_in *dst_in, 396 struct rdma_dev_addr *addr, 397 struct rtable **prt) 398 { 399 __be32 src_ip = src_in->sin_addr.s_addr; 400 __be32 dst_ip = dst_in->sin_addr.s_addr; 401 struct rtable *rt; 402 struct flowi4 fl4; 403 int ret; 404 405 memset(&fl4, 0, sizeof(fl4)); 406 fl4.daddr = dst_ip; 407 fl4.saddr = src_ip; 408 fl4.flowi4_oif = addr->bound_dev_if; 409 rt = ip_route_output_key(addr->net, &fl4); 410 ret = PTR_ERR_OR_ZERO(rt); 411 if (ret) 412 return ret; 413 414 src_in->sin_family = AF_INET; 415 src_in->sin_addr.s_addr = fl4.saddr; 416 417 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 418 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 419 * type accordingly. 420 */ 421 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND) 422 addr->network = RDMA_NETWORK_IPV4; 423 424 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 425 426 *prt = rt; 427 return 0; 428 } 429 430 #if IS_ENABLED(CONFIG_IPV6) 431 static int addr6_resolve(struct sockaddr_in6 *src_in, 432 const struct sockaddr_in6 *dst_in, 433 struct rdma_dev_addr *addr, 434 struct dst_entry **pdst) 435 { 436 struct flowi6 fl6; 437 struct dst_entry *dst; 438 struct rt6_info *rt; 439 int ret; 440 441 memset(&fl6, 0, sizeof fl6); 442 fl6.daddr = dst_in->sin6_addr; 443 fl6.saddr = src_in->sin6_addr; 444 fl6.flowi6_oif = addr->bound_dev_if; 445 446 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); 447 if (ret < 0) 448 return ret; 449 450 rt = (struct rt6_info *)dst; 451 if (ipv6_addr_any(&src_in->sin6_addr)) { 452 src_in->sin6_family = AF_INET6; 453 src_in->sin6_addr = fl6.saddr; 454 } 455 456 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 457 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 458 * type accordingly. 459 */ 460 if (rt->rt6i_flags & RTF_GATEWAY && 461 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND) 462 addr->network = RDMA_NETWORK_IPV6; 463 464 addr->hoplimit = ip6_dst_hoplimit(dst); 465 466 *pdst = dst; 467 return 0; 468 } 469 #else 470 static int addr6_resolve(struct sockaddr_in6 *src_in, 471 const struct sockaddr_in6 *dst_in, 472 struct rdma_dev_addr *addr, 473 struct dst_entry **pdst) 474 { 475 return -EADDRNOTAVAIL; 476 } 477 #endif 478 479 static int addr_resolve_neigh(struct dst_entry *dst, 480 const struct sockaddr *dst_in, 481 struct rdma_dev_addr *addr, 482 u32 seq) 483 { 484 if (dst->dev->flags & IFF_LOOPBACK) { 485 int ret; 486 487 ret = rdma_translate_ip(dst_in, addr, NULL); 488 if (!ret) 489 memcpy(addr->dst_dev_addr, addr->src_dev_addr, 490 MAX_ADDR_LEN); 491 492 return ret; 493 } 494 495 /* If the device doesn't do ARP internally */ 496 if (!(dst->dev->flags & IFF_NOARP)) 497 return fetch_ha(dst, addr, dst_in, seq); 498 499 return rdma_copy_addr(addr, dst->dev, NULL); 500 } 501 502 static int addr_resolve(struct sockaddr *src_in, 503 const struct sockaddr *dst_in, 504 struct rdma_dev_addr *addr, 505 bool resolve_neigh, 506 u32 seq) 507 { 508 struct net_device *ndev; 509 struct dst_entry *dst; 510 int ret; 511 512 if (!addr->net) { 513 pr_warn_ratelimited("%s: missing namespace\n", __func__); 514 return -EINVAL; 515 } 516 517 if (src_in->sa_family == AF_INET) { 518 struct rtable *rt = NULL; 519 const struct sockaddr_in *dst_in4 = 520 (const struct sockaddr_in *)dst_in; 521 522 ret = addr4_resolve((struct sockaddr_in *)src_in, 523 dst_in4, addr, &rt); 524 if (ret) 525 return ret; 526 527 if (resolve_neigh) 528 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq); 529 530 if (addr->bound_dev_if) { 531 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 532 } else { 533 ndev = rt->dst.dev; 534 dev_hold(ndev); 535 } 536 537 ip_rt_put(rt); 538 } else { 539 const struct sockaddr_in6 *dst_in6 = 540 (const struct sockaddr_in6 *)dst_in; 541 542 ret = addr6_resolve((struct sockaddr_in6 *)src_in, 543 dst_in6, addr, 544 &dst); 545 if (ret) 546 return ret; 547 548 if (resolve_neigh) 549 ret = addr_resolve_neigh(dst, dst_in, addr, seq); 550 551 if (addr->bound_dev_if) { 552 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 553 } else { 554 ndev = dst->dev; 555 dev_hold(ndev); 556 } 557 558 dst_release(dst); 559 } 560 561 if (ndev->flags & IFF_LOOPBACK) { 562 ret = rdma_translate_ip(dst_in, addr, NULL); 563 /* 564 * Put the loopback device and get the translated 565 * device instead. 