1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4  *
5  * Copyright (c) 2017 Melexis <cmo@melexis.com>
6  *
7  * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8  */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/limits.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/math64.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 
23 #include <linux/iio/iio.h>
24 #include <linux/iio/sysfs.h>
25 
26 /* Memory sections addresses */
27 #define MLX90632_ADDR_RAM	0x4000 /* Start address of ram */
28 #define MLX90632_ADDR_EEPROM	0x2480 /* Start address of user eeprom */
29 
30 /* EEPROM addresses - used at startup */
31 #define MLX90632_EE_CTRL	0x24d4 /* Control register initial value */
32 #define MLX90632_EE_I2C_ADDR	0x24d5 /* I2C address register initial value */
33 #define MLX90632_EE_VERSION	0x240b /* EEPROM version reg address */
34 #define MLX90632_EE_P_R		0x240c /* P_R calibration register 32bit */
35 #define MLX90632_EE_P_G		0x240e /* P_G calibration register 32bit */
36 #define MLX90632_EE_P_T		0x2410 /* P_T calibration register 32bit */
37 #define MLX90632_EE_P_O		0x2412 /* P_O calibration register 32bit */
38 #define MLX90632_EE_Aa		0x2414 /* Aa calibration register 32bit */
39 #define MLX90632_EE_Ab		0x2416 /* Ab calibration register 32bit */
40 #define MLX90632_EE_Ba		0x2418 /* Ba calibration register 32bit */
41 #define MLX90632_EE_Bb		0x241a /* Bb calibration register 32bit */
42 #define MLX90632_EE_Ca		0x241c /* Ca calibration register 32bit */
43 #define MLX90632_EE_Cb		0x241e /* Cb calibration register 32bit */
44 #define MLX90632_EE_Da		0x2420 /* Da calibration register 32bit */
45 #define MLX90632_EE_Db		0x2422 /* Db calibration register 32bit */
46 #define MLX90632_EE_Ea		0x2424 /* Ea calibration register 32bit */
47 #define MLX90632_EE_Eb		0x2426 /* Eb calibration register 32bit */
48 #define MLX90632_EE_Fa		0x2428 /* Fa calibration register 32bit */
49 #define MLX90632_EE_Fb		0x242a /* Fb calibration register 32bit */
50 #define MLX90632_EE_Ga		0x242c /* Ga calibration register 32bit */
51 
52 #define MLX90632_EE_Gb		0x242e /* Gb calibration register 16bit */
53 #define MLX90632_EE_Ka		0x242f /* Ka calibration register 16bit */
54 
55 #define MLX90632_EE_Ha		0x2481 /* Ha customer calib value reg 16bit */
56 #define MLX90632_EE_Hb		0x2482 /* Hb customer calib value reg 16bit */
57 
58 /* Register addresses - volatile */
59 #define MLX90632_REG_I2C_ADDR	0x3000 /* Chip I2C address register */
60 
61 /* Control register address - volatile */
62 #define MLX90632_REG_CONTROL	0x3001 /* Control Register address */
63 #define   MLX90632_CFG_PWR_MASK		GENMASK(2, 1) /* PowerMode Mask */
64 #define   MLX90632_CFG_MTYP_MASK		GENMASK(8, 4) /* Meas select Mask */
65 
66 /* PowerModes statuses */
67 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
68 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
69 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
70 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
71 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
72 
73 /* Measurement types */
74 #define MLX90632_MTYP_MEDICAL 0
75 #define MLX90632_MTYP_EXTENDED 17
76 
77 /* Measurement type select*/
78 #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
79 #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
80 #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
81 
82 /* I2C command register - volatile */
83 #define MLX90632_REG_I2C_CMD    0x3005 /* I2C command Register address */
84 
85 /* Device status register - volatile */
86 #define MLX90632_REG_STATUS	0x3fff /* Device status register */
87 #define   MLX90632_STAT_BUSY		BIT(10) /* Device busy indicator */
88 #define   MLX90632_STAT_EE_BUSY		BIT(9) /* EEPROM busy indicator */
89 #define   MLX90632_STAT_BRST		BIT(8) /* Brown out reset indicator */
90 #define   MLX90632_STAT_CYCLE_POS	GENMASK(6, 2) /* Data position */
91 #define   MLX90632_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
92 
93 /* RAM_MEAS address-es for each channel */
94 #define MLX90632_RAM_1(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num)
95 #define MLX90632_RAM_2(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 1)
96 #define MLX90632_RAM_3(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 2)
97 
98 /* Name important RAM_MEAS channels */
99 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
100 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
101 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
102 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
103 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
