xref: /openbmc/linux/drivers/iio/temperature/mlx90632.c (revision 91db9311945f01901ddb9813ce11364de214a156)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4  *
5  * Copyright (c) 2017 Melexis <cmo@melexis.com>
6  *
7  * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8  */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/math64.h>
16 #include <linux/of.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19 
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 
23 /* Memory sections addresses */
24 #define MLX90632_ADDR_RAM	0x4000 /* Start address of ram */
25 #define MLX90632_ADDR_EEPROM	0x2480 /* Start address of user eeprom */
26 
27 /* EEPROM addresses - used at startup */
28 #define MLX90632_EE_CTRL	0x24d4 /* Control register initial value */
29 #define MLX90632_EE_I2C_ADDR	0x24d5 /* I2C address register initial value */
30 #define MLX90632_EE_VERSION	0x240b /* EEPROM version reg address */
31 #define MLX90632_EE_P_R		0x240c /* P_R calibration register 32bit */
32 #define MLX90632_EE_P_G		0x240e /* P_G calibration register 32bit */
33 #define MLX90632_EE_P_T		0x2410 /* P_T calibration register 32bit */
34 #define MLX90632_EE_P_O		0x2412 /* P_O calibration register 32bit */
35 #define MLX90632_EE_Aa		0x2414 /* Aa calibration register 32bit */
36 #define MLX90632_EE_Ab		0x2416 /* Ab calibration register 32bit */
37 #define MLX90632_EE_Ba		0x2418 /* Ba calibration register 32bit */
38 #define MLX90632_EE_Bb		0x241a /* Bb calibration register 32bit */
39 #define MLX90632_EE_Ca		0x241c /* Ca calibration register 32bit */
40 #define MLX90632_EE_Cb		0x241e /* Cb calibration register 32bit */
41 #define MLX90632_EE_Da		0x2420 /* Da calibration register 32bit */
42 #define MLX90632_EE_Db		0x2422 /* Db calibration register 32bit */
43 #define MLX90632_EE_Ea		0x2424 /* Ea calibration register 32bit */
44 #define MLX90632_EE_Eb		0x2426 /* Eb calibration register 32bit */
45 #define MLX90632_EE_Fa		0x2428 /* Fa calibration register 32bit */
46 #define MLX90632_EE_Fb		0x242a /* Fb calibration register 32bit */
47 #define MLX90632_EE_Ga		0x242c /* Ga calibration register 32bit */
48 
49 #define MLX90632_EE_Gb		0x242e /* Gb calibration register 16bit */
50 #define MLX90632_EE_Ka		0x242f /* Ka calibration register 16bit */
51 
52 #define MLX90632_EE_Ha		0x2481 /* Ha customer calib value reg 16bit */
53 #define MLX90632_EE_Hb		0x2482 /* Hb customer calib value reg 16bit */
54 
55 /* Register addresses - volatile */
56 #define MLX90632_REG_I2C_ADDR	0x3000 /* Chip I2C address register */
57 
58 /* Control register address - volatile */
59 #define MLX90632_REG_CONTROL	0x3001 /* Control Register address */
60 #define   MLX90632_CFG_PWR_MASK		GENMASK(2, 1) /* PowerMode Mask */
61 /* PowerModes statuses */
62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
67 
68 /* Device status register - volatile */
69 #define MLX90632_REG_STATUS	0x3fff /* Device status register */
70 #define   MLX90632_STAT_BUSY		BIT(10) /* Device busy indicator */
71 #define   MLX90632_STAT_EE_BUSY		BIT(9) /* EEPROM busy indicator */
72 #define   MLX90632_STAT_BRST		BIT(8) /* Brown out reset indicator */
73 #define   MLX90632_STAT_CYCLE_POS	GENMASK(6, 2) /* Data position */
74 #define   MLX90632_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
75 
76 /* RAM_MEAS address-es for each channel */
77 #define MLX90632_RAM_1(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num)
78 #define MLX90632_RAM_2(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 1)
79 #define MLX90632_RAM_3(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 2)
80 
