xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	struct rdma_addr_client *client;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	int status;
66 	u32 seq;
67 };
68 
69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
70 
71 static void process_req(struct work_struct *work);
72 
73 static DEFINE_MUTEX(lock);
74 static LIST_HEAD(req_list);
75 static DECLARE_DELAYED_WORK(work, process_req);
76 static struct workqueue_struct *addr_wq;
77 
78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
79 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
80 		.len = sizeof(struct rdma_nla_ls_gid)},
81 };
82 
83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 	int ret;
87 
88 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 		return false;
90 
91 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 	if (ret)
94 		return false;
95 
96 	return true;
97 }
98 
99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 	const struct nlattr *head, *curr;
102 	union ib_gid gid;
103 	struct addr_req *req;
104 	int len, rem;
105 	int found = 0;
106 
107 	head = (const struct nlattr *)nlmsg_data(nlh);
108 	len = nlmsg_len(nlh);
109 
110 	nla_for_each_attr(curr, head, len, rem) {
111 		if (curr->nla_type == LS_NLA_TYPE_DGID)
112 			memcpy(&gid, nla_data(curr), nla_len(curr));
113 	}
114 
115 	mutex_lock(&lock);
116 	list_for_each_entry(req, &req_list, list) {
117 		if (nlh->nlmsg_seq != req->seq)
118 			continue;
119 		/* We set the DGID part, the rest was set earlier */
120 		rdma_addr_set_dgid(req->addr, &gid);
121 		req->status = 0;
122 		found = 1;
123 		break;
124 	}
125 	mutex_unlock(&lock);
126 
127 	if (!found)
128 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 			&gid);
130 }
131 
132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 			     struct nlmsghdr *nlh,
134 			     struct netlink_ext_ack *extack)
135 {
136 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 	    !(NETLINK_CB(skb).sk))
138 		return -EPERM;
139 
140 	if (ib_nl_is_good_ip_resp(nlh))
141 		ib_nl_process_good_ip_rsep(nlh);
142 
143 	return skb->len;
144 }
145 
146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 			     const void *daddr,
148 			     u32 seq, u16 family)
149 {
150 	struct sk_buff *skb = NULL;
151 	struct nlmsghdr *nlh;
152 	struct rdma_ls_ip_resolve_header *header;
153 	void *data;
154 	size_t size;
155 	int attrtype;
156 	int len;
157 
158 	if (family == AF_INET) {
159 		size = sizeof(struct in_addr);
160 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 	} else {
162 		size = sizeof(struct in6_addr);
163 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 	}
165 
166 	len = nla_total_size(sizeof(size));
167 	len += NLMSG_ALIGN(sizeof(*header));
168 
169 	skb = nlmsg_new(len, GFP_KERNEL);
170 	if (!skb)
171 		return -ENOMEM;
172 
173 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 	if (!data) {
176 		nlmsg_free(skb);
177 		return -ENODATA;
178 	}
179 
180 	/* Construct the family header first */
181 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 	header->ifindex = dev_addr->bound_dev_if;
183 	nla_put(skb, attrtype, size, daddr);
184 
185 	/* Repair the nlmsg header length */
186 	nlmsg_end(skb, nlh);
187 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188 
189 	/* Make the request retry, so when we get the response from userspace
190 	 * we will have something.
