1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4  * driver
5  *
6  * Copyright 2019 Analog Devices Inc.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/iio/iio.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/of_gpio.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 
20 /* register map */
21 #define LTC2983_STATUS_REG			0x0000
22 #define LTC2983_TEMP_RES_START_REG		0x0010
23 #define LTC2983_TEMP_RES_END_REG		0x005F
24 #define LTC2983_GLOBAL_CONFIG_REG		0x00F0
25 #define LTC2983_MULT_CHANNEL_START_REG		0x00F4
26 #define LTC2983_MULT_CHANNEL_END_REG		0x00F7
27 #define LTC2983_MUX_CONFIG_REG			0x00FF
28 #define LTC2983_CHAN_ASSIGN_START_REG		0x0200
29 #define LTC2983_CHAN_ASSIGN_END_REG		0x024F
30 #define LTC2983_CUST_SENS_TBL_START_REG		0x0250
31 #define LTC2983_CUST_SENS_TBL_END_REG		0x03CF
32 
33 #define LTC2983_DIFFERENTIAL_CHAN_MIN		2
34 #define LTC2983_MAX_CHANNELS_NR			20
35 #define LTC2983_MIN_CHANNELS_NR			1
36 #define LTC2983_SLEEP				0x97
37 #define LTC2983_CUSTOM_STEINHART_SIZE		24
38 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ		6
39 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ	4
40 
41 #define LTC2983_CHAN_START_ADDR(chan) \
42 			(((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
43 #define LTC2983_CHAN_RES_ADDR(chan) \
44 			(((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
45 #define LTC2983_THERMOCOUPLE_DIFF_MASK		BIT(3)
46 #define LTC2983_THERMOCOUPLE_SGL(x) \
47 				FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
48 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK	GENMASK(1, 0)
49 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
50 				FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
51 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK	BIT(2)
52 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
53 			FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
54 
55 #define LTC2983_THERMISTOR_DIFF_MASK		BIT(2)
56 #define LTC2983_THERMISTOR_SGL(x) \
57 				FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
58 #define LTC2983_THERMISTOR_R_SHARE_MASK		BIT(1)
59 #define LTC2983_THERMISTOR_R_SHARE(x) \
60 				FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
61 #define LTC2983_THERMISTOR_C_ROTATE_MASK	BIT(0)
62 #define LTC2983_THERMISTOR_C_ROTATE(x) \
63 				FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
64 
65 #define LTC2983_DIODE_DIFF_MASK			BIT(2)
66 #define LTC2983_DIODE_SGL(x) \
67 			FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
68 #define LTC2983_DIODE_3_CONV_CYCLE_MASK		BIT(1)
69 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
70 				FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
71 #define LTC2983_DIODE_AVERAGE_ON_MASK		BIT(0)
72 #define LTC2983_DIODE_AVERAGE_ON(x) \
73 				FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
74 
75 #define LTC2983_RTD_4_WIRE_MASK			BIT(3)
76 #define LTC2983_RTD_ROTATION_MASK		BIT(1)
77 #define LTC2983_RTD_C_ROTATE(x) \
78 			FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
79 #define LTC2983_RTD_KELVIN_R_SENSE_MASK		GENMASK(3, 2)
80 #define LTC2983_RTD_N_WIRES_MASK		GENMASK(3, 2)
81 #define LTC2983_RTD_N_WIRES(x) \
82 			FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
83 #define LTC2983_RTD_R_SHARE_MASK		BIT(0)
84 #define LTC2983_RTD_R_SHARE(x) \
85 			FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
86 
87 #define LTC2983_COMMON_HARD_FAULT_MASK	GENMASK(31, 30)
88 #define LTC2983_COMMON_SOFT_FAULT_MASK	GENMASK(27, 25)
89 
90 #define	LTC2983_STATUS_START_MASK	BIT(7)
91 #define	LTC2983_STATUS_START(x)		FIELD_PREP(LTC2983_STATUS_START_MASK, x)
92 #define	LTC2983_STATUS_UP_MASK		GENMASK(7, 6)
93 #define	LTC2983_STATUS_UP(reg)		FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
94 
95 #define	LTC2983_STATUS_CHAN_SEL_MASK	GENMASK(4, 0)
96 #define	LTC2983_STATUS_CHAN_SEL(x) \
97 				FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
98 
99 #define LTC2983_TEMP_UNITS_MASK		BIT(2)
100 #define LTC2983_TEMP_UNITS(x)		FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
101 
102 #define LTC2983_NOTCH_FREQ_MASK		GENMASK(1, 0)
103 #define LTC2983_NOTCH_FREQ(x)		FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
104 
105 #define LTC2983_RES_VALID_MASK		BIT(24)
106 #define LTC2983_DATA_MASK		GENMASK(23, 0)
107 #define LTC2983_DATA_SIGN_BIT		23
108 
109 #define LTC2983_CHAN_TYPE_MASK		GENMASK(31, 27)
110 #define LTC2983_CHAN_TYPE(x)		FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
111 
112 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
113 #define LTC2983_CHAN_ASSIGN_MASK	GENMASK(26, 22)
114 #define LTC2983_CHAN_ASSIGN(x)		FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
115 
116 #define LTC2983_CUSTOM_LEN_MASK		GENMASK(5, 0)
117 #define LTC2983_CUSTOM_LEN(x)		FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
118 
119 #define LTC2983_CUSTOM_ADDR_MASK	GENMASK(11, 6)
120 #define LTC2983_CUSTOM_ADDR(x)		FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
121 
122 #define LTC2983_THERMOCOUPLE_CFG_MASK	GENMASK(21, 18)
123 #define LTC2983_THERMOCOUPLE_CFG(x) \
124 				FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
125 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK	GENMASK(31, 29)
126 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK	GENMASK(28, 25)
127 
128 #define LTC2983_RTD_CFG_MASK		GENMASK(21, 18)
129 #define LTC2983_RTD_CFG(x)		FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
130 #define LTC2983_RTD_EXC_CURRENT_MASK	GENMASK(17, 14)
131 #define LTC2983_RTD_EXC_CURRENT(x) \
132 				FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
133 #define LTC2983_RTD_CURVE_MASK		GENMASK(13, 12)
134 #define LTC2983_RTD_CURVE(x)		FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
135 
136 #define LTC2983_THERMISTOR_CFG_MASK	GENMASK(21, 19)
137 #define LTC2983_THERMISTOR_CFG(x) \
138 				FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
139 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK	GENMASK(18, 15)
140 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
141 			FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
142 
143 #define LTC2983_DIODE_CFG_MASK		GENMASK(26, 24)
