1 /*
2  * STMicroelectronics pressures driver
3  *
4  * Copyright 2013 STMicroelectronics Inc.
5  *
6  * Denis Ciocca <denis.ciocca@st.com>
7  *
8  * Licensed under the GPL-2.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/mutex.h>
17 #include <linux/interrupt.h>
18 #include <linux/i2c.h>
19 #include <linux/gpio.h>
20 #include <linux/irq.h>
21 #include <linux/delay.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/buffer.h>
26 #include <asm/unaligned.h>
27 
28 #include <linux/iio/common/st_sensors.h>
29 #include "st_pressure.h"
30 
31 /*
32  * About determining pressure scaling factors
33  * ------------------------------------------
34  *
35  * Datasheets specify typical pressure sensitivity so that pressure is computed
36  * according to the following equation :
37  *     pressure[mBar] = raw / sensitivity
38  * where :
39  *     raw          the 24 bits long raw sampled pressure
40  *     sensitivity  a scaling factor specified by the datasheet in LSB/mBar
41  *
42  * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
43  * computed according to :
44  *     pressure[kPascal] = pressure[mBar] / 10
45  *                       = raw / (sensitivity * 10)                          (1)
46  *
47  * Finally, st_press_read_raw() returns pressure scaling factor as an
48  * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
49  * Therefore, from (1), "gain" becomes :
50  *     gain = 10^9 / (sensitivity * 10)
51  *          = 10^8 / sensitivity
52  *
53  * About determining temperature scaling factors and offsets
54  * ---------------------------------------------------------
55  *
56  * Datasheets specify typical temperature sensitivity and offset so that
57  * temperature is computed according to the following equation :
58  *     temp[Celsius] = offset[Celsius] + (raw / sensitivity)
59  * where :
60  *     raw          the 16 bits long raw sampled temperature
61  *     offset       a constant specified by the datasheet in degree Celsius
62  *                  (sometimes zero)
63  *     sensitivity  a scaling factor specified by the datasheet in LSB/Celsius
64  *
65  * IIO ABI expects temperature to be expressed as milli degree Celsius such as
66  * user space should compute temperature according to :
67  *     temp[mCelsius] = temp[Celsius] * 10^3
68  *                    = (offset[Celsius] + (raw / sensitivity)) * 10^3
69  *                    = ((offset[Celsius] * sensitivity) + raw) *
70  *                      (10^3 / sensitivity)                                 (2)
71  *
72  * IIO ABI expects user space to apply offset and scaling factors to raw samples
73  * according to :
74  *     temp[mCelsius] = (OFFSET + raw) * SCALE
75  * where :
76  *     OFFSET an arbitrary constant exposed by device
77  *     SCALE  an arbitrary scaling factor exposed by device
78  *
79  * Matching OFFSET and SCALE with members of (2) gives :
80  *     OFFSET = offset[Celsius] * sensitivity                                (3)
81  *     SCALE  = 10^3 / sensitivity                                           (4)
82  *
83  * st_press_read_raw() returns temperature scaling factor as an
84  * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
85  * Therefore, from (3), "gain2" becomes :
86  *     gain2 = sensitivity
87  *
88  * When declared within channel, i.e. for a non zero specified offset,
89  * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
90  *     numerator = OFFSET * 10^3
91  *     denominator = 10^3
92  * giving from (4):
93  *     numerator = offset[Celsius] * 10^3 * sensitivity
94  *               = offset[mCelsius] * gain2
95  */
96 
97 #define MCELSIUS_PER_CELSIUS			1000
98 
99 /* Default pressure sensitivity */
100 #define ST_PRESS_LSB_PER_MBAR			4096UL
101 #define ST_PRESS_KPASCAL_NANO_SCALE		(100000000UL / \
102 						 ST_PRESS_LSB_PER_MBAR)
103 
104 /* Default temperature sensitivity */
105 #define ST_PRESS_LSB_PER_CELSIUS		480UL
106 #define ST_PRESS_MILLI_CELSIUS_OFFSET		42500UL
107 
108 /* FULLSCALE */
109 #define ST_PRESS_FS_AVL_1100MB			1100
110 #define ST_PRESS_FS_AVL_1260MB			1260
111 
112 #define ST_PRESS_1_OUT_XL_ADDR			0x28
113 #define ST_TEMP_1_OUT_L_ADDR			0x2b
114 
115 /* LPS001WP pressure resolution */
116 #define ST_PRESS_LPS001WP_LSB_PER_MBAR		16UL
117 /* LPS001WP temperature resolution */