191 	 */
192 	return -ENODATA;
193 }
194 
195 int rdma_addr_size(struct sockaddr *addr)
196 {
197 	switch (addr->sa_family) {
198 	case AF_INET:
199 		return sizeof(struct sockaddr_in);
200 	case AF_INET6:
201 		return sizeof(struct sockaddr_in6);
202 	case AF_IB:
203 		return sizeof(struct sockaddr_ib);
204 	default:
205 		return 0;
206 	}
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209 
210 static struct rdma_addr_client self;
211 
212 void rdma_addr_register_client(struct rdma_addr_client *client)
213 {
214 	atomic_set(&client->refcount, 1);
215 	init_completion(&client->comp);
216 }
217 EXPORT_SYMBOL(rdma_addr_register_client);
218 
219 static inline void put_client(struct rdma_addr_client *client)
220 {
221 	if (atomic_dec_and_test(&client->refcount))
222 		complete(&client->comp);
223 }
224 
225 void rdma_addr_unregister_client(struct rdma_addr_client *client)
226 {
227 	put_client(client);
228 	wait_for_completion(&client->comp);
229 }
230 EXPORT_SYMBOL(rdma_addr_unregister_client);
231 
232 void rdma_copy_addr(struct rdma_dev_addr *dev_addr,
233 		    const struct net_device *dev,
234 		    const unsigned char *dst_dev_addr)
235 {
236 	dev_addr->dev_type = dev->type;
237 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
238 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
239 	if (dst_dev_addr)
240 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
241 	dev_addr->bound_dev_if = dev->ifindex;
242 }
243 EXPORT_SYMBOL(rdma_copy_addr);
244 
245 int rdma_translate_ip(const struct sockaddr *addr,
246 		      struct rdma_dev_addr *dev_addr)
247 {
248 	struct net_device *dev;
249 
250 	if (dev_addr->bound_dev_if) {
251 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
252 		if (!dev)
253 			return -ENODEV;
254 		rdma_copy_addr(dev_addr, dev, NULL);
255 		dev_put(dev);
256 		return 0;
257 	}
258 
259 	switch (addr->sa_family) {
260 	case AF_INET:
261 		dev = ip_dev_find(dev_addr->net,
262 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
263 
264 		if (!dev)
265 			return -EADDRNOTAVAIL;
266 
267 		rdma_copy_addr(dev_addr, dev, NULL);
268 		dev_put(dev);
269 		break;
270 #if IS_ENABLED(CONFIG_IPV6)
271 	case AF_INET6:
272 		rcu_read_lock();
273 		for_each_netdev_rcu(dev_addr->net, dev) {
274 			if (ipv6_chk_addr(dev_addr->net,
275 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
276 					  dev, 1)) {
277 				rdma_copy_addr(dev_addr, dev, NULL);
278 				break;
279 			}
280 		}
281 		rcu_read_unlock();
282 		break;
283 #endif
284 	}
285 	return 0;
286 }
287 EXPORT_SYMBOL(rdma_translate_ip);
288 
289 static void set_timeout(struct delayed_work *delayed_work, unsigned long time)
290 {
291 	unsigned long delay;
292 
293 	delay = time - jiffies;
294 	if ((long)delay < 0)
295 		delay = 0;
296 
297 	mod_delayed_work(addr_wq, delayed_work, delay);
298 }
299 
300 static void queue_req(struct addr_req *req)
301 {
302 	struct addr_req *temp_req;
303 
304 	mutex_lock(&lock);
305 	list_for_each_entry_reverse(temp_req, &req_list, list) {
306 		if (time_after_eq(req->timeout, temp_req->timeout))
307 			break;
308 	}
309 
310 	list_add(&req->list, &temp_req->list);
311 
312 	set_timeout(&req->work, req->timeout);
313 	mutex_unlock(&lock);
314 }
315 
316 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
317 			  const void *daddr, u32 seq, u16 family)
318 {
319 	if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
320 		return -EADDRNOTAVAIL;
321 
322 	/* We fill in what we can, the response will fill the rest */
323 	rdma_copy_addr(dev_addr, dst->dev, NULL);
324 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
325 }
326 
327 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
328 			const void *daddr)
329 {
330 	struct neighbour *n;
331 	int ret = 0;
332 
333 	n = dst_neigh_lookup(dst, daddr);
334 
335 	rcu_read_lock();
336 	if (!n || !(n->nud_state & NUD_VALID)) {
337 		if (n)
338 			neigh_event_send(n, NULL);
339 		ret = -ENODATA;
340 	} else {
341 		rdma_copy_addr(dev_addr, dst->dev, n->ha);
342 	}
343 	rcu_read_unlock();
344 
345 	if (n)
346 		neigh_release(n);
347 
348 	return ret;
349 }
350 
351 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
352 {
353 	struct rtable *rt;
354 	struct rt6_info *rt6;
355 
356 	if (family == AF_INET) {
357 		rt = container_of(dst, struct rtable, dst);
358 		return rt->rt_uses_gateway;
359 	}
360 
361 	rt6 = container_of(dst, struct rt6_info, dst);
362 	return rt6->rt6i_flags & RTF_GATEWAY;
363 }
364 
365 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
366 		    const struct sockaddr *dst_in, u32 seq)
367 {
368 	const struct sockaddr_in *dst_in4 =
369 		(const struct sockaddr_in *)dst_in;
370 	const struct sockaddr_in6 *dst_in6 =
371 		(const struct sockaddr_in6 *)dst_in;
372 	const void *daddr = (dst_in->sa_family == AF_INET) ?