144 #define LTC2983_DIODE_CFG(x)		FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
145 #define LTC2983_DIODE_EXC_CURRENT_MASK	GENMASK(23, 22)
146 #define LTC2983_DIODE_EXC_CURRENT(x) \
147 				FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
148 #define LTC2983_DIODE_IDEAL_FACTOR_MASK	GENMASK(21, 0)
149 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
150 				FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
151 
152 #define LTC2983_R_SENSE_VAL_MASK	GENMASK(26, 0)
153 #define LTC2983_R_SENSE_VAL(x)		FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
154 
155 #define LTC2983_ADC_SINGLE_ENDED_MASK	BIT(26)
156 #define LTC2983_ADC_SINGLE_ENDED(x) \
157 				FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
158 
159 enum {
160 	LTC2983_SENSOR_THERMOCOUPLE = 1,
161 	LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
162 	LTC2983_SENSOR_RTD = 10,
163 	LTC2983_SENSOR_RTD_CUSTOM = 18,
164 	LTC2983_SENSOR_THERMISTOR = 19,
165 	LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
166 	LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
167 	LTC2983_SENSOR_DIODE = 28,
168 	LTC2983_SENSOR_SENSE_RESISTOR = 29,
169 	LTC2983_SENSOR_DIRECT_ADC = 30,
170 };
171 
172 #define to_thermocouple(_sensor) \
173 		container_of(_sensor, struct ltc2983_thermocouple, sensor)
174 
175 #define to_rtd(_sensor) \
176 		container_of(_sensor, struct ltc2983_rtd, sensor)
177 
178 #define to_thermistor(_sensor) \
179 		container_of(_sensor, struct ltc2983_thermistor, sensor)
180 
181 #define to_diode(_sensor) \
182 		container_of(_sensor, struct ltc2983_diode, sensor)
183 
184 #define to_rsense(_sensor) \
185 		container_of(_sensor, struct ltc2983_rsense, sensor)
186 
187 #define to_adc(_sensor) \
188 		container_of(_sensor, struct ltc2983_adc, sensor)
189 
190 struct ltc2983_data {
191 	struct regmap *regmap;
192 	struct spi_device *spi;
193 	struct mutex lock;
194 	struct completion completion;
195 	struct iio_chan_spec *iio_chan;
196 	struct ltc2983_sensor **sensors;
197 	u32 mux_delay_config;
198 	u32 filter_notch_freq;
199 	u16 custom_table_size;
200 	u8 num_channels;
201 	u8 iio_channels;
202 	/*
203 	 * DMA (thus cache coherency maintenance) requires the
204 	 * transfer buffers to live in their own cache lines.
205 	 * Holds the converted temperature
206 	 */
207 	__be32 temp ____cacheline_aligned;
208 };
209 
210 struct ltc2983_sensor {
211 	int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
212 	int (*assign_chan)(struct ltc2983_data *st,
213 			   const struct ltc2983_sensor *sensor);
214 	/* specifies the sensor channel */
215 	u32 chan;
216 	/* sensor type */
217 	u32 type;
218 };
219 
220 struct ltc2983_custom_sensor {
221 	/* raw table sensor data */
222 	u8 *table;
223 	size_t size;
224 	/* address offset */
225 	s8 offset;
226 	bool is_steinhart;
227 };
228 
229 struct ltc2983_thermocouple {
230 	struct ltc2983_sensor sensor;
231 	struct ltc2983_custom_sensor *custom;
232 	u32 sensor_config;
233 	u32 cold_junction_chan;
234 };
235 
236 struct ltc2983_rtd {
237 	struct ltc2983_sensor sensor;
238 	struct ltc2983_custom_sensor *custom;
239 	u32 sensor_config;
240 	u32 r_sense_chan;
241 	u32 excitation_current;
242 	u32 rtd_curve;
243 };
244 
245 struct ltc2983_thermistor {
246 	struct ltc2983_sensor sensor;
247 	struct ltc2983_custom_sensor *custom;
248 	u32 sensor_config;
249 	u32 r_sense_chan;
250 	u32 excitation_current;
251 };
252 
253 struct ltc2983_diode {
254 	struct ltc2983_sensor sensor;
255 	u32 sensor_config;
256 	u32 excitation_current;
257 	u32 ideal_factor_value;
258 };
259 
260 struct ltc2983_rsense {
261 	struct ltc2983_sensor sensor;
262 	u32 r_sense_val;
263 };
264 
265 struct ltc2983_adc {
266 	struct ltc2983_sensor sensor;
267 	bool single_ended;
268 };
269 
270 /*
271  * Convert to Q format numbers. These number's are integers where
272  * the number of integer and fractional bits are specified. The resolution
273  * is given by 1/@resolution and tell us the number of fractional bits. For
274  * instance a resolution of 2^-10 means we have 10 fractional bits.
275  */
276 static u32 __convert_to_raw(const u64 val, const u32 resolution)
277 {
278 	u64 __res = val * resolution;
279 
280 	/* all values are multiplied by 1000000 to remove the fraction */
281 	do_div(__res, 1000000);
282 
283 	return __res;
284 }
285 
286 static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
287 {
288 	s64 __res = -(s32)val;
289 
290 	__res = __convert_to_raw(__res, resolution);
291 
292 	return (u32)-__res;
293 }
294 
295 static int __ltc2983_fault_handler(const struct ltc2983_data *st,
296 				   const u32 result, const u32 hard_mask,
297 				   const u32 soft_mask)
298 {
299 	const struct device *dev = &st->spi->dev;
300 
301 	if (result & hard_mask) {
302 		dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
303 		return -EIO;
304 	} else if (result & soft_mask) {
305 		/* just print a warning */
306 		dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
307 	}
308 
309 	return 0;
310 }
311 
312 static int __ltc2983_chan_assign_common(const struct ltc2983_data *st,
313 					const struct ltc2983_sensor *sensor,
314 					u32 chan_val)
315 {
316 	u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
317 	__be32 __chan_val;
318 
319 	chan_val |= LTC2983_CHAN_TYPE(sensor->type);
320 	dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
321 		chan_val);
322 	__chan_val = cpu_to_be32(chan_val);
323 	return regmap_bulk_write(st->regmap, reg, &__chan_val,
324 				 sizeof(__chan_val));
325 }
326 
327 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
328 					  struct ltc2983_custom_sensor *custom,
329 					  u32 *chan_val)
330 {
331 	u32 reg;
332 	u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
333 		LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
334 	const struct device *dev = &st->spi->dev;
335 	/*
336 	 * custom->size holds the raw size of the table. However, when
337 	 * configuring the sensor channel, we must write the number of
338 	 * entries of the table minus 1. For steinhart sensors 0 is written
339 	 * since the size is constant!