81 /* Magic constants */
82 #define MLX90632_ID_MEDICAL	0x0105 /* EEPROM DSPv5 Medical device id */
83 #define MLX90632_ID_CONSUMER	0x0205 /* EEPROM DSPv5 Consumer device id */
84 #define MLX90632_DSP_VERSION	5 /* DSP version */
85 #define MLX90632_DSP_MASK	GENMASK(7, 0) /* DSP version in EE_VERSION */
86 #define MLX90632_RESET_CMD	0x0006 /* Reset sensor (address or global) */
87 #define MLX90632_REF_12		12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
88 #define MLX90632_REF_3		12LL /**< ResCtrlRef value of Channel 3 */
89 #define MLX90632_MAX_MEAS_NUM	31 /**< Maximum measurements in list */
90 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
91 
92 struct mlx90632_data {
93 	struct i2c_client *client;
94 	struct mutex lock; /* Multiple reads for single measurement */
95 	struct regmap *regmap;
96 	u16 emissivity;
97 };
98 
99 static const struct regmap_range mlx90632_volatile_reg_range[] = {
100 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
101 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
102 	regmap_reg_range(MLX90632_RAM_1(0),
103 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
104 };
105 
106 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
107 	.yes_ranges = mlx90632_volatile_reg_range,
108 	.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
109 };
110 
111 static const struct regmap_range mlx90632_read_reg_range[] = {
112 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
113 	regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
114 	regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
115 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
116 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
117 	regmap_reg_range(MLX90632_RAM_1(0),
118 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
119 };
120 
121 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
122 	.yes_ranges = mlx90632_read_reg_range,
123 	.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
124 };
125 
126 static const struct regmap_range mlx90632_no_write_reg_range[] = {
127 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
128 	regmap_reg_range(MLX90632_RAM_1(0),
129 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
130 };
131 
132 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
133 	.no_ranges = mlx90632_no_write_reg_range,
134 	.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
135 };
136 
137 static const struct regmap_config mlx90632_regmap = {
138 	.reg_bits = 16,
139 	.val_bits = 16,
140 
141 	.volatile_table = &mlx90632_volatile_regs_tbl,
142 	.rd_table = &mlx90632_readable_regs_tbl,
143 	.wr_table = &mlx90632_writeable_regs_tbl,
144 
145 	.use_single_read = true,
146 	.use_single_write = true,
147 	.reg_format_endian = REGMAP_ENDIAN_BIG,
148 	.val_format_endian = REGMAP_ENDIAN_BIG,
149 	.cache_type = REGCACHE_RBTREE,
150 };
151 
152 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
153 {
154 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
155 				  MLX90632_CFG_PWR_MASK,
156 				  MLX90632_PWR_STATUS_SLEEP_STEP);
157 }
158 
159 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
160 {
161 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
162 				  MLX90632_CFG_PWR_MASK,
163 				  MLX90632_PWR_STATUS_CONTINUOUS);
164 }
165 
166 /**
167  * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
168  * @*data: pointer to mlx90632_data object containing regmap information
169  *
170  * Perform a measurement and return latest measurement cycle position reported
171  * by sensor. This is a blocking function for 500ms, as that is default sensor
172  * refresh rate.