104 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
105 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
106 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
107 
108 /* Magic constants */
109 #define MLX90632_ID_MEDICAL	0x0105 /* EEPROM DSPv5 Medical device id */
110 #define MLX90632_ID_CONSUMER	0x0205 /* EEPROM DSPv5 Consumer device id */
111 #define MLX90632_ID_EXTENDED	0x0505 /* EEPROM DSPv5 Extended range device id */
112 #define MLX90632_ID_MASK	GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
113 #define MLX90632_DSP_VERSION	5 /* DSP version */
114 #define MLX90632_DSP_MASK	GENMASK(7, 0) /* DSP version in EE_VERSION */
115 #define MLX90632_RESET_CMD	0x0006 /* Reset sensor (address or global) */
116 #define MLX90632_REF_12 	12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
117 #define MLX90632_REF_3		12LL /* ResCtrlRef value of Channel 3 */
118 #define MLX90632_MAX_MEAS_NUM	31 /* Maximum measurements in list */
119 #define MLX90632_SLEEP_DELAY_MS 3000 /* Autosleep delay */
120 #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
121 
122 /**
123  * struct mlx90632_data - private data for the MLX90632 device
124  * @client: I2C client of the device
125  * @lock: Internal mutex for multiple reads for single measurement
126  * @regmap: Regmap of the device
127  * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
128  * @mtyp: Measurement type physical sensor configuration for extended range
129  *        calculations
130  * @object_ambient_temperature: Ambient temperature at object (might differ of
131  *                              the ambient temperature of sensor.
132  * @regulator: Regulator of the device
133  */
134 struct mlx90632_data {
135 	struct i2c_client *client;
136 	struct mutex lock;
137 	struct regmap *regmap;
138 	u16 emissivity;
139 	u8 mtyp;
140 	u32 object_ambient_temperature;
141 	struct regulator *regulator;
142 };
143 
144 static const struct regmap_range mlx90632_volatile_reg_range[] = {
145 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
146 	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
147 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
148 	regmap_reg_range(MLX90632_RAM_1(0),
149 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
150 };
151 
152 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
153 	.yes_ranges = mlx90632_volatile_reg_range,
154 	.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
155 };
156 
157 static const struct regmap_range mlx90632_read_reg_range[] = {
158 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
159 	regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
160 	regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
161 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
162 	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
163 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
164 	regmap_reg_range(MLX90632_RAM_1(0),
165 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
166 };
167 
168 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
169 	.yes_ranges = mlx90632_read_reg_range,
170 	.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
171 };
172 
173 static const struct regmap_range mlx90632_no_write_reg_range[] = {
174 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
175 	regmap_reg_range(MLX90632_RAM_1(0),
176 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
177 };
178 
179 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
180 	.no_ranges = mlx90632_no_write_reg_range,
181 	.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
182 };
183 
184 static const struct regmap_config mlx90632_regmap = {
185 	.reg_bits = 16,
186 	.val_bits = 16,
187 
188 	.volatile_table = &mlx90632_volatile_regs_tbl,
189 	.rd_table = &mlx90632_readable_regs_tbl,
190 	.wr_table = &mlx90632_writeable_regs_tbl,
191 
192 	.use_single_read = true,
193 	.use_single_write = true,
194 	.reg_format_endian = REGMAP_ENDIAN_BIG,
195 	.val_format_endian = REGMAP_ENDIAN_BIG,
196 	.cache_type = REGCACHE_RBTREE,
197 };
198 
199 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
200 {
201 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
202 				  MLX90632_CFG_PWR_MASK,
203 				  MLX90632_PWR_STATUS_SLEEP_STEP);
204 }
205 
206 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
207 {
208 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
209 				  MLX90632_CFG_PWR_MASK,
210 				  MLX90632_PWR_STATUS_CONTINUOUS);
211 }
212 
213 /**
214  * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
215  * If this is not done, the following I2C command(s) will not be accepted.
