1 /* 2 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. 5 * Copyright (c) 2005 Intel Corporation. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/mutex.h> 37 #include <linux/inetdevice.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/module.h> 41 #include <net/arp.h> 42 #include <net/neighbour.h> 43 #include <net/route.h> 44 #include <net/netevent.h> 45 #include <net/addrconf.h> 46 #include <net/ip6_route.h> 47 #include <rdma/ib_addr.h> 48 #include <rdma/ib.h> 49 #include <rdma/rdma_netlink.h> 50 #include <net/netlink.h> 51 52 #include "core_priv.h" 53 54 struct addr_req { 55 struct list_head list; 56 struct sockaddr_storage src_addr; 57 struct sockaddr_storage dst_addr; 58 struct rdma_dev_addr *addr; 59 struct rdma_addr_client *client; 60 void *context; 61 void (*callback)(int status, struct sockaddr *src_addr, 62 struct rdma_dev_addr *addr, void *context); 63 unsigned long timeout; 64 int status; 65 u32 seq; 66 }; 67 68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0); 69 70 static void process_req(struct work_struct *work); 71 72 static DEFINE_MUTEX(lock); 73 static LIST_HEAD(req_list); 74 static DECLARE_DELAYED_WORK(work, process_req); 75 static struct workqueue_struct *addr_wq; 76 77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = { 78 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY, 79 .len = sizeof(struct rdma_nla_ls_gid)}, 80 }; 81 82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh) 83 { 84 struct nlattr *tb[LS_NLA_TYPE_MAX] = {}; 85 int ret; 86 87 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR) 88 return false; 89 90 ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh), 91 nlmsg_len(nlh), ib_nl_addr_policy, NULL); 92 if (ret) 93 return false; 94 95 return true; 96 } 97 98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh) 99 { 100 const struct nlattr *head, *curr; 101 union ib_gid gid; 102 struct addr_req *req; 103 int len, rem; 104 int found = 0; 105 106 head = (const struct nlattr *)nlmsg_data(nlh); 107 len = nlmsg_len(nlh); 108 109 nla_for_each_attr(curr, head, len, rem) { 110 if (curr->nla_type == LS_NLA_TYPE_DGID) 111 memcpy(&gid, nla_data(curr), nla_len(curr)); 112 } 113 114 mutex_lock(&lock); 115 list_for_each_entry(req, &req_list, list) { 116 if (nlh->nlmsg_seq != req->seq) 117 continue; 118 /* We set the DGID part, the rest was set earlier */ 119 rdma_addr_set_dgid(req->addr, &gid); 120 req->status = 0; 121 found = 1; 122 break; 123 } 124 mutex_unlock(&lock); 125 126 if (!found) 127 pr_info("Couldn't find request waiting for DGID: %pI6\n", 128 &gid); 129 } 130 131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb, 132 struct netlink_callback *cb) 133 { 134 const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh; 135 136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) || 137 !(NETLINK_CB(skb).sk) || 138 !netlink_capable(skb, CAP_NET_ADMIN)) 139 return -EPERM; 140 141 if (ib_nl_is_good_ip_resp(nlh)) 142 ib_nl_process_good_ip_rsep(nlh); 143 144 return skb->len; 145 } 146 147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr, 148 const void *daddr, 149 u32 seq, u16 family) 150 { 151 struct sk_buff *skb = NULL; 152 struct nlmsghdr *nlh; 153 struct rdma_ls_ip_resolve_header *header; 154 void *data; 155 size_t size; 156 int attrtype; 157 int len; 158 159 if (family == AF_INET) { 160 size = sizeof(struct in_addr); 161 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4; 