1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor 4 * 5 * Copyright (c) 2017 Melexis <cmo@melexis.com> 6 * 7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor 8 */ 9 #include <linux/delay.h> 10 #include <linux/err.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/i2c.h> 13 #include <linux/iopoll.h> 14 #include <linux/kernel.h> 15 #include <linux/limits.h> 16 #include <linux/mod_devicetable.h> 17 #include <linux/module.h> 18 #include <linux/math64.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/regmap.h> 21 22 #include <linux/iio/iio.h> 23 #include <linux/iio/sysfs.h> 24 25 /* Memory sections addresses */ 26 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */ 27 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */ 28 29 /* EEPROM addresses - used at startup */ 30 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */ 31 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */ 32 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */ 33 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */ 34 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */ 35 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */ 36 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */ 37 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */ 38 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */ 39 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */ 40 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */ 41 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */ 42 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */ 43 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */ 44 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */ 45 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */ 46 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */ 47 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */ 48 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */ 49 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */ 50 51 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */ 52 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */ 53 54 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */ 55 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */ 56 57 /* Register addresses - volatile */ 58 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */ 59 60 /* Control register address - volatile */ 61 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */ 62 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */ 63 #define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */ 64 65 /* PowerModes statuses */ 66 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1) 67 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */ 68 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/ 69 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */ 70 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/ 71 72 /* Measurement types */ 73 #define MLX90632_MTYP_MEDICAL 0 74 #define MLX90632_MTYP_EXTENDED 17 75 76 /* Measurement type select*/ 77 #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4) 78 #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL) 79 #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED) 80 81 /* I2C command register - volatile */ 82 #define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */ 83 84 /* Device status register - volatile */ 85 #define MLX90632_REG_STATUS 0x3fff /* Device status register */ 86 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */ 87 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */ 88 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */ 89 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */ 90 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */ 91 92 /* RAM_MEAS address-es for each channel */ 93 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num) 94 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1) 95 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2) 96 97 /* Name important RAM_MEAS channels */ 98 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17) 99 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18) 100 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17) 101 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17) 102 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18) 103 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18) 