216  */
217 static void mlx90632_reset_delay(void)
218 {
219 	usleep_range(150, 200);
220 }
221 
222 /**
223  * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
224  * @data: pointer to mlx90632_data object containing regmap information
225  *
226  * Perform a measurement and return latest measurement cycle position reported
227  * by sensor. This is a blocking function for 500ms, as that is default sensor
228  * refresh rate.
229  */
230 static int mlx90632_perform_measurement(struct mlx90632_data *data)
231 {
232 	unsigned int reg_status;
233 	int ret;
234 
235 	ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
236 				 MLX90632_STAT_DATA_RDY, 0);
237 	if (ret < 0)
238 		return ret;
239 
240 	ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
241 				       !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
242 				       100 * 10000);
243 
244 	if (ret < 0) {
245 		dev_err(&data->client->dev, "data not ready");
246 		return -ETIMEDOUT;
247 	}
248 
249 	return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
250 }
251 
252 static int mlx90632_set_meas_type(struct regmap *regmap, u8 type)
253 {
254 	int ret;
255 
256 	if ((type != MLX90632_MTYP_MEDICAL) && (type != MLX90632_MTYP_EXTENDED))
257 		return -EINVAL;
258 
259 	ret = regmap_write(regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
260 	if (ret < 0)
261 		return ret;
262 
263 	mlx90632_reset_delay();
264 
265 	ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL,
266 				 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
267 				 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
268 	if (ret < 0)
269 		return ret;
270 
271 	return mlx90632_pwr_continuous(regmap);
272 }
273 
274 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
275 				       uint8_t *channel_old)
276 {
277 	switch (perform_ret) {
278 	case 1:
279 		*channel_new = 1;
280 		*channel_old = 2;
281 		break;
282 	case 2:
283 		*channel_new = 2;
284 		*channel_old = 1;
285 		break;
286 	default:
287 		return -EINVAL;
288 	}
289 
290 	return 0;
291 }
292 
293 static int mlx90632_read_ambient_raw(struct regmap *regmap,
294 				     s16 *ambient_new_raw, s16 *ambient_old_raw)
295 {
296 	int ret;
297 	unsigned int read_tmp;
298 
299 	ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
300 	if (ret < 0)
301 		return ret;
302 	*ambient_new_raw = (s16)read_tmp;
303 
304 	ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
305 	if (ret < 0)
306 		return ret;
307 	*ambient_old_raw = (s16)read_tmp;
308 
309 	return ret;
310 }
311 
312 static int mlx90632_read_object_raw(struct regmap *regmap,
313 				    int perform_measurement_ret,
314 				    s16 *object_new_raw, s16 *object_old_raw)
315 {
316 	int ret;
317 	unsigned int read_tmp;
318 	s16 read;
319 	u8 channel = 0;
320 	u8 channel_old = 0;
321 
322 	ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
323 					  &channel_old);
324 	if (ret != 0)
325 		return ret;
326 
327 	ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
328 	if (ret < 0)
329 		return ret;
330 
331 	read = (s16)read_tmp;
332 
333 	ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
334 	if (ret < 0)
335 		return ret;
336 	*object_new_raw = (read + (s16)read_tmp) / 2;
337 
338 	ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
339 	if (ret < 0)
340 		return ret;
341 	read = (s16)read_tmp;
342 
343 	ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
344 	if (ret < 0)
345 		return ret;
346 	*object_old_raw = (read + (s16)read_tmp) / 2;
347 
348 	return ret;
349 }
350 
351 static int mlx90632_read_all_channel(struct mlx90632_data *data,
352 				     s16 *ambient_new_raw, s16 *ambient_old_raw,
353 				     s16 *object_new_raw, s16 *object_old_raw)
354 {
355 	s32 ret, measurement;
356 
357 	mutex_lock(&data->lock);
358 	measurement = mlx90632_perform_measurement(data);
359 	if (measurement < 0) {
360 		ret = measurement;
361 		goto read_unlock;
362 	}
363 	ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
364 					ambient_old_raw);
365 	if (ret < 0)
