1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor 4 * 5 * Copyright (c) 2017 Melexis <cmo@melexis.com> 6 * 7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor 8 */ 9 #include <linux/delay.h> 10 #include <linux/err.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/i2c.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/math64.h> 16 #include <linux/of.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/regmap.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/sysfs.h> 22 23 /* Memory sections addresses */ 24 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */ 25 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */ 26 27 /* EEPROM addresses - used at startup */ 28 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */ 29 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */ 30 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */ 31 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */ 32 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */ 33 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */ 34 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */ 35 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */ 36 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */ 37 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */ 38 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */ 39 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */ 40 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */ 41 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */ 42 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */ 43 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */ 44 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */ 45 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */ 46 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */ 47 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */ 48 49 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */ 50 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */ 51 52 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */ 53 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */ 54 55 /* Register addresses - volatile */ 56 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */ 57 58 /* Control register address - volatile */ 59 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */ 60 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */ 61 /* PowerModes statuses */ 62 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1) 63 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */ 64 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/ 65 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */ 66 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/ 67 68 /* Device status register - volatile */ 69 #define MLX90632_REG_STATUS 0x3fff /* Device status register */ 70 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */ 71 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */ 72 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */ 73 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */ 74 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */ 75 76 /* RAM_MEAS address-es for each channel */ 77 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num) 78 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1) 79 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2) 80 81 /* Magic constants */ 82 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */ 83 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */ 84 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */ 85 #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */ 86 #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */ 87 #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */ 88 #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */ 89 90 struct mlx90632_data { 91 struct i2c_client *client; 92 struct mutex lock; /* Multiple reads for single measurement */ 93 struct regmap *regmap; 94 u16 emissivity; 95 }; 96 97 static const struct regmap_range mlx90632_volatile_reg_range[] = { 98 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), 99 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), 100 regmap_reg_range(MLX90632_RAM_1(0), 101 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), 102 }; 103 104 static const struct regmap_access_table mlx90632_volatile_regs_tbl = { 105 .yes_ranges = mlx90632_volatile_reg_range, 106 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range), 107 }; 108 109 static const struct regmap_range mlx90632_read_reg_range[] = { 