1 /* 2 * STMicroelectronics pressures driver 3 * 4 * Copyright 2013 STMicroelectronics Inc. 5 * 6 * Denis Ciocca <denis.ciocca@st.com> 7 * 8 * Licensed under the GPL-2. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/mutex.h> 17 #include <linux/interrupt.h> 18 #include <linux/i2c.h> 19 #include <linux/gpio.h> 20 #include <linux/irq.h> 21 #include <linux/delay.h> 22 #include <linux/iio/iio.h> 23 #include <linux/iio/sysfs.h> 24 #include <linux/iio/trigger.h> 25 #include <linux/iio/buffer.h> 26 #include <asm/unaligned.h> 27 28 #include <linux/iio/common/st_sensors.h> 29 #include "st_pressure.h" 30 31 /* 32 * About determining pressure scaling factors 33 * ------------------------------------------ 34 * 35 * Datasheets specify typical pressure sensitivity so that pressure is computed 36 * according to the following equation : 37 * pressure[mBar] = raw / sensitivity 38 * where : 39 * raw the 24 bits long raw sampled pressure 40 * sensitivity a scaling factor specified by the datasheet in LSB/mBar 41 * 42 * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be 43 * computed according to : 44 * pressure[kPascal] = pressure[mBar] / 10 45 * = raw / (sensitivity * 10) (1) 46 * 47 * Finally, st_press_read_raw() returns pressure scaling factor as an 48 * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part. 49 * Therefore, from (1), "gain" becomes : 50 * gain = 10^9 / (sensitivity * 10) 51 * = 10^8 / sensitivity 52 * 53 * About determining temperature scaling factors and offsets 54 * --------------------------------------------------------- 55 * 56 * Datasheets specify typical temperature sensitivity and offset so that 57 * temperature is computed according to the following equation : 58 * temp[Celsius] = offset[Celsius] + (raw / sensitivity) 59 * where : 60 * raw the 16 bits long raw sampled temperature 61 * offset a constant specified by the datasheet in degree Celsius 62 * (sometimes zero) 63 * sensitivity a scaling factor specified by the datasheet in LSB/Celsius 64 * 65 * IIO ABI expects temperature to be expressed as milli degree Celsius such as 66 * user space should compute temperature according to : 67 * temp[mCelsius] = temp[Celsius] * 10^3 68 * = (offset[Celsius] + (raw / sensitivity)) * 10^3 69 * = ((offset[Celsius] * sensitivity) + raw) * 70 * (10^3 / sensitivity) (2) 71 * 72 * IIO ABI expects user space to apply offset and scaling factors to raw samples 73 * according to : 74 * temp[mCelsius] = (OFFSET + raw) * SCALE 75 * where : 76 * OFFSET an arbitrary constant exposed by device 77 * SCALE an arbitrary scaling factor exposed by device 78 * 79 * Matching OFFSET and SCALE with members of (2) gives : 80 * OFFSET = offset[Celsius] * sensitivity (3) 81 * SCALE = 10^3 / sensitivity (4) 82 * 83 * st_press_read_raw() returns temperature scaling factor as an 84 * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator. 85 * Therefore, from (3), "gain2" becomes : 86 * gain2 = sensitivity 87 * 88 * When declared within channel, i.e. for a non zero specified offset, 89 * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as : 90 * numerator = OFFSET * 10^3 91 * denominator = 10^3 92 * giving from (4): 93 * numerator = offset[Celsius] * 10^3 * sensitivity 94 * = offset[mCelsius] * gain2 95 */ 96 97 #define MCELSIUS_PER_CELSIUS 1000 98 99 /* Default pressure sensitivity */ 100 #define ST_PRESS_LSB_PER_MBAR 4096UL 101 #define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \ 102 ST_PRESS_LSB_PER_MBAR) 103 104 /* Default temperature sensitivity */ 105 #define ST_PRESS_LSB_PER_CELSIUS 480UL 106 #define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL 107 108 /* FULLSCALE */ 109 #define ST_PRESS_FS_AVL_1100MB 1100 110 #define ST_PRESS_FS_AVL_1260MB 1260 111 112 #define ST_PRESS_1_OUT_XL_ADDR 0x28 113 #define ST_TEMP_1_OUT_L_ADDR 0x2b 114 115 /* LPS001WP pressure resolution */ 116 #define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL 117 /* LPS001WP temperature resolution */ 118 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL 119 /* LPS001WP pressure gain */ 120 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \ 121 (100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR) 122 /* LPS001WP pressure and temp L addresses */ 123 #define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28 124 #define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a 125 126 /* LPS25H pressure and temp L addresses */ 127 #define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28 128 #define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b 129 130 /* LPS22HB temperature sensitivity */ 131 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL 132 133 static const struct iio_chan_spec st_press_1_channels[] = { 134 { 135 .type = IIO_PRESSURE, 136 .address = ST_PRESS_1_OUT_XL_ADDR, 137 .scan_index = 0, 138 .scan_type = { 139 .sign = 's', 140 .realbits = 24, 141 .storagebits = 32, 142 .endianness = IIO_LE, 143 }, 144 .info_mask_separate = 145 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 146 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 147 }, 148 { 149 .type = IIO_TEMP, 150 .address = ST_TEMP_1_OUT_L_ADDR, 151 .scan_index = 1, 152 .scan_type = { 153 .sign = 's', 154 .realbits = 16, 155 .storagebits = 16, 156 .endianness = IIO_LE, 157 }, 158 .info_mask_separate = 159 BIT(IIO_CHAN_INFO_RAW) | 160 BIT(IIO_CHAN_INFO_SCALE) | 161 BIT(IIO_CHAN_INFO_OFFSET), 162 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 163 }, 164 IIO_CHAN_SOFT_TIMESTAMP(2) 165 }; 166 167 static const struct iio_chan_spec st_press_lps001wp_channels[] = { 168 { 169 .type = IIO_PRESSURE, 170 .address = ST_PRESS_LPS001WP_OUT_L_ADDR, 171 .scan_index = 0, 172 .scan_type = { 173 .sign = 's', 174 .realbits = 16, 175 .storagebits = 16, 176 .endianness = IIO_LE, 177 }, 178 .info_mask_separate = 179 BIT(IIO_CHAN_INFO_RAW) | 180 BIT(IIO_CHAN_INFO_SCALE), 181 }, 182 { 183 .type = IIO_TEMP, 184 .address = ST_TEMP_LPS001WP_OUT_L_ADDR, 185 .scan_index = 1, 186 .scan_type = { 187 .sign = 's', 188 .realbits = 16, 189 .storagebits = 16, 190 .endianness = IIO_LE, 191 }, 192 .info_mask_separate = 193 BIT(IIO_CHAN_INFO_RAW) | 194 BIT(IIO_CHAN_INFO_SCALE), 195 }, 196 IIO_CHAN_SOFT_TIMESTAMP(2) 197 }; 198 199 static const struct iio_chan_spec st_press_lps22hb_channels[] = { 200 { 201 .type = IIO_PRESSURE, 202 .address = ST_PRESS_1_OUT_XL_ADDR, 203 .scan_index = 0, 204 .scan_type = { 205 .sign = 's', 206 .realbits = 24, 207 .storagebits = 32, 208 .endianness = IIO_LE, 209 }, 210 .info_mask_separate = 211 BIT(IIO_CHAN_INFO_RAW) | 212 BIT(IIO_CHAN_INFO_SCALE), 213 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 214 }, 215 { 216 .type = IIO_TEMP, 217 .address = ST_TEMP_1_OUT_L_ADDR, 218 .scan_index = 1, 219 .scan_type = { 220 .sign = 's', 221 .realbits = 16, 222 .storagebits = 16, 223 .endianness = IIO_LE, 224 }, 225 .info_mask_separate = 226 BIT(IIO_CHAN_INFO_RAW) | 227 BIT(IIO_CHAN_INFO_SCALE), 228 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 229 }, 230 IIO_CHAN_SOFT_TIMESTAMP(2) 231 }; 232 233 static const struct st_sensor_settings st_press_sensors_settings[] = { 234 { 235 /* 236 * CUSTOM VALUES FOR LPS331AP SENSOR 237 * See LPS331AP datasheet: 238 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf 239 */ 240 .wai = 0xbb, 241 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 242 .sensors_supported = { 243 [0] = LPS331AP_PRESS_DEV_NAME, 244 }, 245 .ch = (struct iio_chan_spec *)st_press_1_channels, 246 .num_ch = ARRAY_SIZE(st_press_1_channels), 247 .odr = { 248 .addr = 0x20, 249 .mask = 0x70, 250 .odr_avl = { 251 { .hz = 1, .value = 0x01 }, 252 { .hz = 7, .value = 0x05 }, 253 { .hz = 13, .value = 0x06 }, 254 { .hz = 25, .value = 0x07 }, 255 }, 256 }, 257 .pw = { 258 .addr = 0x20, 259 .mask = 0x80, 260 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 261 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 262 }, 263 .fs = { 264 .addr = 0x23, 265 .mask = 0x30, 266 .fs_avl = { 267 /* 268 * Pressure and temperature sensitivity values 269 * as defined in table 3 of LPS331AP datasheet. 270 */ 271 [0] = { 272 .num = ST_PRESS_FS_AVL_1260MB, 273 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 274 .gain2 = ST_PRESS_LSB_PER_CELSIUS, 275 }, 276 }, 277 }, 278 .bdu = { 279 .addr = 0x20, 280 .mask = 0x04, 281 }, 282 .drdy_irq = { 283 .int1 = { 284 .addr = 0x22, 285 .mask = 0x04, 286 .addr_od = 0x22, 287 .mask_od = 0x40, 288 }, 289 .int2 = { 290 .addr = 0x22, 291 .mask = 0x20, 292 .addr_od = 0x22, 293 .mask_od = 0x40, 294 }, 295 .addr_ihl = 0x22, 296 .mask_ihl = 0x80, 297 .stat_drdy = { 298 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 299 .mask = 0x03, 300 }, 301 }, 302 .sim = { 303 .addr = 0x20, 304 .value = BIT(0), 305 }, 306 .multi_read_bit = true, 307 .bootime = 2, 308 }, 309 { 310 /* 311 * CUSTOM VALUES FOR LPS001WP SENSOR 312 */ 313 .wai = 0xba, 314 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 315 .sensors_supported = { 316 [0] = LPS001WP_PRESS_DEV_NAME, 317 }, 318 .ch = (struct iio_chan_spec *)st_press_lps001wp_channels, 319 .num_ch = ARRAY_SIZE(st_press_lps001wp_channels), 320 .odr = { 321 .addr = 0x20, 322 .mask = 0x30, 323 .odr_avl = { 324 { .hz = 1, .value = 0x01 }, 325 { .hz = 7, .value = 0x02 }, 326 { .hz = 13, .value = 0x03 }, 327 }, 328 }, 329 .pw = { 330 .addr = 0x20, 331 .mask = 0x40, 332 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 333 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 334 }, 335 .fs = { 336 .fs_avl = { 337 /* 338 * Pressure and temperature resolution values 339 * as defined in table 3 of LPS001WP datasheet. 340 */ 341 [0] = { 342 .num = ST_PRESS_FS_AVL_1100MB, 343 .gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN, 344 .gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS, 345 }, 346 }, 347 }, 348 .bdu = { 349 .addr = 0x20, 350 .mask = 0x04, 351 }, 352 .sim = { 353 .addr = 0x20, 354 .value = BIT(0), 355 }, 356 .multi_read_bit = true, 357 .bootime = 2, 358 }, 359 { 360 /* 361 * CUSTOM VALUES FOR LPS25H SENSOR 362 * See LPS25H datasheet: 363 * http://www2.st.com/resource/en/datasheet/lps25h.pdf 364 */ 365 .wai = 0xbd, 366 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 367 .sensors_supported = { 368 [0] = LPS25H_PRESS_DEV_NAME, 369 }, 370 .ch = (struct iio_chan_spec *)st_press_1_channels, 371 .num_ch = ARRAY_SIZE(st_press_1_channels), 372 .odr = { 373 .addr = 0x20, 374 .mask = 0x70, 375 .odr_avl = { 376 { .hz = 1, .value = 0x01 }, 377 { .hz = 7, .value = 0x02 }, 378 { .hz = 13, .value = 0x03 }, 379 { .hz = 25, .value = 0x04 }, 380 }, 381 }, 382 .pw = { 383 .addr = 0x20, 384 .mask = 0x80, 385 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 386 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 387 }, 388 .fs = { 389 .fs_avl = { 390 /* 391 * Pressure and temperature sensitivity values 392 * as defined in table 3 of LPS25H datasheet. 393 */ 394 [0] = { 395 .num = ST_PRESS_FS_AVL_1260MB, 396 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 397 .gain2 = ST_PRESS_LSB_PER_CELSIUS, 398 }, 399 }, 400 }, 401 .bdu = { 402 .addr = 0x20, 403 .mask = 0x04, 404 }, 405 .drdy_irq = { 406 .int1 = { 407 .addr = 0x23, 408 .mask = 0x01, 409 .addr_od = 0x22, 410 .mask_od = 0x40, 411 }, 412 .addr_ihl = 0x22, 413 .mask_ihl = 0x80, 414 .stat_drdy = { 415 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 416 .mask = 0x03, 417 }, 418 }, 419 .sim = { 420 .addr = 0x20, 421 .value = BIT(0), 422 }, 423 .multi_read_bit = true, 424 .bootime = 2, 425 }, 426 { 427 /* 428 * CUSTOM VALUES FOR LPS22HB SENSOR 429 * See LPS22HB datasheet: 430 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf 431 */ 432 .wai = 0xb1, 433 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 434 .sensors_supported = { 435 [0] = LPS22HB_PRESS_DEV_NAME, 436 [1] = LPS33HW_PRESS_DEV_NAME, 437 [2] = LPS35HW_PRESS_DEV_NAME, 438 }, 439 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels, 440 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels), 441 .odr = { 442 .addr = 0x10, 443 .mask = 0x70, 444 .odr_avl = { 445 { .hz = 1, .value = 0x01 }, 446 { .hz = 10, .value = 0x02 }, 447 { .hz = 25, .value = 0x03 }, 448 { .hz = 50, .value = 0x04 }, 449 { .hz = 75, .value = 0x05 }, 450 }, 451 }, 452 .pw = { 453 .addr = 0x10, 454 .mask = 0x70, 455 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 456 }, 457 .fs = { 458 .fs_avl = { 459 /* 460 * Pressure and temperature sensitivity values 461 * as defined in table 3 of LPS22HB datasheet. 462 */ 463 [0] = { 464 .num = ST_PRESS_FS_AVL_1260MB, 465 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 466 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS, 467 }, 468 }, 469 }, 470 .bdu = { 471 .addr = 0x10, 472 .mask = 0x02, 473 }, 474 .drdy_irq = { 475 .int1 = { 476 .addr = 0x12, 477 .mask = 0x04, 478 .addr_od = 0x12, 479 .mask_od = 0x40, 480 }, 481 .addr_ihl = 0x12, 482 .mask_ihl = 0x80, 483 .stat_drdy = { 484 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 485 .mask = 0x03, 486 }, 487 }, 488 .sim = { 489 .addr = 0x10, 490 .value = BIT(0), 491 }, 492 .multi_read_bit = false, 493 .bootime = 2, 494 }, 495 { 496 /* 497 * CUSTOM VALUES FOR LPS22HH SENSOR 498 * See LPS22HH datasheet: 499 * http://www2.st.com/resource/en/datasheet/lps22hh.pdf 500 */ 501 .wai = 0xb3, 502 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 503 .sensors_supported = { 504 [0] = LPS22HH_PRESS_DEV_NAME, 505 }, 506 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels, 507 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels), 508 .odr = { 509 .addr = 0x10, 510 .mask = 0x70, 511 .odr_avl = { 512 { .hz = 1, .value = 0x01 }, 513 { .hz = 10, .value = 0x02 }, 514 { .hz = 25, .value = 0x03 }, 515 { .hz = 50, .value = 0x04 }, 516 { .hz = 75, .value = 0x05 }, 517 { .hz = 100, .value = 0x06 }, 518 { .hz = 200, .value = 0x07 }, 519 }, 520 }, 521 .pw = { 522 .addr = 0x10, 523 .mask = 0x70, 524 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 525 }, 526 .fs = { 527 .fs_avl = { 528 /* 529 * Pressure and temperature sensitivity values 530 * as defined in table 3 of LPS22HH datasheet. 