366 		goto read_unlock;
367 
368 	ret = mlx90632_read_object_raw(data->regmap, measurement,
369 				       object_new_raw, object_old_raw);
370 read_unlock:
371 	mutex_unlock(&data->lock);
372 	return ret;
373 }
374 
375 static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
376 					      s16 *ambient_new_raw, s16 *ambient_old_raw)
377 {
378 	unsigned int read_tmp;
379 	int ret;
380 
381 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
382 	if (ret < 0)
383 		return ret;
384 	*ambient_new_raw = (s16)read_tmp;
385 
386 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
387 	if (ret < 0)
388 		return ret;
389 	*ambient_old_raw = (s16)read_tmp;
390 
391 	return 0;
392 }
393 
394 static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
395 {
396 	unsigned int read_tmp;
397 	s32 read;
398 	int ret;
399 
400 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
401 	if (ret < 0)
402 		return ret;
403 	read = (s16)read_tmp;
404 
405 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
406 	if (ret < 0)
407 		return ret;
408 	read = read - (s16)read_tmp;
409 
410 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
411 	if (ret < 0)
412 		return ret;
413 	read = read - (s16)read_tmp;
414 
415 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
416 	if (ret < 0)
417 		return ret;
418 	read = (read + (s16)read_tmp) / 2;
419 
420 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
421 	if (ret < 0)
422 		return ret;
423 	read = read + (s16)read_tmp;
424 
425 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
426 	if (ret < 0)
427 		return ret;
428 	read = read + (s16)read_tmp;
429 
430 	if (read > S16_MAX || read < S16_MIN)
431 		return -ERANGE;
432 
433 	*object_new_raw = read;
434 
435 	return 0;
436 }
437 
438 static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
439 					      s16 *ambient_new_raw, s16 *ambient_old_raw)
440 {
441 	s32 ret, meas;
442 
443 	mutex_lock(&data->lock);
444 	ret = mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_EXTENDED);
445 	if (ret < 0)
446 		goto read_unlock;
447 
448 	ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
449 				50000, 800000, false, data);
450 	if (ret != 0)
451 		goto read_unlock;
452 
453 	ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
454 	if (ret < 0)
455 		goto read_unlock;
456 
457 	ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
458 
459 read_unlock:
460 	(void) mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_MEDICAL);
461 
462 	mutex_unlock(&data->lock);
463 	return ret;
464 }
465 
466 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
467 				     s32 *reg_value)
468 {
469 	s32 ret;
470 	unsigned int read;
471 	u32 value;
472 
473 	ret = regmap_read(regmap, reg_lsb, &read);
474 	if (ret < 0)
475 		return ret;
476 
477 	value = read;
478 
479 	ret = regmap_read(regmap, reg_lsb + 1, &read);
480 	if (ret < 0)
481 		return ret;
482 
483 	*reg_value = (read << 16) | (value & 0xffff);
484 
485 	return 0;
486 }
487 
488 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
489 					s16 ambient_old_raw, s16 Gb)
490 {
491 	s64 VR_Ta, kGb, tmp;
492 
493 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
494 	VR_Ta = (s64)ambient_old_raw * 1000000LL +
495 		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
496 			(MLX90632_REF_3));
497 	tmp = div64_s64(
498 			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
499 				   (MLX90632_REF_3)), VR_Ta);
500 	return div64_s64(tmp << 19ULL, 1000LL);
501 }
502 
503 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
504 					s16 ambient_new_raw,
505 					s16 ambient_old_raw, s16 Ka)
506 {
507 	s64 VR_IR, kKa, tmp;
508 
509 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
510 	VR_IR = (s64)ambient_old_raw * 1000000LL +
511 		kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
512 			(MLX90632_REF_3));
513 	tmp = div64_s64(
514 			div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
515 				   * 1000000000000LL), (MLX90632_REF_12)),
516 			VR_IR);
