xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision 981ab3f1)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	struct rdma_addr_client *client;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	int status;
66 	u32 seq;
67 };
68 
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70 
71 static void process_req(struct work_struct *work);
72 
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77 
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 		.len = sizeof(struct rdma_nla_ls_gid)},
81 };
82 
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 	int ret;
87 
88 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 		return false;
90 
91 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 	if (ret)
94 		return false;
95 
96 	return true;
97 }
98 
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 	const struct nlattr *head, *curr;
102 	union ib_gid gid;
103 	struct addr_req *req;
104 	int len, rem;
105 	int found = 0;
106 
107 	head = (const struct nlattr *)nlmsg_data(nlh);
108 	len = nlmsg_len(nlh);
109 
110 	nla_for_each_attr(curr, head, len, rem) {
111 		if (curr->nla_type == LS_NLA_TYPE_DGID)
112 			memcpy(&gid, nla_data(curr), nla_len(curr));
113 	}
114 
115 	mutex_lock(&lock);
116 	list_for_each_entry(req, &req_list, list) {
117 		if (nlh->nlmsg_seq != req->seq)
118 			continue;
119 		/* We set the DGID part, the rest was set earlier */
120 		rdma_addr_set_dgid(req->addr, &gid);
121 		req->status = 0;
122 		found = 1;
123 		break;
124 	}
125 	mutex_unlock(&lock);
126 
127 	if (!found)
128 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 			&gid);
130 }
131 
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 			     struct netlink_callback *cb)
134 {
135 	const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
136 
137 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
138 	    !(NETLINK_CB(skb).sk) ||
139 	    !netlink_capable(skb, CAP_NET_ADMIN))
140 		return -EPERM;
141 
142 	if (ib_nl_is_good_ip_resp(nlh))
143 		ib_nl_process_good_ip_rsep(nlh);
144 
145 	return skb->len;
146 }
147 
148 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
149 			     const void *daddr,
150 			     u32 seq, u16 family)
151 {
152 	struct sk_buff *skb = NULL;
153 	struct nlmsghdr *nlh;
154 	struct rdma_ls_ip_resolve_header *header;
155 	void *data;
156 	size_t size;
157 	int attrtype;
158 	int len;
159 
160 	if (family == AF_INET) {
161 		size = sizeof(struct in_addr);
162 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
163 	} else {
164 		size = sizeof(struct in6_addr);
165 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
166 	}
167 
168 	len = nla_total_size(sizeof(size));
169 	len += NLMSG_ALIGN(sizeof(*header));
170 
171 	skb = nlmsg_new(len, GFP_KERNEL);
172 	if (!skb)
173 		return -ENOMEM;
174 
175 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
176 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
177 	if (!data) {
178 		nlmsg_free(skb);
179 		return -ENODATA;
180 	}
181 
182 	/* Construct the family header first */
183 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
184 	header->ifindex = dev_addr->bound_dev_if;
185 	nla_put(skb, attrtype, size, daddr);
186 
187 	/* Repair the nlmsg header length */
188 	nlmsg_end(skb, nlh);
189 	ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
190 
191 	/* Make the request retry, so when we get the response from userspace
192 	 * we will have something.
