1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4  *
5  * Copyright (c) 2017 Melexis <cmo@melexis.com>
6  *
7  * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8  */
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/iopoll.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/limits.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/math64.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 
29 /* Memory sections addresses */
30 #define MLX90632_ADDR_RAM	0x4000 /* Start address of ram */
31 #define MLX90632_ADDR_EEPROM	0x2480 /* Start address of user eeprom */
32 
33 /* EEPROM addresses - used at startup */
34 #define MLX90632_EE_CTRL	0x24d4 /* Control register initial value */
35 #define MLX90632_EE_I2C_ADDR	0x24d5 /* I2C address register initial value */
36 #define MLX90632_EE_VERSION	0x240b /* EEPROM version reg address */
37 #define MLX90632_EE_P_R		0x240c /* P_R calibration register 32bit */
38 #define MLX90632_EE_P_G		0x240e /* P_G calibration register 32bit */
39 #define MLX90632_EE_P_T		0x2410 /* P_T calibration register 32bit */
40 #define MLX90632_EE_P_O		0x2412 /* P_O calibration register 32bit */
41 #define MLX90632_EE_Aa		0x2414 /* Aa calibration register 32bit */
42 #define MLX90632_EE_Ab		0x2416 /* Ab calibration register 32bit */
43 #define MLX90632_EE_Ba		0x2418 /* Ba calibration register 32bit */
44 #define MLX90632_EE_Bb		0x241a /* Bb calibration register 32bit */
45 #define MLX90632_EE_Ca		0x241c /* Ca calibration register 32bit */
46 #define MLX90632_EE_Cb		0x241e /* Cb calibration register 32bit */
47 #define MLX90632_EE_Da		0x2420 /* Da calibration register 32bit */
48 #define MLX90632_EE_Db		0x2422 /* Db calibration register 32bit */
49 #define MLX90632_EE_Ea		0x2424 /* Ea calibration register 32bit */
50 #define MLX90632_EE_Eb		0x2426 /* Eb calibration register 32bit */
51 #define MLX90632_EE_Fa		0x2428 /* Fa calibration register 32bit */
52 #define MLX90632_EE_Fb		0x242a /* Fb calibration register 32bit */
53 #define MLX90632_EE_Ga		0x242c /* Ga calibration register 32bit */
54 
55 #define MLX90632_EE_Gb		0x242e /* Gb calibration register 16bit */
56 #define MLX90632_EE_Ka		0x242f /* Ka calibration register 16bit */
57 
58 #define MLX90632_EE_Ha		0x2481 /* Ha customer calib value reg 16bit */
59 #define MLX90632_EE_Hb		0x2482 /* Hb customer calib value reg 16bit */
60 
61 #define MLX90632_EE_MEDICAL_MEAS1      0x24E1 /* Medical measurement 1 16bit */
62 #define MLX90632_EE_MEDICAL_MEAS2      0x24E2 /* Medical measurement 2 16bit */
63 #define MLX90632_EE_EXTENDED_MEAS1     0x24F1 /* Extended measurement 1 16bit */
64 #define MLX90632_EE_EXTENDED_MEAS2     0x24F2 /* Extended measurement 2 16bit */
65 #define MLX90632_EE_EXTENDED_MEAS3     0x24F3 /* Extended measurement 3 16bit */
66 
67 /* Register addresses - volatile */
68 #define MLX90632_REG_I2C_ADDR	0x3000 /* Chip I2C address register */
69 
70 /* Control register address - volatile */
71 #define MLX90632_REG_CONTROL	0x3001 /* Control Register address */
72 #define   MLX90632_CFG_PWR_MASK		GENMASK(2, 1) /* PowerMode Mask */
73 #define   MLX90632_CFG_MTYP_MASK		GENMASK(8, 4) /* Meas select Mask */
74 #define   MLX90632_CFG_SOB_MASK BIT(11)
75 
76 /* PowerModes statuses */
77 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
78 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
79 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step */
80 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
81 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous */
82 
83 #define MLX90632_EE_RR GENMASK(10, 8) /* Only Refresh Rate bits */
84 #define MLX90632_REFRESH_RATE(ee_val) FIELD_GET(MLX90632_EE_RR, ee_val)
85 					/* Extract Refresh Rate from ee register */
86 #define MLX90632_REFRESH_RATE_STATUS(refresh_rate) (refresh_rate << 8)
87 
88 /* Measurement types */
89 #define MLX90632_MTYP_MEDICAL 0
90 #define MLX90632_MTYP_EXTENDED 17
91 
92 /* Measurement type select*/
93 #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
94 #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
95 #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
96 
97 /* I2C command register - volatile */
98 #define MLX90632_REG_I2C_CMD    0x3005 /* I2C command Register address */
99 
100 /* Device status register - volatile */
101 #define MLX90632_REG_STATUS	0x3fff /* Device status register */
102 #define   MLX90632_STAT_BUSY		BIT(10) /* Device busy indicator */
103 #define   MLX90632_STAT_EE_BUSY		BIT(9) /* EEPROM busy indicator */
104 #define   MLX90632_STAT_BRST		BIT(8) /* Brown out reset indicator */
105 #define   MLX90632_STAT_CYCLE_POS	GENMASK(6, 2) /* Data position */
106 #define   MLX90632_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
107 
108 /* RAM_MEAS address-es for each channel */
109 #define MLX90632_RAM_1(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num)
110 #define MLX90632_RAM_2(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 1)
111 #define MLX90632_RAM_3(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 2)
112 
113 /* Name important RAM_MEAS channels */
114 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
115 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
116 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
117 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
118 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
119 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
120 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
121 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
122 
123 /* Magic constants */
124 #define MLX90632_ID_MEDICAL	0x0105 /* EEPROM DSPv5 Medical device id */
125 #define MLX90632_ID_CONSUMER	0x0205 /* EEPROM DSPv5 Consumer device id */
126 #define MLX90632_ID_EXTENDED	0x0505 /* EEPROM DSPv5 Extended range device id */
127 #define MLX90632_ID_MASK	GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
128 #define MLX90632_DSP_VERSION	5 /* DSP version */
129 #define MLX90632_DSP_MASK	GENMASK(7, 0) /* DSP version in EE_VERSION */
130 #define MLX90632_RESET_CMD	0x0006 /* Reset sensor (address or global) */
131 #define MLX90632_REF_12 	12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
132 #define MLX90632_REF_3		12LL /* ResCtrlRef value of Channel 3 */
133 #define MLX90632_MAX_MEAS_NUM	31 /* Maximum measurements in list */
134 #define MLX90632_SLEEP_DELAY_MS 6000 /* Autosleep delay */
135 #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
136 #define MLX90632_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
137 
138 /**
139  * struct mlx90632_data - private data for the MLX90632 device
140  * @client: I2C client of the device
141  * @lock: Internal mutex for multiple reads for single measurement
142  * @regmap: Regmap of the device
143  * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
144  * @mtyp: Measurement type physical sensor configuration for extended range
145  *        calculations
146  * @object_ambient_temperature: Ambient temperature at object (might differ of
147  *                              the ambient temperature of sensor.