517 	return div64_s64((tmp << 19ULL), 1000LL);
518 }
519 
520 static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
521 						 s16 ambient_old_raw, s16 Ka)
522 {
523 	s64 VR_IR, kKa, tmp;
524 
525 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
526 	VR_IR = (s64)ambient_old_raw * 1000000LL +
527 		kKa * div64_s64((s64)ambient_new_raw * 1000LL,
528 				MLX90632_REF_3);
529 	tmp = div64_s64(
530 			div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
531 			VR_IR);
532 	return div64_s64(tmp << 19ULL, 1000LL);
533 }
534 
535 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
536 				      s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
537 {
538 	s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
539 
540 	AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
541 					   Gb);
542 	Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
543 	Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
544 	Ablock = Asub * (Bsub * Bsub);
545 	Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
546 	Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
547 
548 	sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
549 
550 	return div64_s64(sum, 10000000LL);
551 }
552 
553 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
554 					       s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
555 					       s32 Ga, s16 Ha, s16 Hb,
556 					       u16 emissivity)
557 {
558 	s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
559 	s64 Ha_customer, Hb_customer;
560 
561 	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
562 	Hb_customer = ((s64)Hb * 100) >> 10ULL;
563 
564 	calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
565 			     * 1000LL)) >> 36LL;
566 	calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
567 	Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
568 				* Ha_customer), 1000LL);
569 	Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
570 	Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
571 	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
572 	ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
573 
574 	return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
575 		- 27315 - Hb_customer) * 10;
576 }
577 
578 static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
579 {
580 	return (div64_s64(TAdut, scale) + 27315) *
581 		(div64_s64(TAdut, scale) + 27315) *
582 		(div64_s64(TAdut, scale) + 27315) *
583 		(div64_s64(TAdut, scale) + 27315);
584 }
585 
586 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
587 				     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
588 				     u16 tmp_emi)
589 {
590 	s64 kTA, kTA0, TAdut, TAdut4;
591 	s64 temp = 25000;
592 	s8 i;
593 
594 	kTA = (Ea * 1000LL) >> 16LL;
595 	kTA0 = (Eb * 1000LL) >> 8LL;
596 	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
597 	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
598 
599 	/* Iterations of calculation as described in datasheet */
600 	for (i = 0; i < 5; ++i) {
601 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
602 							   Fa, Fb, Ga, Ha, Hb,
603 							   tmp_emi);
604 	}
605 	return temp;
606 }
607 
608 static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
609 					      s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
610 					      s16 Ha, s16 Hb, u16 tmp_emi)
611 {
612 	s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
613 	s64 temp = 25000;
614 	s8 i;
615 
616 	kTA = (Ea * 1000LL) >> 16LL;
617 	kTA0 = (Eb * 1000LL) >> 8LL;
618 	TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
619 	Tr4 = mlx90632_calc_ta4(reflected, 10);
620 	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
621 	TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
622 
623 	/* Iterations of calculation as described in datasheet */
624 	for (i = 0; i < 5; ++i) {
625 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
626 							   Fa / 2, Fb, Ga, Ha, Hb,
627 							   tmp_emi);
628 	}
629 
630 	return temp;
631 }
632 
633 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