340 	 */
341 	const u8 len = custom->is_steinhart ? 0 :
342 		(custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
343 	/*
344 	 * Check if the offset was assigned already. It should be for steinhart
345 	 * sensors. When coming from sleep, it should be assigned for all.
346 	 */
347 	if (custom->offset < 0) {
348 		/*
349 		 * This needs to be done again here because, from the moment
350 		 * when this test was done (successfully) for this custom
351 		 * sensor, a steinhart sensor might have been added changing
352 		 * custom_table_size...
353 		 */
354 		if (st->custom_table_size + custom->size >
355 		    (LTC2983_CUST_SENS_TBL_END_REG -
356 		     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
357 			dev_err(dev,
358 				"Not space left(%d) for new custom sensor(%zu)",
359 				st->custom_table_size,
360 				custom->size);
361 			return -EINVAL;
362 		}
363 
364 		custom->offset = st->custom_table_size /
365 					LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
366 		st->custom_table_size += custom->size;
367 	}
368 
369 	reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
370 
371 	*chan_val |= LTC2983_CUSTOM_LEN(len);
372 	*chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
373 	dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
374 		reg, custom->offset,
375 		custom->size);
376 	/* write custom sensor table */
377 	return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
378 }
379 
380 static struct ltc2983_custom_sensor *__ltc2983_custom_sensor_new(
381 						struct ltc2983_data *st,
382 						const struct device_node *np,
383 						const char *propname,
384 						const bool is_steinhart,
385 						const u32 resolution,
386 						const bool has_signed)
387 {
388 	struct ltc2983_custom_sensor *new_custom;
389 	u8 index, n_entries, tbl = 0;
390 	struct device *dev = &st->spi->dev;
391 	/*
392 	 * For custom steinhart, the full u32 is taken. For all the others
393 	 * the MSB is discarded.
394 	 */
395 	const u8 n_size = is_steinhart ? 4 : 3;
396 	const u8 e_size = is_steinhart ? sizeof(u32) : sizeof(u64);
397 
398 	n_entries = of_property_count_elems_of_size(np, propname, e_size);
399 	/* n_entries must be an even number */
400 	if (!n_entries || (n_entries % 2) != 0) {
401 		dev_err(dev, "Number of entries either 0 or not even\n");
402 		return ERR_PTR(-EINVAL);
403 	}
404 
405 	new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
406 	if (!new_custom)
407 		return ERR_PTR(-ENOMEM);
408 
409 	new_custom->size = n_entries * n_size;
410 	/* check Steinhart size */
411 	if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
412 		dev_err(dev, "Steinhart sensors size(%zu) must be 24",
413 							new_custom->size);
414 		return ERR_PTR(-EINVAL);
415 	}
416 	/* Check space on the table. */
417 	if (st->custom_table_size + new_custom->size >
418 	    (LTC2983_CUST_SENS_TBL_END_REG -
419 	     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
420 		dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
421 				st->custom_table_size, new_custom->size);
422 		return ERR_PTR(-EINVAL);
423 	}
424 
425 	/* allocate the table */
426 	new_custom->table = devm_kzalloc(dev, new_custom->size, GFP_KERNEL);
427 	if (!new_custom->table)
428 		return ERR_PTR(-ENOMEM);
429 
430 	for (index = 0; index < n_entries; index++) {
431 		u64 temp = 0, j;
432 		/*
433 		 * Steinhart sensors are configured with raw values in the
434 		 * devicetree. For the other sensors we must convert the
435 		 * value to raw. The odd index's correspond to temperarures
436 		 * and always have 1/1024 of resolution. Temperatures also
437 		 * come in kelvin, so signed values is not possible
438 		 */
439 		if (!is_steinhart) {
440 			of_property_read_u64_index(np, propname, index, &temp);
441 
442 			if ((index % 2) != 0)
443 				temp = __convert_to_raw(temp, 1024);
444 			else if (has_signed && (s64)temp < 0)
445 				temp = __convert_to_raw_sign(temp, resolution);
446 			else
447 				temp = __convert_to_raw(temp, resolution);
448 		} else {
449 			u32 t32;
450 
451 			of_property_read_u32_index(np, propname, index, &t32);
452 			temp = t32;
453 		}
454 
455 		for (j = 0; j < n_size; j++)
456 			new_custom->table[tbl++] =
457 				temp >> (8 * (n_size - j - 1));
458 	}
459 
460 	new_custom->is_steinhart = is_steinhart;
461 	/*
462 	 * This is done to first add all the steinhart sensors to the table,
463 	 * in order to maximize the table usage. If we mix adding steinhart
464 	 * with the other sensors, we might have to do some roundup to make
465 	 * sure that sensor_addr - 0x250(start address) is a multiple of 4
466 	 * (for steinhart), and a multiple of 6 for all the other sensors.
467 	 * Since we have const 24 bytes for steinhart sensors and 24 is
468 	 * also a multiple of 6, we guarantee that the first non-steinhart
469 	 * sensor will sit in a correct address without the need of filling
470 	 * addresses.