148  * @regulator: Regulator of the device
149  * @powerstatus: Current POWER status of the device
150  * @interaction_ts: Timestamp of the last temperature read that is used
151  *		    for power management in jiffies
152  */
153 struct mlx90632_data {
154 	struct i2c_client *client;
155 	struct mutex lock;
156 	struct regmap *regmap;
157 	u16 emissivity;
158 	u8 mtyp;
159 	u32 object_ambient_temperature;
160 	struct regulator *regulator;
161 	int powerstatus;
162 	unsigned long interaction_ts;
163 };
164 
165 static const struct regmap_range mlx90632_volatile_reg_range[] = {
166 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
167 	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
168 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
169 	regmap_reg_range(MLX90632_RAM_1(0),
170 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
171 };
172 
173 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
174 	.yes_ranges = mlx90632_volatile_reg_range,
175 	.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
176 };
177 
178 static const struct regmap_range mlx90632_read_reg_range[] = {
179 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
180 	regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
181 	regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
182 	regmap_reg_range(MLX90632_EE_MEDICAL_MEAS1, MLX90632_EE_MEDICAL_MEAS2),
183 	regmap_reg_range(MLX90632_EE_EXTENDED_MEAS1, MLX90632_EE_EXTENDED_MEAS3),
184 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
185 	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
186 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
187 	regmap_reg_range(MLX90632_RAM_1(0),
188 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
189 };
190 
191 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
192 	.yes_ranges = mlx90632_read_reg_range,
193 	.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
194 };
195 
196 static const struct regmap_range mlx90632_no_write_reg_range[] = {
197 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
198 	regmap_reg_range(MLX90632_RAM_1(0),
199 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
200 };
201 
202 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
203 	.no_ranges = mlx90632_no_write_reg_range,
204 	.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
205 };
206 
207 static const struct regmap_config mlx90632_regmap = {
208 	.reg_bits = 16,
209 	.val_bits = 16,
210 
211 	.volatile_table = &mlx90632_volatile_regs_tbl,
212 	.rd_table = &mlx90632_readable_regs_tbl,
213 	.wr_table = &mlx90632_writeable_regs_tbl,
214 
215 	.use_single_read = true,
216 	.use_single_write = true,
217 	.reg_format_endian = REGMAP_ENDIAN_BIG,
218 	.val_format_endian = REGMAP_ENDIAN_BIG,
219 	.cache_type = REGCACHE_RBTREE,
220 };
221 
222 static int mlx90632_pwr_set_sleep_step(struct regmap *regmap)
223 {
224 	struct mlx90632_data *data =
225 		iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
226 	int ret;
227 
228 	if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
229 		return 0;
230 
231 	ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
232 				MLX90632_PWR_STATUS_SLEEP_STEP);
233 	if (ret < 0)
234 		return ret;
235 
236 	data->powerstatus = MLX90632_PWR_STATUS_SLEEP_STEP;
237 	return 0;
238 }
239 
240 static int mlx90632_pwr_continuous(struct regmap *regmap)
241 {
242 	struct mlx90632_data *data =
243 		iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
244 	int ret;
245 
246 	if (data->powerstatus == MLX90632_PWR_STATUS_CONTINUOUS)
247 		return 0;
248 
249 	ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
250 				MLX90632_PWR_STATUS_CONTINUOUS);
251 	if (ret < 0)
252 		return ret;
253 
254 	data->powerstatus = MLX90632_PWR_STATUS_CONTINUOUS;
255 	return 0;
256 }
257 
258 /**
259  * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
260  * If this is not done, the following I2C command(s) will not be accepted.