373 		(const void *)&dst_in4->sin_addr.s_addr :
374 		(const void *)&dst_in6->sin6_addr;
375 	sa_family_t family = dst_in->sa_family;
376 
377 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
378 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
379 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
380 	else
381 		return dst_fetch_ha(dst, dev_addr, daddr);
382 }
383 
384 static int addr4_resolve(struct sockaddr_in *src_in,
385 			 const struct sockaddr_in *dst_in,
386 			 struct rdma_dev_addr *addr,
387 			 struct rtable **prt)
388 {
389 	__be32 src_ip = src_in->sin_addr.s_addr;
390 	__be32 dst_ip = dst_in->sin_addr.s_addr;
391 	struct rtable *rt;
392 	struct flowi4 fl4;
393 	int ret;
394 
395 	memset(&fl4, 0, sizeof(fl4));
396 	fl4.daddr = dst_ip;
397 	fl4.saddr = src_ip;
398 	fl4.flowi4_oif = addr->bound_dev_if;
399 	rt = ip_route_output_key(addr->net, &fl4);
400 	ret = PTR_ERR_OR_ZERO(rt);
401 	if (ret)
402 		return ret;
403 
404 	src_in->sin_family = AF_INET;
405 	src_in->sin_addr.s_addr = fl4.saddr;
406 
407 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
408 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
409 	 * type accordingly.
410 	 */
411 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
412 		addr->network = RDMA_NETWORK_IPV4;
413 
414 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
415 
416 	*prt = rt;
417 	return 0;
418 }
419 
420 #if IS_ENABLED(CONFIG_IPV6)
421 static int addr6_resolve(struct sockaddr_in6 *src_in,
422 			 const struct sockaddr_in6 *dst_in,
423 			 struct rdma_dev_addr *addr,
424 			 struct dst_entry **pdst)
425 {
426 	struct flowi6 fl6;
427 	struct dst_entry *dst;
428 	struct rt6_info *rt;
429 	int ret;
430 
431 	memset(&fl6, 0, sizeof fl6);
432 	fl6.daddr = dst_in->sin6_addr;
433 	fl6.saddr = src_in->sin6_addr;
434 	fl6.flowi6_oif = addr->bound_dev_if;
435 
436 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
437 	if (ret < 0)
438 		return ret;
439 
440 	rt = (struct rt6_info *)dst;
441 	if (ipv6_addr_any(&src_in->sin6_addr)) {
442 		src_in->sin6_family = AF_INET6;
443 		src_in->sin6_addr = fl6.saddr;
444 	}
445 
446 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
447 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
448 	 * type accordingly.
449 	 */
450 	if (rt->rt6i_flags & RTF_GATEWAY &&
451 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
452 		addr->network = RDMA_NETWORK_IPV6;
453 
454 	addr->hoplimit = ip6_dst_hoplimit(dst);
455 
456 	*pdst = dst;
457 	return 0;
458 }
459 #else
460 static int addr6_resolve(struct sockaddr_in6 *src_in,
461 			 const struct sockaddr_in6 *dst_in,
462 			 struct rdma_dev_addr *addr,
463 			 struct dst_entry **pdst)
464 {
465 	return -EADDRNOTAVAIL;
466 }
467 #endif
468 
469 static int addr_resolve_neigh(struct dst_entry *dst,
470 			      const struct sockaddr *dst_in,
471 			      struct rdma_dev_addr *addr,
472 			      u32 seq)
473 {
474 	if (dst->dev->flags & IFF_LOOPBACK) {
475 		int ret;
476 
477 		ret = rdma_translate_ip(dst_in, addr);
478 		if (!ret)
479 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
480 			       MAX_ADDR_LEN);
481 
482 		return ret;
483 	}
484 
485 	/* If the device doesn't do ARP internally */
486 	if (!(dst->dev->flags & IFF_NOARP))
487 		return fetch_ha(dst, addr, dst_in, seq);
488 
489 	rdma_copy_addr(addr, dst->dev, NULL);
490 
491 	return 0;
492 }
493 
494 static int addr_resolve(struct sockaddr *src_in,
495 			const struct sockaddr *dst_in,
496 			struct rdma_dev_addr *addr,
497 			bool resolve_neigh,
498 			u32 seq)
499 {
500 	struct net_device *ndev;
501 	struct dst_entry *dst;
502 	int ret;
503 
504 	if (!addr->net) {
505 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
506 		return -EINVAL;
507 	}
508 
509 	if (src_in->sa_family == AF_INET) {
510 		struct rtable *rt = NULL;
511 		const struct sockaddr_in *dst_in4 =
512 			(const struct sockaddr_in *)dst_in;
513 
514 		ret = addr4_resolve((struct sockaddr_in *)src_in,
515 				    dst_in4, addr, &rt);
516 		if (ret)
517 			return ret;
518 
519 		if (resolve_neigh)
520 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
521 
522 		if (addr->bound_dev_if) {
523 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
524 		} else {
525 			ndev = rt->dst.dev;
526 			dev_hold(ndev);
527 		}
528 
529 		ip_rt_put(rt);
530 	} else {
531 		const struct sockaddr_in6 *dst_in6 =
532 			(const struct sockaddr_in6 *)dst_in;
533 
534 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
535 				    dst_in6, addr,
536 				    &dst);
537 		if (ret)
538 			return ret;
539 
540 		if (resolve_neigh)
541 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
542 
543 		if (addr->bound_dev_if) {
544 			ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
545 		} else {
546 			ndev = dst->dev;
547 			dev_hold(ndev);
548 		}
549 
550 		dst_release(dst);
551 	}
552 
553 	if (ndev->flags & IFF_LOOPBACK) {
554 		ret = rdma_translate_ip(dst_in, addr);
555 		/*
556 		 * Put the loopback device and get the translated
557 		 * device instead.
