1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4  *
5  * Copyright (c) 2017 Melexis <cmo@melexis.com>
6  *
7  * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8  */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19 
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 
23 /* Memory sections addresses */
24 #define MLX90632_ADDR_RAM	0x4000 /* Start address of ram */
25 #define MLX90632_ADDR_EEPROM	0x2480 /* Start address of user eeprom */
26 
27 /* EEPROM addresses - used at startup */
28 #define MLX90632_EE_CTRL	0x24d4 /* Control register initial value */
29 #define MLX90632_EE_I2C_ADDR	0x24d5 /* I2C address register initial value */
30 #define MLX90632_EE_VERSION	0x240b /* EEPROM version reg address */
31 #define MLX90632_EE_P_R		0x240c /* P_R calibration register 32bit */
32 #define MLX90632_EE_P_G		0x240e /* P_G calibration register 32bit */
33 #define MLX90632_EE_P_T		0x2410 /* P_T calibration register 32bit */
34 #define MLX90632_EE_P_O		0x2412 /* P_O calibration register 32bit */
35 #define MLX90632_EE_Aa		0x2414 /* Aa calibration register 32bit */
36 #define MLX90632_EE_Ab		0x2416 /* Ab calibration register 32bit */
37 #define MLX90632_EE_Ba		0x2418 /* Ba calibration register 32bit */
38 #define MLX90632_EE_Bb		0x241a /* Bb calibration register 32bit */
39 #define MLX90632_EE_Ca		0x241c /* Ca calibration register 32bit */
40 #define MLX90632_EE_Cb		0x241e /* Cb calibration register 32bit */
41 #define MLX90632_EE_Da		0x2420 /* Da calibration register 32bit */
42 #define MLX90632_EE_Db		0x2422 /* Db calibration register 32bit */
43 #define MLX90632_EE_Ea		0x2424 /* Ea calibration register 32bit */
44 #define MLX90632_EE_Eb		0x2426 /* Eb calibration register 32bit */
45 #define MLX90632_EE_Fa		0x2428 /* Fa calibration register 32bit */
46 #define MLX90632_EE_Fb		0x242a /* Fb calibration register 32bit */
47 #define MLX90632_EE_Ga		0x242c /* Ga calibration register 32bit */
48 
49 #define MLX90632_EE_Gb		0x242e /* Gb calibration register 16bit */
50 #define MLX90632_EE_Ka		0x242f /* Ka calibration register 16bit */
51 
52 #define MLX90632_EE_Ha		0x2481 /* Ha customer calib value reg 16bit */
53 #define MLX90632_EE_Hb		0x2482 /* Hb customer calib value reg 16bit */
54 
55 /* Register addresses - volatile */
56 #define MLX90632_REG_I2C_ADDR	0x3000 /* Chip I2C address register */
57 
58 /* Control register address - volatile */
59 #define MLX90632_REG_CONTROL	0x3001 /* Control Register address */
60 #define   MLX90632_CFG_PWR_MASK		GENMASK(2, 1) /* PowerMode Mask */
61 /* PowerModes statuses */
62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
67 
68 /* Device status register - volatile */
69 #define MLX90632_REG_STATUS	0x3fff /* Device status register */
70 #define   MLX90632_STAT_BUSY		BIT(10) /* Device busy indicator */
71 #define   MLX90632_STAT_EE_BUSY		BIT(9) /* EEPROM busy indicator */
72 #define   MLX90632_STAT_BRST		BIT(8) /* Brown out reset indicator */
73 #define   MLX90632_STAT_CYCLE_POS	GENMASK(6, 2) /* Data position */
74 #define   MLX90632_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
75 
76 /* RAM_MEAS address-es for each channel */
77 #define MLX90632_RAM_1(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num)
78 #define MLX90632_RAM_2(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 1)
79 #define MLX90632_RAM_3(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 2)
80 
81 /* Magic constants */