261  */
262 static void mlx90632_reset_delay(void)
263 {
264 	usleep_range(150, 200);
265 }
266 
267 static int mlx90632_get_measurement_time(struct regmap *regmap, u16 meas)
268 {
269 	unsigned int reg;
270 	int ret;
271 
272 	ret = regmap_read(regmap, meas, &reg);
273 	if (ret < 0)
274 		return ret;
275 
276 	return MLX90632_MEAS_MAX_TIME >> FIELD_GET(MLX90632_EE_RR, reg);
277 }
278 
279 static int mlx90632_calculate_dataset_ready_time(struct mlx90632_data *data)
280 {
281 	unsigned int refresh_time;
282 	int ret;
283 
284 	if (data->mtyp == MLX90632_MTYP_MEDICAL) {
285 		ret = mlx90632_get_measurement_time(data->regmap,
286 						    MLX90632_EE_MEDICAL_MEAS1);
287 		if (ret < 0)
288 			return ret;
289 
290 		refresh_time = ret;
291 
292 		ret = mlx90632_get_measurement_time(data->regmap,
293 						    MLX90632_EE_MEDICAL_MEAS2);
294 		if (ret < 0)
295 			return ret;
296 
297 		refresh_time += ret;
298 	} else {
299 		ret = mlx90632_get_measurement_time(data->regmap,
300 						    MLX90632_EE_EXTENDED_MEAS1);
301 		if (ret < 0)
302 			return ret;
303 
304 		refresh_time = ret;
305 
306 		ret = mlx90632_get_measurement_time(data->regmap,
307 						    MLX90632_EE_EXTENDED_MEAS2);
308 		if (ret < 0)
309 			return ret;
310 
311 		refresh_time += ret;
312 
313 		ret = mlx90632_get_measurement_time(data->regmap,
314 						    MLX90632_EE_EXTENDED_MEAS3);
315 		if (ret < 0)
316 			return ret;
317 
318 		refresh_time += ret;
319 	}
320 
321 	return refresh_time;
322 }
323 
324 /**
325  * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
326  * @data: pointer to mlx90632_data object containing regmap information
327  *
328  * Perform a measurement and return latest measurement cycle position reported
329  * by sensor. This is a blocking function for 500ms, as that is default sensor
330  * refresh rate.
331  */
332 static int mlx90632_perform_measurement(struct mlx90632_data *data)
333 {
334 	unsigned int reg_status;
335 	int ret;
336 
337 	ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
338 				 MLX90632_STAT_DATA_RDY, 0);
339 	if (ret < 0)
340 		return ret;
341 
342 	ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
343 				       !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
344 				       100 * 10000);
345 
346 	if (ret < 0) {
347 		dev_err(&data->client->dev, "data not ready");
348 		return -ETIMEDOUT;
349 	}
350 
351 	return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
352 }
353 
354 /**
355  * mlx90632_perform_measurement_burst() - Trigger and retrieve current measurement
356  * cycle in step sleep mode
357  * @data: pointer to mlx90632_data object containing regmap information
358  *
359  * Perform a measurement and return 2 as measurement cycle position reported
360  * by sensor. This is a blocking function for amount dependent on the sensor
361  * refresh rate.
362  */
363 static int mlx90632_perform_measurement_burst(struct mlx90632_data *data)
364 {
365 	unsigned int reg_status;
366 	int ret;
367 
368 	ret = regmap_write_bits(data->regmap, MLX90632_REG_CONTROL,
369 				MLX90632_CFG_SOB_MASK, MLX90632_CFG_SOB_MASK);
370 	if (ret < 0)
371 		return ret;
372 
373 	ret = mlx90632_calculate_dataset_ready_time(data);
374 	if (ret < 0)
375 		return ret;
376 
377 	msleep(ret); /* Wait minimum time for dataset to be ready */
378 
379 	ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS,
380 				       reg_status,
381 				       (reg_status & MLX90632_STAT_BUSY) == 0,
382 				       10000, 100 * 10000);
383 	if (ret < 0) {
384 		dev_err(&data->client->dev, "data not ready");
385 		return -ETIMEDOUT;
386 	}
387 
388 	return 2;
389 }
390 
391 static int mlx90632_set_meas_type(struct mlx90632_data *data, u8 type)
392 {
393 	int current_powerstatus;
394 	int ret;
395 
396 	if (data->mtyp == type)
397 		return 0;
398 
399 	current_powerstatus = data->powerstatus;
400 	ret = mlx90632_pwr_continuous(data->regmap);
401 	if (ret < 0)
402 		return ret;
403 
404 	ret = regmap_write(data->regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
405 	if (ret < 0)
406 		return ret;
407 
408 	mlx90632_reset_delay();
409 
410 	ret = regmap_update_bits(data->regmap, MLX90632_REG_CONTROL,
411 				 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
412 				 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
413 	if (ret < 0)
414 		return ret;
415 
416 	data->mtyp = type;
417 	data->powerstatus = MLX90632_PWR_STATUS_HALT;
418 
419 	if (current_powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
420 		return mlx90632_pwr_set_sleep_step(data->regmap);
421 
422 	return mlx90632_pwr_continuous(data->regmap);
423 }
424 
425 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
426 				       uint8_t *channel_old)
427 {
428 	switch (perform_ret) {
429 	case 1:
430 		*channel_new = 1;
431 		*channel_old = 2;
432 		break;
433 	case 2:
434 		*channel_new = 2;
435 		*channel_old = 1;
436 		break;
437 	default:
438 		return -ECHRNG;
439 	}
440 
441 	return 0;
442 }
443 
444 static int mlx90632_read_ambient_raw(struct regmap *regmap,
445 				     s16 *ambient_new_raw, s16 *ambient_old_raw)
446 {
447 	unsigned int read_tmp;
448 	int ret;
449 
450 	ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
451 	if (ret < 0)
452 		return ret;
453 	*ambient_new_raw = (s16)read_tmp;