558 		 */
559 		dev_put(ndev);
560 		ndev = dev_get_by_index(addr->net, addr->bound_dev_if);
561 	} else {
562 		addr->bound_dev_if = ndev->ifindex;
563 	}
564 	dev_put(ndev);
565 
566 	return ret;
567 }
568 
569 static void process_one_req(struct work_struct *_work)
570 {
571 	struct addr_req *req;
572 	struct sockaddr *src_in, *dst_in;
573 
574 	mutex_lock(&lock);
575 	req = container_of(_work, struct addr_req, work.work);
576 
577 	if (req->status == -ENODATA) {
578 		src_in = (struct sockaddr *)&req->src_addr;
579 		dst_in = (struct sockaddr *)&req->dst_addr;
580 		req->status = addr_resolve(src_in, dst_in, req->addr,
581 					   true, req->seq);
582 		if (req->status && time_after_eq(jiffies, req->timeout)) {
583 			req->status = -ETIMEDOUT;
584 		} else if (req->status == -ENODATA) {
585 			/* requeue the work for retrying again */
586 			set_timeout(&req->work, req->timeout);
587 			mutex_unlock(&lock);
588 			return;
589 		}
590 	}
591 	list_del(&req->list);
592 	mutex_unlock(&lock);
593 
594 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
595 		req->addr, req->context);
596 	put_client(req->client);
597 	kfree(req);
598 }
599 
600 static void process_req(struct work_struct *work)
601 {
602 	struct addr_req *req, *temp_req;
603 	struct sockaddr *src_in, *dst_in;
604 	struct list_head done_list;
605 
606 	INIT_LIST_HEAD(&done_list);
607 
608 	mutex_lock(&lock);
609 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
610 		if (req->status == -ENODATA) {
611 			src_in = (struct sockaddr *) &req->src_addr;
612 			dst_in = (struct sockaddr *) &req->dst_addr;
613 			req->status = addr_resolve(src_in, dst_in, req->addr,
614 						   true, req->seq);
615 			if (req->status && time_after_eq(jiffies, req->timeout))
616 				req->status = -ETIMEDOUT;
617 			else if (req->status == -ENODATA) {
618 				set_timeout(&req->work, req->timeout);
619 				continue;
620 			}
621 		}
622 		list_move_tail(&req->list, &done_list);
623 	}
624 
625 	mutex_unlock(&lock);
626 
627 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
628 		list_del(&req->list);
629 		/* It is safe to cancel other work items from this work item
630 		 * because at a time there can be only one work item running
631 		 * with this single threaded work queue.
