1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/module.h> 41 #include <net/arp.h> 42 #include <net/neighbour.h> 43 #include <net/route.h> 44 #include <net/netevent.h> 45 #include <net/addrconf.h> 46 #include <net/ip6_route.h> 47 #include <rdma/ib_addr.h> 48 #include <rdma/ib.h> 49 #include <rdma/rdma_netlink.h> 50 #include <net/netlink.h> 51 52 #include "core_priv.h" 53 54 struct addr_req { 55 struct list_head list; 56 struct sockaddr_storage src_addr; 57 struct sockaddr_storage dst_addr; 58 struct rdma_dev_addr *addr; 59 struct rdma_addr_client *client; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 struct delayed_work work; 65 int status; 66 u32 seq; 67 }; 68 69 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 70 71 static void process_req(struct work_struct *work); 72 73 static DEFINE_MUTEX(lock); 74 static LIST_HEAD(req_list); 75 static DECLARE_DELAYED_WORK(work, process_req); 76 static struct workqueue_struct *addr_wq; 77 78 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 79 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 80 .len = sizeof(struct rdma_nla_ls_gid)}, 81 }; 82 83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 84 { 85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 86 int ret; 87 88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 89 return false; 90 91 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 92 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 93 if (ret) 94 return false; 95 96 return true; 97 } 98 99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 100 { 101 const struct nlattr *head, *curr; 102 union ib_gid gid; 103 struct addr_req *req; 104 int len, rem; 105 int found = 0; 106 107 head = (const struct nlattr *)nlmsg_data(nlh); 108 len = nlmsg_len(nlh); 109 110 nla_for_each_attr(curr, head, len, rem) { 111 if (curr->nla_type == LS_NLA_TYPE_DGID) 112 memcpy(&gid, nla_data(curr), nla_len(curr)); 113 } 114 115 mutex_lock(&lock); 116 list_for_each_entry(req, &req_list, list) { 117 if (nlh->nlmsg_seq != req->seq) 118 continue; 119 /* We set the DGID part, the rest was set earlier */ 120 rdma_addr_set_dgid(req->addr, &gid); 121 req->status = 0; 122 found = 1; 123 break; 124 } 125 mutex_unlock(&lock); 126 127 if (!found) 128 pr_info("Couldn't find request waiting for DGID: %pI6\n", 129 &gid); 130 } 131 132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 133 struct nlmsghdr *nlh, 134 struct netlink_ext_ack *extack) 135 { 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk)) 138 return -EPERM; 139 140 if (ib_nl_is_good_ip_resp(nlh)) 141 ib_nl_process_good_ip_rsep(nlh); 142 143 return skb->len; 144 } 145 146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 147 const void *daddr, 148 u32 seq, u16 family) 149 { 150 struct sk_buff *skb = NULL; 151 struct nlmsghdr *nlh; 152 struct rdma_ls_ip_resolve_header *header; 153 void *data; 154 size_t size; 155 int attrtype; 156 int len; 157 158 if (family == AF_INET) { 159 size = sizeof(struct in_addr); 160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 161 } else { 162 size = sizeof(struct in6_addr); 163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 164 } 165 166 len = nla_total_size(sizeof(size)); 167 len += NLMSG_ALIGN(sizeof(*header)); 168 169 skb = nlmsg_new(len, GFP_KERNEL); 170 if (!skb) 171 return -ENOMEM; 172 173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 175 if (!data) { 176 nlmsg_free(skb); 177 return -ENODATA; 178 } 179 180 /* Construct the family header first */ 181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 182 header->ifindex = dev_addr->bound_dev_if; 183 nla_put(skb, attrtype, size, daddr); 184 185 /* Repair the nlmsg header length */ 186 nlmsg_end(skb, nlh); 187 rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL); 188 189 /* Make the request retry, so when we get the response from userspace 190 * we will have something. 