104 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19) 105 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19) 106 107 /* Magic constants */ 108 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */ 109 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */ 110 #define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */ 111 #define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */ 112 #define MLX90632_DSP_VERSION 5 /* DSP version */ 113 #define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */ 114 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */ 115 #define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */ 116 #define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */ 117 #define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */ 118 #define MLX90632_SLEEP_DELAY_MS 3000 /* Autosleep delay */ 119 #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */ 120 121 /** 122 * struct mlx90632_data - private data for the MLX90632 device 123 * @client: I2C client of the device 124 * @lock: Internal mutex for multiple reads for single measurement 125 * @regmap: Regmap of the device 126 * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1. 127 * @mtyp: Measurement type physical sensor configuration for extended range 128 * calculations 129 * @object_ambient_temperature: Ambient temperature at object (might differ of 130 * the ambient temperature of sensor. 131 */ 132 struct mlx90632_data { 133 struct i2c_client *client; 134 struct mutex lock; 135 struct regmap *regmap; 136 u16 emissivity; 137 u8 mtyp; 138 u32 object_ambient_temperature; 139 }; 140 141 static const struct regmap_range mlx90632_volatile_reg_range[] = { 142 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), 143 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD), 144 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), 145 regmap_reg_range(MLX90632_RAM_1(0), 146 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), 147 }; 148 149 static const struct regmap_access_table mlx90632_volatile_regs_tbl = { 150 .yes_ranges = mlx90632_volatile_reg_range, 151 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range), 152 }; 153 154 static const struct regmap_range mlx90632_read_reg_range[] = { 155 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), 156 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR), 157 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb), 158 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), 159 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD), 160 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), 161 regmap_reg_range(MLX90632_RAM_1(0), 162 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), 163 }; 164 165 static const struct regmap_access_table mlx90632_readable_regs_tbl = { 166 .yes_ranges = mlx90632_read_reg_range, 167 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range), 168 }; 169 170 static const struct regmap_range mlx90632_no_write_reg_range[] = { 171 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), 172 regmap_reg_range(MLX90632_RAM_1(0), 173 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), 174 }; 175 176 static const struct regmap_access_table mlx90632_writeable_regs_tbl = { 177 .no_ranges = mlx90632_no_write_reg_range, 178 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range), 179 }; 180 181 static const struct regmap_config mlx90632_regmap = { 182 .reg_bits = 16, 183 .val_bits = 16, 184 185 .volatile_table = &mlx90632_volatile_regs_tbl, 186 .rd_table = &mlx90632_readable_regs_tbl, 187 .wr_table = &mlx90632_writeable_regs_tbl, 188 189 .use_single_read = true, 190 .use_single_write = true, 191 .reg_format_endian = REGMAP_ENDIAN_BIG, 192 .val_format_endian = REGMAP_ENDIAN_BIG, 193 .cache_type = REGCACHE_RBTREE, 194 }; 195 196 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap) 197 { 198 return regmap_update_bits(regmap, MLX90632_REG_CONTROL, 199 MLX90632_CFG_PWR_MASK, 200 MLX90632_PWR_STATUS_SLEEP_STEP); 201 } 202 203 static s32 mlx90632_pwr_continuous(struct regmap *regmap) 204 { 205 return regmap_update_bits(regmap, MLX90632_REG_CONTROL, 206 MLX90632_CFG_PWR_MASK, 207 MLX90632_PWR_STATUS_CONTINUOUS); 208 } 209 210 /** 211 * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle 212 * @data: pointer to mlx90632_data object containing regmap information 213 * 214 * Perform a measurement and return latest measurement cycle position reported 215 * by sensor. This is a blocking function for 500ms, as that is default sensor 216 * refresh rate. 217 */ 218 static int mlx90632_perform_measurement(struct mlx90632_data *data) 219 { 220 unsigned int reg_status; 221 int ret; 222 223 ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS, 224 MLX90632_STAT_DATA_RDY, 0); 225 if (ret < 0) 226 return ret; 227 228 ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status, 229 !