193 	 */
194 	return -ENODATA;
195 }
196 
197 int rdma_addr_size(struct sockaddr *addr)
198 {
199 	switch (addr->sa_family) {
200 	case AF_INET:
201 		return sizeof(struct sockaddr_in);
202 	case AF_INET6:
203 		return sizeof(struct sockaddr_in6);
204 	case AF_IB:
205 		return sizeof(struct sockaddr_ib);
206 	default:
207 		return 0;
208 	}
209 }
210 EXPORT_SYMBOL(rdma_addr_size);
211 
212 static struct rdma_addr_client self;
213 
214 void rdma_addr_register_client(struct rdma_addr_client *client)
215 {
216 	atomic_set(&client->refcount, 1);
217 	init_completion(&client->comp);
218 }
219 EXPORT_SYMBOL(rdma_addr_register_client);
220 
221 static inline void put_client(struct rdma_addr_client *client)
222 {
223 	if (atomic_dec_and_test(&client->refcount))
224 		complete(&client->comp);
225 }
226 
227 void rdma_addr_unregister_client(struct rdma_addr_client *client)
228 {
229 	put_client(client);
230 	wait_for_completion(&client->comp);
231 }
232 EXPORT_SYMBOL(rdma_addr_unregister_client);
233 
234 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
235 		     const unsigned char *dst_dev_addr)
236 {
237 	dev_addr->dev_type = dev->type;
238 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
239 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
240 	if (dst_dev_addr)
241 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
242 	dev_addr->bound_dev_if = dev->ifindex;
243 	return 0;
244 }
245 EXPORT_SYMBOL(rdma_copy_addr);
246 
247 int rdma_translate_ip(const struct sockaddr *addr,
248 		      struct rdma_dev_addr *dev_addr,
249 		      u16 *vlan_id)
250 {
251 	struct net_device *dev;
252 	int ret = -EADDRNOTAVAIL;
253 
254 	if (dev_addr->bound_dev_if) {
255 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
256 		if (!dev)
257 			return -ENODEV;
258 		ret = rdma_copy_addr(dev_addr, dev, NULL);
259 		dev_put(dev);
260 		return ret;
261 	}
262 
263 	switch (addr->sa_family) {
264 	case AF_INET:
265 		dev = ip_dev_find(dev_addr->net,
266 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
267 
268 		if (!dev)
269 			return ret;
270 
271 		ret = rdma_copy_addr(dev_addr, dev, NULL);
272 		dev_addr->bound_dev_if = dev->ifindex;
273 		if (vlan_id)
274 			*vlan_id = rdma_vlan_dev_vlan_id(dev);
275 		dev_put(dev);
276 		break;
277 #if IS_ENABLED(CONFIG_IPV6)
278 	case AF_INET6:
279 		rcu_read_lock();
280 		for_each_netdev_rcu(dev_addr->net, dev) {
281 			if (ipv6_chk_addr(dev_addr->net,
282 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
283 					  dev, 1)) {
284 				ret = rdma_copy_addr(dev_addr, dev, NULL);
285 				dev_addr->bound_dev_if = dev->ifindex;
286 				if (vlan_id)
287 					*vlan_id = rdma_vlan_dev_vlan_id(dev);
288 				break;
289 			}
290 		}
291 		rcu_read_unlock();
292 		break;
293 #endif
294 	}
295 	return ret;
296 }
297 EXPORT_SYMBOL(rdma_translate_ip);
298 
299 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
300 {
301 	unsigned long delay;
302 
303 	delay = time - jiffies;
304 	if ((long)delay < 0)
305 		delay = 0;
306 
307 	mod_delayed_work(addr_wq, delayed_work, delay);
308 }
309 
310 static void queue_req(struct addr_req *req)
311 {
312 	struct addr_req *temp_req;
313 
314 	mutex_lock(&lock);
315 	list_for_each_entry_reverse(temp_req, &req_list, list) {
316 		if (time_after_eq(req->timeout, temp_req->timeout))
317 			break;
318 	}
319 
320 	list_add(&req->list, &temp_req->list);
321 
322 	set_timeout(&req->work, req->timeout);
323 	mutex_unlock(&lock);
324 }
325 
326 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
327 			  const void *daddr, u32 seq, u16 family)
328 {
329 	if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
330 		return -EADDRNOTAVAIL;
331 
332 	/* We fill in what we can, the response will fill the rest */
333 	rdma_copy_addr(dev_addr, dst->dev, NULL);
334 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
335 }
336 
337 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
338 			const void *daddr)
339 {
340 	struct neighbour *n;
341 	int ret;
342 
343 	n = dst_neigh_lookup(dst, daddr);
344 
345 	rcu_read_lock();
346 	if (!n || !(n->nud_state & NUD_VALID)) {
347 		if (n)
348 			neigh_event_send(n, NULL);
349 		ret = -ENODATA;
350 	} else {
351 		ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
352 	}
353 	rcu_read_unlock();
354 
355 	if (n)
356 		neigh_release(n);
357 
358 	return ret;
359 }
360 
361 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
362 {
363 	struct rtable *rt;
364 	struct rt6_info *rt6;
365 
366 	if (family == AF_INET) {
367 		rt = container_of(dst, struct rtable, dst);
368 		return rt->rt_uses_gateway;
369 	}
370 
371 	rt6 = container_of(dst, struct rt6_info, dst);
372 	return rt6->rt6i_flags & RTF_GATEWAY;
373 }
374 
375 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
376 		    const struct sockaddr *dst_in, u32 seq)
377 {
378 	const struct sockaddr_in *dst_in4 =
379 		(const struct sockaddr_in *)dst_in;
380 	const struct sockaddr_in6 *dst_in6 =
381 		(const struct sockaddr_in6 *)dst_in;
382 	const void *daddr = (dst_in->sa_family == AF_INET) ?