191 */ 192 return -ENODATA; 193 } 194 195 int rdma_addr_size(struct sockaddr *addr) 196 { 197 switch (addr->sa_family) { 198 case AF_INET: 199 return sizeof(struct sockaddr_in); 200 case AF_INET6: 201 return sizeof(struct sockaddr_in6); 202 case AF_IB: 203 return sizeof(struct sockaddr_ib); 204 default: 205 return 0; 206 } 207 } 208 EXPORT_SYMBOL(rdma_addr_size); 209 210 static struct rdma_addr_client self; 211 212 void rdma_addr_register_client(struct rdma_addr_client *client) 213 { 214 atomic_set(&client->refcount, 1); 215 init_completion(&client->comp); 216 } 217 EXPORT_SYMBOL(rdma_addr_register_client); 218 219 static inline void put_client(struct rdma_addr_client *client) 220 { 221 if (atomic_dec_and_test(&client->refcount)) 222 complete(&client->comp); 223 } 224 225 void rdma_addr_unregister_client(struct rdma_addr_client *client) 226 { 227 put_client(client); 228 wait_for_completion(&client->comp); 229 } 230 EXPORT_SYMBOL(rdma_addr_unregister_client); 231 232 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, 233 const unsigned char *dst_dev_addr) 234 { 235 dev_addr->dev_type = dev->type; 236 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 237 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 238 if (dst_dev_addr) 239 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN); 240 dev_addr->bound_dev_if = dev->ifindex; 241 return 0; 242 } 243 EXPORT_SYMBOL(rdma_copy_addr); 244 245 int rdma_translate_ip(const struct sockaddr *addr, 246 struct rdma_dev_addr *dev_addr, 247 u16 *vlan_id) 248 { 249 struct net_device *dev; 250 int ret = -EADDRNOTAVAIL; 251 252 if (dev_addr->bound_dev_if) { 253 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 254 if (!dev) 255 return -ENODEV; 256 ret = rdma_copy_addr(dev_addr, dev, NULL); 257 dev_put(dev); 258 return ret; 259 } 260 261 switch (addr->sa_family) { 262 case AF_INET: 263 dev = ip_dev_find(dev_addr->net, 264 ((const struct sockaddr_in *)addr)->sin_addr.s_addr); 265 266 if (!dev) 267 return ret; 268 269 ret = rdma_copy_addr(dev_addr, dev, NULL); 270 dev_addr->bound_dev_if = dev->ifindex; 271 if (vlan_id) 272 *vlan_id = rdma_vlan_dev_vlan_id(dev); 273 dev_put(dev); 274 break; 275 #if IS_ENABLED(CONFIG_IPV6) 276 case AF_INET6: 277 rcu_read_lock(); 278 for_each_netdev_rcu(dev_addr->net, dev) { 279 if (ipv6_chk_addr(dev_addr->net, 280 &((const struct sockaddr_in6 *)addr)->sin6_addr, 281 dev, 1)) { 282 ret = rdma_copy_addr(dev_addr, dev, NULL); 283 dev_addr->bound_dev_if = dev->ifindex; 284 if (vlan_id) 285 *vlan_id = rdma_vlan_dev_vlan_id(dev); 286 break; 287 } 288 } 289 rcu_read_unlock(); 290 break; 291 #endif 292 } 293 return ret; 294 } 295 EXPORT_SYMBOL(rdma_translate_ip); 296 297 static void set_timeout(struct delayed_work *delayed_work, unsigned long time) 298 { 299 unsigned long delay; 300 301 delay = time - jiffies; 302 if ((long)delay < 0) 303 delay = 0; 304 305 mod_delayed_work(addr_wq, delayed_work, delay); 306 } 307 308 static void queue_req(struct addr_req *req) 309 { 310 struct addr_req *temp_req; 311 312 mutex_lock(&lock); 313 list_for_each_entry_reverse(temp_req, &req_list, list) { 314 if (time_after_eq(req->timeout, temp_req->timeout)) 315 break; 316 } 317 318 list_add(&req->list, &temp_req->list); 319 320 set_timeout(&req->work, req->timeout); 321 mutex_unlock(&lock); 322 } 323 324 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 325 const void *daddr, u32 seq, u16 family) 326 { 327 if (rdma_nl_chk_listeners(RDMA_NL_GROUP_LS)) 328 return -EADDRNOTAVAIL; 329 330 /* We fill in what we can, the response will fill the rest */ 331 rdma_copy_addr(dev_addr, dst->dev, NULL); 332 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 333 } 334 335 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 336 const void *daddr) 337 { 338 struct neighbour *n; 339 int ret; 340 341 n = dst_neigh_lookup(dst, daddr); 342 343 rcu_read_lock(); 344 if (!n || !