634 {
635 	s32 ret;
636 	s32 Ea, Eb, Fa, Fb, Ga;
637 	unsigned int read_tmp;
638 	s16 Ha, Hb, Gb, Ka;
639 	s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
640 	s64 object, ambient;
641 
642 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
643 	if (ret < 0)
644 		return ret;
645 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
646 	if (ret < 0)
647 		return ret;
648 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
649 	if (ret < 0)
650 		return ret;
651 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
652 	if (ret < 0)
653 		return ret;
654 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
655 	if (ret < 0)
656 		return ret;
657 	ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
658 	if (ret < 0)
659 		return ret;
660 	Ha = (s16)read_tmp;
661 	ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
662 	if (ret < 0)
663 		return ret;
664 	Hb = (s16)read_tmp;
665 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
666 	if (ret < 0)
667 		return ret;
668 	Gb = (s16)read_tmp;
669 	ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
670 	if (ret < 0)
671 		return ret;
672 	Ka = (s16)read_tmp;
673 
674 	ret = mlx90632_read_all_channel(data,
675 					&ambient_new_raw, &ambient_old_raw,
676 					&object_new_raw, &object_old_raw);
677 	if (ret < 0)
678 		return ret;
679 
680 	if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
681 	    data->mtyp == MLX90632_MTYP_EXTENDED) {
682 		ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
683 							 &ambient_new_raw, &ambient_old_raw);
684 		if (ret < 0)
685 			return ret;
686 
687 		/* Use extended mode calculations */
688 		ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
689 						       ambient_old_raw, Gb);
690 		object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
691 							       ambient_new_raw,
692 							       ambient_old_raw, Ka);
693 		*val = mlx90632_calc_temp_object_extended(object, ambient,
694 							  data->object_ambient_temperature,
695 							  Ea, Eb, Fa, Fb, Ga,
696 							  Ha, Hb, data->emissivity);
697 		return 0;
698 	}
699 
700 	ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
701 					       ambient_old_raw, Gb);
702 	object = mlx90632_preprocess_temp_obj(object_new_raw,
703 					      object_old_raw,
704 					      ambient_new_raw,
705 					      ambient_old_raw, Ka);
706 
707 	*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
708 					 Ha, Hb, data->emissivity);
709 	return 0;
710 }
711 
712 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
713 {
714 	s32 ret;
715 	unsigned int read_tmp;
716 	s32 PT, PR, PG, PO;
717 	s16 Gb;
718 	s16 ambient_new_raw, ambient_old_raw;
719 
720 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
721 	if (ret < 0)
722 		return ret;
723 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
724 	if (ret < 0)
725 		return ret;
726 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
727 	if (ret < 0)
728 		return ret;
729 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
730 	if (ret < 0)
731 		return ret;
732 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
733 	if (ret < 0)
734 		return ret;
735 	Gb = (s16)read_tmp;
736 
737 	ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
738 					&ambient_old_raw);
739 	if (ret < 0)
740 		return ret;
741 	*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
742 					  PT, PR, PG, PO, Gb);
743 	return ret;
744 }
745 
746 static int mlx90632_read_raw(struct iio_dev *indio_dev,
747 			     struct iio_chan_spec const *channel, int *val,
748 			     int *val2, long mask)
749 {
750 	struct mlx90632_data *data = iio_priv(indio_dev);
751 	int ret;
752 
753 	switch (mask) {
754 	case IIO_CHAN_INFO_PROCESSED:
755 		switch (channel->channel2) {
756 		case IIO_MOD_TEMP_AMBIENT:
757 			ret = mlx90632_calc_ambient_dsp105(data, val);
758 			if (ret < 0)
759 				return ret;
760 			return IIO_VAL_INT;
761 		case IIO_MOD_TEMP_OBJECT:
762 			ret = mlx90632_calc_object_dsp105(data, val);
763 			if (ret < 0)