383 		(const void *)&dst_in4->sin_addr.s_addr :
384 		(const void *)&dst_in6->sin6_addr;
385 	sa_family_t family = dst_in->sa_family;
386 
387 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
388 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
389 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
390 	else
391 		return dst_fetch_ha(dst, dev_addr, daddr);
392 }
393 
394 static int addr4_resolve(struct sockaddr_in *src_in,
395 			 const struct sockaddr_in *dst_in,
396 			 struct rdma_dev_addr *addr,
397 			 struct rtable **prt)
398 {
399 	__be32 src_ip = src_in->sin_addr.s_addr;
400 	__be32 dst_ip = dst_in->sin_addr.s_addr;
401 	struct rtable *rt;
402 	struct flowi4 fl4;
403 	int ret;
404 
405 	memset(&fl4, 0, sizeof(fl4));
406 	fl4.daddr = dst_ip;
407 	fl4.saddr = src_ip;
408 	fl4.flowi4_oif = addr->bound_dev_if;
409 	rt = ip_route_output_key(addr->net, &fl4);
410 	ret = PTR_ERR_OR_ZERO(rt);
411 	if (ret)
412 		return ret;
413 
414 	src_in->sin_family = AF_INET;
415 	src_in->sin_addr.s_addr = fl4.saddr;
416 
417 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
418 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
419 	 * type accordingly.
420 	 */
421 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
422 		addr->network = RDMA_NETWORK_IPV4;
423 
424 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
425 
426 	*prt = rt;
427 	return 0;
428 }
429 
430 #if IS_ENABLED(CONFIG_IPV6)
431 static int addr6_resolve(struct sockaddr_in6 *src_in,
432 			 const struct sockaddr_in6 *dst_in,
433 			 struct rdma_dev_addr *addr,
434 			 struct dst_entry **pdst)
435 {
436 	struct flowi6 fl6;
437 	struct dst_entry *dst;
438 	struct rt6_info *rt;
439 	int ret;
440 
441 	memset(&fl6, 0, sizeof fl6);
442 	fl6.daddr = dst_in->sin6_addr;
443 	fl6.saddr = src_in->sin6_addr;
444 	fl6.flowi6_oif = addr->bound_dev_if;
445 
446 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
447 	if (ret < 0)
448 		return ret;
449 
450 	rt = (struct rt6_info *)dst;
451 	if (ipv6_addr_any(&src_in->sin6_addr)) {
452 		src_in->sin6_family = AF_INET6;
453 		src_in->sin6_addr = fl6.saddr;
454 	}
455 
456 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
457 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
458 	 * type accordingly.
