1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * STMicroelectronics pressures driver 4 * 5 * Copyright 2013 STMicroelectronics Inc. 6 * 7 * Denis Ciocca <denis.ciocca@st.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/errno.h> 14 #include <linux/types.h> 15 #include <linux/interrupt.h> 16 #include <linux/i2c.h> 17 #include <linux/irq.h> 18 #include <linux/delay.h> 19 #include <linux/iio/iio.h> 20 #include <linux/iio/sysfs.h> 21 #include <linux/iio/trigger.h> 22 #include <linux/iio/buffer.h> 23 #include <asm/unaligned.h> 24 25 #include <linux/iio/common/st_sensors.h> 26 #include "st_pressure.h" 27 28 /* 29 * About determining pressure scaling factors 30 * ------------------------------------------ 31 * 32 * Datasheets specify typical pressure sensitivity so that pressure is computed 33 * according to the following equation : 34 * pressure[mBar] = raw / sensitivity 35 * where : 36 * raw the 24 bits long raw sampled pressure 37 * sensitivity a scaling factor specified by the datasheet in LSB/mBar 38 * 39 * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be 40 * computed according to : 41 * pressure[kPascal] = pressure[mBar] / 10 42 * = raw / (sensitivity * 10) (1) 43 * 44 * Finally, st_press_read_raw() returns pressure scaling factor as an 45 * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part. 46 * Therefore, from (1), "gain" becomes : 47 * gain = 10^9 / (sensitivity * 10) 48 * = 10^8 / sensitivity 49 * 50 * About determining temperature scaling factors and offsets 51 * --------------------------------------------------------- 52 * 53 * Datasheets specify typical temperature sensitivity and offset so that 54 * temperature is computed according to the following equation : 55 * temp[Celsius] = offset[Celsius] + (raw / sensitivity) 56 * where : 57 * raw the 16 bits long raw sampled temperature 58 * offset a constant specified by the datasheet in degree Celsius 59 * (sometimes zero) 60 * sensitivity a scaling factor specified by the datasheet in LSB/Celsius 61 * 62 * IIO ABI expects temperature to be expressed as milli degree Celsius such as 63 * user space should compute temperature according to : 64 * temp[mCelsius] = temp[Celsius] * 10^3 65 * = (offset[Celsius] + (raw / sensitivity)) * 10^3 66 * = ((offset[Celsius] * sensitivity) + raw) * 67 * (10^3 / sensitivity) (2) 68 * 69 * IIO ABI expects user space to apply offset and scaling factors to raw samples 70 * according to : 71 * temp[mCelsius] = (OFFSET + raw) * SCALE 72 * where : 73 * OFFSET an arbitrary constant exposed by device 74 * SCALE an arbitrary scaling factor exposed by device 75 * 76 * Matching OFFSET and SCALE with members of (2) gives : 77 * OFFSET = offset[Celsius] * sensitivity (3) 78 * SCALE = 10^3 / sensitivity (4) 79 * 80 * st_press_read_raw() returns temperature scaling factor as an 81 * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator. 82 * Therefore, from (3), "gain2" becomes : 83 * gain2 = sensitivity 84 * 85 * When declared within channel, i.e. for a non zero specified offset, 86 * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as : 87 * numerator = OFFSET * 10^3 88 * denominator = 10^3 89 * giving from (4): 90 * numerator = offset[Celsius] * 10^3 * sensitivity 91 * = offset[mCelsius] * gain2 92 */ 93 94 #define MCELSIUS_PER_CELSIUS 1000 95 96 /* Default pressure sensitivity */ 97 #define ST_PRESS_LSB_PER_MBAR 4096UL 98 #define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \ 99 ST_PRESS_LSB_PER_MBAR) 100 101 /* Default temperature sensitivity */ 102 #define ST_PRESS_LSB_PER_CELSIUS 480UL 103 #define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL 104 105 /* FULLSCALE */ 106 #define ST_PRESS_FS_AVL_1100MB 1100 107 #define ST_PRESS_FS_AVL_1260MB 1260 108 109 #define ST_PRESS_1_OUT_XL_ADDR 0x28 110 #define ST_TEMP_1_OUT_L_ADDR 0x2b 111 112 /* LPS001WP pressure resolution */ 113 #define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL 114 /* LPS001WP temperature resolution */ 115 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL 116 /* LPS001WP pressure gain */ 117 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \ 118 (100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR) 119 /* LPS001WP pressure and temp L addresses */ 120 #define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28 121 #define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a 122 123 /* LPS25H pressure and temp L addresses */ 124 #define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28 125 #define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b 126 127 /* LPS22HB temperature sensitivity */ 128 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL 129 130 static const struct iio_chan_spec st_press_1_channels[] = { 131 { 132 .type = IIO_PRESSURE, 133 .address = ST_PRESS_1_OUT_XL_ADDR, 134 .scan_index = 0, 135 .scan_type = { 136 .sign = 's', 137 .realbits = 24, 138 .storagebits = 32, 139 .endianness = IIO_LE, 140 }, 141 .info_mask_separate = 142 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 143 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 144 }, 145 { 146 .type = IIO_TEMP, 147 .address = ST_TEMP_1_OUT_L_ADDR, 148 .scan_index = 1, 149 .scan_type = { 150 .sign = 's', 151 .realbits = 16, 152 .storagebits = 16, 153 .endianness = IIO_LE, 154 }, 155 .info_mask_separate = 156 BIT(IIO_CHAN_INFO_RAW) | 157 BIT(IIO_CHAN_INFO_SCALE) | 158 BIT(IIO_CHAN_INFO_OFFSET), 159 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 160 }, 161 IIO_CHAN_SOFT_TIMESTAMP(2) 162 }; 163 164 static const struct iio_chan_spec st_press_lps001wp_channels[] = { 165 { 166 .type = IIO_PRESSURE, 167 .address = ST_PRESS_LPS001WP_OUT_L_ADDR, 168 .scan_index = 0, 169 .scan_type = { 170 .sign = 's', 171 .realbits = 16, 172 .storagebits = 16, 173 .endianness = IIO_LE, 174 }, 175 .info_mask_separate = 176 BIT(IIO_CHAN_INFO_RAW) | 177 BIT(IIO_CHAN_INFO_SCALE), 178 }, 179 { 180 .type = IIO_TEMP, 181 .address = ST_TEMP_LPS001WP_OUT_L_ADDR, 182 .scan_index = 1, 183 .scan_type = { 184 .sign = 's', 185 .realbits = 16, 186 .storagebits = 16, 187 .endianness = IIO_LE, 188 }, 189 .info_mask_separate = 190 BIT(IIO_CHAN_INFO_RAW) | 191 BIT(IIO_CHAN_INFO_SCALE), 192 }, 193 IIO_CHAN_SOFT_TIMESTAMP(2) 194 }; 195 196 static const struct iio_chan_spec st_press_lps22hb_channels[] = { 197 { 198 .type = IIO_PRESSURE, 199 .address = ST_PRESS_1_OUT_XL_ADDR, 200 .scan_index = 0, 201 .scan_type = { 202 .sign = 's', 203 .realbits = 24, 204 .storagebits = 32, 205 .endianness = IIO_LE, 206 }, 207 .info_mask_separate = 208 BIT(IIO_CHAN_INFO_RAW) | 209 BIT(IIO_CHAN_INFO_SCALE), 210 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 211 }, 212 { 213 .type = IIO_TEMP, 214 .address = ST_TEMP_1_OUT_L_ADDR, 215 .scan_index = 1, 216 .scan_type = { 217 .sign = 's', 218 .realbits = 16, 219 .storagebits = 16, 220 .endianness = IIO_LE, 221 }, 222 .info_mask_separate = 223 BIT(IIO_CHAN_INFO_RAW) | 224 BIT(IIO_CHAN_INFO_SCALE), 225 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 226 }, 227 IIO_CHAN_SOFT_TIMESTAMP(2) 228 }; 229 230 static const struct st_sensor_settings st_press_sensors_settings[] = { 231 { 232 /* 233 * CUSTOM VALUES FOR LPS331AP SENSOR 234 * See LPS331AP datasheet: 235 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf 236 */ 237 .wai = 0xbb, 238 