82 #define MLX90632_ID_MEDICAL	0x0105 /* EEPROM DSPv5 Medical device id */
83 #define MLX90632_ID_CONSUMER	0x0205 /* EEPROM DSPv5 Consumer device id */
84 #define MLX90632_RESET_CMD	0x0006 /* Reset sensor (address or global) */
85 #define MLX90632_REF_12		12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
86 #define MLX90632_REF_3		12LL /**< ResCtrlRef value of Channel 3 */
87 #define MLX90632_MAX_MEAS_NUM	31 /**< Maximum measurements in list */
88 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
89 
90 struct mlx90632_data {
91 	struct i2c_client *client;
92 	struct mutex lock; /* Multiple reads for single measurement */
93 	struct regmap *regmap;
94 	u16 emissivity;
95 };
96 
97 static const struct regmap_range mlx90632_volatile_reg_range[] = {
98 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
99 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
100 	regmap_reg_range(MLX90632_RAM_1(0),
101 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
102 };
103 
104 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
105 	.yes_ranges = mlx90632_volatile_reg_range,
106 	.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
107 };
108 
109 static const struct regmap_range mlx90632_read_reg_range[] = {
110 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
111 	regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
112 	regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
113 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
114 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
115 	regmap_reg_range(MLX90632_RAM_1(0),
116 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
117 };
118 
119 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
120 	.yes_ranges = mlx90632_read_reg_range,
121 	.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
122 };
123 
124 static const struct regmap_range mlx90632_no_write_reg_range[] = {
125 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
126 	regmap_reg_range(MLX90632_RAM_1(0),
127 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
128 };
129 
130 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
131 	.no_ranges = mlx90632_no_write_reg_range,
132 	.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
133 };
134 
135 static const struct regmap_config mlx90632_regmap = {
136 	.reg_bits = 16,
137 	.val_bits = 16,
138 
139 	.volatile_table = &mlx90632_volatile_regs_tbl,
140 	.rd_table = &mlx90632_readable_regs_tbl,
141 	.wr_table = &mlx90632_writeable_regs_tbl,
142 
143 	.use_single_read = true,
144 	.use_single_write = true,
145 	.reg_format_endian = REGMAP_ENDIAN_BIG,
146 	.val_format_endian = REGMAP_ENDIAN_BIG,
147 	.cache_type = REGCACHE_RBTREE,
148 };
149 
150 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
151 {
152 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
153 				  MLX90632_CFG_PWR_MASK,
154 				  MLX90632_PWR_STATUS_SLEEP_STEP);
155 }
156 
157 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
158 {
159 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
160 				  MLX90632_CFG_PWR_MASK,
161 				  MLX90632_PWR_STATUS_CONTINUOUS);
162 }
163 
164 /**
165  * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
166  * @*data: pointer to mlx90632_data object containing regmap information
167  *
168  * Perform a measurement and return latest measurement cycle position reported
169  * by sensor. This is a blocking function for 500ms, as that is default sensor
170  * refresh rate.
