xref: /openbmc/linux/drivers/infiniband/core/addr.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_sa.h>
49 #include <rdma/ib.h>
50 #include <rdma/rdma_netlink.h>
51 #include <net/netlink.h>
52 
53 #include "core_priv.h"
54 
55 struct addr_req {
56 	struct list_head list;
57 	struct sockaddr_storage src_addr;
58 	struct sockaddr_storage dst_addr;
59 	struct rdma_dev_addr *addr;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	struct delayed_work work;
65 	bool resolve_by_gid_attr;	/* Consider gid attr in resolve phase */
66 	int status;
67 	u32 seq;
68 };
69 
70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
71 
72 static DEFINE_SPINLOCK(lock);
73 static LIST_HEAD(req_list);
74 static struct workqueue_struct *addr_wq;
75 
76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
77 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
78 		.len = sizeof(struct rdma_nla_ls_gid)},
79 };
80 
81 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
82 {
83 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
84 	int ret;
85 
86 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
87 		return false;
88 
89 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
90 			nlmsg_len(nlh), ib_nl_addr_policy, NULL);
91 	if (ret)
92 		return false;
93 
94 	return true;
95 }
96 
97 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
98 {
99 	const struct nlattr *head, *curr;
100 	union ib_gid gid;
101 	struct addr_req *req;
102 	int len, rem;
103 	int found = 0;
104 
105 	head = (const struct nlattr *)nlmsg_data(nlh);
106 	len = nlmsg_len(nlh);
107 
108 	nla_for_each_attr(curr, head, len, rem) {
109 		if (curr->nla_type == LS_NLA_TYPE_DGID)
110 			memcpy(&gid, nla_data(curr), nla_len(curr));
111 	}
112 
113 	spin_lock_bh(&lock);
114 	list_for_each_entry(req, &req_list, list) {
115 		if (nlh->nlmsg_seq != req->seq)
116 			continue;
117 		/* We set the DGID part, the rest was set earlier */
118 		rdma_addr_set_dgid(req->addr, &gid);
119 		req->status = 0;
120 		found = 1;
121 		break;
122 	}
123 	spin_unlock_bh(&lock);
124 
125 	if (!found)
126 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
127 			&gid);
128 }
129 
130 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
131 			     struct nlmsghdr *nlh,
132 			     struct netlink_ext_ack *extack)
133 {
134 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
135 	    !(NETLINK_CB(skb).sk))
136 		return -EPERM;
137 
138 	if (ib_nl_is_good_ip_resp(nlh))
139 		ib_nl_process_good_ip_rsep(nlh);
140 
141 	return skb->len;
142 }
143 
144 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
145 			     const void *daddr,
146 			     u32 seq, u16 family)
147 {
148 	struct sk_buff *skb = NULL;
149 	struct nlmsghdr *nlh;
150 	struct rdma_ls_ip_resolve_header *header;
151 	void *data;
152 	size_t size;
153 	int attrtype;
154 	int len;
155 
156 	if (family == AF_INET) {
157 		size = sizeof(struct in_addr);
158 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
159 	} else {
160 		size = sizeof(struct in6_addr);
161 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
162 	}
163 
164 	len = nla_total_size(sizeof(size));
165 	len += NLMSG_ALIGN(sizeof(*header));
166 
167 	skb = nlmsg_new(len, GFP_KERNEL);
168 	if (!skb)
169 		return -ENOMEM;
170 
171 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
172 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
173 	if (!data) {
174 		nlmsg_free(skb);
175 		return -ENODATA;
176 	}
177 
178 	/* Construct the family header first */
179 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
180 	header->ifindex = dev_addr->bound_dev_if;
181 	nla_put(skb, attrtype, size, daddr);
182 
183 	/* Repair the nlmsg header length */
184 	nlmsg_end(skb, nlh);
185 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
186 
187 	/* Make the request retry, so when we get the response from userspace
188 	 * we will have something.
