1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * STMicroelectronics pressures driver 4 * 5 * Copyright 2013 STMicroelectronics Inc. 6 * 7 * Denis Ciocca <denis.ciocca@st.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/mutex.h> 13 #include <linux/sysfs.h> 14 #include <linux/iio/iio.h> 15 #include <linux/iio/sysfs.h> 16 #include <linux/iio/trigger.h> 17 #include <asm/unaligned.h> 18 19 #include <linux/iio/common/st_sensors.h> 20 #include "st_pressure.h" 21 22 /* 23 * About determining pressure scaling factors 24 * ------------------------------------------ 25 * 26 * Datasheets specify typical pressure sensitivity so that pressure is computed 27 * according to the following equation : 28 * pressure[mBar] = raw / sensitivity 29 * where : 30 * raw the 24 bits long raw sampled pressure 31 * sensitivity a scaling factor specified by the datasheet in LSB/mBar 32 * 33 * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be 34 * computed according to : 35 * pressure[kPascal] = pressure[mBar] / 10 36 * = raw / (sensitivity * 10) (1) 37 * 38 * Finally, st_press_read_raw() returns pressure scaling factor as an 39 * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part. 40 * Therefore, from (1), "gain" becomes : 41 * gain = 10^9 / (sensitivity * 10) 42 * = 10^8 / sensitivity 43 * 44 * About determining temperature scaling factors and offsets 45 * --------------------------------------------------------- 46 * 47 * Datasheets specify typical temperature sensitivity and offset so that 48 * temperature is computed according to the following equation : 49 * temp[Celsius] = offset[Celsius] + (raw / sensitivity) 50 * where : 51 * raw the 16 bits long raw sampled temperature 52 * offset a constant specified by the datasheet in degree Celsius 53 * (sometimes zero) 54 * sensitivity a scaling factor specified by the datasheet in LSB/Celsius 55 * 56 * IIO ABI expects temperature to be expressed as milli degree Celsius such as 57 * user space should compute temperature according to : 58 * temp[mCelsius] = temp[Celsius] * 10^3 59 * = (offset[Celsius] + (raw / sensitivity)) * 10^3 60 * = ((offset[Celsius] * sensitivity) + raw) * 61 * (10^3 / sensitivity) (2) 62 * 63 * IIO ABI expects user space to apply offset and scaling factors to raw samples 64 * according to : 65 * temp[mCelsius] = (OFFSET + raw) * SCALE 66 * where : 67 * OFFSET an arbitrary constant exposed by device 68 * SCALE an arbitrary scaling factor exposed by device 69 * 70 * Matching OFFSET and SCALE with members of (2) gives : 71 * OFFSET = offset[Celsius] * sensitivity (3) 72 * SCALE = 10^3 / sensitivity (4) 73 * 74 * st_press_read_raw() returns temperature scaling factor as an 75 * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator. 76 * Therefore, from (3), "gain2" becomes : 77 * gain2 = sensitivity 78 * 79 * When declared within channel, i.e. for a non zero specified offset, 80 * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as : 81 * numerator = OFFSET * 10^3 82 * denominator = 10^3 83 * giving from (4): 84 * numerator = offset[Celsius] * 10^3 * sensitivity 85 * = offset[mCelsius] * gain2 86 */ 87 88 #define MCELSIUS_PER_CELSIUS 1000 89 90 /* Default pressure sensitivity */ 91 #define ST_PRESS_LSB_PER_MBAR 4096UL 92 #define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \ 93 ST_PRESS_LSB_PER_MBAR) 