459 	 */
460 	if (rt->rt6i_flags & RTF_GATEWAY &&
461 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
462 		addr->network = RDMA_NETWORK_IPV6;
463 
464 	addr->hoplimit = ip6_dst_hoplimit(dst);
465 
466 	*pdst = dst;
467 	return 0;
468 }
469 #else
470 static int addr6_resolve(struct sockaddr_in6 *src_in,
471 			 const struct sockaddr_in6 *dst_in,
472 			 struct rdma_dev_addr *addr,
473 			 struct dst_entry **pdst)
474 {
475 	return -EADDRNOTAVAIL;
476 }
477 #endif
478 
479 static int addr_resolve_neigh(struct dst_entry *dst,
480 			      const struct sockaddr *dst_in,
481 			      struct rdma_dev_addr *addr,
482 			      u32 seq)
483 {
484 	if (dst->dev->flags & IFF_LOOPBACK) {
485 		int ret;
486 
487 		ret = rdma_translate_ip(dst_in, addr, NULL);
488 		if (!ret)
489 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
490 			       MAX_ADDR_LEN);
491 
492 		return ret;
493 	}
494 
495 	/* If the device doesn't do ARP internally */
496 	if (!(dst->dev->flags & IFF_NOARP))
497 		return fetch_ha(dst, addr, dst_in, seq);
498 
499 	return rdma_copy_addr(addr, dst->dev, NULL);
500 }
501 
502 static int addr_resolve(struct sockaddr *src_in,
503 			const struct sockaddr *dst_in,
504 			struct rdma_dev_addr *addr,
505 			bool resolve_neigh,
506 			u32 seq)
507 {
508 	struct net_device *ndev;
509 	struct dst_entry *dst;
510 	int ret;
511 
512 	if (!addr->net) {
513 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
514 		return -EINVAL;
515 	}
516 
517 	if (src_in->sa_family == AF_INET) {
518 		struct rtable *rt = NULL;
519 		const struct sockaddr_in *dst_in4 =
520 			(const struct sockaddr_in *)dst_in;
521 
522 		ret = addr4_resolve((struct sockaddr_in *)src_in,
523 				    dst_in4, addr, &rt);
524 		if (ret)
525 			return ret;
526 
527 		if (resolve_neigh)
528 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
529 
530 		if (addr->bound_dev_if) {
531 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
532 		} else {
533 			ndev = rt->dst.dev;
534 			dev_hold(ndev);
535 		}
536 
537 		ip_rt_put(rt);
538 	} else {
539 		const struct sockaddr_in6 *dst_in6 =
540 			(const struct sockaddr_in6 *)dst_in;
541 
542 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
543 				    dst_in6, addr,
544 				    &dst);
545 		if (ret)
546 			return ret;
547 
548 		if (resolve_neigh)
549 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
550 
551 		if (addr->bound_dev_if) {
552 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
553 		} else {
554 			ndev = dst->dev;
555 			dev_hold(ndev);
556 		}
557 
558 		dst_release(dst);
559 	}
560 
561 	if (ndev->flags & IFF_LOOPBACK) {
562 		ret = rdma_translate_ip(dst_in, addr, NULL);
563 		/*
564 		 * Put the loopback device and get the translated
565 		 * device instead.
566 		 */
567 		dev_put(ndev);
568 		ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
569 	} else {
570 		addr->bound_dev_if = ndev->ifindex;
571 	}
572 	dev_put(ndev);
573 
574 	return ret;
575 }
576 
577 static void process_one_req(struct work_struct *_work)
578 {
579 	struct addr_req *req;
580 	struct sockaddr *src_in, *dst_in;
581 
582 	mutex_lock(&lock);
583 	req = container_of(_work, struct addr_req, work.work);
584 
585 	if (req->status == -ENODATA) {
586 		src_in = (struct sockaddr *)&req->src_addr;
587 		dst_in = (struct sockaddr *)&req->dst_addr;
588 		req->status = addr_resolve(src_in, dst_in, req->addr,
589 					   true, req->seq);
590 		if (req->status && time_after_eq(jiffies, req->timeout)) {
591 			req->status = -ETIMEDOUT;
592 		} else if (req->status == -ENODATA) {
593 			/* requeue the work for retrying again */
594 			set_timeout(&req->work, req->timeout);
595 			mutex_unlock(&lock);
596 			return;
597 		}
598 	}
599 	list_del(&req->list);
600 	mutex_unlock(&lock);
601 
602 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
603 		req->addr, req->context);
604 	put_client(req->client);
605 	kfree(req);
606 }
607 
608 static void process_req(struct work_struct *work)
609 {
610 	struct addr_req *req, *temp_req;
611 	struct sockaddr *src_in, *dst_in;
612 	struct list_head done_list;
613 
614 	INIT_LIST_HEAD(&done_list);
615 
616 	mutex_lock(&lock);
617 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
618 		if (req->status == -ENODATA) {
619 			src_in = (struct sockaddr *) &req->src_addr;
620 			dst_in = (struct sockaddr *) &req->dst_addr;
621 			req->status = addr_resolve(src_in, dst_in, req->addr,
622 						   true, req->seq);
623 			if (req->status && time_after_eq(jiffies, req->timeout))
624 				req->status = -ETIMEDOUT;
625 			else if (req->status == -ENODATA) {
626 				set_timeout(&req->work, req->timeout);
627 				continue;
628 			}
629 		}
630 		list_move_tail(&req->list, &done_list);
631 	}
632 
633 	mutex_unlock(&lock);
634 
635 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
636 		list_del(&req->list);
637 		/* It is safe to cancel other work items from this work item
638 		 * because at a time there can be only one work item running
639 		 * with this single threaded work queue.