189 	 */
190 	return -ENODATA;
191 }
192 
193 int rdma_addr_size(const struct sockaddr *addr)
194 {
195 	switch (addr->sa_family) {
196 	case AF_INET:
197 		return sizeof(struct sockaddr_in);
198 	case AF_INET6:
199 		return sizeof(struct sockaddr_in6);
200 	case AF_IB:
201 		return sizeof(struct sockaddr_ib);
202 	default:
203 		return 0;
204 	}
205 }
206 EXPORT_SYMBOL(rdma_addr_size);
207 
208 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
209 {
210 	int ret = rdma_addr_size((struct sockaddr *) addr);
211 
212 	return ret <= sizeof(*addr) ? ret : 0;
213 }
214 EXPORT_SYMBOL(rdma_addr_size_in6);
215 
216 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
217 {
218 	int ret = rdma_addr_size((struct sockaddr *) addr);
219 
220 	return ret <= sizeof(*addr) ? ret : 0;
221 }
222 EXPORT_SYMBOL(rdma_addr_size_kss);
223 
224 /**
225  * rdma_copy_src_l2_addr - Copy netdevice source addresses
226  * @dev_addr:	Destination address pointer where to copy the addresses
227  * @dev:	Netdevice whose source addresses to copy
228  *
229  * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
230  * This includes unicast address, broadcast address, device type and
231  * interface index.
232  */
233 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
234 			   const struct net_device *dev)
235 {
236 	dev_addr->dev_type = dev->type;
237 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
238 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
239 	dev_addr->bound_dev_if = dev->ifindex;
240 }
241 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
242 
243 static struct net_device *
244 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
245 {
246 	struct net_device *dev = NULL;
247 	int ret = -EADDRNOTAVAIL;
248 
249 	switch (src_in->sa_family) {
250 	case AF_INET:
251 		dev = __ip_dev_find(net,
252 				    ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
253 				    false);
254 		if (dev)
255 			ret = 0;
256 		break;
257 #if IS_ENABLED(CONFIG_IPV6)
258 	case AF_INET6:
259 		for_each_netdev_rcu(net, dev) {
260 			if (ipv6_chk_addr(net,
261 					  &((const struct sockaddr_in6 *)src_in)->sin6_addr,
262 					  dev, 1)) {
263 				ret = 0;
264 				break;
265 			}
266 		}
267 		break;
268 #endif
269 	}
270 	return ret ? ERR_PTR(ret) : dev;
271 }
272 
273 int rdma_translate_ip(const struct sockaddr *addr,
274 		      struct rdma_dev_addr *dev_addr)
275 {
276 	struct net_device *dev;
277 
278 	if (dev_addr->bound_dev_if) {
279 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
280 		if (!dev)
281 			return -ENODEV;
282 		rdma_copy_src_l2_addr(dev_addr, dev);
283 		dev_put(dev);
284 		return 0;
285 	}
286 
287 	rcu_read_lock();
288 	dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
289 	if (!IS_ERR(dev))
290 		rdma_copy_src_l2_addr(dev_addr, dev);
291 	rcu_read_unlock();
292 	return PTR_ERR_OR_ZERO(dev);
293 }
294 EXPORT_SYMBOL(rdma_translate_ip);
295 
296 static void set_timeout(struct addr_req *req, unsigned long time)
297 {
298 	unsigned long delay;
299 
300 	delay = time - jiffies;
301 	if ((long)delay < 0)
302 		delay = 0;
303 
304 	mod_delayed_work(addr_wq, &req->work, delay);
305 }
306 
307 static void queue_req(struct addr_req *req)
308 {
309 	spin_lock_bh(&lock);
310 	list_add_tail(&req->list, &req_list);
311 	set_timeout(req, req->timeout);
312 	spin_unlock_bh(&lock);
313 }
314 
315 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
316 			  const void *daddr, u32 seq, u16 family)
317 {
318 	if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
319 		return -EADDRNOTAVAIL;
320 
321 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
322 }
323 
324 static int dst_fetch_ha(const struct dst_entry *dst,
325 			struct rdma_dev_addr *dev_addr,
326 			const void *daddr)
327 {
328 	struct neighbour *n;
329 	int ret = 0;
330 
331 	n = dst_neigh_lookup(dst, daddr);
332 	if (!n)
333 		return -ENODATA;
334 
335 	if (!(n->nud_state & NUD_VALID)) {
336 		neigh_event_send(n, NULL);
337 		ret = -ENODATA;
338 	} else {
339 		memcpy(dev_addr->dst_dev_addr, n->ha, MAX_ADDR_LEN);
340 	}
341 
342 	neigh_release(n);
343 
344 	return ret;
345 }
346 
347 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
348 {
349 	struct rtable *rt;
350 	struct rt6_info *rt6;
351 
352 	if (family == AF_INET) {
353 		rt = container_of(dst, struct rtable, dst);
354 		return rt->rt_uses_gateway;
355 	}
356 
357 	rt6 = container_of(dst, struct rt6_info, dst);
358 	return rt6->rt6i_flags & RTF_GATEWAY;
359 }
360 
361 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
362 		    const struct sockaddr *dst_in, u32 seq)
363 {
364 	const struct sockaddr_in *dst_in4 =
365 		(const struct sockaddr_in *)dst_in;
366 	const struct sockaddr_in6 *dst_in6 =
367 		(const struct sockaddr_in6 *)dst_in;
368 	const void *daddr = (dst_in->sa_family == AF_INET) ?