173  */
174 static int mlx90632_perform_measurement(struct mlx90632_data *data)
175 {
176 	int ret, tries = 100;
177 	unsigned int reg_status;
178 
179 	ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
180 				 MLX90632_STAT_DATA_RDY, 0);
181 	if (ret < 0)
182 		return ret;
183 
184 	while (tries-- > 0) {
185 		ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
186 				  &reg_status);
187 		if (ret < 0)
188 			return ret;
189 		if (reg_status & MLX90632_STAT_DATA_RDY)
190 			break;
191 		usleep_range(10000, 11000);
192 	}
193 
194 	if (tries < 0) {
195 		dev_err(&data->client->dev, "data not ready");
196 		return -ETIMEDOUT;
197 	}
198 
199 	return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
200 }
201 
202 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
203 				       uint8_t *channel_old)
204 {
205 	switch (perform_ret) {
206 	case 1:
207 		*channel_new = 1;
208 		*channel_old = 2;
209 		break;
210 	case 2:
211 		*channel_new = 2;
212 		*channel_old = 1;
213 		break;
214 	default:
215 		return -EINVAL;
216 	}
217 
218 	return 0;
219 }
220 
221 static int mlx90632_read_ambient_raw(struct regmap *regmap,
222 				     s16 *ambient_new_raw, s16 *ambient_old_raw)
223 {
224 	int ret;
225 	unsigned int read_tmp;
226 
227 	ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
228 	if (ret < 0)
229 		return ret;
230 	*ambient_new_raw = (s16)read_tmp;
231 
232 	ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
233 	if (ret < 0)
234 		return ret;
235 	*ambient_old_raw = (s16)read_tmp;
236 
237 	return ret;
238 }
239 
240 static int mlx90632_read_object_raw(struct regmap *regmap,
241 				    int perform_measurement_ret,
242 				    s16 *object_new_raw, s16 *object_old_raw)
243 {
244 	int ret;
245 	unsigned int read_tmp;
246 	s16 read;
247 	u8 channel = 0;
248 	u8 channel_old = 0;
249 
250 	ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
251 					  &channel_old);
252 	if (ret != 0)
253 		return ret;
254 
255 	ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
256 	if (ret < 0)
257 		return ret;
258 
259 	read = (s16)read_tmp;
260 
261 	ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
262 	if (ret < 0)
263 		return ret;
264 	*object_new_raw = (read + (s16)read_tmp) / 2;
265 
266 	ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
267 	if (ret < 0)
268 		return ret;
269 	read = (s16)read_tmp;
270 
271 	ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
272 	if (ret < 0)
273 		return ret;
274 	*object_old_raw = (read + (s16)read_tmp) / 2;
275 
276 	return ret;
277 }
278 
279 static int mlx90632_read_all_channel(struct mlx90632_data *data,
280 				     s16 *ambient_new_raw, s16 *ambient_old_raw,
281 				     s16 *object_new_raw, s16 *object_old_raw)
282 {
283 	s32 ret, measurement;
284 
285 	mutex_lock(&data->lock);
286 	measurement = mlx90632_perform_measurement(data);
287 	if (measurement < 0) {
288 		ret = measurement;
289 		goto read_unlock;
290 	}
291 	ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
292 					ambient_old_raw);
293 	if (ret < 0)
294 		goto read_unlock;
295 
296 	ret = mlx90632_read_object_raw(data->regmap, measurement,
297 				       object_new_raw, object_old_raw);
298 read_unlock:
299 	mutex_unlock(&data->lock);
300 	return ret;
301 }
302 
303 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
304 				     s32 *reg_value)
305 {
306 	s32 ret;
307 	unsigned int read;
308 	u32 value;
309 
310 	ret = regmap_read(regmap, reg_lsb, &read);
311 	if (ret < 0)
312 		return ret;
313 
314 	value = read;
315 
316 	ret = regmap_read(regmap, reg_lsb + 1, &read);
317 	if (ret < 0)
318 		return ret;
319 
320 	*reg_value = (read << 16) | (value & 0xffff);
321 
322 	return 0;
323 }
324 
325 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
326 					s16 ambient_old_raw, s16 Gb)
327 {
328 	s64 VR_Ta, kGb, tmp;
329 
330 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
331 	VR_Ta = (s64)ambient_old_raw * 1000000LL +
332 		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
333 			(MLX90632_REF_3));
334 	tmp = div64_s64(
335 			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
336 				   (MLX90632_REF_3)), VR_Ta);
337 	return div64_s64(tmp << 19ULL, 1000LL);
338 }
339 