454 
455 	ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
456 	if (ret < 0)
457 		return ret;
458 	*ambient_old_raw = (s16)read_tmp;
459 
460 	return ret;
461 }
462 
463 static int mlx90632_read_object_raw(struct regmap *regmap,
464 				    int perform_measurement_ret,
465 				    s16 *object_new_raw, s16 *object_old_raw)
466 {
467 	unsigned int read_tmp;
468 	u8 channel_old = 0;
469 	u8 channel = 0;
470 	s16 read;
471 	int ret;
472 
473 	ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
474 					  &channel_old);
475 	if (ret != 0)
476 		return ret;
477 
478 	ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
479 	if (ret < 0)
480 		return ret;
481 
482 	read = (s16)read_tmp;
483 
484 	ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
485 	if (ret < 0)
486 		return ret;
487 	*object_new_raw = (read + (s16)read_tmp) / 2;
488 
489 	ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
490 	if (ret < 0)
491 		return ret;
492 	read = (s16)read_tmp;
493 
494 	ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
495 	if (ret < 0)
496 		return ret;
497 	*object_old_raw = (read + (s16)read_tmp) / 2;
498 
499 	return ret;
500 }
501 
502 static int mlx90632_read_all_channel(struct mlx90632_data *data,
503 				     s16 *ambient_new_raw, s16 *ambient_old_raw,
504 				     s16 *object_new_raw, s16 *object_old_raw)
505 {
506 	s32 measurement;
507 	int ret;
508 
509 	mutex_lock(&data->lock);
510 	ret = mlx90632_set_meas_type(data, MLX90632_MTYP_MEDICAL);
511 	if (ret < 0)
512 		goto read_unlock;
513 
514 	switch (data->powerstatus) {
515 	case MLX90632_PWR_STATUS_CONTINUOUS:
516 		ret = mlx90632_perform_measurement(data);
517 		if (ret < 0)
518 			goto read_unlock;
519 
520 		break;
521 	case MLX90632_PWR_STATUS_SLEEP_STEP:
522 		ret = mlx90632_perform_measurement_burst(data);
523 		if (ret < 0)
524 			goto read_unlock;
525 
526 		break;
527 	default:
528 		ret = -EOPNOTSUPP;
529 		goto read_unlock;
530 	}
531 
532 	measurement = ret; /* If we came here ret holds the measurement position */
533 
534 	ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
535 					ambient_old_raw);
536 	if (ret < 0)
537 		goto read_unlock;
538 
539 	ret = mlx90632_read_object_raw(data->regmap, measurement,
540 				       object_new_raw, object_old_raw);
541 read_unlock:
542 	mutex_unlock(&data->lock);
543 	return ret;
544 }
545 
546 static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
547 					      s16 *ambient_new_raw, s16 *ambient_old_raw)
548 {
549 	unsigned int read_tmp;
550 	int ret;
551 
552 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
553 	if (ret < 0)
554 		return ret;
555 	*ambient_new_raw = (s16)read_tmp;
556 
557 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
558 	if (ret < 0)
559 		return ret;
560 	*ambient_old_raw = (s16)read_tmp;
561 
562 	return 0;
563 }
564 
565 static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
566 {
567 	unsigned int read_tmp;
568 	s32 read;
569 	int ret;
570 
571 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
572 	if (ret < 0)
573 		return ret;
574 	read = (s16)read_tmp;
575 
576 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
577 	if (ret < 0)
578 		return ret;
579 	read = read - (s16)read_tmp;
580 
581 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
582 	if (ret < 0)
583 		return ret;
584 	read = read - (s16)read_tmp;
585 
586 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
587 	if (ret < 0)
588 		return ret;
589 	read = (read + (s16)read_tmp) / 2;
590 
591 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
592 	if (ret < 0)
593 		return ret;
594 	read = read + (s16)read_tmp;
595 
596 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
597 	if (ret < 0)
598 		return ret;
599 	read = read + (s16)read_tmp;
600 
601 	if (read > S16_MAX || read < S16_MIN)
602 		return -ERANGE;
603 
604 	*object_new_raw = read;
605 
606 	return 0;
607 }
608 
609 static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
610 					      s16 *ambient_new_raw, s16 *ambient_old_raw)
611 {
612 	s32 ret, meas;
613 
614 	mutex_lock(&data->lock);
615 	ret = mlx90632_set_meas_type(data, MLX90632_MTYP_EXTENDED);
616 	if (ret < 0)
617 		goto read_unlock;
618 
619 	switch (data->powerstatus) {
620 	case MLX90632_PWR_STATUS_CONTINUOUS:
621 		ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
622 					50000, 800000, false, data);
623 		if (ret)
624 			goto read_unlock;
625 		break;
626 	case MLX90632_PWR_STATUS_SLEEP_STEP:
627 		ret = mlx90632_perform_measurement_burst(data);
628 		if (ret < 0)
629 			goto read_unlock;
630 		break;
631 	default:
632 		ret = -EOPNOTSUPP;
633 		goto read_unlock;
634 	}
635 
636 	ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
637 	if (ret < 0)
638 		goto read_unlock;
639 
640 	ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
641 
642 read_unlock:
643 	mutex_unlock(&data->lock);
644 	return ret;
645 }
646 
647 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
648 				     s32 *reg_value)
649 {
650 	unsigned int read;
651 	u32 value;
652 	int ret;
653 
654 	ret = regmap_read(regmap, reg_lsb, &read);
655 	if (ret < 0)
656 		return ret;
657 
658 	value = read;
659 
660 	ret = regmap_read(regmap, reg_lsb + 1, &read);
661 	if (ret < 0)
662 		return ret;
663 