110 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), 111 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR), 112 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb), 113 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), 114 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), 115 regmap_reg_range(MLX90632_RAM_1(0), 116 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), 117 }; 118 119 static const struct regmap_access_table mlx90632_readable_regs_tbl = { 120 .yes_ranges = mlx90632_read_reg_range, 121 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range), 122 }; 123 124 static const struct regmap_range mlx90632_no_write_reg_range[] = { 125 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), 126 regmap_reg_range(MLX90632_RAM_1(0), 127 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), 128 }; 129 130 static const struct regmap_access_table mlx90632_writeable_regs_tbl = { 131 .no_ranges = mlx90632_no_write_reg_range, 132 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range), 133 }; 134 135 static const struct regmap_config mlx90632_regmap = { 136 .reg_bits = 16, 137 .val_bits = 16, 138 139 .volatile_table = &mlx90632_volatile_regs_tbl, 140 .rd_table = &mlx90632_readable_regs_tbl, 141 .wr_table = &mlx90632_writeable_regs_tbl, 142 143 .use_single_read = true, 144 .use_single_write = true, 145 .reg_format_endian = REGMAP_ENDIAN_BIG, 146 .val_format_endian = REGMAP_ENDIAN_BIG, 147 .cache_type = REGCACHE_RBTREE, 148 }; 149 150 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap) 151 { 152 return regmap_update_bits(regmap, MLX90632_REG_CONTROL, 153 MLX90632_CFG_PWR_MASK, 154 MLX90632_PWR_STATUS_SLEEP_STEP); 155 } 156 157 static s32 mlx90632_pwr_continuous(struct regmap *regmap) 158 { 159 return regmap_update_bits(regmap, MLX90632_REG_CONTROL, 160 MLX90632_CFG_PWR_MASK, 161 MLX90632_PWR_STATUS_CONTINUOUS); 162 } 163 164 /** 165 * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle 166 * @*data: pointer to mlx90632_data object containing regmap information 167 * 168 * Perform a measurement and return latest measurement cycle position reported 169 * by sensor. This is a blocking function for 500ms, as that is default sensor 170 * refresh rate. 171 */ 172 static int mlx90632_perform_measurement(struct mlx90632_data *data) 173 { 174 int ret, tries = 100; 175 unsigned int reg_status; 176 177 ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS, 178 MLX90632_STAT_DATA_RDY, 0); 179 if (ret < 0) 180 return ret; 181 182 while (tries-- > 0) { 183 ret = regmap_read(data->regmap, MLX90632_REG_STATUS, 184 ®_status); 185 if (ret < 0) 186 return ret; 187 if (reg_status & MLX90632_STAT_DATA_RDY) 188 break; 189 usleep_range(10000, 11000); 190 } 191 192 if (tries < 0) { 193 dev_err(&data->client->dev, "data not ready"); 194 return -ETIMEDOUT; 195 } 196 197 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2; 198 } 199 200 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new, 201 uint8_t *channel_old) 202 { 203 switch (perform_ret) { 204 case 1: 205 *channel_new = 1; 206 *channel_old = 2; 207 break; 208 case 2: 209 *channel_new = 2; 210 *channel_old = 1; 211 break; 212 default: 213 return -EINVAL; 214 } 215 216 return 0; 217 } 218 219 static int mlx90632_read_ambient_raw(struct regmap *regmap, 220 s16 *ambient_new_raw, s16 *ambient_old_raw) 221 { 222 int ret; 223 unsigned int read_tmp; 224 225 ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp); 226 if (ret < 0) 227 return ret; 228 *ambient_new_raw = (s16)read_tmp; 229 230 ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp); 231 if (ret < 0) 232 return ret; 233 *ambient_old_raw = (s16)read_tmp; 234 235 return ret; 236 } 237 238 static int mlx90632_read_object_raw(struct regmap *regmap, 239 int perform_measurement_ret, 240 s16 *object_new_raw, s16 *object_old_raw) 241 { 242 int ret; 243 unsigned int read_tmp; 244 s16 read; 245 u8 channel = 0; 246 u8 channel_old = 0; 247 248 ret = mlx90632_channel_new_select(perform_measurement_ret, &channel, 249 &channel_old); 250 if (ret != 0) 251 return ret; 252 253 ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp); 254 if (ret < 0) 255 return ret; 256 257 read = (s16)read_tmp; 258 259 ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp); 260 if (ret < 0) 261 return ret; 262 *object_new_raw = (read + (s16)read_tmp) / 2; 263 264 ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp); 265 if (ret < 0) 266 return ret; 267 read = (s16)read_tmp; 268 269 ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp); 