94 95 /* Default temperature sensitivity */ 96 #define ST_PRESS_LSB_PER_CELSIUS 480UL 97 #define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL 98 99 /* FULLSCALE */ 100 #define ST_PRESS_FS_AVL_1100MB 1100 101 #define ST_PRESS_FS_AVL_1260MB 1260 102 103 #define ST_PRESS_1_OUT_XL_ADDR 0x28 104 #define ST_TEMP_1_OUT_L_ADDR 0x2b 105 106 /* LPS001WP pressure resolution */ 107 #define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL 108 /* LPS001WP temperature resolution */ 109 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL 110 /* LPS001WP pressure gain */ 111 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \ 112 (100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR) 113 /* LPS001WP pressure and temp L addresses */ 114 #define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28 115 #define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a 116 117 /* LPS25H pressure and temp L addresses */ 118 #define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28 119 #define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b 120 121 /* LPS22HB temperature sensitivity */ 122 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL 123 124 static const struct iio_chan_spec st_press_1_channels[] = { 125 { 126 .type = IIO_PRESSURE, 127 .address = ST_PRESS_1_OUT_XL_ADDR, 128 .scan_index = 0, 129 .scan_type = { 130 .sign = 's', 131 .realbits = 24, 132 .storagebits = 32, 133 .endianness = IIO_LE, 134 }, 135 .info_mask_separate = 136 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 137 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 138 }, 139 { 140 .type = IIO_TEMP, 141 .address = ST_TEMP_1_OUT_L_ADDR, 142 .scan_index = 1, 143 .scan_type = { 144 .sign = 's', 145 .realbits = 16, 146 .storagebits = 16, 147 .endianness = IIO_LE, 148 }, 149 .info_mask_separate = 150 BIT(IIO_CHAN_INFO_RAW) | 151 BIT(IIO_CHAN_INFO_SCALE) | 152 BIT(IIO_CHAN_INFO_OFFSET), 153 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 154 }, 155 IIO_CHAN_SOFT_TIMESTAMP(2) 156 }; 157 158 static const struct iio_chan_spec st_press_lps001wp_channels[] = { 159 { 160 .type = IIO_PRESSURE, 161 .address = ST_PRESS_LPS001WP_OUT_L_ADDR, 162 .scan_index = 0, 163 .scan_type = { 164 .sign = 's', 165 .realbits = 16, 166 .storagebits = 16, 167 .endianness = IIO_LE, 168 }, 169 .info_mask_separate = 170 BIT(IIO_CHAN_INFO_RAW) | 171 BIT(IIO_CHAN_INFO_SCALE), 172 }, 173 { 174 .type = IIO_TEMP, 175 .address = ST_TEMP_LPS001WP_OUT_L_ADDR, 176 .scan_index = 1, 177 .scan_type = { 178 .sign = 's', 179 .realbits = 16, 180 .storagebits = 16, 181 .endianness = IIO_LE, 182 }, 183 .info_mask_separate = 184 BIT(IIO_CHAN_INFO_RAW) | 185 BIT(IIO_CHAN_INFO_SCALE), 186 }, 187 IIO_CHAN_SOFT_TIMESTAMP(2) 188 }; 189 190 static const struct iio_chan_spec st_press_lps22hb_channels[] = { 191 { 192 .type = IIO_PRESSURE, 193 .address = ST_PRESS_1_OUT_XL_ADDR, 194 .scan_index = 0, 195 .scan_type = { 196 .sign = 's', 197 .realbits = 24, 198 .storagebits = 32, 199 .endianness = IIO_LE, 200 }, 201 .info_mask_separate = 202 BIT(IIO_CHAN_INFO_RAW) | 203 BIT(IIO_CHAN_INFO_SCALE), 204 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 205 }, 206 { 207 .type = IIO_TEMP, 208 .address = ST_TEMP_1_OUT_L_ADDR, 209 .scan_index = 1, 210 .scan_type = { 211 .sign = 's', 212 .realbits = 16, 213 .storagebits = 16, 214 .endianness = IIO_LE, 215 }, 216 .info_mask_separate = 217 BIT(IIO_CHAN_INFO_RAW) | 218 BIT(IIO_CHAN_INFO_SCALE), 219 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 220 }, 221 IIO_CHAN_SOFT_TIMESTAMP(2) 222 }; 223 224 static const struct st_sensor_settings st_press_sensors_settings[] = { 225 { 226 /* 227 * CUSTOM VALUES FOR LPS331AP SENSOR 228 * See LPS331AP datasheet: 229 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf 230 */ 231 .wai = 0xbb, 232 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 233 .sensors_supported = { 234 [0] = LPS331AP_PRESS_DEV_NAME, 235 }, 236 .ch = (struct iio_chan_spec *)st_press_1_channels, 237 .num_ch = ARRAY_SIZE(st_press_1_channels), 238 .odr = { 239 .addr = 0x20, 240 .mask = 0x70, 241 .odr_avl = { 242 { .hz = 1, .value = 0x01 }, 243 { .hz = 7, .value = 0x05 }, 244 { .hz = 13, .value = 0x06 }, 245 { .hz = 25, .value = 0x07 }, 246 }, 247 }, 248 .pw = { 249 .addr = 0x20, 250 .mask = 0x80, 251 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 252 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 253 }, 254 .fs = { 255 .addr = 0x23, 256 .mask = 0x30, 257 .fs_avl = { 258 /* 259 * Pressure and temperature sensitivity values 260 * as defined in table 3 of LPS331AP datasheet. 261 */ 262 [0] = { 263 .num = ST_PRESS_FS_AVL_1260MB, 264 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 265 .gain2 = ST_PRESS_LSB_PER_CELSIUS, 266 }, 267 }, 268 }, 269 .bdu = { 270 .addr = 0x20, 271 .mask = 0x04, 272 }, 273 .drdy_irq = { 274 .int1 = { 275 .addr = 0x22, 276 .mask = 0x04, 277 .addr_od = 0x22, 278 .mask_od = 0x40, 279 }, 280 .int2 = { 281 .addr = 0x22, 282 .mask = 0x20, 283 .addr_od = 0x22, 284 .mask_od = 0x40, 285 }, 286 .addr_ihl = 0x22, 287 .mask_ihl = 0x80, 288 .stat_drdy = { 289 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 290 .mask = 0x03, 291 }, 292 }, 293 .sim = { 294 .addr = 0x20, 295 .value = BIT(0), 296 }, 297 .multi_read_bit = true, 298 .bootime = 2, 299 }, 300 { 301 /* 302 * CUSTOM VALUES FOR LPS001WP SENSOR 303 */ 304 .wai = 0xba, 305 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 306 .sensors_supported = { 307 [0] = LPS001WP_PRESS_DEV_NAME, 308 }, 309 .ch = (struct iio_chan_spec *)st_press_lps001wp_channels, 310 .num_ch = ARRAY_SIZE(st_press_lps001wp_channels), 311 .odr = { 312 .addr = 0x20, 313 .mask = 0x30, 314 .odr_avl = { 315 { .hz = 1, .value = 0x01 }, 316 { .hz = 7, .value = 0x02 }, 317 { .hz = 13, .value = 0x03 }, 318 }, 319 }, 320 .pw = { 321 .addr = 0x20, 322 .mask = 0x40, 323 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 324 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 325 }, 326 .fs = { 327 .fs_avl = { 328 /* 329 * Pressure and temperature resolution values 330 * as defined in table 3 of LPS001WP datasheet. 331 */ 332 [0] = { 333 .num = ST_PRESS_FS_AVL_1100MB, 334 .gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN, 335 .gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS, 336 }, 337 }, 338 }, 339 .bdu = { 340 .addr = 0x20, 341 .mask = 0x04, 342 }, 343 .sim = { 344 .addr = 0x20, 345 .value = BIT(0), 346 }, 347 .multi_read_bit = true, 348 .bootime = 2, 349 }, 350 { 351 /* 352 * CUSTOM VALUES FOR LPS25H SENSOR 353 * See LPS25H datasheet: 354 * http://www2.st.com/resource/en/datasheet/lps25h.pdf 355 */ 356 .wai = 0xbd, 357 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 