531 */ 532 [0] = { 533 .num = ST_PRESS_FS_AVL_1260MB, 534 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 535 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS, 536 }, 537 }, 538 }, 539 .bdu = { 540 .addr = 0x10, 541 .mask = BIT(1), 542 }, 543 .drdy_irq = { 544 .int1 = { 545 .addr = 0x12, 546 .mask = BIT(2), 547 .addr_od = 0x11, 548 .mask_od = BIT(5), 549 }, 550 .addr_ihl = 0x11, 551 .mask_ihl = BIT(6), 552 .stat_drdy = { 553 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 554 .mask = 0x03, 555 }, 556 }, 557 .sim = { 558 .addr = 0x10, 559 .value = BIT(0), 560 }, 561 .multi_read_bit = false, 562 .bootime = 2, 563 }, 564 }; 565 566 static int st_press_write_raw(struct iio_dev *indio_dev, 567 struct iio_chan_spec const *ch, 568 int val, 569 int val2, 570 long mask) 571 { 572 int err; 573 574 switch (mask) { 575 case IIO_CHAN_INFO_SAMP_FREQ: 576 if (val2) 577 return -EINVAL; 578 mutex_lock(&indio_dev->mlock); 579 err = st_sensors_set_odr(indio_dev, val); 580 mutex_unlock(&indio_dev->mlock); 581 return err; 582 default: 583 return -EINVAL; 584 } 585 } 586 587 static int st_press_read_raw(struct iio_dev *indio_dev, 588 struct iio_chan_spec const *ch, int *val, 589 int *val2, long mask) 590 { 591 int err; 592 struct st_sensor_data *press_data = iio_priv(indio_dev); 593 594 switch (mask) { 595 case IIO_CHAN_INFO_RAW: 596 err = st_sensors_read_info_raw(indio_dev, ch, val); 597 if (err < 0) 598 goto read_error; 599 600 return IIO_VAL_INT; 601 case IIO_CHAN_INFO_SCALE: 602 switch (ch->type) { 603 case IIO_PRESSURE: 604 *val = 0; 605 *val2 = press_data->current_fullscale->gain; 606 return IIO_VAL_INT_PLUS_NANO; 607 case IIO_TEMP: 608 *val = MCELSIUS_PER_CELSIUS; 609 *val2 = press_data->current_fullscale->gain2; 610 return IIO_VAL_FRACTIONAL; 611 default: 612 err = -EINVAL; 613 goto read_error; 614 } 615 616 case IIO_CHAN_INFO_OFFSET: 617 switch (ch->type) { 618 case IIO_TEMP: 619 *val = ST_PRESS_MILLI_CELSIUS_OFFSET * 620 press_data->current_fullscale->gain2; 621 *val2 = MCELSIUS_PER_CELSIUS; 622 break; 623 default: 624 err = -EINVAL; 625 goto read_error; 626 } 627 628 return IIO_VAL_FRACTIONAL; 629 case IIO_CHAN_INFO_SAMP_FREQ: 630 *val = press_data->odr; 631 return IIO_VAL_INT; 632 default: 633 return -EINVAL; 634 } 635 636 read_error: 637 return err; 638 } 639 640 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); 641 642 static struct attribute *st_press_attributes[] = { 643 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 644 NULL, 645 }; 646 647 static const struct attribute_group st_press_attribute_group = { 648 .attrs = st_press_attributes, 649 }; 650 651 static const struct iio_info press_info = { 652 .attrs = &st_press_attribute_group, 653 .read_raw = &st_press_read_raw, 654 .write_raw = &st_press_write_raw, 655 .debugfs_reg_access = &st_sensors_debugfs_reg_access, 656 }; 657 658 #ifdef CONFIG_IIO_TRIGGER 659 static const struct iio_trigger_ops