162 } else { 163 size = sizeof(struct in6_addr); 164 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6; 165 } 166 167 len = nla_total_size(sizeof(size)); 168 len += NLMSG_ALIGN(sizeof(*header)); 169 170 skb = nlmsg_new(len, GFP_KERNEL); 171 if (!skb) 172 return -ENOMEM; 173 174 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS, 175 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST); 176 if (!data) { 177 nlmsg_free(skb); 178 return -ENODATA; 179 } 180 181 /* Construct the family header first */ 182 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header))); 183 header->ifindex = dev_addr->bound_dev_if; 184 nla_put(skb, attrtype, size, daddr); 185 186 /* Repair the nlmsg header length */ 187 nlmsg_end(skb, nlh); 188 ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL); 189 190 /* Make the request retry, so when we get the response from userspace 191 * we will have something. 192 */ 193 return -ENODATA; 194 } 195 196 int rdma_addr_size(struct sockaddr *addr) 197 { 198 switch (addr->sa_family) { 199 case AF_INET: 200 return sizeof(struct sockaddr_in); 201 case AF_INET6: 202 return sizeof(struct sockaddr_in6); 203 case AF_IB: 204 return sizeof(struct sockaddr_ib); 205 default: 206 return 0; 207 } 208 } 209 EXPORT_SYMBOL(rdma_addr_size); 210 211 static struct rdma_addr_client self; 212 213 void rdma_addr_register_client(struct rdma_addr_client *client) 214 { 215 atomic_set(&client->refcount, 1); 216 init_completion(&client->comp); 217 } 218 EXPORT_SYMBOL(rdma_addr_register_client); 219 220 static inline void put_client(struct rdma_addr_client *client) 221 { 222 if (atomic_dec_and_test(&client->refcount)) 223 complete(&client->comp); 224 } 225 226 void rdma_addr_unregister_client(struct rdma_addr_client *client) 227 { 228 put_client(client); 229 wait_for_completion(&client->comp); 230 } 231 EXPORT_SYMBOL(rdma_addr_unregister_client); 232 233 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, 234 const unsigned char *dst_dev_addr) 235 { 236 dev_addr->dev_type = dev->type; 237 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN); 238 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN); 239 if (dst_dev_addr) 240 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN); 241 dev_addr->bound_dev_if = dev->ifindex; 242 return 0; 243 } 244 EXPORT_SYMBOL(rdma_copy_addr); 245 246 int rdma_translate_ip(const struct sockaddr *addr, 247 struct rdma_dev_addr *dev_addr, 248 u16 *vlan_id) 249 { 250 struct net_device *dev; 251 int ret = -EADDRNOTAVAIL; 252 253 if (dev_addr->bound_dev_if) { 254 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 255 if (!dev) 256 return -ENODEV; 257 ret = rdma_copy_addr(dev_addr, dev, NULL); 258 dev_put(dev); 259 return ret; 260 } 261 262 switch (addr->sa_family) { 263 case AF_INET: 264 dev = ip_dev_find(dev_addr->net, 265 ((const struct sockaddr_in *)addr)->sin_addr.s_addr); 266 267 if (!dev) 268 return ret; 269 270 ret = rdma_copy_addr(dev_addr, dev, NULL); 271 if (vlan_id) 272 *vlan_id = rdma_vlan_dev_vlan_id(dev); 273 dev_put(dev); 274 break; 275 #if IS_ENABLED(CONFIG_IPV6) 276 case AF_INET6: 277 rcu_read_lock(); 278 for_each_netdev_rcu(dev_addr->net, dev) { 279 if (ipv6_chk_addr(dev_addr->net, 280 &((const struct sockaddr_in6 *)addr)->sin6_addr, 281 dev, 1)) { 282 ret = rdma_copy_addr(dev_addr, dev, NULL); 283 if (vlan_id) 284 *vlan_id = rdma_vlan_dev_vlan_id(dev); 285 