640 		 */
641 		cancel_delayed_work(&req->work);
642 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
643 			req->addr, req->context);
644 		put_client(req->client);
645 		kfree(req);
646 	}
647 }
648 
649 int rdma_resolve_ip(struct rdma_addr_client *client,
650 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
651 		    struct rdma_dev_addr *addr, int timeout_ms,
652 		    void (*callback)(int status, struct sockaddr *src_addr,
653 				     struct rdma_dev_addr *addr, void *context),
654 		    void *context)
655 {
656 	struct sockaddr *src_in, *dst_in;
657 	struct addr_req *req;
658 	int ret = 0;
659 
660 	req = kzalloc(sizeof *req, GFP_KERNEL);
661 	if (!req)
662 		return -ENOMEM;
663 
664 	src_in = (struct sockaddr *) &req->src_addr;
665 	dst_in = (struct sockaddr *) &req->dst_addr;
666 
667 	if (src_addr) {
668 		if (src_addr->sa_family != dst_addr->sa_family) {
669 			ret = -EINVAL;
670 			goto err;
671 		}
672 
673 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
674 	} else {
675 		src_in->sa_family = dst_addr->sa_family;
676 	}
677 
678 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
679 	req->addr = addr;
680 	req->callback = callback;
681 	req->context = context;
682 	req->client = client;
683 	atomic_inc(&client->refcount);
684 	INIT_DELAYED_WORK(&req->work, process_one_req);
685 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
686 
687 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
688 	switch (req->status) {
689 	case 0:
690 		req->timeout = jiffies;
691 		queue_req(req);
692 		break;
693 	case -ENODATA:
694 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
695 		queue_req(req);
696 		break;
697 	default:
698 		ret = req->status;
699 		atomic_dec(&client->refcount);
700 		goto err;
701 	}
702 	return ret;
703 err:
704 	kfree(req);
705 	return ret;
706 }
707 EXPORT_SYMBOL(rdma_resolve_ip);
708 
709 int rdma_resolve_ip_route(struct sockaddr *src_addr,
710 			  const struct sockaddr *dst_addr,
711 			  struct rdma_dev_addr *addr)
712 {
713 	struct sockaddr_storage ssrc_addr = {};
714 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
715 
716 	if (src_addr) {
717 		if (src_addr->sa_family != dst_addr->sa_family)
718 			return -EINVAL;
719 
720 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
721 	} else {
722 		src_in->sa_family = dst_addr->sa_family;
723 	}
724 
725 	return addr_resolve(src_in, dst_addr, addr, false, 0);
726 }
727 EXPORT_SYMBOL(rdma_resolve_ip_route);
728 
729 void rdma_addr_cancel(struct rdma_dev_addr *addr)
730 {
731 	struct addr_req *req, *temp_req;
732 
733 	mutex_lock(&lock);
734 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
735 		if (req->addr == addr) {
736 			req->status = -ECANCELED;
737 			req->timeout = jiffies;
738 			list_move(&req->list, &req_list);
739 			set_timeout(&req->work, req->timeout);
740 			break;
741 		}
742 	}
743 	mutex_unlock(&lock);
744 }
745 EXPORT_SYMBOL(rdma_addr_cancel);
746 
747 struct resolve_cb_context {
748 	struct rdma_dev_addr *addr;
749 	struct completion comp;
750 	int status;
751 };
752 
753 static void resolve_cb(int status, struct sockaddr *src_addr,
754 	     struct rdma_dev_addr *addr, void *context)