(n->nud_state & NUD_VALID)) { 345 if (n) 346 neigh_event_send(n, NULL); 347 ret = -ENODATA; 348 } else { 349 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha); 350 } 351 rcu_read_unlock(); 352 353 if (n) 354 neigh_release(n); 355 356 return ret; 357 } 358 359 static bool has_gateway(struct dst_entry *dst, sa_family_t family) 360 { 361 struct rtable *rt; 362 struct rt6_info *rt6; 363 364 if (family == AF_INET) { 365 rt = container_of(dst, struct rtable, dst); 366 return rt->rt_uses_gateway; 367 } 368 369 rt6 = container_of(dst, struct rt6_info, dst); 370 return rt6->rt6i_flags & RTF_GATEWAY; 371 } 372 373 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 374 const struct sockaddr *dst_in, u32 seq) 375 { 376 const struct sockaddr_in *dst_in4 = 377 (const struct sockaddr_in *)dst_in; 378 const struct sockaddr_in6 *dst_in6 = 379 (const struct sockaddr_in6 *)dst_in; 380 const void *daddr = (dst_in->sa_family == AF_INET) ? 381 (const void *)&dst_in4->sin_addr.s_addr : 382 (const void *)&dst_in6->sin6_addr; 383 sa_family_t family = dst_in->sa_family; 384 385 /* Gateway + ARPHRD_INFINIBAND -> IB router */ 386 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND) 387 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family); 388 else 389 return dst_fetch_ha(dst, dev_addr, daddr); 390 } 391 392 static int addr4_resolve(struct sockaddr_in *src_in, 393 const struct sockaddr_in *dst_in, 394 struct rdma_dev_addr *addr, 395 struct rtable **prt) 396 { 397 __be32 src_ip = src_in->sin_addr.s_addr; 398 __be32 dst_ip = dst_in->sin_addr.s_addr; 399 struct rtable *rt; 400 struct flowi4 fl4; 401 int ret; 402 403 memset(&fl4, 0, sizeof(fl4)); 404 fl4.daddr = dst_ip; 405 fl4.saddr = src_ip; 406 fl4.flowi4_oif = addr->bound_dev_if; 407 rt = ip_route_output_key(addr->net, &fl4); 408 ret = PTR_ERR_OR_ZERO(rt); 409 if (ret) 410 return ret; 411 412 src_in->sin_family = AF_INET; 413 src_in->sin_addr.s_addr = fl4.saddr; 414 415 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 416 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 417 * type accordingly. 418 */ 419 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND) 420 addr->network = RDMA_NETWORK_IPV4; 421 422 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 423 424 *prt = rt; 425 return 0; 426 } 427 428 #if IS_ENABLED(CONFIG_IPV6) 429 static int addr6_resolve(struct sockaddr_in6 *src_in, 430 const struct sockaddr_in6 *dst_in, 431 struct rdma_dev_addr *addr, 432 struct dst_entry **pdst) 433 { 434 struct flowi6 fl6; 435 struct dst_entry *dst; 436 struct rt6_info *rt; 437 int ret; 438 439 memset(&fl6, 0, sizeof fl6); 440 fl6.daddr = dst_in->sin6_addr; 441 fl6.saddr = src_in->sin6_addr; 442 fl6.flowi6_oif = addr->bound_dev_if; 443 444 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); 445 if (ret < 0) 446 return ret; 447 448 rt = (struct rt6_info *)dst; 449 if (ipv6_addr_any(&src_in->sin6_addr)) { 450 src_in->sin6_family = AF_INET6; 451 src_in->sin6_addr = fl6.saddr; 452 } 453 454 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 455 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 456 * type accordingly. 