break; 286 } 287 } 288 rcu_read_unlock(); 289 break; 290 #endif 291 } 292 return ret; 293 } 294 EXPORT_SYMBOL(rdma_translate_ip); 295 296 static void set_timeout(unsigned long time) 297 { 298 unsigned long delay; 299 300 delay = time - jiffies; 301 if ((long)delay < 0) 302 delay = 0; 303 304 mod_delayed_work(addr_wq, &work, delay); 305 } 306 307 static void queue_req(struct addr_req *req) 308 { 309 struct addr_req *temp_req; 310 311 mutex_lock(&lock); 312 list_for_each_entry_reverse(temp_req, &req_list, list) { 313 if (time_after_eq(req->timeout, temp_req->timeout)) 314 break; 315 } 316 317 list_add(&req->list, &temp_req->list); 318 319 if (req_list.next == &req->list) 320 set_timeout(req->timeout); 321 mutex_unlock(&lock); 322 } 323 324 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 325 const void *daddr, u32 seq, u16 family) 326 { 327 if (ibnl_chk_listeners(RDMA_NL_GROUP_LS)) 328 return -EADDRNOTAVAIL; 329 330 /* We fill in what we can, the response will fill the rest */ 331 rdma_copy_addr(dev_addr, dst->dev, NULL); 332 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family); 333 } 334 335 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 336 const void *daddr) 337 { 338 struct neighbour *n; 339 int ret; 340 341 n = dst_neigh_lookup(dst, daddr); 342 343 rcu_read_lock(); 344 if (!n || !(n->nud_state & NUD_VALID)) { 345 if (n) 346 neigh_event_send(n, NULL); 347 ret = -ENODATA; 348 } else { 349 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha); 350 } 351 rcu_read_unlock(); 352 353 if (n) 354 neigh_release(n); 355 356 return ret; 357 } 358 359 static bool has_gateway(struct dst_entry *dst, sa_family_t family) 360 { 361 struct rtable *rt; 362 struct rt6_info *rt6; 363 364 if (family == AF_INET) { 365 rt = container_of(dst, struct rtable, dst); 366 return rt->rt_uses_gateway; 367 } 368 369 rt6 = container_of(dst, struct rt6_info, dst); 370 return rt6->rt6i_flags & RTF_GATEWAY; 371 } 372 373 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, 374 const struct sockaddr *dst_in, u32 seq) 375 { 376 const struct sockaddr_in *dst_in4 = 377 (const struct sockaddr_in *)dst_in; 378 const struct sockaddr_in6 *dst_in6 = 379 (const struct sockaddr_in6 *)dst_in; 380 const void *daddr = (dst_in->sa_family == AF_INET) ? 381 (const void *)&dst_in4->sin_addr.s_addr : 382 (const void *)&dst_in6->sin6_addr; 383 sa_family_t family = dst_in->sa_family; 384 385 /* Gateway + ARPHRD_INFINIBAND -> IB router */ 386 if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND) 387 return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family); 388 else 389 return dst_fetch_ha(dst, dev_addr, daddr); 390 } 391 392 static int addr4_resolve(struct sockaddr_in *src_in, 393 const struct sockaddr_in *dst_in, 394 struct rdma_dev_addr *addr, 395 struct rtable **prt) 396 { 397 __be32 src_ip = src_in->sin_addr.s_addr; 398 __be32 dst_ip = dst_in->sin_addr.s_addr; 399 struct rtable *rt; 400 struct flowi4 fl4; 401 int ret; 402 403 memset(&fl4, 0, sizeof(fl4)); 404 fl4.daddr = dst_ip; 405 fl4.saddr = src_ip; 406 fl4.flowi4_oif = addr->bound_dev_if; 407 rt = ip_route_output_key(addr->net, &fl4); 408 if (IS_ERR(rt)) { 409 ret = PTR_ERR(rt); 410 goto out; 411 } 412 src_in->sin_family = AF_INET; 413 src_in->sin_addr.s_addr = fl4.saddr; 414 415 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 416 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 417 * type accordingly. 