566 */ 567 dev_put(ndev); 568 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 569 } else { 570 addr->bound_dev_if = ndev->ifindex; 571 } 572 dev_put(ndev); 573 574 return ret; 575 } 576 577 static void process_one_req(struct work_struct *_work) 578 { 579 struct addr_req *req; 580 struct sockaddr *src_in, *dst_in; 581 582 mutex_lock(&lock); 583 req = container_of(_work, struct addr_req, work.work); 584 585 if (req->status == -ENODATA) { 586 src_in = (struct sockaddr *)&req->src_addr; 587 dst_in = (struct sockaddr *)&req->dst_addr; 588 req->status = addr_resolve(src_in, dst_in, req->addr, 589 true, req->seq); 590 if (req->status && time_after_eq(jiffies, req->timeout)) { 591 req->status = -ETIMEDOUT; 592 } else if (req->status == -ENODATA) { 593 /* requeue the work for retrying again */ 594 set_timeout(&req->work, req->timeout); 595 mutex_unlock(&lock); 596 return; 597 } 598 } 599 list_del(&req->list); 600 mutex_unlock(&lock); 601 602 req->callback(req->status, (struct sockaddr *)&req->src_addr, 603 req->addr, req->context); 604 put_client(req->client); 605 kfree(req); 606 } 607 608 static void process_req(struct work_struct *work) 609 { 610 struct addr_req *req, *temp_req; 611 struct sockaddr *src_in, *dst_in; 612 struct list_head done_list; 613 614 INIT_LIST_HEAD(&done_list); 615 616 mutex_lock(&lock); 617 list_for_each_entry_safe(req, temp_req, &req_list, list) { 618 if (req->status == -ENODATA) { 619 src_in = (struct sockaddr *) &req->src_addr; 620 dst_in = (struct sockaddr *) &req->dst_addr; 621 req->status = addr_resolve(src_in, dst_in, req->addr, 622 true, req->seq); 623 if (req->status && time_after_eq(jiffies, req->timeout)) 624 req->status = -ETIMEDOUT; 625 else if (req->status == -ENODATA) { 626 set_timeout(&req->work, req->timeout); 627 continue; 628 } 629 } 630 list_move_tail(&req->list, &done_list); 631 } 632 633 mutex_unlock(&lock); 634 635 list_for_each_entry_safe(req, temp_req, &done_list, list) { 636 list_del(&req->list); 637 /* It is safe to cancel other work items from this work item 638 * because at a time there can be only one work item running 639 * with this single threaded work queue. 640 */ 641 cancel_delayed_work(&req->work); 642 req->callback(req->status, (struct sockaddr *) &req->src_addr, 643 req->addr, req->context); 644 put_client(req->client); 645 kfree(req); 646 } 647 } 648 649 int rdma_resolve_ip(struct rdma_addr_client *client, 650 struct sockaddr *src_addr, struct sockaddr *dst_addr, 651 struct rdma_dev_addr *addr, int timeout_ms, 652 void (*callback)(int status, struct sockaddr *src_addr, 653 struct rdma_dev_addr *addr, void *context), 654 void *context) 655 { 656 struct sockaddr *src_in, *dst_in; 657 struct addr_req *req; 658 int ret = 0; 659 660 req = kzalloc(sizeof *req, GFP_KERNEL); 661 if (!req) 662 return -ENOMEM; 663 664 src_in = (struct sockaddr *) &req->src_addr; 665 dst_in = (struct sockaddr *) &req->dst_addr; 666 667 if (src_addr) { 668 if (src_addr->sa_family != dst_addr->sa_family) { 669 ret = -EINVAL; 670 goto err; 671 } 672 673 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 674 } else { 675 src_in->sa_family = dst_addr->sa_family; 676 } 677 678 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 679 req->addr = addr; 680 req->callback = callback; 681 req->context = context; 682 req->client = client; 683 atomic_inc(&client->refcount); 684 INIT_DELAYED_WORK(&req->work, process_one_req); 685 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 686 687 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq); 688 switch (req->status) { 689 case 0: 690 req->timeout = jiffies; 691 queue_req(req); 692 break; 693 case -ENODATA: 694 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 695 queue_req(req); 696 break; 697 default: 698 ret = req->status; 699 atomic_dec(&client->refcount); 700 goto err; 701 } 702 return ret; 703 err: 704 kfree(req); 705 return ret; 706 } 707 EXPORT_SYMBOL(rdma_resolve_ip); 708 709 int rdma_resolve_ip_route(struct sockaddr *src_addr, 710 const struct sockaddr *dst_addr, 711 struct rdma_dev_addr *addr) 712 { 713 struct sockaddr_storage ssrc_addr = {}; 714 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; 715 716 if (src_addr) { 717 if (src_addr->sa_family != dst_addr->sa_family) 718 return -EINVAL; 719 720 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 721 } else { 722 src_in->sa_family = dst_addr->sa_family; 723 } 724 725 return addr_resolve(src_in, dst_addr, addr, false, 0); 726 } 727 EXPORT_SYMBOL(rdma_resolve_ip_route); 728 729 void rdma_addr_cancel(struct rdma_dev_addr *addr) 730 { 731 struct addr_req *req, *temp_req; 732 733 mutex_lock(&lock); 734 list_for_each_entry_safe(req, temp_req, &req_list, list) { 735 if (req->addr == addr) { 736 req->status = -ECANCELED; 737 req->timeout = jiffies; 738 list_move(&req->list, &req_list); 739 set_timeout(&req->work, req->timeout); 740 break; 741 } 742 } 743 mutex_unlock(&lock); 744 } 745 EXPORT_SYMBOL(rdma_addr_cancel); 746 747 struct resolve_cb_context { 748 struct rdma_dev_addr *addr; 749 struct completion comp; 750 int status; 751 }; 752 753 static void resolve_cb(int status, struct sockaddr *src_addr, 754 struct rdma_dev_addr *addr, void *context) 755 { 756 if (!status) 757 memcpy(((struct resolve_cb_context *)context)->addr, 758 addr, sizeof(struct rdma_dev_addr)); 759 ((struct resolve_cb_context *)context)->status = status; 760 complete(&((struct resolve_cb_context *)context)->comp); 761 } 762 763 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 764 const union ib_gid *dgid, 765 u8 *dmac, u16 *vlan_id, int *if_index, 766 int *hoplimit) 767 { 768 int ret = 0; 769 struct rdma_dev_addr dev_addr; 770 struct resolve_cb_context ctx; 771 struct net_device *dev; 772 773 union { 774 struct sockaddr _sockaddr; 775 struct sockaddr_in _sockaddr_in; 776 struct sockaddr_in6 _sockaddr_in6; 777 } sgid_addr, dgid_addr; 778 779 780 rdma_gid2ip(&sgid_addr._sockaddr, sgid); 781 rdma_gid2ip(&dgid_addr._sockaddr, dgid); 782 783 memset(&dev_addr, 0, sizeof(dev_addr)); 784 if (if_index) 785 dev_addr.bound_dev_if = *if_index; 786 dev_addr.net = &init_net; 787 788 ctx.addr = &dev_addr; 789 init_completion(&ctx.comp); 790 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, 791 &dev_addr, 1000, resolve_cb, &ctx); 792 if (ret) 793 return ret; 794 795 wait_for_completion(&ctx.comp); 796 797 ret = ctx.status; 798 if (ret) 799 return ret; 800 801 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 802 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if); 803 if (!dev) 804 return -ENODEV; 805 if (if_index) 806 *if_index = dev_addr.bound_dev_if; 807 if (vlan_id) 808 *vlan_id = rdma_vlan_dev_vlan_id(dev); 809 if (hoplimit) 810 *hoplimit = dev_addr.hoplimit; 811 dev_put(dev); 812 return ret; 813 } 814 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh); 815 816 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id) 817 { 818 int ret = 0; 819 struct rdma_dev_addr dev_addr; 820 union { 821 struct sockaddr _sockaddr; 822 struct sockaddr_in _sockaddr_in; 823 struct sockaddr_in6 _sockaddr_in6; 824 } gid_addr; 825 826 rdma_gid2ip(&gid_addr._sockaddr, sgid); 827 828 memset(&dev_addr, 0, sizeof(dev_addr)); 829 dev_addr.net = &init_net; 830 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id); 831 if (ret) 832 return ret; 833 834 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN); 835 return ret; 836 } 837 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid); 838 839 static int netevent_callback(struct notifier_block *self, unsigned long event, 840 void *ctx) 841 { 842 if (event == NETEVENT_NEIGH_UPDATE) { 843 struct neighbour *neigh = ctx; 844 845 if (neigh->nud_state & NUD_VALID) 846 set_timeout(&work, jiffies); 847 } 848 return 0; 849 } 850 851 static struct notifier_block nb = { 852 .notifier_call = netevent_callback 853 }; 854 855 int addr_init(void) 856 { 857 addr_wq = alloc_ordered_workqueue("ib_addr", WQ_MEM_RECLAIM); 858 if (!addr_wq) 859 return -ENOMEM; 860 861 register_netevent_notifier(&nb); 862 rdma_addr_register_client(&self); 863 864 return 0; 865 } 866 867 void addr_cleanup(void) 868 { 869 rdma_addr_unregister_client(&self); 870 unregister_netevent_notifier(&nb); 871 destroy_workqueue(addr_wq); 872 } 873