270 if (ret < 0) 271 return ret; 272 *object_old_raw = (read + (s16)read_tmp) / 2; 273 274 return ret; 275 } 276 277 static int mlx90632_read_all_channel(struct mlx90632_data *data, 278 s16 *ambient_new_raw, s16 *ambient_old_raw, 279 s16 *object_new_raw, s16 *object_old_raw) 280 { 281 s32 ret, measurement; 282 283 mutex_lock(&data->lock); 284 measurement = mlx90632_perform_measurement(data); 285 if (measurement < 0) { 286 ret = measurement; 287 goto read_unlock; 288 } 289 ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw, 290 ambient_old_raw); 291 if (ret < 0) 292 goto read_unlock; 293 294 ret = mlx90632_read_object_raw(data->regmap, measurement, 295 object_new_raw, object_old_raw); 296 read_unlock: 297 mutex_unlock(&data->lock); 298 return ret; 299 } 300 301 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb, 302 s32 *reg_value) 303 { 304 s32 ret; 305 unsigned int read; 306 u32 value; 307 308 ret = regmap_read(regmap, reg_lsb, &read); 309 if (ret < 0) 310 return ret; 311 312 value = read; 313 314 ret = regmap_read(regmap, reg_lsb + 1, &read); 315 if (ret < 0) 316 return ret; 317 318 *reg_value = (read << 16) | (value & 0xffff); 319 320 return 0; 321 } 322 323 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw, 324 s16 ambient_old_raw, s16 Gb) 325 { 326 s64 VR_Ta, kGb, tmp; 327 328 kGb = ((s64)Gb * 1000LL) >> 10ULL; 329 VR_Ta = (s64)ambient_old_raw * 1000000LL + 330 kGb * div64_s64(((s64)ambient_new_raw * 1000LL), 331 (MLX90632_REF_3)); 332 tmp = div64_s64( 333 div64_s64(((s64)ambient_new_raw * 1000000000000LL), 334 (MLX90632_REF_3)), VR_Ta); 335 return div64_s64(tmp << 19ULL, 1000LL); 336 } 337 338 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw, 339 s16 ambient_new_raw, 340 s16 ambient_old_raw, s16 Ka) 341 { 342 s64 VR_IR, kKa, tmp; 343 344 kKa = ((s64)Ka * 1000LL) >> 10ULL; 345 VR_IR = (s64)ambient_old_raw * 1000000LL + 346 kKa * div64_s64(((s64)ambient_new_raw * 1000LL), 347 (MLX90632_REF_3)); 348 tmp = div64_s64( 349 div64_s64(((s64)((object_new_raw + object_old_raw) / 2) 350 * 1000000000000LL), (MLX90632_REF_12)), 351 VR_IR); 352 return div64_s64((tmp << 19ULL), 1000LL); 353 } 354 355 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw, 356 s32 P_T, s32 P_R, s32 P_G, s32 P_O, 357 s16 Gb) 358 { 359 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum; 360 361 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, 362 Gb); 363 Asub = ((s64)P_T * 10000000000LL) >> 44ULL; 364 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL); 365 Ablock = Asub * (Bsub * Bsub); 366 Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL; 367 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL; 368 369 sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock; 370 371 return div64_s64(sum, 10000000LL); 372 } 373 374 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object, 375 s64 TAdut, s32 Fa, s32 Fb, 376 s32 Ga, s16 Ha, s16 Hb, 377 u16 emissivity) 378 { 379 s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr; 380 s64 Ha_customer, Hb_customer; 381 382 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL; 383 Hb_customer = ((s64)Hb * 100) >> 10ULL; 384 385 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL) 386 * 1000LL)) >> 36LL; 387 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL; 388 Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL) 389 * Ha_customer), 1000LL); 390 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA)); 391 Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL); 392 Alpha_corr = div64_s64(Alpha_corr, 1000LL); 393 ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr); 394 TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) * 395 (div64_s64(TAdut, 10000LL) + 27315) * 396 (div64_s64(TAdut, 10000LL) + 27315) * 397 (div64_s64(TAdut, 10000LL) + 27315); 398 399 return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4)) 400 - 27315 - Hb_customer) * 10; 401 } 402 403 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb, 404 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, 405 u16 tmp_emi) 406 { 407 s64 kTA, kTA0, TAdut; 408 s64 temp = 25000; 409 s8 i; 410 411 kTA = (Ea * 1000LL) >> 16LL; 412 kTA0 = (Eb * 1000LL) >> 8LL; 413 TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL; 414 415 /* Iterations of calculation as described in datasheet */ 416 for (i = 0; i < 5; ++i) { 417 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, 418 Fa, Fb, Ga, Ha, Hb, 419 tmp_emi); 420 } 421 return temp; 422 } 423 424 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val) 