171  */
172 static int mlx90632_perform_measurement(struct mlx90632_data *data)
173 {
174 	int ret, tries = 100;
175 	unsigned int reg_status;
176 
177 	ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
178 				 MLX90632_STAT_DATA_RDY, 0);
179 	if (ret < 0)
180 		return ret;
181 
182 	while (tries-- > 0) {
183 		ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
184 				  &reg_status);
185 		if (ret < 0)
186 			return ret;
187 		if (reg_status & MLX90632_STAT_DATA_RDY)
188 			break;
189 		usleep_range(10000, 11000);
190 	}
191 
192 	if (tries < 0) {
193 		dev_err(&data->client->dev, "data not ready");
194 		return -ETIMEDOUT;
195 	}
196 
197 	return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
198 }
199 
200 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
201 				       uint8_t *channel_old)
202 {
203 	switch (perform_ret) {
204 	case 1:
205 		*channel_new = 1;
206 		*channel_old = 2;
207 		break;
208 	case 2:
209 		*channel_new = 2;
210 		*channel_old = 1;
211 		break;
212 	default:
213 		return -EINVAL;
214 	}
215 
216 	return 0;
217 }
218 
219 static int mlx90632_read_ambient_raw(struct regmap *regmap,
220 				     s16 *ambient_new_raw, s16 *ambient_old_raw)
221 {
222 	int ret;
223 	unsigned int read_tmp;
224 
225 	ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
226 	if (ret < 0)
227 		return ret;
228 	*ambient_new_raw = (s16)read_tmp;
229 
230 	ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
231 	if (ret < 0)
232 		return ret;
233 	*ambient_old_raw = (s16)read_tmp;
234 
235 	return ret;
236 }
237 
238 static int mlx90632_read_object_raw(struct regmap *regmap,
239 				    int perform_measurement_ret,
240 				    s16 *object_new_raw, s16 *object_old_raw)
241 {
242 	int ret;
243 	unsigned int read_tmp;
244 	s16 read;
245 	u8 channel = 0;
246 	u8 channel_old = 0;
247 
248 	ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
249 					  &channel_old);
250 	if (ret != 0)
251 		return ret;
252 
253 	ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
254 	if (ret < 0)
255 		return ret;
256 
257 	read = (s16)read_tmp;
258 
259 	ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
260 	if (ret < 0)
261 		return ret;
262 	*object_new_raw = (read + (s16)read_tmp) / 2;
263 
264 	ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
265 	if (ret < 0)
266 		return ret;
267 	read = (s16)read_tmp;
268 
269 	ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
270 	if (ret < 0)
271 		return ret;
272 	*object_old_raw = (read + (s16)read_tmp) / 2;
273 
274 	return ret;
275 }
276 
277 static int mlx90632_read_all_channel(struct mlx90632_data *data,
278 				     s16 *ambient_new_raw, s16 *ambient_old_raw,
279 				     s16 *object_new_raw, s16 *object_old_raw)
280 {
281 	s32 ret, measurement;
282 
283 	mutex_lock(&data->lock);
284 	measurement = mlx90632_perform_measurement(data);
285 	if (measurement < 0) {
286 		ret = measurement;
287 		goto read_unlock;
288 	}
289 	ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
290 					ambient_old_raw);
291 	if (ret < 0)
292 		goto read_unlock;
293 
294 	ret = mlx90632_read_object_raw(data->regmap, measurement,
295 				       object_new_raw, object_old_raw);
296 read_unlock:
297 	mutex_unlock(&data->lock);
298 	return ret;
299 }
300 
301 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
302 				     s32 *reg_value)
303 {
304 	s32 ret;
305 	unsigned int read;
306 	u32 value;
307 
308 	ret = regmap_read(regmap, reg_lsb, &read);
309 	if (ret < 0)
310 		return ret;
311 
312 	value = read;
313 
314 	ret = regmap_read(regmap, reg_lsb + 1, &read);
315 	if (ret < 0)
316 		return ret;
317 
318 	*reg_value = (read << 16) | (value & 0xffff);
319 
320 	return 0;
321 }
322 
323 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
324 					s16 ambient_old_raw, s16 Gb)
325 {
326 	s64 VR_Ta, kGb, tmp;
327 
328 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
329 	VR_Ta = (s64)ambient_old_raw * 1000000LL +
330 		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
331 			(MLX90632_REF_3));
332 	tmp = div64_s64(
333 			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
334 				   (MLX90632_REF_3)), VR_Ta);
335 	return div64_s64(tmp << 19ULL, 1000LL);