471 	 */
472 	if (is_steinhart) {
473 		new_custom->offset = st->custom_table_size /
474 					LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
475 		st->custom_table_size += new_custom->size;
476 	} else {
477 		/* mark as unset. This is checked later on the assign phase */
478 		new_custom->offset = -1;
479 	}
480 
481 	return new_custom;
482 }
483 
484 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
485 					      const u32 result)
486 {
487 	return __ltc2983_fault_handler(st, result,
488 				       LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
489 				       LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
490 }
491 
492 static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
493 					const u32 result)
494 {
495 	return __ltc2983_fault_handler(st, result,
496 				       LTC2983_COMMON_HARD_FAULT_MASK,
497 				       LTC2983_COMMON_SOFT_FAULT_MASK);
498 }
499 
500 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
501 				const struct ltc2983_sensor *sensor)
502 {
503 	struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
504 	u32 chan_val;
505 
506 	chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
507 	chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
508 
509 	if (thermo->custom) {
510 		int ret;
511 
512 		ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
513 							  &chan_val);
514 		if (ret)
515 			return ret;
516 	}
517 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
518 }
519 
520 static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
521 				   const struct ltc2983_sensor *sensor)
522 {
523 	struct ltc2983_rtd *rtd = to_rtd(sensor);
524 	u32 chan_val;
525 
526 	chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
527 	chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
528 	chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
529 	chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
530 
531 	if (rtd->custom) {
532 		int ret;
533 
534 		ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
535 							  &chan_val);
536 		if (ret)
537 			return ret;
538 	}
539 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
540 }
541 
542 static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
543 					  const struct ltc2983_sensor *sensor)
544 {
545 	struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
546 	u32 chan_val;
547 
548 	chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
549 	chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
550 	chan_val |=
551 		LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
552 
553 	if (thermistor->custom) {
554 		int ret;
555 
556 		ret = __ltc2983_chan_custom_sensor_assign(st,
557 							  thermistor->custom,
558 							  &chan_val);
559 		if (ret)
560 			return ret;
561 	}
562 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
563 }
564 
565 static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
566 				     const struct ltc2983_sensor *sensor)
567 {
568 	struct ltc2983_diode *diode = to_diode(sensor);
569 	u32 chan_val;
570 
571 	chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
572 	chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
573 	chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
574 
575 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
576 }
577 
578 static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
579 				       const struct ltc2983_sensor *sensor)
580 {
581 	struct ltc2983_rsense *rsense = to_rsense(sensor);
582 	u32 chan_val;
583 
584 	chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
585 
586 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
587 }
588 
589 static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
590 				   const struct ltc2983_sensor *sensor)
591 {
592 	struct ltc2983_adc *adc = to_adc(sensor);
593 	u32 chan_val;
594 
595 	chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
596 
597 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
598 }
599 
600 static struct ltc2983_sensor *ltc2983_thermocouple_new(
601 					const struct device_node *child,
602 					struct ltc2983_data *st,
603 					const struct ltc2983_sensor *sensor)
604 {
605 	struct ltc2983_thermocouple *thermo;
606 	struct device_node *phandle;
607 	u32 oc_current;
608 	int ret;
609 
610 	thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
611 	if (!thermo)
612 		return ERR_PTR(-ENOMEM);
613 
614 	if (of_property_read_bool(child, "adi,single-ended"))
615 		thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
616 
617 	ret = of_property_read_u32(child, "adi,sensor-oc-current-microamp",
618 				   &oc_current);
619 	if (!ret) {
620 		switch (oc_current) {
621 		case 10:
622 			thermo->sensor_config |=
623 					LTC2983_THERMOCOUPLE_OC_CURR(0);
624 			break;
625 		case 100:
626 			thermo->sensor_config |=
627 					LTC2983_THERMOCOUPLE_OC_CURR(1);
628 			break;
629 		case 500:
630 			thermo->sensor_config |=
631 					LTC2983_THERMOCOUPLE_OC_CURR(2);
632 			break;
633 		case 1000:
634 			thermo->sensor_config |=
635 					LTC2983_THERMOCOUPLE_OC_CURR(3);
636 			break;
637 		default:
638 			dev_err(&st->spi->dev,
639 				"Invalid open circuit current:%u", oc_current);
640 			return ERR_PTR(-EINVAL);
641 		}
642 
643 		thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
644 	}
645 	/* validate channel index */
646 	if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
647 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
648 		dev_err(&st->spi->dev,
649 			"Invalid chann:%d for differential thermocouple",
650 			sensor->chan);
651 		return ERR_PTR(-EINVAL);
652 	}
653 
654 	phandle = of_parse_phandle(child, "adi,cold-junction-handle", 0);
655 	if (phandle) {
656 		int ret;
657 
658 		ret = of_property_read_u32(phandle, "reg",
659 					   &thermo->cold_junction_chan);
660 		if (ret) {
661 			/*
662 			 * This would be catched later but we can just return
663 			 * the error right away.
664 			 */
665 			dev_err(&st->spi->dev, "Property reg must be given\n");
666 			of_node_put(phandle);
667 			return ERR_PTR(-EINVAL);
668 		}
669 	}
670 
671 	/* check custom sensor */
672 	if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
673 		const char *propname = "adi,custom-thermocouple";
674 
675 		thermo->custom = __ltc2983_custom_sensor_new(st, child,
676 							     propname, false,
677 							     16384, true);
678 		if (IS_ERR(thermo->custom)) {
679 			of_node_put(phandle);
680 			return ERR_CAST(thermo->custom);
681 		}
682 	}
683 
684 	/* set common parameters */
685 	thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
686 	thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
687 
688 	of_node_put(phandle);
689 	return &thermo->sensor;
690 }
691 
692 static struct ltc2983_sensor *ltc2983_rtd_new(const struct device_node *child,
693 					  struct ltc2983_data *st,
694 					  const struct ltc2983_sensor *sensor)
695 {
696 	struct ltc2983_rtd *rtd;
697 	int ret = 0;
698 	struct device *dev = &st->spi->dev;
699 	struct device_node *phandle;
700 	u32 excitation_current = 0, n_wires = 0;
701 
702 	rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
703 	if (!rtd)
704 		return ERR_PTR(-ENOMEM);
705 
706 	phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
707 	if (!phandle) {
708 		dev_err(dev, "Property adi,rsense-handle missing or invalid");
709 		return ERR_PTR(-EINVAL);
710 	}
711 
712 	ret = of_property_read_u32(phandle, "reg", &rtd->r_sense_chan);
713 	if (ret) {
714 		dev_err(dev, "Property reg must be given\n");
715 		goto fail;
716 	}
717 
718 	ret = of_property_read_u32(child, "adi,number-of-wires", &n_wires);
719 	if (!ret) {
720 		switch (n_wires) {
721 		case 2:
722 			rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
723 			break;
724 		case 3:
725 			rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
726 			break;
727 		case 4:
728 			rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
729 			break;
730 		case 5:
731 			/* 4 wires, Kelvin Rsense */
732 			rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
733 			break;
734 		default:
735 			dev_err(dev, "Invalid number of wires:%u\n", n_wires);
736 			ret = -EINVAL;
737 			goto fail;
738 		}
739 	}
740 
741 	if (of_property_read_bool(child, "adi,rsense-share")) {
742 		/* Current rotation is only available with rsense sharing */
743 		if (of_property_read_bool(child, "adi,current-rotate")) {
744 			if (n_wires == 2 || n_wires == 3) {
745 				dev_err(dev,
746 					"Rotation not allowed for 2/3 Wire RTDs");
747 				ret = -EINVAL;
748 				goto fail;
749 			}
750 			rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
751 		} else {
752 			rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
753 		}
754 	}
755 	/*
756 	 * rtd channel indexes are a bit more complicated to validate.