st_press_trigger_ops = { 660 .set_trigger_state = ST_PRESS_TRIGGER_SET_STATE, 661 .validate_device = st_sensors_validate_device, 662 }; 663 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops) 664 #else 665 #define ST_PRESS_TRIGGER_OPS NULL 666 #endif 667 668 int st_press_common_probe(struct iio_dev *indio_dev) 669 { 670 struct st_sensor_data *press_data = iio_priv(indio_dev); 671 struct st_sensors_platform_data *pdata = 672 (struct st_sensors_platform_data *)press_data->dev->platform_data; 673 int irq = press_data->get_irq_data_ready(indio_dev); 674 int err; 675 676 indio_dev->modes = INDIO_DIRECT_MODE; 677 indio_dev->info = &press_info; 678 mutex_init(&press_data->tb.buf_lock); 679 680 err = st_sensors_power_enable(indio_dev); 681 if (err) 682 return err; 683 684 err = st_sensors_check_device_support(indio_dev, 685 ARRAY_SIZE(st_press_sensors_settings), 686 st_press_sensors_settings); 687 if (err < 0) 688 goto st_press_power_off; 689 690 /* 691 * Skip timestamping channel while declaring available channels to 692 * common st_sensor layer. Look at st_sensors_get_buffer_element() to 693 * see how timestamps are explicitly pushed as last samples block 694 * element. 695 */ 696 press_data->num_data_channels = press_data->sensor_settings->num_ch - 1; 697 press_data->multiread_bit = press_data->sensor_settings->multi_read_bit; 698 indio_dev->channels = press_data->sensor_settings->ch; 699 indio_dev->num_channels = press_data->sensor_settings->num_ch; 700 701 press_data->current_fullscale = 702 (struct st_sensor_fullscale_avl *) 703 &press_data->sensor_settings->fs.fs_avl[0]; 704 705 press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz; 706 707 /* Some devices don't support a data ready pin. */ 708 if (!pdata && (press_data->sensor_settings->drdy_irq.int1.addr || 709 press_data->sensor_settings->drdy_irq.int2.addr)) 710 pdata = (struct st_sensors_platform_data *)&default_press_pdata; 711 712 err = st_sensors_init_sensor(indio_dev, pdata); 713 if (err < 0) 714 goto st_press_power_off; 715 716 err = st_press_allocate_ring(indio_dev); 717 if (err < 0) 718 goto st_press_power_off; 719 720 if (irq > 0) { 721 err = st_sensors_allocate_trigger(indio_dev, 722 ST_PRESS_TRIGGER_OPS); 723 if (err < 0) 724 goto st_press_probe_trigger_error; 725 } 726 727 err = iio_device_register(indio_dev); 728 if (err) 729 goto st_press_device_register_error; 730 731 dev_info(&indio_dev->dev, "registered pressure sensor %s\n", 732 indio_dev->name); 733 734 return err; 735 736 st_press_device_register_error: 737 if (irq > 0) 738 st_sensors_deallocate_trigger(indio_dev); 739 st_press_probe_trigger_error: 740 st_press_deallocate_ring(indio_dev); 741 st_press_power_off: 742 st_sensors_power_disable(indio_dev); 743 744 return err; 745 } 746 EXPORT_SYMBOL(st_press_common_probe); 747 748 void st_press_common_remove(struct iio_dev *indio_dev) 749 { 750 struct st_sensor_data *press_data = iio_priv(indio_dev); 751 752 st_sensors_power_disable(indio_dev); 753 754 iio_device_unregister(indio_dev); 755 if (press_data->get_irq_data_ready(indio_dev) > 0) 756 st_sensors_deallocate_trigger(indio_dev); 757 758 st_press_deallocate_ring(indio_dev); 759 } 760 EXPORT_SYMBOL(st_press_common_remove); 761 762 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>"); 763 MODULE_DESCRIPTION("STMicroelectronics pressures driver"); 764 MODULE_LICENSE("GPL v2"); 765