336 }
337 
338 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
339 					s16 ambient_new_raw,
340 					s16 ambient_old_raw, s16 Ka)
341 {
342 	s64 VR_IR, kKa, tmp;
343 
344 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
345 	VR_IR = (s64)ambient_old_raw * 1000000LL +
346 		kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
347 			(MLX90632_REF_3));
348 	tmp = div64_s64(
349 			div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
350 				   * 1000000000000LL), (MLX90632_REF_12)),
351 			VR_IR);
352 	return div64_s64((tmp << 19ULL), 1000LL);
353 }
354 
355 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
356 				      s32 P_T, s32 P_R, s32 P_G, s32 P_O,
357 				      s16 Gb)
358 {
359 	s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
360 
361 	AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
362 					   Gb);
363 	Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
364 	Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
365 	Ablock = Asub * (Bsub * Bsub);
366 	Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
367 	Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
368 
369 	sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
370 
371 	return div64_s64(sum, 10000000LL);
372 }
373 
374 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
375 					       s64 TAdut, s32 Fa, s32 Fb,
376 					       s32 Ga, s16 Ha, s16 Hb,
377 					       u16 emissivity)
378 {
379 	s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
380 	s64 Ha_customer, Hb_customer;
381 
382 	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
383 	Hb_customer = ((s64)Hb * 100) >> 10ULL;
384 
385 	calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
386 			     * 1000LL)) >> 36LL;
387 	calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
388 	Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
389 				* Ha_customer), 1000LL);
390 	Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
391 	Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
392 	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
393 	ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
394 	TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
395 		(div64_s64(TAdut, 10000LL) + 27315) *
396 		(div64_s64(TAdut, 10000LL)  + 27315) *
397 		(div64_s64(TAdut, 10000LL) + 27315);
398 
399 	return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
400 		- 27315 - Hb_customer) * 10;
401 }
402 
403 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
404 				     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
405 				     u16 tmp_emi)
406 {
407 	s64 kTA, kTA0, TAdut;
408 	s64 temp = 25000;
409 	s8 i;
410 
411 	kTA = (Ea * 1000LL) >> 16LL;
412 	kTA0 = (Eb * 1000LL) >> 8LL;
413 	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
414 
415 	/* Iterations of calculation as described in datasheet */
416 	for (i = 0; i < 5; ++i) {
417 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
418 							   Fa, Fb, Ga, Ha, Hb,
419 							   tmp_emi);
420 	}
421 	return temp;
422 }
423 
424 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
425 {
426 	s32 ret;
427 	s32 Ea, Eb, Fa, Fb, Ga;
428 	unsigned int read_tmp;
429 	s16 Ha, Hb, Gb, Ka;
430 	s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
431 	s64 object, ambient;
432 
433 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
434 	if (ret < 0)
435 		return ret;
436 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
437 	if (ret < 0)
438 		return ret;
439 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
440 	if (ret < 0)
441 		return ret;
442 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
443 	if (ret < 0)
444 		return ret;
445 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
446 	if (ret < 0)
447 		return ret;
448 	ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
449 	if (ret < 0)
450 		return ret;
451 	Ha = (s16)read_tmp;
452 	ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
453 	if (ret < 0)
454 		return ret;
455 	Hb = (s16)read_tmp;
456 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
457 	if (ret < 0)
458 		return ret;
459 	Gb = (s16)read_tmp;
460 	ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