340 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
341 					s16 ambient_new_raw,
342 					s16 ambient_old_raw, s16 Ka)
343 {
344 	s64 VR_IR, kKa, tmp;
345 
346 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
347 	VR_IR = (s64)ambient_old_raw * 1000000LL +
348 		kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
349 			(MLX90632_REF_3));
350 	tmp = div64_s64(
351 			div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
352 				   * 1000000000000LL), (MLX90632_REF_12)),
353 			VR_IR);
354 	return div64_s64((tmp << 19ULL), 1000LL);
355 }
356 
357 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
358 				      s32 P_T, s32 P_R, s32 P_G, s32 P_O,
359 				      s16 Gb)
360 {
361 	s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
362 
363 	AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
364 					   Gb);
365 	Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
366 	Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
367 	Ablock = Asub * (Bsub * Bsub);
368 	Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
369 	Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
370 
371 	sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
372 
373 	return div64_s64(sum, 10000000LL);
374 }
375 
376 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
377 					       s64 TAdut, s32 Fa, s32 Fb,
378 					       s32 Ga, s16 Ha, s16 Hb,
379 					       u16 emissivity)
380 {
381 	s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
382 	s64 Ha_customer, Hb_customer;
383 
384 	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
385 	Hb_customer = ((s64)Hb * 100) >> 10ULL;
386 
387 	calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
388 			     * 1000LL)) >> 36LL;
389 	calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
390 	Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
391 				* Ha_customer), 1000LL);
392 	Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
393 	Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
394 	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
395 	ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
396 	TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
397 		(div64_s64(TAdut, 10000LL) + 27315) *
398 		(div64_s64(TAdut, 10000LL)  + 27315) *
399 		(div64_s64(TAdut, 10000LL) + 27315);
400 
401 	return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
402 		- 27315 - Hb_customer) * 10;
403 }
404 
405 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
406 				     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
407 				     u16 tmp_emi)
408 {
409 	s64 kTA, kTA0, TAdut;
410 	s64 temp = 25000;
411 	s8 i;
412 
413 	kTA = (Ea * 1000LL) >> 16LL;
414 	kTA0 = (Eb * 1000LL) >> 8LL;
415 	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
416 
417 	/* Iterations of calculation as described in datasheet */
418 	for (i = 0; i < 5; ++i) {
419 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
420 							   Fa, Fb, Ga, Ha, Hb,
421 							   tmp_emi);
422 	}
423 	return temp;
424 }
425 
426 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
427 {
428 	s32 ret;
429 	s32 Ea, Eb, Fa, Fb, Ga;
430 	unsigned int read_tmp;
431 	s16 Ha, Hb, Gb, Ka;
432 	s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
433 	s64 object, ambient;
434 
435 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
436 	if (ret < 0)
437 		return ret;
438 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
439 	if (ret < 0)
440 		return ret;
441 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
442 	if (ret < 0)
443 		return ret;
444 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
445 	if (ret < 0)
446 		return ret;
447 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
448 	if (ret < 0)
449 		return ret;
450 	ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
451 	if (ret < 0)
452 		return ret;
453 	Ha = (s16)read_tmp;
454 	ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
455 	if (ret < 0)
456 		return ret;
457 	Hb = (s16)read_tmp;
458 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
459 	if (ret < 0)
460 		return ret;
461 	Gb = (s16)read_tmp;
462 	ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
463 	if (ret < 0)
464 		return ret;
465 	Ka = (s16)read_tmp;