425 { 426 s32 ret; 427 s32 Ea, Eb, Fa, Fb, Ga; 428 unsigned int read_tmp; 429 s16 Ha, Hb, Gb, Ka; 430 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw; 431 s64 object, ambient; 432 433 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea); 434 if (ret < 0) 435 return ret; 436 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb); 437 if (ret < 0) 438 return ret; 439 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa); 440 if (ret < 0) 441 return ret; 442 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb); 443 if (ret < 0) 444 return ret; 445 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga); 446 if (ret < 0) 447 return ret; 448 ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp); 449 if (ret < 0) 450 return ret; 451 Ha = (s16)read_tmp; 452 ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp); 453 if (ret < 0) 454 return ret; 455 Hb = (s16)read_tmp; 456 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); 457 if (ret < 0) 458 return ret; 459 Gb = (s16)read_tmp; 460 ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp); 461 if (ret < 0) 462 return ret; 463 Ka = (s16)read_tmp; 464 465 ret = mlx90632_read_all_channel(data, 466 &ambient_new_raw, &ambient_old_raw, 467 &object_new_raw, &object_old_raw); 468 if (ret < 0) 469 return ret; 470 471 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw, 472 ambient_old_raw, Gb); 473 object = mlx90632_preprocess_temp_obj(object_new_raw, 474 object_old_raw, 475 ambient_new_raw, 476 ambient_old_raw, Ka); 477 478 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga, 479 Ha, Hb, data->emissivity); 480 return 0; 481 } 482 483 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val) 484 { 485 s32 ret; 486 unsigned int read_tmp; 487 s32 PT, PR, PG, PO; 488 s16 Gb; 489 s16 ambient_new_raw, ambient_old_raw; 490 491 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR); 492 if (ret < 0) 493 return ret; 494 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG); 495 if (ret < 0) 496 return ret; 497 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT); 498 if (ret < 0) 499 return ret; 500 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO); 501 if (ret < 0) 502 return ret; 503 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); 504 if (ret < 0) 505 return ret; 506 Gb = (s16)read_tmp; 507 508 ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw, 509 &ambient_old_raw); 510 if (ret < 0) 511 return ret; 512 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw, 513 PT, PR, PG, PO, Gb); 514 return ret; 515 } 516 517 static int mlx90632_read_raw(struct iio_dev *indio_dev, 518 struct iio_chan_spec const *channel, int *val, 519 int *val2, long mask) 520 { 521 struct mlx90632_data *data = iio_priv(indio_dev); 522 int ret; 523 524 switch (mask) { 525 case IIO_CHAN_INFO_PROCESSED: 526 switch (channel->channel2) { 527 case IIO_MOD_TEMP_AMBIENT: 528 ret = mlx90632_calc_ambient_dsp105(data, val); 529 if (ret < 0) 530 return ret; 531 return IIO_VAL_INT; 532 case IIO_MOD_TEMP_OBJECT: 533 ret = mlx90632_calc_object_dsp105(data, val); 534 if (ret < 0) 535 return ret; 536 return IIO_VAL_INT; 537 default: 538 return -EINVAL; 539 } 540 case IIO_CHAN_INFO_CALIBEMISSIVITY: 541 if (data->emissivity == 1000) { 542 *val = 1; 543 *val2 = 0; 544 } else { 545 *val = 0; 546 *val2 = data->emissivity * 1000; 547 } 548 return IIO_VAL_INT_PLUS_MICRO; 549 550 default: 551 return -EINVAL; 552 } 553 } 554 555 static int mlx90632_write_raw(struct iio_dev *indio_dev, 556 struct iio_chan_spec const *channel, int val, 557 int val2, long mask) 558 { 559 struct mlx90632_data *data = iio_priv(indio_dev); 560 561 switch (mask) { 562 case IIO_CHAN_INFO_CALIBEMISSIVITY: 563 /* Confirm we are within 0 and 1.0 */ 564 if (val < 0 || val2 < 0 || val > 1 || 565 (val == 1 && val2 != 0)) 566 return -EINVAL; 567 data->emissivity = val * 1000 + val2 / 1000; 568 return 0; 569 default: 570 return -EINVAL; 571 } 572 } 573 574 static const struct iio_chan_spec mlx90632_channels[] = { 575 { 576 .type = IIO_TEMP, 577 .modified = 1, 578 .channel2 = IIO_MOD_TEMP_AMBIENT, 579 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 580 }, 581 { 582 .type = IIO_TEMP, 583 .modified = 1, 584 .channel2 = IIO_MOD_TEMP_OBJECT, 585 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 586 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY), 587 }, 588 }; 589 590 static const struct iio_info mlx90632_info = { 591 .read_raw = mlx90632_read_raw, 592 .write_raw = mlx90632_write_raw, 593 }; 594 595 static int