664 	*reg_value = (read << 16) | (value & 0xffff);
665 
666 	return 0;
667 }
668 
669 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
670 					s16 ambient_old_raw, s16 Gb)
671 {
672 	s64 VR_Ta, kGb, tmp;
673 
674 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
675 	VR_Ta = (s64)ambient_old_raw * 1000000LL +
676 		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
677 			(MLX90632_REF_3));
678 	tmp = div64_s64(
679 			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
680 				   (MLX90632_REF_3)), VR_Ta);
681 	return div64_s64(tmp << 19ULL, 1000LL);
682 }
683 
684 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
685 					s16 ambient_new_raw,
686 					s16 ambient_old_raw, s16 Ka)
687 {
688 	s64 VR_IR, kKa, tmp;
689 
690 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
691 	VR_IR = (s64)ambient_old_raw * 1000000LL +
692 		kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
693 			(MLX90632_REF_3));
694 	tmp = div64_s64(
695 			div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
696 				   * 1000000000000LL), (MLX90632_REF_12)),
697 			VR_IR);
698 	return div64_s64((tmp << 19ULL), 1000LL);
699 }
700 
701 static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
702 						 s16 ambient_old_raw, s16 Ka)
703 {
704 	s64 VR_IR, kKa, tmp;
705 
706 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
707 	VR_IR = (s64)ambient_old_raw * 1000000LL +
708 		kKa * div64_s64((s64)ambient_new_raw * 1000LL,
709 				MLX90632_REF_3);
710 	tmp = div64_s64(
711 			div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
712 			VR_IR);
713 	return div64_s64(tmp << 19ULL, 1000LL);
714 }
715 
716 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
717 				      s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
718 {
719 	s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
720 
721 	AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
722 					   Gb);
723 	Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
724 	Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
725 	Ablock = Asub * (Bsub * Bsub);
726 	Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
727 	Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
728 
729 	sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
730 
731 	return div64_s64(sum, 10000000LL);
732 }
733 
734 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
735 					       s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
736 					       s32 Ga, s16 Ha, s16 Hb,
737 					       u16 emissivity)
738 {
739 	s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
740 	s64 Ha_customer, Hb_customer;
741 
742 	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
743 	Hb_customer = ((s64)Hb * 100) >> 10ULL;
744 
745 	calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
746 			     * 1000LL)) >> 36LL;
747 	calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
748 	Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
749 				* Ha_customer), 1000LL);
750 	Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
751 	Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
752 	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
753 	ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
754 
755 	return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
756 		- 27315 - Hb_customer) * 10;
757 }
758 
759 static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
760 {
761 	return (div64_s64(TAdut, scale) + 27315) *
762 		(div64_s64(TAdut, scale) + 27315) *
763 		(div64_s64(TAdut, scale) + 27315) *
764 		(div64_s64(TAdut, scale) + 27315);
765 }
766 
767 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
768 				     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
769 				     u16 tmp_emi)
770 {
771 	s64 kTA, kTA0, TAdut, TAdut4;
772 	s64 temp = 25000;
773 	s8 i;
774 
775 	kTA = (Ea * 1000LL) >> 16LL;
776 	kTA0 = (Eb * 1000LL) >> 8LL;
777 	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
778 	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
779 
780 	/* Iterations of calculation as described in datasheet */
781 	for (i = 0; i < 5; ++i) {
782 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
783 							   Fa, Fb, Ga, Ha, Hb,
784 							   tmp_emi);
785 	}
786 	return temp;
787 }
788 
789 static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
790 					      s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
791 					      s16 Ha, s16 Hb, u16 tmp_emi)
792 {
793 	s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
794 	s64 temp = 25000;
795 	s8 i;
796 
797 	kTA = (Ea * 1000LL) >> 16LL;
798 	kTA0 = (Eb * 1000LL) >> 8LL;
799 	TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
800 	Tr4 = mlx90632_calc_ta4(reflected, 10);
801 	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
802 	TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
803 
804 	/* Iterations of calculation as described in datasheet */
805 	for (i = 0; i < 5; ++i) {
806 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
807 							   Fa / 2, Fb, Ga, Ha, Hb,
808 							   tmp_emi);
809 	}
810 
811 	return temp;
812 }
813 
814 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
815 {
816 	s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
817 	s32 Ea, Eb, Fa, Fb, Ga;
818 	unsigned int read_tmp;
819 	s64 object, ambient;