757 	 * For 4wire RTD with rotation, the channel selection cannot be
758 	 * >=19 since the chann + 1 is used in this configuration.
759 	 * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
760 	 * <=1 since chanel - 1 and channel - 2 are used.
761 	 */
762 	if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
763 		/* 4-wire */
764 		u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
765 			max = LTC2983_MAX_CHANNELS_NR;
766 
767 		if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
768 			max = LTC2983_MAX_CHANNELS_NR - 1;
769 
770 		if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
771 		     == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
772 		    (rtd->r_sense_chan <=  min)) {
773 			/* kelvin rsense*/
774 			dev_err(dev,
775 				"Invalid rsense chann:%d to use in kelvin rsense",
776 				rtd->r_sense_chan);
777 
778 			ret = -EINVAL;
779 			goto fail;
780 		}
781 
782 		if (sensor->chan < min || sensor->chan > max) {
783 			dev_err(dev, "Invalid chann:%d for the rtd config",
784 				sensor->chan);
785 
786 			ret = -EINVAL;
787 			goto fail;
788 		}
789 	} else {
790 		/* same as differential case */
791 		if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
792 			dev_err(&st->spi->dev,
793 				"Invalid chann:%d for RTD", sensor->chan);
794 
795 			ret = -EINVAL;
796 			goto fail;
797 		}
798 	}
799 
800 	/* check custom sensor */
801 	if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
802 		rtd->custom = __ltc2983_custom_sensor_new(st, child,
803 							  "adi,custom-rtd",
804 							  false, 2048, false);
805 		if (IS_ERR(rtd->custom)) {
806 			of_node_put(phandle);
807 			return ERR_CAST(rtd->custom);
808 		}
809 	}
810 
811 	/* set common parameters */
812 	rtd->sensor.fault_handler = ltc2983_common_fault_handler;
813 	rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
814 
815 	ret = of_property_read_u32(child, "adi,excitation-current-microamp",
816 				   &excitation_current);
817 	if (ret) {
818 		/* default to 5uA */
819 		rtd->excitation_current = 1;
820 	} else {
821 		switch (excitation_current) {
822 		case 5:
823 			rtd->excitation_current = 0x01;
824 			break;
825 		case 10:
826 			rtd->excitation_current = 0x02;
827 			break;
828 		case 25:
829 			rtd->excitation_current = 0x03;
830 			break;
831 		case 50:
832 			rtd->excitation_current = 0x04;
833 			break;
834 		case 100:
835 			rtd->excitation_current = 0x05;
836 			break;
837 		case 250:
838 			rtd->excitation_current = 0x06;
839 			break;
840 		case 500:
841 			rtd->excitation_current = 0x07;
842 			break;
843 		case 1000:
844 			rtd->excitation_current = 0x08;
845 			break;
846 		default:
847 			dev_err(&st->spi->dev,
848 				"Invalid value for excitation current(%u)",
849 				excitation_current);
850 			ret = -EINVAL;
851 			goto fail;
852 		}
853 	}
854 
855 	of_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
856 
857 	of_node_put(phandle);
858 	return &rtd->sensor;
859 fail:
860 	of_node_put(phandle);
861 	return ERR_PTR(ret);
862 }
863 
864 static struct ltc2983_sensor *ltc2983_thermistor_new(
865 					const struct device_node *child,
866 					struct ltc2983_data *st,
867 					const struct ltc2983_sensor *sensor)
868 {
869 	struct ltc2983_thermistor *thermistor;
870 	struct device *dev = &st->spi->dev;
871 	struct device_node *phandle;
872 	u32 excitation_current = 0;
873 	int ret = 0;
874 
875 	thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
876 	if (!thermistor)
877 		return ERR_PTR(-ENOMEM);
878 
879 	phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
880 	if (!phandle) {
881 		dev_err(dev, "Property adi,rsense-handle missing or invalid");
882 		return ERR_PTR(-EINVAL);
883 	}
884 
885 	ret = of_property_read_u32(phandle, "reg", &thermistor->r_sense_chan);
886 	if (ret) {
887 		dev_err(dev, "rsense channel must be configured...\n");
888 		goto fail;
889 	}
890 
891 	if (of_property_read_bool(child, "adi,single-ended")) {
892 		thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
893 	} else if (of_property_read_bool(child, "adi,rsense-share")) {
894 		/* rotation is only possible if sharing rsense */
895 		if (of_property_read_bool(child, "adi,current-rotate"))
896 			thermistor->sensor_config =
897 						LTC2983_THERMISTOR_C_ROTATE(1);
898 		else
899 			thermistor->sensor_config =
900 						LTC2983_THERMISTOR_R_SHARE(1);
901 	}
902 	/* validate channel index */
903 	if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
904 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
905 		dev_err(&st->spi->dev,
906 			"Invalid chann:%d for differential thermistor",
907 			sensor->chan);
908 		ret = -EINVAL;
909 		goto fail;
910 	}
911 
912 	/* check custom sensor */
913 	if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
914 		bool steinhart = false;
915 		const char *propname;
916 
917 		if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
918 			steinhart = true;
919 			propname = "adi,custom-steinhart";
920 		} else {
921 			propname = "adi,custom-thermistor";
922 		}
923 
924 		thermistor->custom = __ltc2983_custom_sensor_new(st, child,
925 								 propname,
926 								 steinhart,
927 								 64, false);
928 		if (IS_ERR(thermistor->custom)) {
929 			of_node_put(phandle);
930 			return ERR_CAST(thermistor->custom);
931 		}
932 	}
933 	/* set common parameters */
934 	thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
935 	thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
936 
937 	ret = of_property_read_u32(child, "adi,excitation-current-nanoamp",
938 				   &excitation_current);
939 	if (ret) {
940 		/* Auto range is not allowed for custom sensors */
941 		if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
942 			/* default to 1uA */
943 			thermistor->excitation_current = 0x03;
944 		else
945 			/* default to auto-range */
946 			thermistor->excitation_current = 0x0c;
947 	} else {
948 		switch (excitation_current) {
949 		case 0:
950 			/* auto range */
951 			if (sensor->type >=
952 			    LTC2983_SENSOR_THERMISTOR_STEINHART) {
953 				dev_err(&st->spi->dev,
954 					"Auto Range not allowed for custom sensors\n");
955 				ret = -EINVAL;
956 				goto fail;
957 			}