457 */ 458 if (rt->rt6i_flags & RTF_GATEWAY && 459 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND) 460 addr->network = RDMA_NETWORK_IPV6; 461 462 addr->hoplimit = ip6_dst_hoplimit(dst); 463 464 *pdst = dst; 465 return 0; 466 } 467 #else 468 static int addr6_resolve(struct sockaddr_in6 *src_in, 469 const struct sockaddr_in6 *dst_in, 470 struct rdma_dev_addr *addr, 471 struct dst_entry **pdst) 472 { 473 return -EADDRNOTAVAIL; 474 } 475 #endif 476 477 static int addr_resolve_neigh(struct dst_entry *dst, 478 const struct sockaddr *dst_in, 479 struct rdma_dev_addr *addr, 480 u32 seq) 481 { 482 if (dst->dev->flags & IFF_LOOPBACK) { 483 int ret; 484 485 ret = rdma_translate_ip(dst_in, addr, NULL); 486 if (!ret) 487 memcpy(addr->dst_dev_addr, addr->src_dev_addr, 488 MAX_ADDR_LEN); 489 490 return ret; 491 } 492 493 /* If the device doesn't do ARP internally */ 494 if (!(dst->dev->flags & IFF_NOARP)) 495 return fetch_ha(dst, addr, dst_in, seq); 496 497 return rdma_copy_addr(addr, dst->dev, NULL); 498 } 499 500 static int addr_resolve(struct sockaddr *src_in, 501 const struct sockaddr *dst_in, 502 struct rdma_dev_addr *addr, 503 bool resolve_neigh, 504 u32 seq) 505 { 506 struct net_device *ndev; 507 struct dst_entry *dst; 508 int ret; 509 510 if (!addr->net) { 511 pr_warn_ratelimited("%s: missing namespace\n", __func__); 512 return -EINVAL; 513 } 514 515 if (src_in->sa_family == AF_INET) { 516 struct rtable *rt = NULL; 517 const struct sockaddr_in *dst_in4 = 518 (const struct sockaddr_in *)dst_in; 519 520 ret = addr4_resolve((struct sockaddr_in *)src_in, 521 dst_in4, addr, &rt); 522 if (ret) 523 return ret; 524 525 if (resolve_neigh) 526 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq); 527 528 if (addr->bound_dev_if) { 529 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 530 } else { 531 ndev = rt->dst.dev; 532 dev_hold(ndev); 533 } 534 535 ip_rt_put(rt); 536 } else { 537 const struct sockaddr_in6 *dst_in6 = 538 (const struct sockaddr_in6 *)dst_in; 539 540 ret = addr6_resolve((struct sockaddr_in6 *)src_in, 541 dst_in6, addr, 542 &dst); 543 if (ret) 544 return ret; 545 546 if (resolve_neigh) 547 ret = addr_resolve_neigh(dst, dst_in, addr, seq); 548 549 if (addr->bound_dev_if) { 550 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 551 } else { 552 ndev = dst->dev; 553 dev_hold(ndev); 554 } 555 556 dst_release(dst); 557 } 558 559 if (ndev->flags & IFF_LOOPBACK) { 560 ret = rdma_translate_ip(dst_in, addr, NULL); 561 /* 562 * Put the loopback device and get the translated 563 * device instead. 564 */ 565 dev_put(ndev); 566 ndev = dev_get_by_index(addr->net, addr->bound_dev_if); 567 } else { 568 addr->bound_dev_if = ndev->ifindex; 569 } 570 dev_put(ndev); 571 572 return ret; 573 } 574 575 static void process_one_req(struct work_struct *_work) 576 { 577 struct addr_req *req; 578 struct sockaddr *src_in, *dst_in; 579 580 mutex_lock(&lock); 581 req = container_of(_work, struct addr_req, work.work); 582 583 if (req->status == -ENODATA) { 584 src_in = (struct sockaddr *)&req->src_addr; 585 dst_in = (struct sockaddr *)&req->dst_addr; 586 req->status = addr_resolve(src_in, dst_in, req->addr, 587 true, req->seq); 588 if (req->status && time_after_eq(jiffies, req->timeout)) { 589 req->status = -ETIMEDOUT; 590 } else if (req->status == -ENODATA) { 591 /* requeue the work for retrying again */ 592 set_timeout(&req->work, req->timeout); 593 mutex_unlock(&lock); 594 return; 595 } 596 } 597 list_del(&req->list); 598 mutex_unlock(&lock); 599 600 req->callback(req->status, (struct sockaddr *)&req->src_addr, 601 req->addr, req->context); 602 put_client(req->client); 603 kfree(req); 604 } 605 606 static void process_req(struct work_struct *work) 607 { 608 struct addr_req *req, *temp_req; 609 struct sockaddr *src_in, *dst_in; 610 struct list_head done_list; 611 612 INIT_LIST_HEAD(&done_list); 613 614 mutex_lock(&lock); 615 list_for_each_entry_safe(req, temp_req, &req_list, list) { 616 if (req->status == -ENODATA) { 617 src_in = (struct sockaddr *) &req->src_addr; 618 dst_in = (struct sockaddr *) &req->dst_addr; 619 req->status = addr_resolve(src_in, dst_in, req->addr, 620 true, req->seq); 621 if (req->status && time_after_eq(jiffies, req->timeout)) 622 req->status = -ETIMEDOUT; 623 else if (req->status == -ENODATA) { 624 set_timeout(&req->work, req->timeout); 625 continue; 626 } 627 } 628 list_move_tail(&req->list, &done_list); 629 } 630 631 mutex_unlock(&lock); 632 633 list_for_each_entry_safe(req, temp_req, &done_list, list) { 634 list_del(&req->list); 635 /* It is safe to cancel other work items from this work item 636 * because at a time there can be only one work item running 637 * with this single threaded work queue. 638 */ 639 cancel_delayed_work(&req->work); 640 req->callback(req->status, (struct sockaddr *) &req->src_addr, 641 req->addr, req->context); 642 put_client(req->client); 643 kfree(req); 644 } 645 } 646 647 int rdma_resolve_ip(struct rdma_addr_client *client, 648 struct sockaddr *src_addr, struct sockaddr *dst_addr, 649 struct rdma_dev_addr *addr, int timeout_ms, 650 void (*callback)(int status, struct sockaddr *src_addr, 651 struct rdma_dev_addr *addr, void *context), 652 void *context) 653 { 654 struct sockaddr *src_in, *dst_in; 655 struct addr_req *req; 656 int ret = 0; 657 658 req = kzalloc(sizeof *req, GFP_KERNEL); 659 if (!req) 660 return -ENOMEM; 661 662 src_in = (struct sockaddr *) &req->src_addr; 663 dst_in = (struct sockaddr *) &req->dst_addr; 664 665 if (src_addr) { 666 if (src_addr->sa_family != dst_addr->sa_family) { 667 ret = -EINVAL; 668 goto err; 669 } 670 671 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 672 } else { 673 src_in->sa_family = dst_addr->sa_family; 674 } 675 676 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 677 req->addr = addr; 678 req->callback = callback; 679 req->context = context; 680 req->client = client; 681 atomic_inc(&client->refcount); 682 INIT_DELAYED_WORK(&req->work, process_one_req); 683 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 684 685 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq); 686 switch (req->status) { 687 case 0: 688 req->timeout = jiffies; 689 queue_req(req); 690 break; 691 case -ENODATA: 692 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 693 queue_req(req); 694 break; 695 default: 696 ret = req->status; 697 atomic_dec(&client->refcount); 698 goto err; 699 } 700 return ret; 701 err: 702 kfree(req); 703 return ret; 704 } 705 EXPORT_SYMBOL(rdma_resolve_ip); 706 707 int rdma_resolve_ip_route(struct sockaddr *src_addr, 708 const struct sockaddr *dst_addr, 709 struct rdma_dev_addr *addr) 710 { 711 struct sockaddr_storage ssrc_addr = {}; 712 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; 713 714 if (src_addr) { 715 if (src_addr->sa_family != dst_addr->sa_family) 716 return -EINVAL; 717 718 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 719 } else { 720 src_in->sa_family = dst_addr->sa_family; 721 } 722 723 return addr_resolve(src_in, dst_addr, addr, false, 0); 724 } 725 EXPORT_SYMBOL(rdma_resolve_ip_route); 726 727 void rdma_addr_cancel(struct rdma_dev_addr *addr) 728 { 729 struct addr_req *req, *temp_req; 