418 */ 419 if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND) 420 addr->network = RDMA_NETWORK_IPV4; 421 422 addr->hoplimit = ip4_dst_hoplimit(&rt->dst); 423 424 *prt = rt; 425 return 0; 426 out: 427 return ret; 428 } 429 430 #if IS_ENABLED(CONFIG_IPV6) 431 static int addr6_resolve(struct sockaddr_in6 *src_in, 432 const struct sockaddr_in6 *dst_in, 433 struct rdma_dev_addr *addr, 434 struct dst_entry **pdst) 435 { 436 struct flowi6 fl6; 437 struct dst_entry *dst; 438 struct rt6_info *rt; 439 int ret; 440 441 memset(&fl6, 0, sizeof fl6); 442 fl6.daddr = dst_in->sin6_addr; 443 fl6.saddr = src_in->sin6_addr; 444 fl6.flowi6_oif = addr->bound_dev_if; 445 446 ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6); 447 if (ret < 0) 448 return ret; 449 450 rt = (struct rt6_info *)dst; 451 if (ipv6_addr_any(&src_in->sin6_addr)) { 452 src_in->sin6_family = AF_INET6; 453 src_in->sin6_addr = fl6.saddr; 454 } 455 456 /* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're 457 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network 458 * type accordingly. 459 */ 460 if (rt->rt6i_flags & RTF_GATEWAY && 461 ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND) 462 addr->network = RDMA_NETWORK_IPV6; 463 464 addr->hoplimit = ip6_dst_hoplimit(dst); 465 466 *pdst = dst; 467 return 0; 468 } 469 #else 470 static int addr6_resolve(struct sockaddr_in6 *src_in, 471 const struct sockaddr_in6 *dst_in, 472 struct rdma_dev_addr *addr, 473 struct dst_entry **pdst) 474 { 475 return -EADDRNOTAVAIL; 476 } 477 #endif 478 479 static int addr_resolve_neigh(struct dst_entry *dst, 480 const struct sockaddr *dst_in, 481 struct rdma_dev_addr *addr, 482 u32 seq) 483 { 484 if (dst->dev->flags & IFF_LOOPBACK) { 485 int ret; 486 487 ret = rdma_translate_ip(dst_in, addr, NULL); 488 if (!ret) 489 memcpy(addr->dst_dev_addr, addr->src_dev_addr, 490 MAX_ADDR_LEN); 491 492 return ret; 493 } 494 495 /* If the device doesn't do ARP internally */ 496 if (!(dst->dev->flags & IFF_NOARP)) 497 return fetch_ha(dst, addr, dst_in, seq); 498 499 return rdma_copy_addr(addr, dst->dev, NULL); 500 } 501 502 static int addr_resolve(struct sockaddr *src_in, 503 const struct sockaddr *dst_in, 504 struct rdma_dev_addr *addr, 505 bool resolve_neigh, 506 u32 seq) 507 { 508 struct net_device *ndev; 509 struct dst_entry *dst; 510 int ret; 511 512 if (src_in->sa_family == AF_INET) { 513 struct rtable *rt = NULL; 514 const struct sockaddr_in *dst_in4 = 515 (const struct sockaddr_in *)dst_in; 516 517 ret = addr4_resolve((struct sockaddr_in *)src_in, 518 dst_in4, addr, &rt); 519 if (ret) 520 return ret; 521 522 if (resolve_neigh) 523 ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq); 524 525 ndev = rt->dst.dev; 526 dev_hold(ndev); 527 528 ip_rt_put(rt); 529 } else { 530 const struct sockaddr_in6 *dst_in6 = 531 (const struct sockaddr_in6 *)dst_in; 532 533 ret = addr6_resolve((struct sockaddr_in6 *)src_in, 534 dst_in6, addr, 535 &dst); 536 if (ret) 537 return ret; 538 539 if (resolve_neigh) 540 ret = addr_resolve_neigh(dst, dst_in, addr, seq); 541 542 ndev = dst->dev; 543 dev_hold(ndev); 544 545 dst_release(dst); 546 } 547 548 addr->bound_dev_if = ndev->ifindex; 549 addr->net = dev_net(ndev); 550 dev_put(ndev); 551 552 return ret; 553 } 554 555 static void process_req(struct work_struct *work) 556 { 557 struct addr_req *req, *temp_req; 558 struct sockaddr *src_in, *dst_in; 