118 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS	64UL
119 /* LPS001WP pressure gain */
120 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
121 	(100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
122 /* LPS001WP pressure and temp L addresses */
123 #define ST_PRESS_LPS001WP_OUT_L_ADDR		0x28
124 #define ST_TEMP_LPS001WP_OUT_L_ADDR		0x2a
125 
126 /* LPS25H pressure and temp L addresses */
127 #define ST_PRESS_LPS25H_OUT_XL_ADDR		0x28
128 #define ST_TEMP_LPS25H_OUT_L_ADDR		0x2b
129 
130 /* LPS22HB temperature sensitivity */
131 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS	100UL
132 
133 static const struct iio_chan_spec st_press_1_channels[] = {
134 	{
135 		.type = IIO_PRESSURE,
136 		.address = ST_PRESS_1_OUT_XL_ADDR,
137 		.scan_index = 0,
138 		.scan_type = {
139 			.sign = 's',
140 			.realbits = 24,
141 			.storagebits = 32,
142 			.endianness = IIO_LE,
143 		},
144 		.info_mask_separate =
145 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
146 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
147 	},
148 	{
149 		.type = IIO_TEMP,
150 		.address = ST_TEMP_1_OUT_L_ADDR,
151 		.scan_index = 1,
152 		.scan_type = {
153 			.sign = 's',
154 			.realbits = 16,
155 			.storagebits = 16,
156 			.endianness = IIO_LE,
157 		},
158 		.info_mask_separate =
159 			BIT(IIO_CHAN_INFO_RAW) |
160 			BIT(IIO_CHAN_INFO_SCALE) |
161 			BIT(IIO_CHAN_INFO_OFFSET),
162 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
163 	},
164 	IIO_CHAN_SOFT_TIMESTAMP(2)
165 };
166 
167 static const struct iio_chan_spec st_press_lps001wp_channels[] = {
168 	{
169 		.type = IIO_PRESSURE,
170 		.address = ST_PRESS_LPS001WP_OUT_L_ADDR,
171 		.scan_index = 0,
172 		.scan_type = {
173 			.sign = 's',
174 			.realbits = 16,
175 			.storagebits = 16,
176 			.endianness = IIO_LE,
177 		},
178 		.info_mask_separate =
179 			BIT(IIO_CHAN_INFO_RAW) |
180 			BIT(IIO_CHAN_INFO_SCALE),
181 	},
182 	{
183 		.type = IIO_TEMP,
184 		.address = ST_TEMP_LPS001WP_OUT_L_ADDR,
185 		.scan_index = 1,
186 		.scan_type = {
187 			.sign = 's',
188 			.realbits = 16,
189 			.storagebits = 16,
190 			.endianness = IIO_LE,
191 		},
192 		.info_mask_separate =
193 			BIT(IIO_CHAN_INFO_RAW) |
194 			BIT(IIO_CHAN_INFO_SCALE),
195 	},
196 	IIO_CHAN_SOFT_TIMESTAMP(2)
197 };
198 
199 static const struct iio_chan_spec st_press_lps22hb_channels[] = {
200 	{
201 		.type = IIO_PRESSURE,
202 		.address = ST_PRESS_1_OUT_XL_ADDR,
203 		.scan_index = 0,
204 		.scan_type = {
205 			.sign = 's',
206 			.realbits = 24,
207 			.storagebits = 32,
208 			.endianness = IIO_LE,
209 		},
210 		.info_mask_separate =
211 			BIT(IIO_CHAN_INFO_RAW) |
212 			BIT(IIO_CHAN_INFO_SCALE),
213 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
214 	},
215 	{
216 		.type = IIO_TEMP,
217 		.address = ST_TEMP_1_OUT_L_ADDR,
218 		.scan_index = 1,
219 		.scan_type = {
220 			.sign = 's',
221 			.realbits = 16,
222 			.storagebits = 16,
223 			.endianness = IIO_LE,
224 		},
225 		.info_mask_separate =
226 			BIT(IIO_CHAN_INFO_RAW) |
227 			BIT(IIO_CHAN_INFO_SCALE),
228 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
229 	},
230 	IIO_CHAN_SOFT_TIMESTAMP(2)
231 };
232 
233 static const struct st_sensor_settings st_press_sensors_settings[] = {
234 	{
235 		/*
236 		 * CUSTOM VALUES FOR LPS331AP SENSOR
237 		 * See LPS331AP datasheet:
238 		 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf
239 		 */
240 		.wai = 0xbb,
241 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
242 		.sensors_supported = {
243 			[0] = LPS331AP_PRESS_DEV_NAME,
244 		},
245 		.ch = (struct iio_chan_spec *)st_press_1_channels,
246 		.num_ch = ARRAY_SIZE(st_press_1_channels),
247 		.odr = {
248 			.addr = 0x20,
249 			.mask = 0x70,
250 			.odr_avl = {
251 				{ .hz = 1, .value = 0x01 },
252 				{ .hz = 7, .value = 0x05 },
253 				{ .hz = 13, .value = 0x06 },
254 				{ .hz = 25, .value = 0x07 },
255 			},
256 		},
257 		.pw = {
258 			.addr = 0x20,
259 			.mask = 0x80,
260 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
261 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
262 		},
263 		.fs = {
264 			.addr = 0x23,
265 			.mask = 0x30,
266 			.fs_avl = {
267 				/*
268 				 * Pressure and temperature sensitivity values
269 				 * as defined in table 3 of LPS331AP datasheet.