369 		(const void *)&dst_in4->sin_addr.s_addr :
370 		(const void *)&dst_in6->sin6_addr;
371 	sa_family_t family = dst_in->sa_family;
372 
373 	/* If we have a gateway in IB mode then it must be an IB network */
374 	if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
375 		return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
376 	else
377 		return dst_fetch_ha(dst, dev_addr, daddr);
378 }
379 
380 static int addr4_resolve(struct sockaddr *src_sock,
381 			 const struct sockaddr *dst_sock,
382 			 struct rdma_dev_addr *addr,
383 			 struct rtable **prt)
384 {
385 	struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
386 	const struct sockaddr_in *dst_in =
387 			(const struct sockaddr_in *)dst_sock;
388 
389 	__be32 src_ip = src_in->sin_addr.s_addr;
390 	__be32 dst_ip = dst_in->sin_addr.s_addr;
391 	struct rtable *rt;
392 	struct flowi4 fl4;
393 	int ret;
394 
395 	memset(&fl4, 0, sizeof(fl4));
396 	fl4.daddr = dst_ip;
397 	fl4.saddr = src_ip;
398 	fl4.flowi4_oif = addr->bound_dev_if;
399 	rt = ip_route_output_key(addr->net, &fl4);
400 	ret = PTR_ERR_OR_ZERO(rt);
401 	if (ret)
402 		return ret;
403 
404 	src_in->sin_addr.s_addr = fl4.saddr;
405 
406 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
407 
408 	*prt = rt;
409 	return 0;
410 }
411 
412 #if IS_ENABLED(CONFIG_IPV6)
413 static int addr6_resolve(struct sockaddr *src_sock,
414 			 const struct sockaddr *dst_sock,
415 			 struct rdma_dev_addr *addr,
416 			 struct dst_entry **pdst)
417 {
418 	struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
419 	const struct sockaddr_in6 *dst_in =
420 				(const struct sockaddr_in6 *)dst_sock;
421 	struct flowi6 fl6;
422 	struct dst_entry *dst;
423 	int ret;
424 
425 	memset(&fl6, 0, sizeof fl6);
426 	fl6.daddr = dst_in->sin6_addr;
427 	fl6.saddr = src_in->sin6_addr;
428 	fl6.flowi6_oif = addr->bound_dev_if;
429 
430 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
431 	if (ret < 0)
432 		return ret;
433 
434 	if (ipv6_addr_any(&src_in->sin6_addr))
435 		src_in->sin6_addr = fl6.saddr;
436 
437 	addr->hoplimit = ip6_dst_hoplimit(dst);
438 
439 	*pdst = dst;
440 	return 0;
441 }
442 #else
443 static int addr6_resolve(struct sockaddr *src_sock,
444 			 const struct sockaddr *dst_sock,
445 			 struct rdma_dev_addr *addr,
446 			 struct dst_entry **pdst)
447 {
448 	return -EADDRNOTAVAIL;
449 }
450 #endif
451 
452 static int addr_resolve_neigh(const struct dst_entry *dst,
453 			      const struct sockaddr *dst_in,
454 			      struct rdma_dev_addr *addr,
455 			      unsigned int ndev_flags,
456 			      u32 seq)
457 {
458 	int ret = 0;
459 
460 	if (ndev_flags & IFF_LOOPBACK) {
461 		memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
462 	} else {
463 		if (!(ndev_flags & IFF_NOARP)) {
464 			/* If the device doesn't do ARP internally */
465 			ret = fetch_ha(dst, addr, dst_in, seq);
466 		}
467 	}
468 	return ret;
469 }
470 
471 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
472 			    const struct sockaddr *dst_in,
473 			    const struct dst_entry *dst,
474 			    const struct net_device *ndev)
475 {
476 	int ret = 0;
477 
478 	if (dst->dev->flags & IFF_LOOPBACK)
479 		ret = rdma_translate_ip(dst_in, dev_addr);
480 	else
481 		rdma_copy_src_l2_addr(dev_addr, dst->dev);
482 
483 	/*
484 	 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
485 	 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
486 	 * network type accordingly.