(reg_status & MLX90632_STAT_DATA_RDY), 10000, 230 100 * 10000); 231 232 if (ret < 0) { 233 dev_err(&data->client->dev, "data not ready"); 234 return -ETIMEDOUT; 235 } 236 237 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2; 238 } 239 240 static int mlx90632_set_meas_type(struct regmap *regmap, u8 type) 241 { 242 int ret; 243 244 if ((type != MLX90632_MTYP_MEDICAL) && (type != MLX90632_MTYP_EXTENDED)) 245 return -EINVAL; 246 247 ret = regmap_write(regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD); 248 if (ret < 0) 249 return ret; 250 251 /* 252 * Give the mlx90632 some time to reset properly before sending a new I2C command 253 * if this is not done, the following I2C command(s) will not be accepted. 254 */ 255 usleep_range(150, 200); 256 257 ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, 258 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK), 259 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT)); 260 if (ret < 0) 261 return ret; 262 263 return mlx90632_pwr_continuous(regmap); 264 } 265 266 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new, 267 uint8_t *channel_old) 268 { 269 switch (perform_ret) { 270 case 1: 271 *channel_new = 1; 272 *channel_old = 2; 273 break; 274 case 2: 275 *channel_new = 2; 276 *channel_old = 1; 277 break; 278 default: 279 return -EINVAL; 280 } 281 282 return 0; 283 } 284 285 static int mlx90632_read_ambient_raw(struct regmap *regmap, 286 s16 *ambient_new_raw, s16 *ambient_old_raw) 287 { 288 int ret; 289 unsigned int read_tmp; 290 291 ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp); 292 if (ret < 0) 293 return ret; 294 *ambient_new_raw = (s16)read_tmp; 295 296 ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp); 297 if (ret < 0) 298 return ret; 299 *ambient_old_raw = (s16)read_tmp; 300 301 return ret; 302 } 303 304 static int mlx90632_read_object_raw(struct regmap *regmap, 305 int perform_measurement_ret, 306 s16 *object_new_raw, s16 *object_old_raw) 307 { 308 int ret; 309 unsigned int read_tmp; 310 s16 read; 311 u8 channel = 0; 312 u8 channel_old = 0; 313 314 ret = mlx90632_channel_new_select(perform_measurement_ret, &channel, 315 &channel_old); 316 if (ret != 0) 317 return ret; 318 319 ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp); 320 if (ret < 0) 321 return ret; 322 323 read = (s16)read_tmp; 324 325 ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp); 326 if (ret < 0) 327 return ret; 328 *object_new_raw = (read + (s16)read_tmp) / 2; 329 330 ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp); 331 if (ret < 0) 332 return ret; 333 read = (s16)read_tmp; 334 335 ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp); 336 if (ret < 0) 337 return ret; 338 *object_old_raw = (read + (s16)read_tmp) / 2; 339 340 return ret; 341 } 342 343 static int mlx90632_read_all_channel(struct mlx90632_data *data, 344 s16 *ambient_new_raw, s16 *ambient_old_raw, 345 s16 *object_new_raw, s16 *object_old_raw) 346 { 347 s32 ret, measurement; 348 349 mutex_lock(&data->lock); 350 measurement = mlx90632_perform_measurement(data); 351 if (measurement < 0) { 352 ret = measurement; 353 goto read_unlock; 354 } 355 ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw, 356 ambient_old_raw); 357 if (ret < 0) 358 goto read_unlock; 359 360 ret = mlx90632_read_object_raw(data->regmap, measurement, 361 object_new_raw, object_old_raw); 362 read_unlock: 363 mutex_unlock(&data->lock); 364 return ret; 365 } 366 367 static int mlx90632_read_ambient_raw_extended(struct regmap *regmap, 368 s16 *ambient_new_raw, s16 *ambient_old_raw) 369 { 370 unsigned int read_tmp; 371 int ret; 372 373 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp); 374 if (ret < 0) 375 return ret; 376 *ambient_new_raw = (s16)read_tmp; 377 378 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp); 