270 				 */
271 				[0] = {
272 					.num = ST_PRESS_FS_AVL_1260MB,
273 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
274 					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
275 				},
276 			},
277 		},
278 		.bdu = {
279 			.addr = 0x20,
280 			.mask = 0x04,
281 		},
282 		.drdy_irq = {
283 			.addr = 0x22,
284 			.mask_int1 = 0x04,
285 			.mask_int2 = 0x20,
286 			.addr_ihl = 0x22,
287 			.mask_ihl = 0x80,
288 			.addr_od = 0x22,
289 			.mask_od = 0x40,
290 			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
291 		},
292 		.multi_read_bit = true,
293 		.bootime = 2,
294 	},
295 	{
296 		/*
297 		 * CUSTOM VALUES FOR LPS001WP SENSOR
298 		 */
299 		.wai = 0xba,
300 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
301 		.sensors_supported = {
302 			[0] = LPS001WP_PRESS_DEV_NAME,
303 		},
304 		.ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
305 		.num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
306 		.odr = {
307 			.addr = 0x20,
308 			.mask = 0x30,
309 			.odr_avl = {
310 				{ .hz = 1, .value = 0x01 },
311 				{ .hz = 7, .value = 0x02 },
312 				{ .hz = 13, .value = 0x03 },
313 			},
314 		},
315 		.pw = {
316 			.addr = 0x20,
317 			.mask = 0x40,
318 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
319 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
320 		},
321 		.fs = {
322 			.fs_avl = {
323 				/*
324 				 * Pressure and temperature resolution values
325 				 * as defined in table 3 of LPS001WP datasheet.
326 				 */
327 				[0] = {
328 					.num = ST_PRESS_FS_AVL_1100MB,
329 					.gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
330 					.gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
331 				},
332 			},
333 		},
334 		.bdu = {
335 			.addr = 0x20,
336 			.mask = 0x04,
337 		},
338 		.drdy_irq = {
339 			.addr = 0,
340 		},
341 		.multi_read_bit = true,
342 		.bootime = 2,
343 	},
344 	{
345 		/*
346 		 * CUSTOM VALUES FOR LPS25H SENSOR
347 		 * See LPS25H datasheet:
348 		 * http://www2.st.com/resource/en/datasheet/lps25h.pdf
349 		 */
350 		.wai = 0xbd,
351 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
352 		.sensors_supported = {
353 			[0] = LPS25H_PRESS_DEV_NAME,
354 		},
355 		.ch = (struct iio_chan_spec *)st_press_1_channels,
356 		.num_ch = ARRAY_SIZE(st_press_1_channels),
357 		.odr = {
358 			.addr = 0x20,
359 			.mask = 0x70,
360 			.odr_avl = {
361 				{ .hz = 1, .value = 0x01 },
362 				{ .hz = 7, .value = 0x02 },
363 				{ .hz = 13, .value = 0x03 },
364 				{ .hz = 25, .value = 0x04 },
365 			},
366 		},
367 		.pw = {
368 			.addr = 0x20,
369 			.mask = 0x80,
370 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
371 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
372 		},
373 		.fs = {
374 			.fs_avl = {
375 				/*
376 				 * Pressure and temperature sensitivity values
377 				 * as defined in table 3 of LPS25H datasheet.