755 {
756 	if (!status)
757 		memcpy(((struct resolve_cb_context *)context)->addr,
758 		       addr, sizeof(struct rdma_dev_addr));
759 	((struct resolve_cb_context *)context)->status = status;
760 	complete(&((struct resolve_cb_context *)context)->comp);
761 }
762 
763 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
764 				 const union ib_gid *dgid,
765 				 u8 *dmac, u16 *vlan_id, int *if_index,
766 				 int *hoplimit)
767 {
768 	int ret = 0;
769 	struct rdma_dev_addr dev_addr;
770 	struct resolve_cb_context ctx;
771 	struct net_device *dev;
772 
773 	union {
774 		struct sockaddr     _sockaddr;
775 		struct sockaddr_in  _sockaddr_in;
776 		struct sockaddr_in6 _sockaddr_in6;
777 	} sgid_addr, dgid_addr;
778 
779 
780 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
781 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
782 
783 	memset(&dev_addr, 0, sizeof(dev_addr));
784 	if (if_index)
785 		dev_addr.bound_dev_if = *if_index;
786 	dev_addr.net = &init_net;
787 
788 	ctx.addr = &dev_addr;
789 	init_completion(&ctx.comp);
790 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
791 			&dev_addr, 1000, resolve_cb, &ctx);
792 	if (ret)
793 		return ret;
794 
795 	wait_for_completion(&ctx.comp);
796 
797 	ret = ctx.status;
798 	if (ret)
799 		return ret;
800 
801 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
802 	dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
803 	if (!dev)
804 		return -ENODEV;
805 	if (if_index)
806 		*if_index = dev_addr.bound_dev_if;
807 	if (vlan_id)
808 		*vlan_id = rdma_vlan_dev_vlan_id(dev);
809 	if (hoplimit)
810 		*hoplimit = dev_addr.hoplimit;
811 	dev_put(dev);
812 	return ret;
813 }
814 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
815 
816 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
817 {
818 	int ret = 0;
819 	struct rdma_dev_addr dev_addr;
820 	union {
821 		struct sockaddr     _sockaddr;
822 		struct sockaddr_in  _sockaddr_in;
823 		struct sockaddr_in6 _sockaddr_in6;
824 	} gid_addr;
825 
826 	rdma_gid2ip(&gid_addr._sockaddr, sgid);
827 
828 	memset(&dev_addr, 0, sizeof(dev_addr));
829 	dev_addr.net = &init_net;
830 	ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
831 	if (ret)
832 		return ret;
833 
834 	memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
835 	return ret;
836 }
837 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
838 
839 static int netevent_callback(struct notifier_block *self, unsigned long event,
840 	void *ctx)
841 {
842 	if (event == NETEVENT_NEIGH_UPDATE) {
843 		struct neighbour *neigh = ctx;
844 
845 		if (neigh->nud_state & NUD_VALID)
846 			set_timeout(&work, jiffies);
847 	}
848 	return 0;
849 }
850 
851 static struct notifier_block nb = {
852 	.notifier_call = netevent_callback
853 };
854 
855 int addr_init(void)
856 {
857 	addr_wq = alloc_ordered_workqueue("ib_addr", WQ_MEM_RECLAIM);
858 	if (!addr_wq)
859 		return -ENOMEM;
860 
861 	register_netevent_notifier(&nb);
862 	rdma_addr_register_client(&self);
863 
864 	return 0;
865 }
866 
867 void addr_cleanup(void)
868 {
869 	rdma_addr_unregister_client(&self);
870 	unregister_netevent_notifier(&nb);
871 	destroy_workqueue(addr_wq);
872 }
873