764 				return ret;
765 			return IIO_VAL_INT;
766 		default:
767 			return -EINVAL;
768 		}
769 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
770 		if (data->emissivity == 1000) {
771 			*val = 1;
772 			*val2 = 0;
773 		} else {
774 			*val = 0;
775 			*val2 = data->emissivity * 1000;
776 		}
777 		return IIO_VAL_INT_PLUS_MICRO;
778 	case IIO_CHAN_INFO_CALIBAMBIENT:
779 		*val = data->object_ambient_temperature;
780 		return IIO_VAL_INT;
781 	default:
782 		return -EINVAL;
783 	}
784 }
785 
786 static int mlx90632_write_raw(struct iio_dev *indio_dev,
787 			      struct iio_chan_spec const *channel, int val,
788 			      int val2, long mask)
789 {
790 	struct mlx90632_data *data = iio_priv(indio_dev);
791 
792 	switch (mask) {
793 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
794 		/* Confirm we are within 0 and 1.0 */
795 		if (val < 0 || val2 < 0 || val > 1 ||
796 		    (val == 1 && val2 != 0))
797 			return -EINVAL;
798 		data->emissivity = val * 1000 + val2 / 1000;
799 		return 0;
800 	case IIO_CHAN_INFO_CALIBAMBIENT:
801 		data->object_ambient_temperature = val;
802 		return 0;
803 	default:
804 		return -EINVAL;
805 	}
806 }
807 
808 static const struct iio_chan_spec mlx90632_channels[] = {
809 	{
810 		.type = IIO_TEMP,
811 		.modified = 1,
812 		.channel2 = IIO_MOD_TEMP_AMBIENT,
813 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
814 	},
815 	{
816 		.type = IIO_TEMP,
817 		.modified = 1,
818 		.channel2 = IIO_MOD_TEMP_OBJECT,
819 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
820 			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
821 	},
822 };
823 
824 static const struct iio_info mlx90632_info = {
825 	.read_raw = mlx90632_read_raw,
826 	.write_raw = mlx90632_write_raw,
827 };
828 
829 static int mlx90632_sleep(struct mlx90632_data *data)
830 {
831 	regcache_mark_dirty(data->regmap);
832 
833 	dev_dbg(&data->client->dev, "Requesting sleep");
834 	return mlx90632_pwr_set_sleep_step(data->regmap);
835 }
836 
837 static int mlx90632_wakeup(struct mlx90632_data *data)
838 {
839 	int ret;
840 
841 	ret = regcache_sync(data->regmap);
842 	if (ret < 0) {
843 		dev_err(&data->client->dev,
844 			"Failed to sync regmap registers: %d\n", ret);
845 		return ret;
846 	}
847 
848 	dev_dbg(&data->client->dev, "Requesting wake-up\n");
849 	return mlx90632_pwr_continuous(data->regmap);
850 }
851 
852 static void mlx90632_disable_regulator(void *_data)
853 {
854 	struct mlx90632_data *data = _data;
855 	int ret;
856 
857 	ret = regulator_disable(data->regulator);
858 	if (ret < 0)
859 		dev_err(regmap_get_device(data->regmap),
860 			"Failed to disable power regulator: %d\n", ret);
861 }
862 
863 static int mlx90632_enable_regulator(struct mlx90632_data *data)
864 {
865 	int ret;
866 
867 	ret = regulator_enable(data->regulator);
868 	if (ret < 0) {
869 		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
870 		return ret;
871 	}
872 
873 	mlx90632_reset_delay();
874 
875 	return ret;
876 }
877 
878 static int mlx90632_probe(struct i2c_client *client,
879 			  const struct i2c_device_id *id)
880 {
881 	struct iio_dev *indio_dev;
882 	struct mlx90632_data *mlx90632;
883 	struct regmap *regmap;
884 	int ret;
885 	unsigned int read;
886 
887 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
888 	if (!indio_dev) {
889 		dev_err(&client->dev, "Failed to allocate device\n");
890 		return -ENOMEM;
891 	}
892 
893 	regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
894 	if (IS_ERR(regmap)) {
895 		ret = PTR_ERR(regmap);
896 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
897 		return ret;
898 	}
899 
900 	mlx90632 = iio_priv(indio_dev);
901 	i2c_set_clientdata(client, indio_dev);
902 	mlx90632->client = client;
903 	mlx90632->regmap = regmap;
904 	mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
905 
906 	mutex_init(&mlx90632->lock);
907 	indio_dev->name = id->name;
908 	indio_dev->modes = INDIO_DIRECT_MODE;
909 	indio_dev->info = &mlx90632_info;
910 	indio_dev->channels = mlx90632_channels;