730 731 mutex_lock(&lock); 732 list_for_each_entry_safe(req, temp_req, &req_list, list) { 733 if (req->addr == addr) { 734 req->status = -ECANCELED; 735 req->timeout = jiffies; 736 list_move(&req->list, &req_list); 737 set_timeout(&req->work, req->timeout); 738 break; 739 } 740 } 741 mutex_unlock(&lock); 742 } 743 EXPORT_SYMBOL(rdma_addr_cancel); 744 745 struct resolve_cb_context { 746 struct rdma_dev_addr *addr; 747 struct completion comp; 748 int status; 749 }; 750 751 static void resolve_cb(int status, struct sockaddr *src_addr, 752 struct rdma_dev_addr *addr, void *context) 753 { 754 if (!status) 755 memcpy(((struct resolve_cb_context *)context)->addr, 756 addr, sizeof(struct rdma_dev_addr)); 757 ((struct resolve_cb_context *)context)->status = status; 758 complete(&((struct resolve_cb_context *)context)->comp); 759 } 760 761 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 762 const union ib_gid *dgid, 763 u8 *dmac, u16 *vlan_id, int *if_index, 764 int *hoplimit) 765 { 766 int ret = 0; 767 struct rdma_dev_addr dev_addr; 768 struct resolve_cb_context ctx; 769 struct net_device *dev; 770 771 union { 772 struct sockaddr _sockaddr; 773 struct sockaddr_in _sockaddr_in; 774 struct sockaddr_in6 _sockaddr_in6; 775 } sgid_addr, dgid_addr; 776 777 778 rdma_gid2ip(&sgid_addr._sockaddr, sgid); 779 rdma_gid2ip(&dgid_addr._sockaddr, dgid); 780 781 memset(&dev_addr, 0, sizeof(dev_addr)); 782 if (if_index) 783 dev_addr.bound_dev_if = *if_index; 784 dev_addr.net = &init_net; 785 786 ctx.addr = &dev_addr; 787 init_completion(&ctx.comp); 788 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, 789 &dev_addr, 1000, resolve_cb, &ctx); 790 if (ret) 791 return ret; 792 793 wait_for_completion(&ctx.comp); 794 795 ret = ctx.status; 796 if (ret) 797 return ret; 798 799 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 800 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if); 801 if (!dev) 802 return -ENODEV; 803 if (if_index) 804 *if_index = dev_addr.bound_dev_if; 805 if (vlan_id) 806 *vlan_id = rdma_vlan_dev_vlan_id(dev); 807 if (hoplimit) 808 *hoplimit = dev_addr.hoplimit; 809 dev_put(dev); 810 return ret; 811 } 812 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh); 813 814 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id) 815 { 816 int ret = 0; 817 struct rdma_dev_addr dev_addr; 818 union { 819 struct sockaddr _sockaddr; 820 struct sockaddr_in _sockaddr_in; 821 struct sockaddr_in6 _sockaddr_in6; 822 } gid_addr; 823 824 rdma_gid2ip(&gid_addr._sockaddr, sgid); 825 826 memset(&dev_addr, 0, sizeof(dev_addr)); 827 dev_addr.net = &init_net; 828 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id); 829 if (ret) 830 return ret; 831 832 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN); 833 return ret; 834 } 835 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid); 836 837 static int netevent_callback(struct notifier_block *self, unsigned long event, 838 void *ctx) 839 { 840 if (event == NETEVENT_NEIGH_UPDATE) { 841 struct neighbour *neigh = ctx; 842 843 if (neigh->nud_state & NUD_VALID) 844 set_timeout(&work, jiffies); 845 } 846 return 0; 847 } 848 849 static struct notifier_block nb = { 850 .notifier_call = netevent_callback 851 }; 852 853 int addr_init(void) 854 { 855 addr_wq = alloc_ordered_workqueue("ib_addr", WQ_MEM_RECLAIM); 856 if (!addr_wq) 857 return -ENOMEM; 858 859 register_netevent_notifier(&nb); 860 rdma_addr_register_client(&self); 861 862 return 0; 863 } 864 865 void addr_cleanup(void) 866 { 867 rdma_addr_unregister_client(&self); 868 unregister_netevent_notifier(&nb); 869 destroy_workqueue(addr_wq); 870 } 871