559 struct list_head done_list; 560 561 INIT_LIST_HEAD(&done_list); 562 563 mutex_lock(&lock); 564 list_for_each_entry_safe(req, temp_req, &req_list, list) { 565 if (req->status == -ENODATA) { 566 src_in = (struct sockaddr *) &req->src_addr; 567 dst_in = (struct sockaddr *) &req->dst_addr; 568 req->status = addr_resolve(src_in, dst_in, req->addr, 569 true, req->seq); 570 if (req->status && time_after_eq(jiffies, req->timeout)) 571 req->status = -ETIMEDOUT; 572 else if (req->status == -ENODATA) 573 continue; 574 } 575 list_move_tail(&req->list, &done_list); 576 } 577 578 if (!list_empty(&req_list)) { 579 req = list_entry(req_list.next, struct addr_req, list); 580 set_timeout(req->timeout); 581 } 582 mutex_unlock(&lock); 583 584 list_for_each_entry_safe(req, temp_req, &done_list, list) { 585 list_del(&req->list); 586 req->callback(req->status, (struct sockaddr *) &req->src_addr, 587 req->addr, req->context); 588 put_client(req->client); 589 kfree(req); 590 } 591 } 592 593 int rdma_resolve_ip(struct rdma_addr_client *client, 594 struct sockaddr *src_addr, struct sockaddr *dst_addr, 595 struct rdma_dev_addr *addr, int timeout_ms, 596 void (*callback)(int status, struct sockaddr *src_addr, 597 struct rdma_dev_addr *addr, void *context), 598 void *context) 599 { 600 struct sockaddr *src_in, *dst_in; 601 struct addr_req *req; 602 int ret = 0; 603 604 req = kzalloc(sizeof *req, GFP_KERNEL); 605 if (!req) 606 return -ENOMEM; 607 608 src_in = (struct sockaddr *) &req->src_addr; 609 dst_in = (struct sockaddr *) &req->dst_addr; 610 611 if (src_addr) { 612 if (src_addr->sa_family != dst_addr->sa_family) { 613 ret = -EINVAL; 614 goto err; 615 } 616 617 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 618 } else { 619 src_in->sa_family = dst_addr->sa_family; 620 } 621 622 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); 623 req->addr = addr; 624 req->callback = callback; 625 req->context = context; 626 req->client = client; 627 atomic_inc(&client->refcount); 628 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq); 629 630 req->status = addr_resolve(src_in, dst_in, addr, true, req->seq); 631 switch (req->status) { 632 case 0: 633 req->timeout = jiffies; 634 queue_req(req); 635 break; 636 case -ENODATA: 637 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; 638 queue_req(req); 639 break; 640 default: 641 ret = req->status; 642 atomic_dec(&client->refcount); 643 goto err; 644 } 645 return ret; 646 err: 647 kfree(req); 648 return ret; 649 } 650 EXPORT_SYMBOL(rdma_resolve_ip); 651 652 int rdma_resolve_ip_route(struct sockaddr *src_addr, 653 const struct sockaddr *dst_addr, 654 struct rdma_dev_addr *addr) 655 { 656 struct sockaddr_storage ssrc_addr = {}; 657 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; 658 659 if (src_addr) { 660 if (src_addr->sa_family != dst_addr->sa_family) 661 return -EINVAL; 662 663 memcpy(src_in, src_addr, rdma_addr_size(src_addr)); 664 } else { 665 src_in->sa_family = dst_addr->sa_family; 666 } 667 668 return addr_resolve(src_in, dst_addr, addr, false, 0); 669 } 670 EXPORT_SYMBOL(rdma_resolve_ip_route); 671 672 void rdma_addr_cancel(struct rdma_dev_addr *addr) 673 { 674 struct addr_req *req, *temp_req; 675 676 mutex_lock(&lock); 677 list_for_each_entry_safe(req, temp_req, &req_list, list) { 678 if (req->addr == addr) { 679 req->status = -ECANCELED; 680 req->timeout = jiffies; 681 list_move(&req->list, &req_list); 