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 239 .sensors_supported = { 240 [0] = LPS331AP_PRESS_DEV_NAME, 241 }, 242 .ch = (struct iio_chan_spec *)st_press_1_channels, 243 .num_ch = ARRAY_SIZE(st_press_1_channels), 244 .odr = { 245 .addr = 0x20, 246 .mask = 0x70, 247 .odr_avl = { 248 { .hz = 1, .value = 0x01 }, 249 { .hz = 7, .value = 0x05 }, 250 { .hz = 13, .value = 0x06 }, 251 { .hz = 25, .value = 0x07 }, 252 }, 253 }, 254 .pw = { 255 .addr = 0x20, 256 .mask = 0x80, 257 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 258 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 259 }, 260 .fs = { 261 .addr = 0x23, 262 .mask = 0x30, 263 .fs_avl = { 264 /* 265 * Pressure and temperature sensitivity values 266 * as defined in table 3 of LPS331AP datasheet. 267 */ 268 [0] = { 269 .num = ST_PRESS_FS_AVL_1260MB, 270 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 271 .gain2 = ST_PRESS_LSB_PER_CELSIUS, 272 }, 273 }, 274 }, 275 .bdu = { 276 .addr = 0x20, 277 .mask = 0x04, 278 }, 279 .drdy_irq = { 280 .int1 = { 281 .addr = 0x22, 282 .mask = 0x04, 283 .addr_od = 0x22, 284 .mask_od = 0x40, 285 }, 286 .int2 = { 287 .addr = 0x22, 288 .mask = 0x20, 289 .addr_od = 0x22, 290 .mask_od = 0x40, 291 }, 292 .addr_ihl = 0x22, 293 .mask_ihl = 0x80, 294 .stat_drdy = { 295 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 296 .mask = 0x03, 297 }, 298 }, 299 .sim = { 300 .addr = 0x20, 301 .value = BIT(0), 302 }, 303 .multi_read_bit = true, 304 .bootime = 2, 305 }, 306 { 307 /* 308 * CUSTOM VALUES FOR LPS001WP SENSOR 309 */ 310 .wai = 0xba, 311 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 312 .sensors_supported = { 313 [0] = LPS001WP_PRESS_DEV_NAME, 314 }, 315 .ch = (struct iio_chan_spec *)st_press_lps001wp_channels, 316 .num_ch = ARRAY_SIZE(st_press_lps001wp_channels), 317 .odr = { 318 .addr = 0x20, 319 .mask = 0x30, 320 .odr_avl = { 321 { .hz = 1, .value = 0x01 }, 322 { .hz = 7, .value = 0x02 }, 323 { .hz = 13, .value = 0x03 }, 324 }, 325 }, 326 .pw = { 327 .addr = 0x20, 328 .mask = 0x40, 329 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 330 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 331 }, 332 .fs = { 333 .fs_avl = { 334 /* 335 * Pressure and temperature resolution values 336 * as defined in table 3 of LPS001WP datasheet. 337 */ 338 [0] = { 339 .num = ST_PRESS_FS_AVL_1100MB, 340 .gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN, 341 .gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS, 342 }, 343 }, 344 }, 345 .bdu = { 346 .addr = 0x20, 347 .mask = 0x04, 348 }, 349 .sim = { 350 .addr = 0x20, 351 .value = BIT(0), 352 }, 353 .multi_read_bit = true, 354 .bootime = 2, 355 }, 356 { 357 /* 358 * CUSTOM VALUES FOR LPS25H SENSOR 359 * See LPS25H datasheet: 360 * http://www2.st.com/resource/en/datasheet/lps25h.pdf 361 */ 362 .wai = 0xbd, 363 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 364 .sensors_supported = { 365 [0] = LPS25H_PRESS_DEV_NAME, 366 }, 367 .ch = (struct iio_chan_spec *)st_press_1_channels, 368 .num_ch = ARRAY_SIZE(st_press_1_channels), 369 .odr = { 370 .addr = 0x20, 371 .mask = 0x70, 372 .odr_avl = { 373 { .hz = 1, .value = 0x01 }, 374 { .hz = 7, .value = 0x02 }, 375 { .hz = 13, .value = 0x03 }, 376 { .hz = 25, .value = 0x04 }, 377 }, 378 }, 379 .pw = { 380 .addr = 0x20, 381 .mask = 0x80, 382 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 383 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 384 }, 385 .fs = { 386 .fs_avl = { 387 /* 388 * Pressure and temperature sensitivity values 389 * as defined in table 3 of LPS25H datasheet. 