378 				 */
379 				[0] = {
380 					.num = ST_PRESS_FS_AVL_1260MB,
381 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
382 					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
383 				},
384 			},
385 		},
386 		.bdu = {
387 			.addr = 0x20,
388 			.mask = 0x04,
389 		},
390 		.drdy_irq = {
391 			.addr = 0x23,
392 			.mask_int1 = 0x01,
393 			.mask_int2 = 0x00,
394 			.addr_ihl = 0x22,
395 			.mask_ihl = 0x80,
396 			.addr_od = 0x22,
397 			.mask_od = 0x40,
398 			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
399 		},
400 		.multi_read_bit = true,
401 		.bootime = 2,
402 	},
403 	{
404 		/*
405 		 * CUSTOM VALUES FOR LPS22HB SENSOR
406 		 * See LPS22HB datasheet:
407 		 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf
408 		 */
409 		.wai = 0xb1,
410 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
411 		.sensors_supported = {
412 			[0] = LPS22HB_PRESS_DEV_NAME,
413 		},
414 		.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
415 		.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
416 		.odr = {
417 			.addr = 0x10,
418 			.mask = 0x70,
419 			.odr_avl = {
420 				{ .hz = 1, .value = 0x01 },
421 				{ .hz = 10, .value = 0x02 },
422 				{ .hz = 25, .value = 0x03 },
423 				{ .hz = 50, .value = 0x04 },
424 				{ .hz = 75, .value = 0x05 },
425 			},
426 		},
427 		.pw = {
428 			.addr = 0x10,
429 			.mask = 0x70,
430 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
431 		},
432 		.fs = {
433 			.fs_avl = {
434 				/*
435 				 * Pressure and temperature sensitivity values
436 				 * as defined in table 3 of LPS22HB datasheet.
437 				 */
438 				[0] = {
439 					.num = ST_PRESS_FS_AVL_1260MB,
440 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
441 					.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
442 				},
443 			},
444 		},
445 		.bdu = {
446 			.addr = 0x10,
447 			.mask = 0x02,
448 		},
449 		.drdy_irq = {
450 			.addr = 0x12,
451 			.mask_int1 = 0x04,
452 			.mask_int2 = 0x00,
453 			.addr_ihl = 0x12,
454 			.mask_ihl = 0x80,
455 			.addr_od = 0x12,
456 			.mask_od = 0x40,
457 			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
458 		},
459 		.multi_read_bit = false,
460 		.bootime = 2,
461 	},
462 };
463 
464 static int st_press_write_raw(struct iio_dev *indio_dev,
465 			      struct iio_chan_spec const *ch,
466 			      int val,
467 			      int val2,
468 			      long mask)
469 {
470 	int err;
471 
472 	switch (mask) {
473 	case IIO_CHAN_INFO_SAMP_FREQ:
474 		if (val2)
475 			return -EINVAL;
476 		mutex_lock(&indio_dev->mlock);
477 		err = st_sensors_set_odr(indio_dev, val);
478 		mutex_unlock(&indio_dev->mlock);
479 		return err;
480 	default:
481 		return -EINVAL;
482 	}
483 }
484 
485 static int st_press_read_raw(struct iio_dev *indio_dev,
486 			struct iio_chan_spec const *ch, int *val,
487 							int *val2, long mask)
488 {
489 	int err;
490 	struct st_sensor_data *press_data = iio_priv(indio_dev);
491 
492 	switch (mask) {
493 	case IIO_CHAN_INFO_RAW:
494 		err = st_sensors_read_info_raw(indio_dev, ch, val);
495 		if (err < 0)
496 			goto read_error;
497 
498 		return IIO_VAL_INT;
499 	case IIO_CHAN_INFO_SCALE:
500 		switch (ch->type) {
501 		case IIO_PRESSURE:
502 			*val = 0;
503 			*val2 = press_data->current_fullscale->gain;
504 			return IIO_VAL_INT_PLUS_NANO;
505 		case IIO_TEMP:
506 			*val = MCELSIUS_PER_CELSIUS;
507 			*val2 = press_data->current_fullscale->gain2;
508 			return IIO_VAL_FRACTIONAL;
509 		default:
510 			err = -EINVAL;
511 			goto read_error;
512 		}
513 
514 	case IIO_CHAN_INFO_OFFSET:
515 		switch (ch->type) {
516 		case IIO_TEMP:
517 			*val = ST_PRESS_MILLI_CELSIUS_OFFSET *
518 			       press_data->current_fullscale->gain2;
519 			*val2 = MCELSIUS_PER_CELSIUS;
520 			break;
521 		default:
522 			err = -EINVAL;
523 			goto read_error;
524 		}
525 
526 		return IIO_VAL_FRACTIONAL;
527 	case IIO_CHAN_INFO_SAMP_FREQ:
528 		*val = press_data->odr;
529 		return IIO_VAL_INT;
530 	default:
531 		return -EINVAL;
532 	}
533 
534 read_error:
535 	return err;
536 }
537 