682 set_timeout(req->timeout); 683 break; 684 } 685 } 686 mutex_unlock(&lock); 687 } 688 EXPORT_SYMBOL(rdma_addr_cancel); 689 690 struct resolve_cb_context { 691 struct rdma_dev_addr *addr; 692 struct completion comp; 693 int status; 694 }; 695 696 static void resolve_cb(int status, struct sockaddr *src_addr, 697 struct rdma_dev_addr *addr, void *context) 698 { 699 if (!status) 700 memcpy(((struct resolve_cb_context *)context)->addr, 701 addr, sizeof(struct rdma_dev_addr)); 702 ((struct resolve_cb_context *)context)->status = status; 703 complete(&((struct resolve_cb_context *)context)->comp); 704 } 705 706 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, 707 const union ib_gid *dgid, 708 u8 *dmac, u16 *vlan_id, int *if_index, 709 int *hoplimit) 710 { 711 int ret = 0; 712 struct rdma_dev_addr dev_addr; 713 struct resolve_cb_context ctx; 714 struct net_device *dev; 715 716 union { 717 struct sockaddr _sockaddr; 718 struct sockaddr_in _sockaddr_in; 719 struct sockaddr_in6 _sockaddr_in6; 720 } sgid_addr, dgid_addr; 721 722 723 rdma_gid2ip(&sgid_addr._sockaddr, sgid); 724 rdma_gid2ip(&dgid_addr._sockaddr, dgid); 725 726 memset(&dev_addr, 0, sizeof(dev_addr)); 727 if (if_index) 728 dev_addr.bound_dev_if = *if_index; 729 dev_addr.net = &init_net; 730 731 ctx.addr = &dev_addr; 732 init_completion(&ctx.comp); 733 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, 734 &dev_addr, 1000, resolve_cb, &ctx); 735 if (ret) 736 return ret; 737 738 wait_for_completion(&ctx.comp); 739 740 ret = ctx.status; 741 if (ret) 742 return ret; 743 744 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); 745 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if); 746 if (!dev) 747 return -ENODEV; 748 if (if_index) 749 *if_index = dev_addr.bound_dev_if; 750 if (vlan_id) 751 *vlan_id = rdma_vlan_dev_vlan_id(dev); 752 if (hoplimit) 753 *hoplimit = dev_addr.hoplimit; 754 dev_put(dev); 755 return ret; 756 } 757 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh); 758 759 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id) 760 { 761 int ret = 0; 762 struct rdma_dev_addr dev_addr; 763 union { 764 struct sockaddr _sockaddr; 765 struct sockaddr_in _sockaddr_in; 766 struct sockaddr_in6 _sockaddr_in6; 767 } gid_addr; 768 769 rdma_gid2ip(&gid_addr._sockaddr, sgid); 770 771 memset(&dev_addr, 0, sizeof(dev_addr)); 772 dev_addr.net = &init_net; 773 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id); 774 if (ret) 775 return ret; 776 777 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN); 778 return ret; 779 } 780 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid); 781 782 static int netevent_callback(struct notifier_block *self, unsigned long event, 783 void *ctx) 784 { 785 if (event == NETEVENT_NEIGH_UPDATE) { 786 struct neighbour *neigh = ctx; 787 788 if (neigh->nud_state & NUD_VALID) { 789 set_timeout(jiffies); 790 } 791 } 792 return 0; 793 } 794 795 static struct notifier_block nb = { 796 .notifier_call = netevent_callback 797 }; 798 799 int addr_init(void) 800 { 801 addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0); 802 if (!addr_wq) 803 return -ENOMEM; 804 805 register_netevent_notifier(&nb); 806 rdma_addr_register_client(&self); 807 808 return 0; 809 } 810 811 void addr_cleanup(void) 812 { 813 rdma_addr_unregister_client(&self); 814 unregister_netevent_notifier(&nb); 815 destroy_workqueue(addr_wq); 816 } 817