466 
467 	ret = mlx90632_read_all_channel(data,
468 					&ambient_new_raw, &ambient_old_raw,
469 					&object_new_raw, &object_old_raw);
470 	if (ret < 0)
471 		return ret;
472 
473 	ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
474 					       ambient_old_raw, Gb);
475 	object = mlx90632_preprocess_temp_obj(object_new_raw,
476 					      object_old_raw,
477 					      ambient_new_raw,
478 					      ambient_old_raw, Ka);
479 
480 	*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
481 					 Ha, Hb, data->emissivity);
482 	return 0;
483 }
484 
485 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
486 {
487 	s32 ret;
488 	unsigned int read_tmp;
489 	s32 PT, PR, PG, PO;
490 	s16 Gb;
491 	s16 ambient_new_raw, ambient_old_raw;
492 
493 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
494 	if (ret < 0)
495 		return ret;
496 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
497 	if (ret < 0)
498 		return ret;
499 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
500 	if (ret < 0)
501 		return ret;
502 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
503 	if (ret < 0)
504 		return ret;
505 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
506 	if (ret < 0)
507 		return ret;
508 	Gb = (s16)read_tmp;
509 
510 	ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
511 					&ambient_old_raw);
512 	if (ret < 0)
513 		return ret;
514 	*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
515 					  PT, PR, PG, PO, Gb);
516 	return ret;
517 }
518 
519 static int mlx90632_read_raw(struct iio_dev *indio_dev,
520 			     struct iio_chan_spec const *channel, int *val,
521 			     int *val2, long mask)
522 {
523 	struct mlx90632_data *data = iio_priv(indio_dev);
524 	int ret;
525 
526 	switch (mask) {
527 	case IIO_CHAN_INFO_PROCESSED:
528 		switch (channel->channel2) {
529 		case IIO_MOD_TEMP_AMBIENT:
530 			ret = mlx90632_calc_ambient_dsp105(data, val);
531 			if (ret < 0)
532 				return ret;
533 			return IIO_VAL_INT;
534 		case IIO_MOD_TEMP_OBJECT:
535 			ret = mlx90632_calc_object_dsp105(data, val);
536 			if (ret < 0)
537 				return ret;
538 			return IIO_VAL_INT;
539 		default:
540 			return -EINVAL;
541 		}
542 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
543 		if (data->emissivity == 1000) {
544 			*val = 1;
545 			*val2 = 0;
546 		} else {
547 			*val = 0;
548 			*val2 = data->emissivity * 1000;
549 		}
550 		return IIO_VAL_INT_PLUS_MICRO;
551 
552 	default:
553 		return -EINVAL;
554 	}
555 }
556 
557 static int mlx90632_write_raw(struct iio_dev *indio_dev,
558 			      struct iio_chan_spec const *channel, int val,
559 			      int val2, long mask)
560 {
561 	struct mlx90632_data *data = iio_priv(indio_dev);
562 
563 	switch (mask) {
564 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
565 		/* Confirm we are within 0 and 1.0 */
566 		if (val < 0 || val2 < 0 || val > 1 ||
567 		    (val == 1 && val2 != 0))
568 			return -EINVAL;
569 		data->emissivity = val * 1000 + val2 / 1000;
570 		return 0;
571 	default:
572 		return -EINVAL;
573 	}
574 }
575 
576 static const struct iio_chan_spec mlx90632_channels[] = {
577 	{
578 		.type = IIO_TEMP,
579 		.modified = 1,
580 		.channel2 = IIO_MOD_TEMP_AMBIENT,
581 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
582 	},
583 	{
584 		.type = IIO_TEMP,
585 		.modified = 1,
586 		.channel2 = IIO_MOD_TEMP_OBJECT,
587 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
588 			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
589 	},
590 };
591 
592 static const struct iio_info mlx90632_info = {
593 	.read_raw = mlx90632_read_raw,
594 	.write_raw = mlx90632_write_raw,
595 };
596 
597 static int mlx90632_sleep(struct mlx90632_data *data)
598 {
599 	regcache_mark_dirty(data->regmap);
600 
601 	dev_dbg(&data->client->dev, "Requesting sleep");
602 	return mlx90632_pwr_set_sleep_step(data->regmap);
603 }
604 
605 static int mlx90632_wakeup(struct mlx90632_data *data)
606 {
607 	int ret;
608 
609 	ret = regcache_sync(data->regmap);
610 	if (ret < 0) {
611 		dev_err(&data->client->dev,
612 			"Failed to sync regmap registers: %d\n", ret);
613 		return ret;
614 	}
615 
616 	dev_dbg(&data->client->dev, "Requesting wake-up\n");