487 	 */
488 	if (has_gateway(dst, dst_in->sa_family) &&
489 	    ndev->type != ARPHRD_INFINIBAND)
490 		dev_addr->network = dst_in->sa_family == AF_INET ?
491 						RDMA_NETWORK_IPV4 :
492 						RDMA_NETWORK_IPV6;
493 	else
494 		dev_addr->network = RDMA_NETWORK_IB;
495 
496 	return ret;
497 }
498 
499 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
500 				 unsigned int *ndev_flags,
501 				 const struct sockaddr *dst_in,
502 				 const struct dst_entry *dst)
503 {
504 	struct net_device *ndev = READ_ONCE(dst->dev);
505 
506 	*ndev_flags = ndev->flags;
507 	/* A physical device must be the RDMA device to use */
508 	if (ndev->flags & IFF_LOOPBACK) {
509 		/*
510 		 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
511 		 * loopback IP address. So if route is resolved to loopback
512 		 * interface, translate that to a real ndev based on non
513 		 * loopback IP address.
514 		 */
515 		ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
516 		if (IS_ERR(ndev))
517 			return -ENODEV;
518 	}
519 
520 	return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
521 }
522 
523 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
524 {
525 	struct net_device *ndev;
526 
527 	ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
528 	if (IS_ERR(ndev))
529 		return PTR_ERR(ndev);
530 
531 	/*
532 	 * Since we are holding the rcu, reading net and ifindex
533 	 * are safe without any additional reference; because
534 	 * change_net_namespace() in net/core/dev.c does rcu sync
535 	 * after it changes the state to IFF_DOWN and before
536 	 * updating netdev fields {net, ifindex}.
537 	 */
538 	addr->net = dev_net(ndev);
539 	addr->bound_dev_if = ndev->ifindex;
540 	return 0;
541 }
542 
543 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
544 {
545 	addr->net = &init_net;
546 	addr->bound_dev_if = 0;
547 }
548 
549 static int addr_resolve(struct sockaddr *src_in,
550 			const struct sockaddr *dst_in,
551 			struct rdma_dev_addr *addr,
552 			bool resolve_neigh,
553 			bool resolve_by_gid_attr,
554 			u32 seq)
555 {
556 	struct dst_entry *dst = NULL;
557 	unsigned int ndev_flags = 0;
558 	struct rtable *rt = NULL;
559 	int ret;
560 
561 	if (!addr->net) {
562 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
563 		return -EINVAL;
564 	}
565 
566 	rcu_read_lock();
567 	if (resolve_by_gid_attr) {
568 		if (!addr->sgid_attr) {
569 			rcu_read_unlock();
570 			pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
571 			return -EINVAL;
572 		}
573 		/*
574 		 * If the request is for a specific gid attribute of the
575 		 * rdma_dev_addr, derive net from the netdevice of the
576 		 * GID attribute.
577 		 */
578 		ret = set_addr_netns_by_gid_rcu(addr);
579 		if (ret) {
580 			rcu_read_unlock();
581 			return ret;
582 		}
583 	}
584 	if (src_in->sa_family == AF_INET) {
585 		ret = addr4_resolve(src_in, dst_in, addr, &rt);
586 		dst = &rt->dst;
587 	} else {
588 		ret = addr6_resolve(src_in, dst_in, addr, &dst);
589 	}
590 	if (ret) {
591 		rcu_read_unlock();
592 		goto done;
593 	}
594 	ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
595 	rcu_read_unlock();
596 
597 	/*
598 	 * Resolve neighbor destination address if requested and
599 	 * only if src addr translation didn't fail.
600 	 */
601 	if (!ret && resolve_neigh)
602 		ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
603 
604 	if (src_in->sa_family == AF_INET)
605 		ip_rt_put(rt);
606 	else
607 		dst_release(dst);
608 done:
609 	/*
610 	 * Clear the addr net to go back to its original state, only if it was
611 	 * derived from GID attribute in this context.