379 if (ret < 0) 380 return ret; 381 *ambient_old_raw = (s16)read_tmp; 382 383 return 0; 384 } 385 386 static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw) 387 { 388 unsigned int read_tmp; 389 s32 read; 390 int ret; 391 392 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp); 393 if (ret < 0) 394 return ret; 395 read = (s16)read_tmp; 396 397 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp); 398 if (ret < 0) 399 return ret; 400 read = read - (s16)read_tmp; 401 402 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp); 403 if (ret < 0) 404 return ret; 405 read = read - (s16)read_tmp; 406 407 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp); 408 if (ret < 0) 409 return ret; 410 read = (read + (s16)read_tmp) / 2; 411 412 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp); 413 if (ret < 0) 414 return ret; 415 read = read + (s16)read_tmp; 416 417 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp); 418 if (ret < 0) 419 return ret; 420 read = read + (s16)read_tmp; 421 422 if (read > S16_MAX || read < S16_MIN) 423 return -ERANGE; 424 425 *object_new_raw = read; 426 427 return 0; 428 } 429 430 static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw, 431 s16 *ambient_new_raw, s16 *ambient_old_raw) 432 { 433 s32 ret, meas; 434 435 mutex_lock(&data->lock); 436 ret = mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_EXTENDED); 437 if (ret < 0) 438 goto read_unlock; 439 440 ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19, 441 50000, 800000, false, data); 442 if (ret != 0) 443 goto read_unlock; 444 445 ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw); 446 if (ret < 0) 447 goto read_unlock; 448 449 ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw); 450 451 read_unlock: 452 (void) mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_MEDICAL); 453 454 mutex_unlock(&data->lock); 455 return ret; 456 } 457 458 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb, 459 s32 *reg_value) 460 { 461 s32 ret; 462 unsigned int read; 463 u32 value; 464 465 ret = regmap_read(regmap, reg_lsb, &read); 466 if (ret < 0) 467 return ret; 468 469 value = read; 470 471 ret = regmap_read(regmap, reg_lsb + 1, &read); 472 if (ret < 0) 473 return ret; 474 475 *reg_value = (read << 16) | (value & 0xffff); 476 477 return 0; 478 } 479 480 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw, 481 s16 ambient_old_raw, s16 Gb) 482 { 483 s64 VR_Ta, kGb, tmp; 484 485 kGb = ((s64)Gb * 1000LL) >> 10ULL; 486 VR_Ta = (s64)ambient_old_raw * 1000000LL + 487 kGb * div64_s64(((s64)ambient_new_raw * 1000LL), 488 (MLX90632_REF_3)); 489 tmp = div64_s64( 490 div64_s64(((s64)ambient_new_raw * 1000000000000LL), 491 (MLX90632_REF_3)), VR_Ta); 492 return div64_s64(tmp << 19ULL, 1000LL); 493 } 494 495 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw, 496 s16 ambient_new_raw, 497 s16 ambient_old_raw, s16 Ka) 498 { 499 s64 VR_IR, kKa, tmp; 500 501 kKa = ((s64)Ka * 1000LL) >> 10ULL; 502 VR_IR = (s64)ambient_old_raw * 1000000LL + 503 kKa * div64_s64(((s64)ambient_new_raw * 1000LL), 504 (MLX90632_REF_3)); 505 tmp = div64_s64( 506 div64_s64(((s64)((object_new_raw + object_old_raw) / 2) 507 * 1000000000000LL), (MLX90632_REF_12)), 508 VR_IR); 509 return div64_s64((tmp << 19ULL), 1000LL); 510 } 511 512 static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw, 513 s16 ambient_old_raw, s16 Ka) 514 { 515 s64 VR_IR, kKa, tmp; 516 517 kKa = ((s64)Ka * 1000LL) >> 10ULL; 518 VR_IR = (s64)ambient_old_raw * 1000000LL + 519 kKa * div64_s64((s64)ambient_new_raw * 1000LL, 520 MLX90632_REF_3); 521 tmp = div64_s64( 522 div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12), 523 VR_IR); 524 return div64_s64(tmp << 19ULL, 1000LL); 525 } 526 527 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw, 528 s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb) 529 { 530 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum; 531 532 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, 533 Gb); 534 Asub = ((s64)P_T * 10000000000LL) >> 44ULL; 535 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL); 536 Ablock = Asub * (Bsub * Bsub); 537 Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL; 538 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL; 539 540 sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock; 541 542 return div64_s64(sum, 