461 	if (ret < 0)
462 		return ret;
463 	Ka = (s16)read_tmp;
464 
465 	ret = mlx90632_read_all_channel(data,
466 					&ambient_new_raw, &ambient_old_raw,
467 					&object_new_raw, &object_old_raw);
468 	if (ret < 0)
469 		return ret;
470 
471 	ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
472 					       ambient_old_raw, Gb);
473 	object = mlx90632_preprocess_temp_obj(object_new_raw,
474 					      object_old_raw,
475 					      ambient_new_raw,
476 					      ambient_old_raw, Ka);
477 
478 	*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
479 					 Ha, Hb, data->emissivity);
480 	return 0;
481 }
482 
483 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
484 {
485 	s32 ret;
486 	unsigned int read_tmp;
487 	s32 PT, PR, PG, PO;
488 	s16 Gb;
489 	s16 ambient_new_raw, ambient_old_raw;
490 
491 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
492 	if (ret < 0)
493 		return ret;
494 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
495 	if (ret < 0)
496 		return ret;
497 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
498 	if (ret < 0)
499 		return ret;
500 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
501 	if (ret < 0)
502 		return ret;
503 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
504 	if (ret < 0)
505 		return ret;
506 	Gb = (s16)read_tmp;
507 
508 	ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
509 					&ambient_old_raw);
510 	if (ret < 0)
511 		return ret;
512 	*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
513 					  PT, PR, PG, PO, Gb);
514 	return ret;
515 }
516 
517 static int mlx90632_read_raw(struct iio_dev *indio_dev,
518 			     struct iio_chan_spec const *channel, int *val,
519 			     int *val2, long mask)
520 {
521 	struct mlx90632_data *data = iio_priv(indio_dev);
522 	int ret;
523 
524 	switch (mask) {
525 	case IIO_CHAN_INFO_PROCESSED:
526 		switch (channel->channel2) {
527 		case IIO_MOD_TEMP_AMBIENT:
528 			ret = mlx90632_calc_ambient_dsp105(data, val);
529 			if (ret < 0)
530 				return ret;
531 			return IIO_VAL_INT;
532 		case IIO_MOD_TEMP_OBJECT:
533 			ret = mlx90632_calc_object_dsp105(data, val);
534 			if (ret < 0)
535 				return ret;
536 			return IIO_VAL_INT;
537 		default:
538 			return -EINVAL;
539 		}
540 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
541 		if (data->emissivity == 1000) {
542 			*val = 1;
543 			*val2 = 0;
544 		} else {
545 			*val = 0;
546 			*val2 = data->emissivity * 1000;
547 		}
548 		return IIO_VAL_INT_PLUS_MICRO;
549 
550 	default:
551 		return -EINVAL;
552 	}
553 }
554 
555 static int mlx90632_write_raw(struct iio_dev *indio_dev,
556 			      struct iio_chan_spec const *channel, int val,
557 			      int val2, long mask)
558 {
559 	struct mlx90632_data *data = iio_priv(indio_dev);
560 
561 	switch (mask) {
562 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
563 		/* Confirm we are within 0 and 1.0 */
564 		if (val < 0 || val2 < 0 || val > 1 ||
565 		    (val == 1 && val2 != 0))
566 			return -EINVAL;
567 		data->emissivity = val * 1000 + val2 / 1000;
568 		return 0;
569 	default:
570 		return -EINVAL;
571 	}
572 }
573 
574 static const struct iio_chan_spec mlx90632_channels[] = {
575 	{
576 		.type = IIO_TEMP,
577 		.modified = 1,
578 		.channel2 = IIO_MOD_TEMP_AMBIENT,
579 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
580 	},
581 	{
582 		.type = IIO_TEMP,
583 		.modified = 1,
584 		.channel2 = IIO_MOD_TEMP_OBJECT,
585 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
586 			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
587 	},
588 };
589 
590 static const struct iio_info mlx90632_info = {
591 	.read_raw = mlx90632_read_raw,
592 	.write_raw = mlx90632_write_raw,
593 };
594 
595 static int mlx90632_sleep(struct mlx90632_data *data)
596 {
597 	regcache_mark_dirty(data->regmap);
598 
599 	dev_dbg(&data->client->dev, "Requesting sleep");
600 	return mlx90632_pwr_set_sleep_step(data->regmap);
601 }
602 
603 static int mlx90632_wakeup(struct mlx90632_data *data)
604 {
605 	int ret;
606 
607 	ret = regcache_sync(data->regmap);
608 	if (ret < 0) {
609 		dev_err(&data->client->dev,
610 			"Failed to sync regmap registers: %d\n", ret);
611 		return ret;
612 	}