911 	indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
912 
913 	mlx90632->regulator = devm_regulator_get(&client->dev, "vdd");
914 	if (IS_ERR(mlx90632->regulator))
915 		return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator),
916 				     "failed to get vdd regulator");
917 
918 	ret = mlx90632_enable_regulator(mlx90632);
919 	if (ret < 0)
920 		return ret;
921 
922 	ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
923 				       mlx90632);
924 	if (ret < 0) {
925 		dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
926 			ret);
927 		return ret;
928 	}
929 
930 	ret = mlx90632_wakeup(mlx90632);
931 	if (ret < 0) {
932 		dev_err(&client->dev, "Wakeup failed: %d\n", ret);
933 		return ret;
934 	}
935 
936 	ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
937 	if (ret < 0) {
938 		dev_err(&client->dev, "read of version failed: %d\n", ret);
939 		return ret;
940 	}
941 	read = read & MLX90632_ID_MASK;
942 	if (read == MLX90632_ID_MEDICAL) {
943 		dev_dbg(&client->dev,
944 			"Detected Medical EEPROM calibration %x\n", read);
945 	} else if (read == MLX90632_ID_CONSUMER) {
946 		dev_dbg(&client->dev,
947 			"Detected Consumer EEPROM calibration %x\n", read);
948 	} else if (read == MLX90632_ID_EXTENDED) {
949 		dev_dbg(&client->dev,
950 			"Detected Extended range EEPROM calibration %x\n", read);
951 		mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
952 	} else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
953 		dev_dbg(&client->dev,
954 			"Detected Unknown EEPROM calibration %x\n", read);
955 	} else {
956 		dev_err(&client->dev,
957 			"Wrong DSP version %x (expected %x)\n",
958 			read, MLX90632_DSP_VERSION);
959 		return -EPROTONOSUPPORT;
960 	}
961 
962 	mlx90632->emissivity = 1000;
963 	mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
964 
965 	pm_runtime_disable(&client->dev);
966 	ret = pm_runtime_set_active(&client->dev);
967 	if (ret < 0) {
968 		mlx90632_sleep(mlx90632);
969 		return ret;
970 	}
971 	pm_runtime_enable(&client->dev);
972 	pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
973 	pm_runtime_use_autosuspend(&client->dev);
974 
975 	return iio_device_register(indio_dev);
976 }
977 
978 static void mlx90632_remove(struct i2c_client *client)
979 {
980 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
981 	struct mlx90632_data *data = iio_priv(indio_dev);
982 
983 	iio_device_unregister(indio_dev);
984 
985 	pm_runtime_disable(&client->dev);
986 	pm_runtime_set_suspended(&client->dev);
987 	pm_runtime_put_noidle(&client->dev);
988 
989 	mlx90632_sleep(data);
990 }
991 
992 static const struct i2c_device_id mlx90632_id[] = {
993 	{ "mlx90632", 0 },
994 	{ }
995 };
996 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
997 
998 static const struct of_device_id mlx90632_of_match[] = {
999 	{ .compatible = "melexis,mlx90632" },
1000 	{ }
1001 };
1002 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
1003 
1004 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
1005 {
1006 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1007 	struct mlx90632_data *data = iio_priv(indio_dev);
1008 
1009 	return mlx90632_sleep(data);
1010 }
1011 
1012 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
1013 {
1014 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1015 	struct mlx90632_data *data = iio_priv(indio_dev);
1016 
1017 	return mlx90632_wakeup(data);
1018 }
1019 
1020 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
1021 			    mlx90632_pm_resume, NULL);
1022 
1023 static struct i2c_driver mlx90632_driver = {
1024 	.driver = {
1025 		.name	= "mlx90632",
1026 		.of_match_table = mlx90632_of_match,
1027 		.pm	= &mlx90632_pm_ops,
1028 	},
1029 	.probe = mlx90632_probe,
1030 	.remove = mlx90632_remove,
1031 	.id_table = mlx90632_id,
1032 };
1033 module_i2c_driver(mlx90632_driver);
1034 
1035 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1036 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
1037 MODULE_LICENSE("GPL v2");
1038