10000000LL); 543 } 544 545 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object, 546 s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb, 547 s32 Ga, s16 Ha, s16 Hb, 548 u16 emissivity) 549 { 550 s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr; 551 s64 Ha_customer, Hb_customer; 552 553 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL; 554 Hb_customer = ((s64)Hb * 100) >> 10ULL; 555 556 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL) 557 * 1000LL)) >> 36LL; 558 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL; 559 Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL) 560 * Ha_customer), 1000LL); 561 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA)); 562 Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL); 563 Alpha_corr = div64_s64(Alpha_corr, 1000LL); 564 ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr); 565 566 return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4)) 567 - 27315 - Hb_customer) * 10; 568 } 569 570 static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale) 571 { 572 return (div64_s64(TAdut, scale) + 27315) * 573 (div64_s64(TAdut, scale) + 27315) * 574 (div64_s64(TAdut, scale) + 27315) * 575 (div64_s64(TAdut, scale) + 27315); 576 } 577 578 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb, 579 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, 580 u16 tmp_emi) 581 { 582 s64 kTA, kTA0, TAdut, TAdut4; 583 s64 temp = 25000; 584 s8 i; 585 586 kTA = (Ea * 1000LL) >> 16LL; 587 kTA0 = (Eb * 1000LL) >> 8LL; 588 TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL; 589 TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL); 590 591 /* Iterations of calculation as described in datasheet */ 592 for (i = 0; i < 5; ++i) { 593 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4, 594 Fa, Fb, Ga, Ha, Hb, 595 tmp_emi); 596 } 597 return temp; 598 } 599 600 static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected, 601 s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga, 602 s16 Ha, s16 Hb, u16 tmp_emi) 603 { 604 s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4; 605 s64 temp = 25000; 606 s8 i; 607 608 kTA = (Ea * 1000LL) >> 16LL; 609 kTA0 = (Eb * 1000LL) >> 8LL; 610 TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL; 611 Tr4 = mlx90632_calc_ta4(reflected, 10); 612 TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL); 613 TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000; 614 615 /* Iterations of calculation as described in datasheet */ 616 for (i = 0; i < 5; ++i) { 617 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4, 618 Fa / 2, Fb, Ga, Ha, Hb, 619 tmp_emi); 620 } 621 622 return temp; 623 } 624 625 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val) 626 { 627 s32 ret; 628 s32 Ea, Eb, Fa, Fb, Ga; 629 unsigned int read_tmp; 630 s16 Ha, Hb, Gb, Ka; 631 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw; 632 s64 object, ambient; 633 634 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea); 635 if (ret < 0) 636 return ret; 637 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb); 638 if (ret < 0) 639 return ret; 640 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa); 641 if (ret < 0) 642 return ret; 643 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb); 644 if (ret < 0) 645 return ret; 646 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga); 647 if (ret < 0) 648 return ret; 649 ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp); 650 if (ret < 0) 651 return ret; 652 Ha = (s16)read_tmp; 653 ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp); 654 if (ret < 0) 655 return ret; 656 Hb = (s16)read_tmp; 657 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); 658 if (ret < 0) 659 return ret; 660 Gb = (s16)read_tmp; 661 ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp); 662 if (ret < 0) 663 return ret; 664 Ka = (s16)read_tmp; 665 666 ret = mlx90632_read_all_channel(data, 667 &ambient_new_raw, &ambient_old_raw, 668 &object_new_raw, &object_old_raw); 669 if (ret < 0) 670 return ret; 671 672 if (object_new_raw > MLX90632_EXTENDED_LIMIT && 673 data->mtyp == MLX90632_MTYP_EXTENDED) { 674 ret = mlx90632_read_all_channel_extended(data, &object_new_raw, 675 &ambient_new_raw, &ambient_old_raw); 676 if (ret < 0) 677 return ret; 678 679 /* Use extended mode calculations */ 680 