820 	s16 Ha, Hb, Gb, Ka;
821 	int ret;
822 
823 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
824 	if (ret < 0)
825 		return ret;
826 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
827 	if (ret < 0)
828 		return ret;
829 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
830 	if (ret < 0)
831 		return ret;
832 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
833 	if (ret < 0)
834 		return ret;
835 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
836 	if (ret < 0)
837 		return ret;
838 	ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
839 	if (ret < 0)
840 		return ret;
841 	Ha = (s16)read_tmp;
842 	ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
843 	if (ret < 0)
844 		return ret;
845 	Hb = (s16)read_tmp;
846 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
847 	if (ret < 0)
848 		return ret;
849 	Gb = (s16)read_tmp;
850 	ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
851 	if (ret < 0)
852 		return ret;
853 	Ka = (s16)read_tmp;
854 
855 	ret = mlx90632_read_all_channel(data,
856 					&ambient_new_raw, &ambient_old_raw,
857 					&object_new_raw, &object_old_raw);
858 	if (ret < 0)
859 		return ret;
860 
861 	if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
862 	    data->mtyp == MLX90632_MTYP_EXTENDED) {
863 		ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
864 							 &ambient_new_raw, &ambient_old_raw);
865 		if (ret < 0)
866 			return ret;
867 
868 		/* Use extended mode calculations */
869 		ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
870 						       ambient_old_raw, Gb);
871 		object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
872 							       ambient_new_raw,
873 							       ambient_old_raw, Ka);
874 		*val = mlx90632_calc_temp_object_extended(object, ambient,
875 							  data->object_ambient_temperature,
876 							  Ea, Eb, Fa, Fb, Ga,
877 							  Ha, Hb, data->emissivity);
878 		return 0;
879 	}
880 
881 	ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
882 					       ambient_old_raw, Gb);
883 	object = mlx90632_preprocess_temp_obj(object_new_raw,
884 					      object_old_raw,
885 					      ambient_new_raw,
886 					      ambient_old_raw, Ka);
887 
888 	*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
889 					 Ha, Hb, data->emissivity);
890 	return 0;
891 }
892 
893 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
894 {
895 	s16 ambient_new_raw, ambient_old_raw;
896 	unsigned int read_tmp;
897 	s32 PT, PR, PG, PO;
898 	int ret;
899 	s16 Gb;
900 
901 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
902 	if (ret < 0)
903 		return ret;
904 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
905 	if (ret < 0)
906 		return ret;
907 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
908 	if (ret < 0)
909 		return ret;
910 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
911 	if (ret < 0)
912 		return ret;
913 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
914 	if (ret < 0)
915 		return ret;
916 	Gb = (s16)read_tmp;
917 
918 	ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
919 					&ambient_old_raw);
920 	if (ret < 0)
921 		return ret;
922 	*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
923 					  PT, PR, PG, PO, Gb);
924 	return ret;
925 }
926 
927 static int mlx90632_get_refresh_rate(struct mlx90632_data *data,
928 				     int *refresh_rate)
929 {
930 	unsigned int meas1;
931 	int ret;
932 
933 	ret = regmap_read(data->regmap, MLX90632_EE_MEDICAL_MEAS1, &meas1);
934 	if (ret < 0)
935 		return ret;
936 
937 	*refresh_rate = MLX90632_REFRESH_RATE(meas1);
938 
939 	return ret;
940 }
941 
942 static const int mlx90632_freqs[][2] = {
943 	{0, 500000},
944 	{1, 0},
945 	{2, 0},
946 	{4, 0},
947 	{8, 0},
948 	{16, 0},
949 	{32, 0},
950 	{64, 0}
951 };
952 
953 /**
954  * mlx90632_pm_interraction_wakeup() - Measure time between user interactions to change powermode
955  * @data: pointer to mlx90632_data object containing interaction_ts information
956  *
957  * Switch to continuous mode when interaction is faster than MLX90632_MEAS_MAX_TIME. Update the
958  * interaction_ts for each function call with the jiffies to enable measurement between function
959  * calls. Initial value of the interaction_ts needs to be set before this function call.
960  */
961 static int mlx90632_pm_interraction_wakeup(struct mlx90632_data *data)
962 {
963 	unsigned long now;
964 	int ret;
965 
966 	now = jiffies;
967 	if (time_in_range(now, data->interaction_ts,
968 			  data->interaction_ts +
969 			  msecs_to_jiffies(MLX90632_MEAS_MAX_TIME + 100))) {
970 		if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) {
971 			ret = mlx90632_pwr_continuous(data->regmap);
972 			if (ret < 0)
973 				return ret;
974 		}
975 	}
976 
977 	data->interaction_ts = now;
978 
979 	return 0;
980 }
981 
982 static int mlx90632_read_raw(struct iio_dev *indio_dev,
983 			     struct iio_chan_spec const *channel, int *val,
984 			     int *val2, long mask)
985 {
986 	struct mlx90632_data *data = iio_priv(indio_dev);
987 	int ret;
988 	int cr;
989 
990 	pm_runtime_get_sync(&data->client->dev);
991 	ret = mlx90632_pm_interraction_wakeup(data);
992 	if (ret < 0)
993 		goto mlx90632_read_raw_pm;
994 
995 	switch (mask) {
996 	case IIO_CHAN_INFO_PROCESSED:
997 		switch (channel->channel2) {