612 	 */
613 	if (resolve_by_gid_attr)
614 		rdma_addr_set_net_defaults(addr);
615 	return ret;
616 }
617 
618 static void process_one_req(struct work_struct *_work)
619 {
620 	struct addr_req *req;
621 	struct sockaddr *src_in, *dst_in;
622 
623 	req = container_of(_work, struct addr_req, work.work);
624 
625 	if (req->status == -ENODATA) {
626 		src_in = (struct sockaddr *)&req->src_addr;
627 		dst_in = (struct sockaddr *)&req->dst_addr;
628 		req->status = addr_resolve(src_in, dst_in, req->addr,
629 					   true, req->resolve_by_gid_attr,
630 					   req->seq);
631 		if (req->status && time_after_eq(jiffies, req->timeout)) {
632 			req->status = -ETIMEDOUT;
633 		} else if (req->status == -ENODATA) {
634 			/* requeue the work for retrying again */
635 			spin_lock_bh(&lock);
636 			if (!list_empty(&req->list))
637 				set_timeout(req, req->timeout);
638 			spin_unlock_bh(&lock);
639 			return;
640 		}
641 	}
642 
643 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
644 		req->addr, req->context);
645 	req->callback = NULL;
646 
647 	spin_lock_bh(&lock);
648 	if (!list_empty(&req->list)) {
649 		/*
650 		 * Although the work will normally have been canceled by the
651 		 * workqueue, it can still be requeued as long as it is on the
652 		 * req_list.
653 		 */
654 		cancel_delayed_work(&req->work);
655 		list_del_init(&req->list);
656 		kfree(req);
657 	}
658 	spin_unlock_bh(&lock);
659 }
660 
661 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
662 		    struct rdma_dev_addr *addr, unsigned long timeout_ms,
663 		    void (*callback)(int status, struct sockaddr *src_addr,
664 				     struct rdma_dev_addr *addr, void *context),
665 		    bool resolve_by_gid_attr, void *context)
666 {
667 	struct sockaddr *src_in, *dst_in;
668 	struct addr_req *req;
669 	int ret = 0;
670 
671 	req = kzalloc(sizeof *req, GFP_KERNEL);
672 	if (!req)
673 		return -ENOMEM;
674 
675 	src_in = (struct sockaddr *) &req->src_addr;
676 	dst_in = (struct sockaddr *) &req->dst_addr;
677 
678 	if (src_addr) {
679 		if (src_addr->sa_family != dst_addr->sa_family) {
680 			ret = -EINVAL;
681 			goto err;
682 		}
683 
684 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
685 	} else {
686 		src_in->sa_family = dst_addr->sa_family;
687 	}
688 
689 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
690 	req->addr = addr;
691 	req->callback = callback;
692 	req->context = context;
693 	req->resolve_by_gid_attr = resolve_by_gid_attr;
694 	INIT_DELAYED_WORK(&req->work, process_one_req);
695 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
696 
697 	req->status = addr_resolve(src_in, dst_in, addr, true,
698 				   req->resolve_by_gid_attr, req->seq);
699 	switch (req->status) {
700 	case 0:
701 		req->timeout = jiffies;
702 		queue_req(req);
703 		break;
704 	case -ENODATA:
705 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
706 		queue_req(req);
707 		break;
708 	default:
709 		ret = req->status;
710 		goto err;
711 	}
712 	return ret;
713 err:
714 	kfree(req);
715 	return ret;
716 }
717 EXPORT_SYMBOL(rdma_resolve_ip);
718 
719 int roce_resolve_route_from_path(struct sa_path_rec *rec,
720 				 const struct ib_gid_attr *attr)
721 {
722 	union {
723 		struct sockaddr     _sockaddr;
724 		struct sockaddr_in  _sockaddr_in;
725 		struct sockaddr_in6 _sockaddr_in6;
726 	} sgid, dgid;
727 	struct rdma_dev_addr dev_addr = {};
728 	int ret;
729 
730 	if (rec->roce.route_resolved)
731 		return 0;
732 
733 	rdma_gid2ip(&sgid._sockaddr, &rec->sgid);
734 	rdma_gid2ip(&dgid._sockaddr, &rec->dgid);
735 
736 	if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
737 		return -EINVAL;
738 
739 	if (!attr || !attr->ndev)
740 		return -EINVAL;
741 
742 	dev_addr.net = &init_net;
743 	dev_addr.sgid_attr = attr;
744 
745 	ret = addr_resolve(&sgid._sockaddr, &dgid._sockaddr,
746 			   &dev_addr, false, true, 0);
747 	if (ret)
748 		return ret;
749 
750 	if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
751 	     dev_addr.network == RDMA_NETWORK_IPV6) &&
752 	    rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
753 		return -EINVAL;
754 
755 	rec->roce.route_resolved = true;
756 	return 0;
757 }
758 
759 /**
760  * rdma_addr_cancel - Cancel resolve ip request
761  * @addr:	Pointer to address structure given previously
762  *		during rdma_resolve_ip().