mlx90632_sleep(struct mlx90632_data *data) 596 { 597 regcache_mark_dirty(data->regmap); 598 599 dev_dbg(&data->client->dev, "Requesting sleep"); 600 return mlx90632_pwr_set_sleep_step(data->regmap); 601 } 602 603 static int mlx90632_wakeup(struct mlx90632_data *data) 604 { 605 int ret; 606 607 ret = regcache_sync(data->regmap); 608 if (ret < 0) { 609 dev_err(&data->client->dev, 610 "Failed to sync regmap registers: %d\n", ret); 611 return ret; 612 } 613 614 dev_dbg(&data->client->dev, "Requesting wake-up\n"); 615 return mlx90632_pwr_continuous(data->regmap); 616 } 617 618 static int mlx90632_probe(struct i2c_client *client, 619 const struct i2c_device_id *id) 620 { 621 struct iio_dev *indio_dev; 622 struct mlx90632_data *mlx90632; 623 struct regmap *regmap; 624 int ret; 625 unsigned int read; 626 627 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632)); 628 if (!indio_dev) { 629 dev_err(&client->dev, "Failed to allocate device\n"); 630 return -ENOMEM; 631 } 632 633 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap); 634 if (IS_ERR(regmap)) { 635 ret = PTR_ERR(regmap); 636 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); 637 return ret; 638 } 639 640 mlx90632 = iio_priv(indio_dev); 641 i2c_set_clientdata(client, indio_dev); 642 mlx90632->client = client; 643 mlx90632->regmap = regmap; 644 645 mutex_init(&mlx90632->lock); 646 indio_dev->dev.parent = &client->dev; 647 indio_dev->name = id->name; 648 indio_dev->modes = INDIO_DIRECT_MODE; 649 indio_dev->info = &mlx90632_info; 650 indio_dev->channels = mlx90632_channels; 651 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels); 652 653 ret = mlx90632_wakeup(mlx90632); 654 if (ret < 0) { 655 dev_err(&client->dev, "Wakeup failed: %d\n", ret); 656 return ret; 657 } 658 659 ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read); 660 if (ret < 0) { 661 dev_err(&client->dev, "read of version failed: %d\n", ret); 662 return ret; 663 } 664 if (read == MLX90632_ID_MEDICAL) { 665 dev_dbg(&client->dev, 666 "Detected Medical EEPROM calibration %x\n", read); 667 } else if (read == MLX90632_ID_CONSUMER) { 668 dev_dbg(&client->dev, 669 "Detected Consumer EEPROM calibration %x\n", read); 670 } else { 671 dev_err(&client->dev, 672 "EEPROM version mismatch %x (expected %x or %x)\n", 673 read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL); 674 return -EPROTONOSUPPORT; 675 } 676 677 mlx90632->emissivity = 1000; 678 679 pm_runtime_disable(&client->dev); 680 ret = pm_runtime_set_active(&client->dev); 681 if (ret < 0) { 682 mlx90632_sleep(mlx90632); 683 return ret; 684 } 685 pm_runtime_enable(&client->dev); 686 pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS); 687 pm_runtime_use_autosuspend(&client->dev); 688 689 return iio_device_register(indio_dev); 690 } 691 692 static int mlx90632_remove(struct i2c_client *client) 693 { 694 struct iio_dev *indio_dev = i2c_get_clientdata(client); 695 struct mlx90632_data *data = iio_priv(indio_dev); 696 697 iio_device_unregister(indio_dev); 698 699 pm_runtime_disable(&client->dev); 700 pm_runtime_set_suspended(&client->dev); 701 pm_runtime_put_noidle(&client->dev); 702 703 mlx90632_sleep(data); 704 705 return 0; 706 } 707 708 static const struct i2c_device_id mlx90632_id[] = { 709 { "mlx90632", 0 }, 710 { } 711 }; 712 MODULE_DEVICE_TABLE(i2c, mlx90632_id); 713 714 static const struct of_device_id mlx90632_of_match[] = { 715 { .compatible = "melexis,mlx90632" }, 716 { } 717 }; 718 MODULE_DEVICE_TABLE(of, mlx90632_of_match); 719 720 static int __maybe_unused mlx90632_pm_suspend(struct device *dev) 721 { 722 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 723 struct mlx90632_data *data = iio_priv(indio_dev); 724 725 return mlx90632_sleep(data); 726 } 727 728 static int __maybe_unused mlx90632_pm_resume(struct device *dev) 729 { 730 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 731 struct mlx90632_data *data = iio_priv(indio_dev); 732 733 return mlx90632_wakeup(data); 734 } 735 736 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend, 737 mlx90632_pm_resume, NULL); 738 739 static struct i2c_driver mlx90632_driver = { 740 .driver = { 741 .name = "mlx90632", 742 .of_match_table = mlx90632_of_match, 743 .pm = &mlx90632_pm_ops, 744 }, 745 .probe = mlx90632_probe, 746 .remove = mlx90632_remove, 747 .id_table = mlx90632_id, 748 }; 749 module_i2c_driver(mlx90632_driver); 750 751 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>"); 752 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver"); 753 MODULE_LICENSE("GPL v2"); 754