538 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
539 
540 static struct attribute *st_press_attributes[] = {
541 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
542 	NULL,
543 };
544 
545 static const struct attribute_group st_press_attribute_group = {
546 	.attrs = st_press_attributes,
547 };
548 
549 static const struct iio_info press_info = {
550 	.driver_module = THIS_MODULE,
551 	.attrs = &st_press_attribute_group,
552 	.read_raw = &st_press_read_raw,
553 	.write_raw = &st_press_write_raw,
554 	.debugfs_reg_access = &st_sensors_debugfs_reg_access,
555 };
556 
557 #ifdef CONFIG_IIO_TRIGGER
558 static const struct iio_trigger_ops st_press_trigger_ops = {
559 	.owner = THIS_MODULE,
560 	.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
561 	.validate_device = st_sensors_validate_device,
562 };
563 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
564 #else
565 #define ST_PRESS_TRIGGER_OPS NULL
566 #endif
567 
568 int st_press_common_probe(struct iio_dev *indio_dev)
569 {
570 	struct st_sensor_data *press_data = iio_priv(indio_dev);
571 	struct st_sensors_platform_data *pdata =
572 		(struct st_sensors_platform_data *)press_data->dev->platform_data;
573 	int irq = press_data->get_irq_data_ready(indio_dev);
574 	int err;
575 
576 	indio_dev->modes = INDIO_DIRECT_MODE;
577 	indio_dev->info = &press_info;
578 	mutex_init(&press_data->tb.buf_lock);
579 
580 	err = st_sensors_power_enable(indio_dev);
581 	if (err)
582 		return err;
583 
584 	err = st_sensors_check_device_support(indio_dev,
585 					ARRAY_SIZE(st_press_sensors_settings),
586 					st_press_sensors_settings);
587 	if (err < 0)
588 		goto st_press_power_off;
589 
590 	/*
591 	 * Skip timestamping channel while declaring available channels to
592 	 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
593 	 * see how timestamps are explicitly pushed as last samples block
594 	 * element.
595 	 */
596 	press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
597 	press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
598 	indio_dev->channels = press_data->sensor_settings->ch;
599 	indio_dev->num_channels = press_data->sensor_settings->num_ch;
600 
601 	press_data->current_fullscale =
602 		(struct st_sensor_fullscale_avl *)
603 			&press_data->sensor_settings->fs.fs_avl[0];
604 
605 	press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
606 
607 	/* Some devices don't support a data ready pin. */
608 	if (!pdata && press_data->sensor_settings->drdy_irq.addr)
609 		pdata =	(struct st_sensors_platform_data *)&default_press_pdata;
610 
611 	err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
612 	if (err < 0)
613 		goto st_press_power_off;
614 
615 	err = st_press_allocate_ring(indio_dev);
616 	if (err < 0)
617 		goto st_press_power_off;
618 
619 	if (irq > 0) {
620 		err = st_sensors_allocate_trigger(indio_dev,
621 						  ST_PRESS_TRIGGER_OPS);
622 		if (err < 0)
623 			goto st_press_probe_trigger_error;
624 	}
625 
626 	err = iio_device_register(indio_dev);
627 	if (err)
628 		goto st_press_device_register_error;
629 
630 	dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
631 		 indio_dev->name);
632 
633 	return err;
634 
635 st_press_device_register_error:
636 	if (irq > 0)
637 		st_sensors_deallocate_trigger(indio_dev);
638 st_press_probe_trigger_error:
639 	st_press_deallocate_ring(indio_dev);
640 st_press_power_off:
641 	st_sensors_power_disable(indio_dev);
642 
643 	return err;
644 }
645 EXPORT_SYMBOL(st_press_common_probe);
646 
647 void st_press_common_remove(struct iio_dev *indio_dev)
648 {
649 	struct st_sensor_data *press_data = iio_priv(indio_dev);
650 
651 	st_sensors_power_disable(indio_dev);
652 
653 	iio_device_unregister(indio_dev);
654 	if (press_data->get_irq_data_ready(indio_dev) > 0)
655 		st_sensors_deallocate_trigger(indio_dev);
656 
657 	st_press_deallocate_ring(indio_dev);
658 }
659 EXPORT_SYMBOL(st_press_common_remove);
660 
661 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
662 MODULE_DESCRIPTION("STMicroelectronics pressures driver");
663 MODULE_LICENSE("GPL v2");
664