998 		case IIO_MOD_TEMP_AMBIENT:
999 			ret = mlx90632_calc_ambient_dsp105(data, val);
1000 			if (ret < 0)
1001 				goto mlx90632_read_raw_pm;
1002 
1003 			ret = IIO_VAL_INT;
1004 			break;
1005 		case IIO_MOD_TEMP_OBJECT:
1006 			ret = mlx90632_calc_object_dsp105(data, val);
1007 			if (ret < 0)
1008 				goto mlx90632_read_raw_pm;
1009 
1010 			ret = IIO_VAL_INT;
1011 			break;
1012 		default:
1013 			ret = -EINVAL;
1014 			break;
1015 		}
1016 		break;
1017 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
1018 		if (data->emissivity == 1000) {
1019 			*val = 1;
1020 			*val2 = 0;
1021 		} else {
1022 			*val = 0;
1023 			*val2 = data->emissivity * 1000;
1024 		}
1025 		ret = IIO_VAL_INT_PLUS_MICRO;
1026 		break;
1027 	case IIO_CHAN_INFO_CALIBAMBIENT:
1028 		*val = data->object_ambient_temperature;
1029 		ret = IIO_VAL_INT;
1030 		break;
1031 	case IIO_CHAN_INFO_SAMP_FREQ:
1032 		ret = mlx90632_get_refresh_rate(data, &cr);
1033 		if (ret < 0)
1034 			goto mlx90632_read_raw_pm;
1035 
1036 		*val = mlx90632_freqs[cr][0];
1037 		*val2 = mlx90632_freqs[cr][1];
1038 		ret = IIO_VAL_INT_PLUS_MICRO;
1039 		break;
1040 	default:
1041 		ret = -EINVAL;
1042 		break;
1043 	}
1044 
1045 mlx90632_read_raw_pm:
1046 	pm_runtime_mark_last_busy(&data->client->dev);
1047 	pm_runtime_put_autosuspend(&data->client->dev);
1048 	return ret;
1049 }
1050 
1051 static int mlx90632_write_raw(struct iio_dev *indio_dev,
1052 			      struct iio_chan_spec const *channel, int val,
1053 			      int val2, long mask)
1054 {
1055 	struct mlx90632_data *data = iio_priv(indio_dev);
1056 
1057 	switch (mask) {
1058 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
1059 		/* Confirm we are within 0 and 1.0 */
1060 		if (val < 0 || val2 < 0 || val > 1 ||
1061 		    (val == 1 && val2 != 0))
1062 			return -EINVAL;
1063 		data->emissivity = val * 1000 + val2 / 1000;
1064 		return 0;
1065 	case IIO_CHAN_INFO_CALIBAMBIENT:
1066 		data->object_ambient_temperature = val;
1067 		return 0;
1068 	default:
1069 		return -EINVAL;
1070 	}
1071 }
1072 
1073 static int mlx90632_read_avail(struct iio_dev *indio_dev,
1074 			       struct iio_chan_spec const *chan,
1075 			       const int **vals, int *type, int *length,
1076 			       long mask)
1077 {
1078 	switch (mask) {
1079 	case IIO_CHAN_INFO_SAMP_FREQ:
1080 		*vals = (int *)mlx90632_freqs;
1081 		*type = IIO_VAL_INT_PLUS_MICRO;
1082 		*length = 2 * ARRAY_SIZE(mlx90632_freqs);
1083 		return IIO_AVAIL_LIST;
1084 	default:
1085 		return -EINVAL;
1086 	}
1087 }
1088 
1089 static const struct iio_chan_spec mlx90632_channels[] = {
1090 	{
1091 		.type = IIO_TEMP,
1092 		.modified = 1,
1093 		.channel2 = IIO_MOD_TEMP_AMBIENT,
1094 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
1095 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1096 		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1097 	},
1098 	{
1099 		.type = IIO_TEMP,
1100 		.modified = 1,
1101 		.channel2 = IIO_MOD_TEMP_OBJECT,
1102 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
1103 			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
1104 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1105 		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1106 	},
1107 };
1108 
1109 static const struct iio_info mlx90632_info = {
1110 	.read_raw = mlx90632_read_raw,
1111 	.write_raw = mlx90632_write_raw,
1112 	.read_avail = mlx90632_read_avail,
1113 };
1114 
1115 static void mlx90632_sleep(void *_data)
1116 {
1117 	struct mlx90632_data *data = _data;
1118 
1119 	mlx90632_pwr_set_sleep_step(data->regmap);
1120 }
1121 
1122 static int mlx90632_suspend(struct mlx90632_data *data)
1123 {
1124 	regcache_mark_dirty(data->regmap);
1125 
1126 	dev_dbg(&data->client->dev, "Requesting suspend");
1127 	return mlx90632_pwr_set_sleep_step(data->regmap);
1128 }
1129 
1130 static int mlx90632_wakeup(struct mlx90632_data *data)
1131 {
1132 	int ret;
1133 
1134 	ret = regcache_sync(data->regmap);
1135 	if (ret < 0) {
1136 		dev_err(&data->client->dev,
1137 			"Failed to sync regmap registers: %d\n", ret);
1138 		return ret;
1139 	}
1140 
1141 	dev_dbg(&data->client->dev, "Requesting wake-up\n");
1142 	return mlx90632_pwr_continuous(data->regmap);
1143 }
1144 
1145 static void mlx90632_disable_regulator(void *_data)
1146 {
1147 	struct mlx90632_data *data = _data;
1148 	int ret;
1149 
1150 	ret = regulator_disable(data->regulator);
1151 	if (ret < 0)
1152 		dev_err(regmap_get_device(data->regmap),
1153 			"Failed to disable power regulator: %d\n", ret);
1154 }
1155 
1156 static int mlx90632_enable_regulator(struct mlx90632_data *data)
1157 {
1158 	int ret;
1159 
1160 	ret = regulator_enable(data->regulator);
1161 	if (ret < 0) {
1162 		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
1163 		return ret;
1164 	}
1165 
1166 	mlx90632_reset_delay();
1167 
1168 	return ret;
1169 }
1170 
1171 static int mlx90632_probe(struct i2c_client *client)
1172 {
1173 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
1174 	struct mlx90632_data *mlx90632;
1175 	struct iio_dev *indio_dev;
1176 	struct regmap *regmap;
1177 	unsigned int read;
1178 	int ret;
1179 
1180 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
1181 	if (!indio_dev) {
1182 		dev_err(&client->dev, "Failed to allocate device\n");