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw, 681 ambient_old_raw, Gb); 682 object = mlx90632_preprocess_temp_obj_extended(object_new_raw, 683 ambient_new_raw, 684 ambient_old_raw, Ka); 685 *val = mlx90632_calc_temp_object_extended(object, ambient, 686 data->object_ambient_temperature, 687 Ea, Eb, Fa, Fb, Ga, 688 Ha, Hb, data->emissivity); 689 return 0; 690 } 691 692 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw, 693 ambient_old_raw, Gb); 694 object = mlx90632_preprocess_temp_obj(object_new_raw, 695 object_old_raw, 696 ambient_new_raw, 697 ambient_old_raw, Ka); 698 699 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga, 700 Ha, Hb, data->emissivity); 701 return 0; 702 } 703 704 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val) 705 { 706 s32 ret; 707 unsigned int read_tmp; 708 s32 PT, PR, PG, PO; 709 s16 Gb; 710 s16 ambient_new_raw, ambient_old_raw; 711 712 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR); 713 if (ret < 0) 714 return ret; 715 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG); 716 if (ret < 0) 717 return ret; 718 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT); 719 if (ret < 0) 720 return ret; 721 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO); 722 if (ret < 0) 723 return ret; 724 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); 725 if (ret < 0) 726 return ret; 727 Gb = (s16)read_tmp; 728 729 ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw, 730 &ambient_old_raw); 731 if (ret < 0) 732 return ret; 733 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw, 734 PT, PR, PG, PO, Gb); 735 return ret; 736 } 737 738 static int mlx90632_read_raw(struct iio_dev *indio_dev, 739 struct iio_chan_spec const *channel, int *val, 740 int *val2, long mask) 741 { 742 struct mlx90632_data *data = iio_priv(indio_dev); 743 int ret; 744 745 switch (mask) { 746 case IIO_CHAN_INFO_PROCESSED: 747 switch (channel->channel2) { 748 case IIO_MOD_TEMP_AMBIENT: 749 ret = mlx90632_calc_ambient_dsp105(data, val); 750 if (ret < 0) 751 return ret; 752 return IIO_VAL_INT; 753 case IIO_MOD_TEMP_OBJECT: 754 ret = mlx90632_calc_object_dsp105(data, val); 755 if (ret < 0) 756 return ret; 757 return IIO_VAL_INT; 758 default: 759 return -EINVAL; 760 } 761 case IIO_CHAN_INFO_CALIBEMISSIVITY: 762 if (data->emissivity == 1000) { 763 *val = 1; 764 *val2 = 0; 765 } else { 766 *val = 0; 767 *val2 = data->emissivity * 1000; 768 } 769 return IIO_VAL_INT_PLUS_MICRO; 770 case IIO_CHAN_INFO_CALIBAMBIENT: 771 *val = data->object_ambient_temperature; 772 return IIO_VAL_INT; 773 default: 774 return -EINVAL; 775 } 776 } 777 778 static int mlx90632_write_raw(struct iio_dev *indio_dev, 779 struct iio_chan_spec const *channel, int val, 780 int val2, long mask) 781 { 782 struct mlx90632_data *data = iio_priv(indio_dev); 783 784 switch (mask) { 785 case IIO_CHAN_INFO_CALIBEMISSIVITY: 786 /* Confirm we are within 0 and 1.0 */ 787 if (val < 0 || val2 < 0 || val > 1 || 788 (val == 1 && val2 != 0)) 789 return -EINVAL; 790 data->emissivity = val * 1000 + val2 / 1000; 791 return 0; 792 case IIO_CHAN_INFO_CALIBAMBIENT: 793 data->object_ambient_temperature = val; 794 return 0; 795 default: 796 return -EINVAL; 797 } 798 } 799 800 static const struct iio_chan_spec mlx90632_channels[] = { 801 { 802 .type = IIO_TEMP, 803 .modified = 1, 804 .channel2 = IIO_MOD_TEMP_AMBIENT, 805 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 806 }, 807 { 808 .type = IIO_TEMP, 809 .modified = 1, 810 .channel2 = IIO_MOD_TEMP_OBJECT, 811 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 812 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT), 813 }, 814 }; 815 816 static const struct iio_info mlx90632_info = { 817 .read_raw = mlx90632_read_raw, 818 .write_raw = mlx90632_write_raw, 819 }; 820 821 static int mlx90632_sleep(struct mlx90632_data *data) 822 { 823 regcache_mark_dirty(data->regmap); 824 825 dev_dbg(&data->client->dev, "Requesting sleep"); 826 return mlx90632_pwr_set_sleep_step(data->regmap); 827 } 828 829 static int mlx90632_wakeup(struct mlx90632_data *data) 830 { 831 int ret; 832 833 ret = regcache_sync(data->regmap); 834 if (ret < 0) { 835 dev_err(&data->client->dev, 836 "Failed to sync regmap registers: %d\n", ret); 837 return ret; 838 } 839 840 dev_dbg(&data->client->dev, "Requesting wake-up\n"); 841 return mlx90632_pwr_continuous(data->regmap); 842 } 843 844 static int mlx90632_probe(struct i2c_client *client, 845 const struct i2c_device_id *id) 846 { 847 struct iio_dev *indio_dev; 848 struct mlx90632_data *mlx90632; 849 struct regmap *regmap; 850 int ret; 851 unsigned int read; 852 853 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632)); 854 if (!indio_dev) { 855 dev_err(&client->dev, "Failed to allocate device\n"); 856 return -ENOMEM; 857 } 858 859 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap); 860 if (IS_ERR(regmap)) { 861 ret = PTR_ERR(regmap); 862 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); 863 return ret; 864 } 865 866 mlx90632 = iio_priv(indio_dev); 867 i2c_set_clientdata(client, indio_dev); 868 mlx90632->client = client; 869 mlx90632->regmap = regmap; 870 mlx90632->mtyp = MLX90632_MTYP_MEDICAL; 871 872 mutex_init(&mlx90632->lock); 873 indio_dev->name = id->name; 874 indio_dev->modes = INDIO_DIRECT_MODE; 875 indio_dev->info = &mlx90632_info; 876 indio_dev->channels = mlx90632_channels; 877 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels); 878 879 ret = mlx90632_wakeup(mlx90632); 880 if (ret < 0) { 881 dev_err(&client->dev, "Wakeup failed: %d\n", ret); 882 return ret; 883 } 884 885 ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read); 886 if (ret < 0) { 887 dev_err(&client->dev, "read of version failed: %d\n", ret); 888 return ret; 889 } 890 read = read & MLX90632_ID_MASK; 891 if (read == MLX90632_ID_MEDICAL) { 892 dev_dbg(&client->dev, 893 "Detected Medical EEPROM calibration %x\n", read); 894 } else if (read == MLX90632_ID_CONSUMER) { 895 dev_dbg(&client->dev, 896 "Detected Consumer EEPROM calibration %x\n", read); 897 } else if (read == MLX90632_ID_EXTENDED) { 898 dev_dbg(&client->dev, 899 "Detected Extended range EEPROM calibration %x\n", read); 900 mlx90632->mtyp = MLX90632_MTYP_EXTENDED; 901 } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) { 902 dev_dbg(&client->dev, 903 "Detected Unknown EEPROM calibration %x\n", read); 904 } else { 905 dev_err(&client->dev, 906 "Wrong DSP version %x (expected %x)\n", 907 read, MLX90632_DSP_VERSION); 908 return -EPROTONOSUPPORT; 909 } 910 911 mlx90632->emissivity = 1000; 912 mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */ 913 914 pm_runtime_disable(&client->dev); 915 ret = pm_runtime_set_active(&client->dev); 916 if (ret < 0) { 917 mlx90632_sleep(mlx90632); 918 return ret; 919 } 920 pm_runtime_enable(&client->dev); 921 pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS); 922 pm_runtime_use_autosuspend(&client->dev); 923 924 return iio_device_register(indio_dev); 925 } 926 927 static int mlx90632_remove(struct i2c_client *client) 928 { 929 struct iio_dev *indio_dev = i2c_get_clientdata(client); 930 struct mlx90632_data *data = iio_priv(indio_dev); 931 932 iio_device_unregister(indio_dev); 933 934 pm_runtime_disable(&client->dev); 935 pm_runtime_set_suspended(&client->dev); 936 pm_runtime_put_noidle(&client->dev); 937 938 mlx90632_sleep(data); 939 940 return 0; 941 } 942 943 static const struct i2c_device_id mlx90632_id[] = { 944 { "mlx90632", 0 }, 945 { } 946 }; 947 MODULE_DEVICE_TABLE(i2c, mlx90632_id); 948 949 static const struct of_device_id mlx90632_of_match[] = { 950 { .compatible = "melexis,mlx90632" }, 951 { } 952 }; 953 MODULE_DEVICE_TABLE(of, mlx90632_of_match); 954 955 static int __maybe_unused mlx90632_pm_suspend(struct device *dev) 956 { 957 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 958 struct mlx90632_data *data = iio_priv(indio_dev); 959 960 return mlx90632_sleep(data); 961 } 962 963 static int __maybe_unused mlx90632_pm_resume(struct device *dev) 964 { 965 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 966 struct mlx90632_data *data = iio_priv(indio_dev); 967 968 return mlx90632_wakeup(data); 969 } 970 971 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend, 972 mlx90632_pm_resume, NULL); 973 974 static struct i2c_driver mlx90632_driver = { 975 .driver = { 976 .name = "mlx90632", 977 .of_match_table = mlx90632_of_match, 978 .pm = &mlx90632_pm_ops, 979 }, 980 .probe = mlx90632_probe, 981 .remove = mlx90632_remove, 982 .id_table = mlx90632_id, 983 }; 984 module_i2c_driver(mlx90632_driver); 985 986 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>"); 987 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver"); 988 MODULE_LICENSE("GPL v2"); 989