617 	return mlx90632_pwr_continuous(data->regmap);
618 }
619 
620 static int mlx90632_probe(struct i2c_client *client,
621 			  const struct i2c_device_id *id)
622 {
623 	struct iio_dev *indio_dev;
624 	struct mlx90632_data *mlx90632;
625 	struct regmap *regmap;
626 	int ret;
627 	unsigned int read;
628 
629 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
630 	if (!indio_dev) {
631 		dev_err(&client->dev, "Failed to allocate device\n");
632 		return -ENOMEM;
633 	}
634 
635 	regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
636 	if (IS_ERR(regmap)) {
637 		ret = PTR_ERR(regmap);
638 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
639 		return ret;
640 	}
641 
642 	mlx90632 = iio_priv(indio_dev);
643 	i2c_set_clientdata(client, indio_dev);
644 	mlx90632->client = client;
645 	mlx90632->regmap = regmap;
646 
647 	mutex_init(&mlx90632->lock);
648 	indio_dev->dev.parent = &client->dev;
649 	indio_dev->name = id->name;
650 	indio_dev->modes = INDIO_DIRECT_MODE;
651 	indio_dev->info = &mlx90632_info;
652 	indio_dev->channels = mlx90632_channels;
653 	indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
654 
655 	ret = mlx90632_wakeup(mlx90632);
656 	if (ret < 0) {
657 		dev_err(&client->dev, "Wakeup failed: %d\n", ret);
658 		return ret;
659 	}
660 
661 	ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
662 	if (ret < 0) {
663 		dev_err(&client->dev, "read of version failed: %d\n", ret);
664 		return ret;
665 	}
666 	if (read == MLX90632_ID_MEDICAL) {
667 		dev_dbg(&client->dev,
668 			"Detected Medical EEPROM calibration %x\n", read);
669 	} else if (read == MLX90632_ID_CONSUMER) {
670 		dev_dbg(&client->dev,
671 			"Detected Consumer EEPROM calibration %x\n", read);
672 	} else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
673 		dev_dbg(&client->dev,
674 			"Detected Unknown EEPROM calibration %x\n", read);
675 	} else {
676 		dev_err(&client->dev,
677 			"Wrong DSP version %x (expected %x)\n",
678 			read, MLX90632_DSP_VERSION);
679 		return -EPROTONOSUPPORT;
680 	}
681 
682 	mlx90632->emissivity = 1000;
683 
684 	pm_runtime_disable(&client->dev);
685 	ret = pm_runtime_set_active(&client->dev);
686 	if (ret < 0) {
687 		mlx90632_sleep(mlx90632);
688 		return ret;
689 	}
690 	pm_runtime_enable(&client->dev);
691 	pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
692 	pm_runtime_use_autosuspend(&client->dev);
693 
694 	return iio_device_register(indio_dev);
695 }
696 
697 static int mlx90632_remove(struct i2c_client *client)
698 {
699 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
700 	struct mlx90632_data *data = iio_priv(indio_dev);
701 
702 	iio_device_unregister(indio_dev);
703 
704 	pm_runtime_disable(&client->dev);
705 	pm_runtime_set_suspended(&client->dev);
706 	pm_runtime_put_noidle(&client->dev);
707 
708 	mlx90632_sleep(data);
709 
710 	return 0;
711 }
712 
713 static const struct i2c_device_id mlx90632_id[] = {
714 	{ "mlx90632", 0 },
715 	{ }
716 };
717 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
718 
719 static const struct of_device_id mlx90632_of_match[] = {
720 	{ .compatible = "melexis,mlx90632" },
721 	{ }
722 };
723 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
724 
725 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
726 {
727 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
728 	struct mlx90632_data *data = iio_priv(indio_dev);
729 
730 	return mlx90632_sleep(data);
731 }
732 
733 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
734 {
735 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
736 	struct mlx90632_data *data = iio_priv(indio_dev);
737 
738 	return mlx90632_wakeup(data);
739 }
740 
741 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
742 			    mlx90632_pm_resume, NULL);
743 
744 static struct i2c_driver mlx90632_driver = {
745 	.driver = {
746 		.name	= "mlx90632",
747 		.of_match_table = mlx90632_of_match,
748 		.pm	= &mlx90632_pm_ops,
749 	},
750 	.probe = mlx90632_probe,
751 	.remove = mlx90632_remove,
752 	.id_table = mlx90632_id,
753 };
754 module_i2c_driver(mlx90632_driver);
755 
756 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
757 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
758 MODULE_LICENSE("GPL v2");
759