1183 		return -ENOMEM;
1184 	}
1185 
1186 	regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
1187 	if (IS_ERR(regmap)) {
1188 		ret = PTR_ERR(regmap);
1189 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1190 		return ret;
1191 	}
1192 
1193 	mlx90632 = iio_priv(indio_dev);
1194 	i2c_set_clientdata(client, indio_dev);
1195 	mlx90632->client = client;
1196 	mlx90632->regmap = regmap;
1197 	mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
1198 	mlx90632->powerstatus = MLX90632_PWR_STATUS_HALT;
1199 
1200 	mutex_init(&mlx90632->lock);
1201 	indio_dev->name = id->name;
1202 	indio_dev->modes = INDIO_DIRECT_MODE;
1203 	indio_dev->info = &mlx90632_info;
1204 	indio_dev->channels = mlx90632_channels;
1205 	indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
1206 
1207 	mlx90632->regulator = devm_regulator_get(&client->dev, "vdd");
1208 	if (IS_ERR(mlx90632->regulator))
1209 		return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator),
1210 				     "failed to get vdd regulator");
1211 
1212 	ret = mlx90632_enable_regulator(mlx90632);
1213 	if (ret < 0)
1214 		return ret;
1215 
1216 	ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
1217 				       mlx90632);
1218 	if (ret < 0) {
1219 		dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
1220 			ret);
1221 		return ret;
1222 	}
1223 
1224 	ret = mlx90632_wakeup(mlx90632);
1225 	if (ret < 0) {
1226 		dev_err(&client->dev, "Wakeup failed: %d\n", ret);
1227 		return ret;
1228 	}
1229 
1230 	ret = devm_add_action_or_reset(&client->dev, mlx90632_sleep, mlx90632);
1231 	if (ret < 0) {
1232 		dev_err(&client->dev, "Failed to setup low power cleanup action %d\n",
1233 			ret);
1234 		return ret;
1235 	}
1236 
1237 	ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
1238 	if (ret < 0) {
1239 		dev_err(&client->dev, "read of version failed: %d\n", ret);
1240 		return ret;
1241 	}
1242 	read = read & MLX90632_ID_MASK;
1243 	if (read == MLX90632_ID_MEDICAL) {
1244 		dev_dbg(&client->dev,
1245 			"Detected Medical EEPROM calibration %x\n", read);
1246 	} else if (read == MLX90632_ID_CONSUMER) {
1247 		dev_dbg(&client->dev,
1248 			"Detected Consumer EEPROM calibration %x\n", read);
1249 	} else if (read == MLX90632_ID_EXTENDED) {
1250 		dev_dbg(&client->dev,
1251 			"Detected Extended range EEPROM calibration %x\n", read);
1252 		mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
1253 	} else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
1254 		dev_dbg(&client->dev,
1255 			"Detected Unknown EEPROM calibration %x\n", read);
1256 	} else {
1257 		dev_err(&client->dev,
1258 			"Wrong DSP version %x (expected %x)\n",
1259 			read, MLX90632_DSP_VERSION);
1260 		return -EPROTONOSUPPORT;
1261 	}
1262 
1263 	mlx90632->emissivity = 1000;
1264 	mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
1265 	mlx90632->interaction_ts = jiffies; /* Set initial value */
1266 
1267 	pm_runtime_get_noresume(&client->dev);
1268 	pm_runtime_set_active(&client->dev);
1269 
1270 	ret = devm_pm_runtime_enable(&client->dev);
1271 	if (ret)
1272 		return ret;
1273 
1274 	pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
1275 	pm_runtime_use_autosuspend(&client->dev);
1276 	pm_runtime_put_autosuspend(&client->dev);
1277 
1278 	return devm_iio_device_register(&client->dev, indio_dev);
1279 }
1280 
1281 static const struct i2c_device_id mlx90632_id[] = {
1282 	{ "mlx90632", 0 },
1283 	{ }
1284 };
1285 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
1286 
1287 static const struct of_device_id mlx90632_of_match[] = {
1288 	{ .compatible = "melexis,mlx90632" },
1289 	{ }
1290 };
1291 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
1292 
1293 static int mlx90632_pm_suspend(struct device *dev)
1294 {
1295 	struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
1296 	int ret;
1297 
1298 	ret = mlx90632_suspend(data);
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	ret = regulator_disable(data->regulator);
1303 	if (ret < 0)
1304 		dev_err(regmap_get_device(data->regmap),
1305 			"Failed to disable power regulator: %d\n", ret);
1306 
1307 	return ret;
1308 }
1309 
1310 static int mlx90632_pm_resume(struct device *dev)
1311 {
1312 	struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
1313 	int ret;
1314 
1315 	ret = mlx90632_enable_regulator(data);
1316 	if (ret < 0)
1317 		return ret;
1318 
1319 	return mlx90632_wakeup(data);
1320 }
1321 
1322 static int mlx90632_pm_runtime_suspend(struct device *dev)
1323 {
1324 	struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
1325 
1326 	return mlx90632_pwr_set_sleep_step(data->regmap);
1327 }
1328 
1329 static const struct dev_pm_ops mlx90632_pm_ops = {
1330 	SYSTEM_SLEEP_PM_OPS(mlx90632_pm_suspend, mlx90632_pm_resume)
1331 	RUNTIME_PM_OPS(mlx90632_pm_runtime_suspend, NULL, NULL)
1332 };
1333 
1334 static struct i2c_driver mlx90632_driver = {
1335 	.driver = {
1336 		.name	= "mlx90632",
1337 		.of_match_table = mlx90632_of_match,
1338 		.pm	= pm_ptr(&mlx90632_pm_ops),
1339 	},
1340 	.probe = mlx90632_probe,
1341 	.id_table = mlx90632_id,
1342 };
1343 module_i2c_driver(mlx90632_driver);
1344 
1345 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1346 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
1347 MODULE_LICENSE("GPL v2");
1348