613 
614 	dev_dbg(&data->client->dev, "Requesting wake-up\n");
615 	return mlx90632_pwr_continuous(data->regmap);
616 }
617 
618 static int mlx90632_probe(struct i2c_client *client,
619 			  const struct i2c_device_id *id)
620 {
621 	struct iio_dev *indio_dev;
622 	struct mlx90632_data *mlx90632;
623 	struct regmap *regmap;
624 	int ret;
625 	unsigned int read;
626 
627 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
628 	if (!indio_dev) {
629 		dev_err(&client->dev, "Failed to allocate device\n");
630 		return -ENOMEM;
631 	}
632 
633 	regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
634 	if (IS_ERR(regmap)) {
635 		ret = PTR_ERR(regmap);
636 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
637 		return ret;
638 	}
639 
640 	mlx90632 = iio_priv(indio_dev);
641 	i2c_set_clientdata(client, indio_dev);
642 	mlx90632->client = client;
643 	mlx90632->regmap = regmap;
644 
645 	mutex_init(&mlx90632->lock);
646 	indio_dev->dev.parent = &client->dev;
647 	indio_dev->name = id->name;
648 	indio_dev->modes = INDIO_DIRECT_MODE;
649 	indio_dev->info = &mlx90632_info;
650 	indio_dev->channels = mlx90632_channels;
651 	indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
652 
653 	ret = mlx90632_wakeup(mlx90632);
654 	if (ret < 0) {
655 		dev_err(&client->dev, "Wakeup failed: %d\n", ret);
656 		return ret;
657 	}
658 
659 	ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
660 	if (ret < 0) {
661 		dev_err(&client->dev, "read of version failed: %d\n", ret);
662 		return ret;
663 	}
664 	if (read == MLX90632_ID_MEDICAL) {
665 		dev_dbg(&client->dev,
666 			"Detected Medical EEPROM calibration %x\n", read);
667 	} else if (read == MLX90632_ID_CONSUMER) {
668 		dev_dbg(&client->dev,
669 			"Detected Consumer EEPROM calibration %x\n", read);
670 	} else {
671 		dev_err(&client->dev,
672 			"EEPROM version mismatch %x (expected %x or %x)\n",
673 			read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL);
674 		return -EPROTONOSUPPORT;
675 	}
676 
677 	mlx90632->emissivity = 1000;
678 
679 	pm_runtime_disable(&client->dev);
680 	ret = pm_runtime_set_active(&client->dev);
681 	if (ret < 0) {
682 		mlx90632_sleep(mlx90632);
683 		return ret;
684 	}
685 	pm_runtime_enable(&client->dev);
686 	pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
687 	pm_runtime_use_autosuspend(&client->dev);
688 
689 	return iio_device_register(indio_dev);
690 }
691 
692 static int mlx90632_remove(struct i2c_client *client)
693 {
694 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
695 	struct mlx90632_data *data = iio_priv(indio_dev);
696 
697 	iio_device_unregister(indio_dev);
698 
699 	pm_runtime_disable(&client->dev);
700 	pm_runtime_set_suspended(&client->dev);
701 	pm_runtime_put_noidle(&client->dev);
702 
703 	mlx90632_sleep(data);
704 
705 	return 0;
706 }
707 
708 static const struct i2c_device_id mlx90632_id[] = {
709 	{ "mlx90632", 0 },
710 	{ }
711 };
712 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
713 
714 static const struct of_device_id mlx90632_of_match[] = {
715 	{ .compatible = "melexis,mlx90632" },
716 	{ }
717 };
718 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
719 
720 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
721 {
722 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
723 	struct mlx90632_data *data = iio_priv(indio_dev);
724 
725 	return mlx90632_sleep(data);
726 }
727 
728 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
729 {
730 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
731 	struct mlx90632_data *data = iio_priv(indio_dev);
732 
733 	return mlx90632_wakeup(data);
734 }
735 
736 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
737 			    mlx90632_pm_resume, NULL);
738 
739 static struct i2c_driver mlx90632_driver = {
740 	.driver = {
741 		.name	= "mlx90632",
742 		.of_match_table = mlx90632_of_match,
743 		.pm	= &mlx90632_pm_ops,
744 	},
745 	.probe = mlx90632_probe,
746 	.remove = mlx90632_remove,
747 	.id_table = mlx90632_id,
748 };
749 module_i2c_driver(mlx90632_driver);
750 
751 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
752 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
753 MODULE_LICENSE("GPL v2");
754