958 			thermistor->excitation_current = 0x0c;
959 			break;
960 		case 250:
961 			thermistor->excitation_current = 0x01;
962 			break;
963 		case 500:
964 			thermistor->excitation_current = 0x02;
965 			break;
966 		case 1000:
967 			thermistor->excitation_current = 0x03;
968 			break;
969 		case 5000:
970 			thermistor->excitation_current = 0x04;
971 			break;
972 		case 10000:
973 			thermistor->excitation_current = 0x05;
974 			break;
975 		case 25000:
976 			thermistor->excitation_current = 0x06;
977 			break;
978 		case 50000:
979 			thermistor->excitation_current = 0x07;
980 			break;
981 		case 100000:
982 			thermistor->excitation_current = 0x08;
983 			break;
984 		case 250000:
985 			thermistor->excitation_current = 0x09;
986 			break;
987 		case 500000:
988 			thermistor->excitation_current = 0x0a;
989 			break;
990 		case 1000000:
991 			thermistor->excitation_current = 0x0b;
992 			break;
993 		default:
994 			dev_err(&st->spi->dev,
995 				"Invalid value for excitation current(%u)",
996 				excitation_current);
997 			ret = -EINVAL;
998 			goto fail;
999 		}
1000 	}
1001 
1002 	of_node_put(phandle);
1003 	return &thermistor->sensor;
1004 fail:
1005 	of_node_put(phandle);
1006 	return ERR_PTR(ret);
1007 }
1008 
1009 static struct ltc2983_sensor *ltc2983_diode_new(
1010 					const struct device_node *child,
1011 					const struct ltc2983_data *st,
1012 					const struct ltc2983_sensor *sensor)
1013 {
1014 	struct ltc2983_diode *diode;
1015 	u32 temp = 0, excitation_current = 0;
1016 	int ret;
1017 
1018 	diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1019 	if (!diode)
1020 		return ERR_PTR(-ENOMEM);
1021 
1022 	if (of_property_read_bool(child, "adi,single-ended"))
1023 		diode->sensor_config = LTC2983_DIODE_SGL(1);
1024 
1025 	if (of_property_read_bool(child, "adi,three-conversion-cycles"))
1026 		diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1027 
1028 	if (of_property_read_bool(child, "adi,average-on"))
1029 		diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1030 
1031 	/* validate channel index */
1032 	if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1033 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1034 		dev_err(&st->spi->dev,
1035 			"Invalid chann:%d for differential thermistor",
1036 			sensor->chan);
1037 		return ERR_PTR(-EINVAL);
1038 	}
1039 	/* set common parameters */
1040 	diode->sensor.fault_handler = ltc2983_common_fault_handler;
1041 	diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1042 
1043 	ret = of_property_read_u32(child, "adi,excitation-current-microamp",
1044 				   &excitation_current);
1045 	if (!ret) {
1046 		switch (excitation_current) {
1047 		case 10:
1048 			diode->excitation_current = 0x00;
1049 			break;
1050 		case 20:
1051 			diode->excitation_current = 0x01;
1052 			break;
1053 		case 40:
1054 			diode->excitation_current = 0x02;
1055 			break;
1056 		case 80:
1057 			diode->excitation_current = 0x03;
1058 			break;
1059 		default:
1060 			dev_err(&st->spi->dev,
1061 				"Invalid value for excitation current(%u)",
1062 				excitation_current);
1063 			return ERR_PTR(-EINVAL);
1064 		}
1065 	}
1066 
1067 	of_property_read_u32(child, "adi,ideal-factor-value", &temp);
1068 
1069 	/* 2^20 resolution */
1070 	diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1071 
1072 	return &diode->sensor;
1073 }
1074 
1075 static struct ltc2983_sensor *ltc2983_r_sense_new(struct device_node *child,
1076 					struct ltc2983_data *st,
1077 					const struct ltc2983_sensor *sensor)
1078 {
1079 	struct ltc2983_rsense *rsense;
1080 	int ret;
1081 	u32 temp;
1082 
1083 	rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1084 	if (!rsense)
1085 		return ERR_PTR(-ENOMEM);
1086 
1087 	/* validate channel index */
1088 	if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1089 		dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1090 			sensor->chan);
1091 		return ERR_PTR(-EINVAL);
1092 	}
1093 
1094 	ret = of_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1095 	if (ret) {
1096 		dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1097 		return ERR_PTR(-EINVAL);
1098 	}
1099 	/*
1100 	 * Times 1000 because we have milli-ohms and __convert_to_raw
1101 	 * expects scales of 1000000 which are used for all other
1102 	 * properties.
1103 	 * 2^10 resolution
1104 	 */
1105 	rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1106 
1107 	/* set common parameters */
1108 	rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1109 
1110 	return &rsense->sensor;
1111 }
1112 
1113 static struct ltc2983_sensor *ltc2983_adc_new(struct device_node *child,
1114 					 struct ltc2983_data *st,
1115 					 const struct ltc2983_sensor *sensor)
1116 {
1117 	struct ltc2983_adc *adc;
1118 
1119 	adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1120 	if (!adc)
1121 		return ERR_PTR(-ENOMEM);
1122 
1123 	if (of_property_read_bool(child, "adi,single-ended"))
1124 		adc->single_ended = true;
1125 
1126 	if (!adc->single_ended &&
1127 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1128 		dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1129 			sensor->chan);
1130 		return ERR_PTR(-EINVAL);
1131 	}
1132 	/* set common parameters */
1133 	adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1134 	adc->sensor.fault_handler = ltc2983_common_fault_handler;
1135 
1136 	return &adc->sensor;
1137 }
1138 
1139 static int ltc2983_chan_read(struct ltc2983_data *st,
1140 			const struct ltc2983_sensor *sensor, int *val)
1141 {
1142 	u32 start_conversion = 0;
1143 	int ret;
1144 	unsigned long time;
1145 
1146 	start_conversion = LTC2983_STATUS_START(true);
1147 	start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1148 	dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1149 		sensor->chan, start_conversion);
1150 	/* start conversion */
1151 	ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1152 	if (ret)
1153 		return ret;
1154 
1155 	reinit_completion(&st->completion);
1156 	/*
1157 	 * wait for conversion to complete.
1158 	 * 300 ms should be more than enough to complete the conversion.
1159 	 * Depending on the sensor configuration, there are 2/3 conversions
1160 	 * cycles of 82ms.