632 		 */
633 		cancel_delayed_work(&req->work);
634 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
635 			req->addr, req->context);
636 		put_client(req->client);
637 		kfree(req);
638 	}
639 }
640 
641 int rdma_resolve_ip(struct rdma_addr_client *client,
642 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
643 		    struct rdma_dev_addr *addr, int timeout_ms,
644 		    void (*callback)(int status, struct sockaddr *src_addr,
645 				     struct rdma_dev_addr *addr, void *context),
646 		    void *context)
647 {
648 	struct sockaddr *src_in, *dst_in;
649 	struct addr_req *req;
650 	int ret = 0;
651 
652 	req = kzalloc(sizeof *req, GFP_KERNEL);
653 	if (!req)
654 		return -ENOMEM;
655 
656 	src_in = (struct sockaddr *) &req->src_addr;
657 	dst_in = (struct sockaddr *) &req->dst_addr;
658 
659 	if (src_addr) {
660 		if (src_addr->sa_family != dst_addr->sa_family) {
661 			ret = -EINVAL;
662 			goto err;
663 		}
664 
665 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
666 	} else {
667 		src_in->sa_family = dst_addr->sa_family;
668 	}
669 
670 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
671 	req->addr = addr;
672 	req->callback = callback;
673 	req->context = context;
674 	req->client = client;
675 	atomic_inc(&client->refcount);
676 	INIT_DELAYED_WORK(&req->work, process_one_req);
677 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
678 
679 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
680 	switch (req->status) {
681 	case 0:
682 		req->timeout = jiffies;
683 		queue_req(req);
684 		break;
685 	case -ENODATA:
686 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
687 		queue_req(req);
688 		break;
689 	default:
690 		ret = req->status;
691 		atomic_dec(&client->refcount);
692 		goto err;
693 	}
694 	return ret;
695 err:
696 	kfree(req);
697 	return ret;
698 }
699 EXPORT_SYMBOL(rdma_resolve_ip);
700 
701 int rdma_resolve_ip_route(struct sockaddr *src_addr,
702 			  const struct sockaddr *dst_addr,
703 			  struct rdma_dev_addr *addr)
704 {
705 	struct sockaddr_storage ssrc_addr = {};
706 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
707 
708 	if (src_addr) {
709 		if (src_addr->sa_family != dst_addr->sa_family)
710 			return -EINVAL;
711 
712 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
713 	} else {
714 		src_in->sa_family = dst_addr->sa_family;
715 	}
716 
717 	return addr_resolve(src_in, dst_addr, addr, false, 0);
718 }
719 EXPORT_SYMBOL(rdma_resolve_ip_route);
720 
721 void rdma_addr_cancel(struct rdma_dev_addr *addr)
722 {
723 	struct addr_req *req, *temp_req;
724 
725 	mutex_lock(&lock);
726 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
727 		if (req->addr == addr) {
728 			req->status = -ECANCELED;
729 			req->timeout = jiffies;
730 			list_move(&req->list, &req_list);
731 			set_timeout(&req->work, req->timeout);
732 			break;
733 		}
734 	}
735 	mutex_unlock(&lock);
736 }
737 EXPORT_SYMBOL(rdma_addr_cancel);
738 
739 struct resolve_cb_context {
740 	struct completion comp;
741 	int status;
742 };
743 
744 static void resolve_cb(int status, struct sockaddr *src_addr,
745 	     struct rdma_dev_addr *addr, void *context)
746 {
747 	((struct resolve_cb_context *)context)->status = status;
748 	complete(&((struct resolve_cb_context *)context)->comp);
749 }
750 
751 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
752 				 const union ib_gid *dgid,
753 				 u8 *dmac, const struct net_device *ndev,
754 				 int *hoplimit)
755 {
756 	struct rdma_dev_addr dev_addr;
757 	struct resolve_cb_context ctx;
758 	union {
759 		struct sockaddr     _sockaddr;
760 		struct sockaddr_in  _sockaddr_in;
761 		struct sockaddr_in6 _sockaddr_in6;
762 	} sgid_addr, dgid_addr;
763 	int ret;
764 
765 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
766 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
767 
768 	memset(&dev_addr, 0, sizeof(dev_addr));
769 	dev_addr.bound_dev_if = ndev->ifindex;
770 	dev_addr.net = &init_net;
771 
772 	init_completion(&ctx.comp);
773 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
774 			&dev_addr, 1000, resolve_cb, &ctx);
775 	if (ret)
776 		return ret;
777 
778 	wait_for_completion(&ctx.comp);
779 
780 	ret = ctx.status;
781 	if (ret)
782 		return ret;
783 
784 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
785 	*hoplimit = dev_addr.hoplimit;
786 	return 0;
787 }
788 
789 static int netevent_callback(struct notifier_block *self, unsigned long event,
790 	void *ctx)
791 {
792 	if (event == NETEVENT_NEIGH_UPDATE) {
793 		struct neighbour *neigh = ctx;
794 
795 		if (neigh->nud_state & NUD_VALID)
796 			set_timeout(&work, jiffies);
797 	}
798 	return 0;
799 }
800 
801 static struct notifier_block nb = {
802 	.notifier_call = netevent_callback
803 };
804 
805 int addr_init(void)
806 {
807 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
808 	if (!addr_wq)
809 		return -ENOMEM;
810 
811 	register_netevent_notifier(&nb);
812 	rdma_addr_register_client(&self);
813 
814 	return 0;
815 }
816 
817 void addr_cleanup(void)
818 {
819 	rdma_addr_unregister_client(&self);
820 	unregister_netevent_notifier(&nb);
821 	destroy_workqueue(addr_wq);
822 }
823