763  * rdma_addr_cancel() is synchronous function which cancels any pending
764  * request if there is any.
765  */
766 void rdma_addr_cancel(struct rdma_dev_addr *addr)
767 {
768 	struct addr_req *req, *temp_req;
769 	struct addr_req *found = NULL;
770 
771 	spin_lock_bh(&lock);
772 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
773 		if (req->addr == addr) {
774 			/*
775 			 * Removing from the list means we take ownership of
776 			 * the req
777 			 */
778 			list_del_init(&req->list);
779 			found = req;
780 			break;
781 		}
782 	}
783 	spin_unlock_bh(&lock);
784 
785 	if (!found)
786 		return;
787 
788 	/*
789 	 * sync canceling the work after removing it from the req_list
790 	 * guarentees no work is running and none will be started.
791 	 */
792 	cancel_delayed_work_sync(&found->work);
793 	kfree(found);
794 }
795 EXPORT_SYMBOL(rdma_addr_cancel);
796 
797 struct resolve_cb_context {
798 	struct completion comp;
799 	int status;
800 };
801 
802 static void resolve_cb(int status, struct sockaddr *src_addr,
803 	     struct rdma_dev_addr *addr, void *context)
804 {
805 	((struct resolve_cb_context *)context)->status = status;
806 	complete(&((struct resolve_cb_context *)context)->comp);
807 }
808 
809 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
810 				 const union ib_gid *dgid,
811 				 u8 *dmac, const struct ib_gid_attr *sgid_attr,
812 				 int *hoplimit)
813 {
814 	struct rdma_dev_addr dev_addr;
815 	struct resolve_cb_context ctx;
816 	union {
817 		struct sockaddr     _sockaddr;
818 		struct sockaddr_in  _sockaddr_in;
819 		struct sockaddr_in6 _sockaddr_in6;
820 	} sgid_addr, dgid_addr;
821 	int ret;
822 
823 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
824 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
825 
826 	memset(&dev_addr, 0, sizeof(dev_addr));
827 	dev_addr.net = &init_net;
828 	dev_addr.sgid_attr = sgid_attr;
829 
830 	init_completion(&ctx.comp);
831 	ret = rdma_resolve_ip(&sgid_addr._sockaddr, &dgid_addr._sockaddr,
832 			      &dev_addr, 1000, resolve_cb, true, &ctx);
833 	if (ret)
834 		return ret;
835 
836 	wait_for_completion(&ctx.comp);
837 
838 	ret = ctx.status;
839 	if (ret)
840 		return ret;
841 
842 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
843 	*hoplimit = dev_addr.hoplimit;
844 	return 0;
845 }
846 
847 static int netevent_callback(struct notifier_block *self, unsigned long event,
848 	void *ctx)
849 {
850 	struct addr_req *req;
851 
852 	if (event == NETEVENT_NEIGH_UPDATE) {
853 		struct neighbour *neigh = ctx;
854 
855 		if (neigh->nud_state & NUD_VALID) {
856 			spin_lock_bh(&lock);
857 			list_for_each_entry(req, &req_list, list)
858 				set_timeout(req, jiffies);
859 			spin_unlock_bh(&lock);
860 		}
861 	}
862 	return 0;
863 }
864 
865 static struct notifier_block nb = {
866 	.notifier_call = netevent_callback
867 };
868 
869 int addr_init(void)
870 {
871 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
872 	if (!addr_wq)
873 		return -ENOMEM;
874 
875 	register_netevent_notifier(&nb);
876 
877 	return 0;
878 }
879 
880 void addr_cleanup(void)
881 {
882 	unregister_netevent_notifier(&nb);
883 	destroy_workqueue(addr_wq);
884 	WARN_ON(!list_empty(&req_list));
885 }
886