1161 	 */
1162 	time = wait_for_completion_timeout(&st->completion,
1163 					   msecs_to_jiffies(300));
1164 	if (!time) {
1165 		dev_warn(&st->spi->dev, "Conversion timed out\n");
1166 		return -ETIMEDOUT;
1167 	}
1168 
1169 	/* read the converted data */
1170 	ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1171 			       &st->temp, sizeof(st->temp));
1172 	if (ret)
1173 		return ret;
1174 
1175 	*val = __be32_to_cpu(st->temp);
1176 
1177 	if (!(LTC2983_RES_VALID_MASK & *val)) {
1178 		dev_err(&st->spi->dev, "Invalid conversion detected\n");
1179 		return -EIO;
1180 	}
1181 
1182 	ret = sensor->fault_handler(st, *val);
1183 	if (ret)
1184 		return ret;
1185 
1186 	*val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1187 	return 0;
1188 }
1189 
1190 static int ltc2983_read_raw(struct iio_dev *indio_dev,
1191 			    struct iio_chan_spec const *chan,
1192 			    int *val, int *val2, long mask)
1193 {
1194 	struct ltc2983_data *st = iio_priv(indio_dev);
1195 	int ret;
1196 
1197 	/* sanity check */
1198 	if (chan->address >= st->num_channels) {
1199 		dev_err(&st->spi->dev, "Invalid chan address:%ld",
1200 			chan->address);
1201 		return -EINVAL;
1202 	}
1203 
1204 	switch (mask) {
1205 	case IIO_CHAN_INFO_RAW:
1206 		mutex_lock(&st->lock);
1207 		ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1208 		mutex_unlock(&st->lock);
1209 		return ret ?: IIO_VAL_INT;
1210 	case IIO_CHAN_INFO_SCALE:
1211 		switch (chan->type) {
1212 		case IIO_TEMP:
1213 			/* value in milli degrees */
1214 			*val = 1000;
1215 			/* 2^10 */
1216 			*val2 = 1024;
1217 			return IIO_VAL_FRACTIONAL;
1218 		case IIO_VOLTAGE:
1219 			/* value in millivolt */
1220 			*val = 1000;
1221 			/* 2^21 */
1222 			*val2 = 2097152;
1223 			return IIO_VAL_FRACTIONAL;
1224 		default:
1225 			return -EINVAL;
1226 		}
1227 	}
1228 
1229 	return -EINVAL;
1230 }
1231 
1232 static int ltc2983_reg_access(struct iio_dev *indio_dev,
1233 			      unsigned int reg,
1234 			      unsigned int writeval,
1235 			      unsigned int *readval)
1236 {
1237 	struct ltc2983_data *st = iio_priv(indio_dev);
1238 
1239 	if (readval)
1240 		return regmap_read(st->regmap, reg, readval);
1241 	else
1242 		return regmap_write(st->regmap, reg, writeval);
1243 }
1244 
1245 static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1246 {
1247 	struct ltc2983_data *st = data;
1248 
1249 	complete(&st->completion);
1250 	return IRQ_HANDLED;
1251 }
1252 
1253 #define LTC2983_CHAN(__type, index, __address) ({ \
1254 	struct iio_chan_spec __chan = { \
1255 		.type = __type, \
1256 		.indexed = 1, \
1257 		.channel = index, \
1258 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1259 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1260 		.address = __address, \
1261 	}; \
1262 	__chan; \
1263 })
1264 
1265 static int ltc2983_parse_dt(struct ltc2983_data *st)
1266 {
1267 	struct device_node *child;
1268 	struct device *dev = &st->spi->dev;
1269 	int ret = 0, chan = 0, channel_avail_mask = 0;
1270 
1271 	of_property_read_u32(dev->of_node, "adi,mux-delay-config-us",
1272 			     &st->mux_delay_config);
1273 
1274 	of_property_read_u32(dev->of_node, "adi,filter-notch-freq",
1275 			     &st->filter_notch_freq);
1276 
1277 	st->num_channels = of_get_available_child_count(dev->of_node);
1278 	st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1279 				   GFP_KERNEL);
1280 	if (!st->sensors)
1281 		return -ENOMEM;
1282 
1283 	st->iio_channels = st->num_channels;
1284 	for_each_available_child_of_node(dev->of_node, child) {
1285 		struct ltc2983_sensor sensor;
1286 
1287 		ret = of_property_read_u32(child, "reg", &sensor.chan);
1288 		if (ret) {
1289 			dev_err(dev, "reg property must given for child nodes\n");
1290 			goto put_child;
1291 		}
1292 
1293 		/* check if we have a valid channel */
1294 		if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1295 		    sensor.chan > LTC2983_MAX_CHANNELS_NR) {
1296 			ret = -EINVAL;
1297 			dev_err(dev,
1298 				"chan:%d must be from 1 to 20\n", sensor.chan);
1299 			goto put_child;
1300 		} else if (channel_avail_mask & BIT(sensor.chan)) {
1301 			ret = -EINVAL;
1302 			dev_err(dev, "chan:%d already in use\n", sensor.chan);
1303 			goto put_child;
1304 		}
1305 
1306 		ret = of_property_read_u32(child, "adi,sensor-type",
1307 					       &sensor.type);
1308 		if (ret) {
1309 			dev_err(dev,
1310 				"adi,sensor-type property must given for child nodes\n");
1311 			goto put_child;
1312 		}
1313 
1314 		dev_dbg(dev, "Create new sensor, type %u, chann %u",
1315 								sensor.type,
1316 								sensor.chan);
1317 
1318 		if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1319 		    sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1320 			st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1321 								     &sensor);
1322 		} else if (sensor.type >= LTC2983_SENSOR_RTD &&
1323 			   sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1324 			st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1325 		} else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1326 			   sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1327 			st->sensors[chan] = ltc2983_thermistor_new(child, st,
1328 								   &sensor);
1329 		} else if (sensor.type == LTC2983_SENSOR_DIODE) {
1330 			st->sensors[chan] = ltc2983_diode_new(child, st,
1331 							      &sensor);
1332 		} else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1333 			st->sensors[chan] = ltc2983_r_sense_new(child, st,
1334 								&sensor);
1335 			/* don't add rsense to iio */
1336 			st->iio_channels--;
1337 		} else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1338 			st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1339 		} else {
1340 			dev_err(dev, "Unknown sensor type %d\n", sensor.type);
1341 			ret = -EINVAL;
1342 			goto put_child;
1343 		}
1344 
1345 		if (IS_ERR(st->sensors[chan])) {
1346 			dev_err(dev, "Failed to create sensor %ld",
1347 				PTR_ERR(st->sensors[chan]));
1348 			ret = PTR_ERR(st->sensors[chan]);
1349 			goto put_child;
1350 		}
1351 		/* set generic sensor parameters */
1352 		st->sensors[chan]->chan = sensor.chan;
1353 		st->sensors[chan]->type = sensor.type;
1354 
1355 		channel_avail_mask |= BIT(sensor.chan);
1356 		chan++;
1357 	}
1358 
1359 	return 0;
1360 put_child:
1361 	of_node_put(child);
1362 	return ret;
1363 }
1364 
1365 static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1366 {
1367 	u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1368 	int ret;
1369 
1370 	/* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1371 	ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1372 				       LTC2983_STATUS_UP(status) == 1, 25000,
1373 				       25000 * 10);
1374 	if (ret) {
1375 		dev_err(&st->spi->dev, "Device startup timed out\n");
1376 		return ret;
1377 	}
1378 
1379 	st->iio_chan = devm_kzalloc(&st->spi->dev,
1380 				    st->iio_channels * sizeof(*st->iio_chan),
1381 				    GFP_KERNEL);
1382 
1383 	if (!st->iio_chan)
1384 		return -ENOMEM;
1385 
1386 	ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1387 				 LTC2983_NOTCH_FREQ_MASK,
1388 				 LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1389 	if (ret)
1390 		return ret;
1391 
1392 	ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1393 			   st->mux_delay_config);
1394 	if (ret)
1395 		return ret;
1396 
1397 	for (chan = 0; chan < st->num_channels; chan++) {
1398 		u32 chan_type = 0, *iio_chan;
1399 
1400 		ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1401 		if (ret)
1402 			return ret;
1403 		/*
1404 		 * The assign_iio flag is necessary for when the device is
1405 		 * coming out of sleep. In that case, we just need to
1406 		 * re-configure the device channels.