358 .sensors_supported = { 359 [0] = LPS25H_PRESS_DEV_NAME, 360 }, 361 .ch = (struct iio_chan_spec *)st_press_1_channels, 362 .num_ch = ARRAY_SIZE(st_press_1_channels), 363 .odr = { 364 .addr = 0x20, 365 .mask = 0x70, 366 .odr_avl = { 367 { .hz = 1, .value = 0x01 }, 368 { .hz = 7, .value = 0x02 }, 369 { .hz = 13, .value = 0x03 }, 370 { .hz = 25, .value = 0x04 }, 371 }, 372 }, 373 .pw = { 374 .addr = 0x20, 375 .mask = 0x80, 376 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 377 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 378 }, 379 .fs = { 380 .fs_avl = { 381 /* 382 * Pressure and temperature sensitivity values 383 * as defined in table 3 of LPS25H datasheet. 384 */ 385 [0] = { 386 .num = ST_PRESS_FS_AVL_1260MB, 387 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 388 .gain2 = ST_PRESS_LSB_PER_CELSIUS, 389 }, 390 }, 391 }, 392 .bdu = { 393 .addr = 0x20, 394 .mask = 0x04, 395 }, 396 .drdy_irq = { 397 .int1 = { 398 .addr = 0x23, 399 .mask = 0x01, 400 .addr_od = 0x22, 401 .mask_od = 0x40, 402 }, 403 .addr_ihl = 0x22, 404 .mask_ihl = 0x80, 405 .stat_drdy = { 406 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 407 .mask = 0x03, 408 }, 409 }, 410 .sim = { 411 .addr = 0x20, 412 .value = BIT(0), 413 }, 414 .multi_read_bit = true, 415 .bootime = 2, 416 }, 417 { 418 /* 419 * CUSTOM VALUES FOR LPS22HB SENSOR 420 * See LPS22HB datasheet: 421 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf 422 */ 423 .wai = 0xb1, 424 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 425 .sensors_supported = { 426 [0] = LPS22HB_PRESS_DEV_NAME, 427 [1] = LPS33HW_PRESS_DEV_NAME, 428 [2] = LPS35HW_PRESS_DEV_NAME, 429 }, 430 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels, 431 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels), 432 .odr = { 433 .addr = 0x10, 434 .mask = 0x70, 435 .odr_avl = { 436 { .hz = 1, .value = 0x01 }, 437 { .hz = 10, .value = 0x02 }, 438 { .hz = 25, .value = 0x03 }, 439 { .hz = 50, .value = 0x04 }, 440 { .hz = 75, .value = 0x05 }, 441 }, 442 }, 443 .pw = { 444 .addr = 0x10, 445 .mask = 0x70, 446 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 447 }, 448 .fs = { 449 .fs_avl = { 450 /* 451 * Pressure and temperature sensitivity values 452 * as defined in table 3 of LPS22HB datasheet. 453 */ 454 [0] = { 455 .num = ST_PRESS_FS_AVL_1260MB, 456 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 457 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS, 458 }, 459 }, 460 }, 461 .bdu = { 462 .addr = 0x10, 463 .mask = 0x02, 464 }, 465 .drdy_irq = { 466 .int1 = { 467 .addr = 0x12, 468 .mask = 0x04, 469 .addr_od = 0x12, 470 .mask_od = 0x40, 471 }, 472 .addr_ihl = 0x12, 473 .mask_ihl = 0x80, 474 .stat_drdy = { 475 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 476 .mask = 0x03, 477 }, 478 }, 479 .sim = { 480 .addr = 0x10, 481 .value = BIT(0), 482 }, 483 .multi_read_bit = false, 484 .bootime = 2, 485 }, 486 { 487 /* 488 * CUSTOM VALUES FOR LPS22HH SENSOR 489 * See LPS22HH datasheet: 490 * http://www2.st.com/resource/en/datasheet/lps22hh.pdf 491 */ 492 .wai = 0xb3, 493 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 494 .sensors_supported = { 495 [0] = LPS22HH_PRESS_DEV_NAME, 496 }, 497 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels, 498 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels), 499 .odr = { 500 .addr = 0x10, 501 .mask = 0x70, 502 .odr_avl = { 503 { .hz = 1, .value = 0x01 }, 504 { .hz = 10, .value = 0x02 }, 505 { .hz = 25, .value = 0x03 }, 506 { .hz = 50, .value = 0x04 }, 507 { .hz = 75, .value = 0x05 }, 508 { .hz = 100, .value = 0x06 }, 509 { .hz = 200, .value = 0x07 }, 510 }, 511 }, 512 .pw = { 513 .addr = 0x10, 514 .mask = 0x70, 515 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 516 }, 517 .fs = { 518 .fs_avl = { 519 /* 520 * Pressure and temperature sensitivity values 521 * as defined in table 3 of LPS22HH datasheet. 522 */ 523 [0] = { 524 .num = ST_PRESS_FS_AVL_1260MB, 525 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 526 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS, 527 }, 528 }, 529 }, 530 .bdu = { 531 .addr = 0x10, 532 .mask = BIT(1), 533 }, 534 .drdy_irq = { 535 .int1 = { 536 .addr = 0x12, 537 .mask = BIT(2), 538 .addr_od = 0x11, 539 .mask_od = BIT(5), 540 }, 541 .addr_ihl = 0x11, 542 .mask_ihl = BIT(6), 543 .stat_drdy = { 544 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 545 .mask = 0x03, 546 }, 547 }, 548 .sim = { 549 .addr = 0x10, 550 .value = BIT(0), 551 }, 552 .multi_read_bit = false, 553 .bootime = 2, 554 }, 555 }; 556 557 static int st_press_write_raw(struct iio_dev *indio_dev, 558 struct iio_chan_spec const *ch, 559 int val, 560 int val2, 561 long mask) 562 { 563 int err; 564 565 switch (mask) { 566 case IIO_CHAN_INFO_SAMP_FREQ: 567 if (val2) 568 return -EINVAL; 569 mutex_lock(&indio_dev->mlock); 570 err = st_sensors_set_odr(indio_dev, val); 571 mutex_unlock(&indio_dev->mlock); 572 return err; 573 default: 574 return -EINVAL; 575 } 576 } 577 578 static int st_press_read_raw(struct iio_dev *indio_dev, 579 struct iio_chan_spec const *ch, int *val, 580 int *val2, long mask) 581 { 582 int err; 583 struct st_sensor_data *press_data = iio_priv(indio_dev); 584 585 switch (mask) { 586 case IIO_CHAN_INFO_RAW: 587 err = st_sensors_read_info_raw(indio_dev, ch, val); 588 if (err < 0) 589 goto read_error; 590 591 return IIO_VAL_INT; 592 case IIO_CHAN_INFO_SCALE: 593 switch (ch->type) { 594 case IIO_PRESSURE: 595 *val = 0; 596 *val2 = press_data->current_fullscale->gain; 597 return IIO_VAL_INT_PLUS_NANO; 598 case IIO_TEMP: 599 *val = MCELSIUS_PER_CELSIUS; 600 *val2 = press_data->current_fullscale->gain2; 601 return IIO_VAL_FRACTIONAL; 602 default: 603 err = -EINVAL; 604 goto read_error; 605 } 606 607 case IIO_CHAN_INFO_OFFSET: 608 switch (ch->type) { 609 case IIO_TEMP: 610 *val = ST_PRESS_MILLI_CELSIUS_OFFSET * 611 press_data->current_fullscale->gain2; 612 *val2 = MCELSIUS_PER_CELSIUS; 613 break; 614 default: 615 err = -EINVAL; 616 goto read_error; 617 } 618 619 return IIO_VAL_FRACTIONAL; 620 case IIO_CHAN_INFO_SAMP_FREQ: 621 *val = press_data->odr; 622 return IIO_VAL_INT; 623 default: 624 return -EINVAL; 625 } 626 627 read_error: 628 return err; 629 } 630 631 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); 632 633 static struct attribute *st_press_attributes[] = { 634 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 635 NULL, 636 }; 637 638 static const struct attribute_group st_press_attribute_group = { 639 .attrs = st_press_attributes, 640 }; 641 642 static const struct iio_info press_info = { 643 .attrs = &st_press_attribute_group, 644 .read_raw = &st_press_read_raw, 645 .write_raw = &st_press_write_raw, 646 .debugfs_reg_access = &st_sensors_debugfs_reg_access, 647 }; 648 649 #ifdef CONFIG_IIO_TRIGGER 650 static const struct iio_trigger_ops st_press_trigger_ops = { 651 .set_trigger_state = ST_PRESS_TRIGGER_SET_STATE, 652 .validate_device = st_sensors_validate_device, 653 }; 654 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops) 655 #else 656 #define ST_PRESS_TRIGGER_OPS NULL 657 #endif 658 659 /* 660 * st_press_get_settings() - get sensor settings from device name 661 * @name: device name buffer reference. 662 * 663 * Return: valid reference on success, NULL otherwise. 664 */ 665 const struct st_sensor_settings *st_press_get_settings(const char *name) 666 { 667 int index = st_sensors_get_settings_index(name, 668 st_press_sensors_settings, 669 ARRAY_SIZE(st_press_sensors_settings)); 670 if (index < 0) 671 return NULL; 672 673 return &st_press_sensors_settings[index]; 674 } 675 EXPORT_SYMBOL(st_press_get_settings); 676 677 int st_press_common_probe(struct iio_dev *indio_dev) 678 { 679 struct st_sensor_data *press_data = iio_priv(indio_dev); 680 struct st_sensors_platform_data *pdata = dev_get_platdata(press_data->dev); 681 int err; 682 683 indio_dev->modes = INDIO_DIRECT_MODE; 684 indio_dev->info = &press_info; 685 686 err = st_sensors_verify_id(indio_dev); 687 if (err < 0) 688 return err; 689 690 /* 691 * Skip timestamping channel while declaring available channels to 692 * common st_sensor layer. Look at st_sensors_get_buffer_element() to 693 * see how timestamps are explicitly pushed as last samples block 694 * element. 695 */ 696 press_data->num_data_channels = press_data->sensor_settings->num_ch - 1; 697 indio_dev->channels = press_data->sensor_settings->ch; 698 indio_dev->num_channels = press_data->sensor_settings->num_ch; 699 700 press_data->current_fullscale = &press_data->sensor_settings->fs.fs_avl[0]; 701 702 press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz; 703 704 /* Some devices don't support a data ready pin. */ 705 if (!pdata && (press_data->sensor_settings->drdy_irq.int1.addr || 706 press_data->sensor_settings->drdy_irq.int2.addr)) 707 pdata = (struct st_sensors_platform_data *)&default_press_pdata; 708 709 err = st_sensors_init_sensor(indio_dev, pdata); 710 if (err < 0) 711 return err; 712 713 err = st_press_allocate_ring(indio_dev); 714 if (err < 0) 715 return err; 716 717 if (press_data->irq > 0) { 718 err = st_sensors_allocate_trigger(indio_dev, 719 ST_PRESS_TRIGGER_OPS); 720 if (err < 0) 721 return err; 722 } 723 724 err = iio_device_register(indio_dev); 725 if (err) 726 goto st_press_device_register_error; 727 728 dev_info(&indio_dev->dev, "registered pressure sensor %s\n", 729 indio_dev->name); 730 731 return err; 732 733 st_press_device_register_error: 734 if (press_data->irq > 0) 735 st_sensors_deallocate_trigger(indio_dev); 736 return err; 737 } 738 EXPORT_SYMBOL(st_press_common_probe); 739 740 void st_press_common_remove(struct iio_dev *indio_dev) 741 { 742 struct st_sensor_data *press_data = iio_priv(indio_dev); 743 744 iio_device_unregister(indio_dev); 745 if (press_data->irq > 0) 746 st_sensors_deallocate_trigger(indio_dev); 747 } 748 EXPORT_SYMBOL(st_press_common_remove); 749 750 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>"); 751 MODULE_DESCRIPTION("STMicroelectronics pressures driver"); 752 MODULE_LICENSE("GPL v2"); 753