1407 		 * We also don't assign iio channels for rsense.
1408 		 */
1409 		if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1410 		    !assign_iio)
1411 			continue;
1412 
1413 		/* assign iio channel */
1414 		if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1415 			chan_type = IIO_TEMP;
1416 			iio_chan = &iio_chan_t;
1417 		} else {
1418 			chan_type = IIO_VOLTAGE;
1419 			iio_chan = &iio_chan_v;
1420 		}
1421 
1422 		/*
1423 		 * add chan as the iio .address so that, we can directly
1424 		 * reference the sensor given the iio_chan_spec
1425 		 */
1426 		st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1427 						       chan);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static const struct regmap_range ltc2983_reg_ranges[] = {
1434 	regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1435 	regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1436 	regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1437 	regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1438 			 LTC2983_MULT_CHANNEL_END_REG),
1439 	regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1440 	regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1441 			 LTC2983_CHAN_ASSIGN_END_REG),
1442 	regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1443 			 LTC2983_CUST_SENS_TBL_END_REG),
1444 };
1445 
1446 static const struct regmap_access_table ltc2983_reg_table = {
1447 	.yes_ranges = ltc2983_reg_ranges,
1448 	.n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1449 };
1450 
1451 /*
1452  *  The reg_bits are actually 12 but the device needs the first *complete*
1453  *  byte for the command (R/W).
1454  */
1455 static const struct regmap_config ltc2983_regmap_config = {
1456 	.reg_bits = 24,
1457 	.val_bits = 8,
1458 	.wr_table = &ltc2983_reg_table,
1459 	.rd_table = &ltc2983_reg_table,
1460 	.read_flag_mask = GENMASK(1, 0),
1461 	.write_flag_mask = BIT(1),
1462 };
1463 
1464 static const struct  iio_info ltc2983_iio_info = {
1465 	.read_raw = ltc2983_read_raw,
1466 	.debugfs_reg_access = ltc2983_reg_access,
1467 };
1468 
1469 static int ltc2983_probe(struct spi_device *spi)
1470 {
1471 	struct ltc2983_data *st;
1472 	struct iio_dev *indio_dev;
1473 	const char *name = spi_get_device_id(spi)->name;
1474 	int ret;
1475 
1476 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1477 	if (!indio_dev)
1478 		return -ENOMEM;
1479 
1480 	st = iio_priv(indio_dev);
1481 
1482 	st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1483 	if (IS_ERR(st->regmap)) {
1484 		dev_err(&spi->dev, "Failed to initialize regmap\n");
1485 		return PTR_ERR(st->regmap);
1486 	}
1487 
1488 	mutex_init(&st->lock);
1489 	init_completion(&st->completion);
1490 	st->spi = spi;
1491 	spi_set_drvdata(spi, st);
1492 
1493 	ret = ltc2983_parse_dt(st);
1494 	if (ret)
1495 		return ret;
1496 
1497 	ret = ltc2983_setup(st, true);
1498 	if (ret)
1499 		return ret;
1500 
1501 	ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1502 			       IRQF_TRIGGER_RISING, name, st);
1503 	if (ret) {
1504 		dev_err(&spi->dev, "failed to request an irq, %d", ret);
1505 		return ret;
1506 	}
1507 
1508 	indio_dev->name = name;
1509 	indio_dev->num_channels = st->iio_channels;
1510 	indio_dev->channels = st->iio_chan;
1511 	indio_dev->modes = INDIO_DIRECT_MODE;
1512 	indio_dev->info = &ltc2983_iio_info;
1513 
1514 	return devm_iio_device_register(&spi->dev, indio_dev);
1515 }
1516 
1517 static int __maybe_unused ltc2983_resume(struct device *dev)
1518 {
1519 	struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1520 	int dummy;
1521 
1522 	/* dummy read to bring the device out of sleep */
1523 	regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1524 	/* we need to re-assign the channels */
1525 	return ltc2983_setup(st, false);
1526 }
1527 
1528 static int __maybe_unused ltc2983_suspend(struct device *dev)
1529 {
1530 	struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1531 
1532 	return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1533 }
1534 
1535 static SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, ltc2983_resume);
1536 
1537 static const struct spi_device_id ltc2983_id_table[] = {
1538 	{ "ltc2983" },
1539 	{},
1540 };
1541 MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1542 
1543 static const struct of_device_id ltc2983_of_match[] = {
1544 	{ .compatible = "adi,ltc2983" },
1545 	{},
1546 };
1547 MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1548 
1549 static struct spi_driver ltc2983_driver = {
1550 	.driver = {
1551 		.name = "ltc2983",
1552 		.of_match_table = ltc2983_of_match,
1553 		.pm = &ltc2983_pm_ops,
1554 	},
1555 	.probe = ltc2983_probe,
1556 	.id_table = ltc2983_id_table,
1557 };
1558 
1559 module_spi_driver(ltc2983_driver);
1560 
1561 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1562 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1563 MODULE_LICENSE("GPL");
1564