390 */ 391 [0] = { 392 .num = ST_PRESS_FS_AVL_1260MB, 393 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 394 .gain2 = ST_PRESS_LSB_PER_CELSIUS, 395 }, 396 }, 397 }, 398 .bdu = { 399 .addr = 0x20, 400 .mask = 0x04, 401 }, 402 .drdy_irq = { 403 .int1 = { 404 .addr = 0x23, 405 .mask = 0x01, 406 .addr_od = 0x22, 407 .mask_od = 0x40, 408 }, 409 .addr_ihl = 0x22, 410 .mask_ihl = 0x80, 411 .stat_drdy = { 412 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 413 .mask = 0x03, 414 }, 415 }, 416 .sim = { 417 .addr = 0x20, 418 .value = BIT(0), 419 }, 420 .multi_read_bit = true, 421 .bootime = 2, 422 }, 423 { 424 /* 425 * CUSTOM VALUES FOR LPS22HB SENSOR 426 * See LPS22HB datasheet: 427 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf 428 */ 429 .wai = 0xb1, 430 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 431 .sensors_supported = { 432 [0] = LPS22HB_PRESS_DEV_NAME, 433 [1] = LPS33HW_PRESS_DEV_NAME, 434 [2] = LPS35HW_PRESS_DEV_NAME, 435 }, 436 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels, 437 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels), 438 .odr = { 439 .addr = 0x10, 440 .mask = 0x70, 441 .odr_avl = { 442 { .hz = 1, .value = 0x01 }, 443 { .hz = 10, .value = 0x02 }, 444 { .hz = 25, .value = 0x03 }, 445 { .hz = 50, .value = 0x04 }, 446 { .hz = 75, .value = 0x05 }, 447 }, 448 }, 449 .pw = { 450 .addr = 0x10, 451 .mask = 0x70, 452 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 453 }, 454 .fs = { 455 .fs_avl = { 456 /* 457 * Pressure and temperature sensitivity values 458 * as defined in table 3 of LPS22HB datasheet. 459 */ 460 [0] = { 461 .num = ST_PRESS_FS_AVL_1260MB, 462 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 463 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS, 464 }, 465 }, 466 }, 467 .bdu = { 468 .addr = 0x10, 469 .mask = 0x02, 470 }, 471 .drdy_irq = { 472 .int1 = { 473 .addr = 0x12, 474 .mask = 0x04, 475 .addr_od = 0x12, 476 .mask_od = 0x40, 477 }, 478 .addr_ihl = 0x12, 479 .mask_ihl = 0x80, 480 .stat_drdy = { 481 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 482 .mask = 0x03, 483 }, 484 }, 485 .sim = { 486 .addr = 0x10, 487 .value = BIT(0), 488 }, 489 .multi_read_bit = false, 490 .bootime = 2, 491 }, 492 { 493 /* 494 * CUSTOM VALUES FOR LPS22HH SENSOR 495 * See LPS22HH datasheet: 496 * http://www2.st.com/resource/en/datasheet/lps22hh.pdf 497 */ 498 .wai = 0xb3, 499 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 500 .sensors_supported = { 501 [0] = LPS22HH_PRESS_DEV_NAME, 502 }, 503 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels, 504 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels), 505 .odr = { 506 .addr = 0x10, 507 .mask = 0x70, 508 .odr_avl = { 509 { .hz = 1, .value = 0x01 }, 510 { .hz = 10, .value = 0x02 }, 511 { .hz = 25, .value = 0x03 }, 512 { .hz = 50, .value = 0x04 }, 513 { .hz = 75, .value = 0x05 }, 514 { .hz = 100, .value = 0x06 }, 515 { .hz = 200, .value = 0x07 }, 516 }, 517 }, 518 .pw = { 519 .addr = 0x10, 520 .mask = 0x70, 521 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 522 }, 523 .fs = { 524 .fs_avl = { 525 /* 526 * Pressure and temperature sensitivity values 527 * as defined in table 3 of LPS22HH datasheet. 528 */ 529 [0] = { 530 .num = ST_PRESS_FS_AVL_1260MB, 531 .gain = ST_PRESS_KPASCAL_NANO_SCALE, 532 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS, 533 }, 534 }, 535 }, 536 .bdu = { 537 .addr = 0x10, 538 .mask = BIT(1), 539 }, 540 .drdy_irq = { 541 .int1 = { 542 .addr = 0x12, 543 .mask = BIT(2), 544 .addr_od = 0x11, 545 .mask_od = BIT(5), 546 }, 547 .addr_ihl = 0x11, 548 .mask_ihl = BIT(6), 549 .stat_drdy = { 550 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 551 .mask = 0x03, 552 }, 553 }, 554 .sim = { 555 .addr = 0x10, 556 .value = BIT(0), 557 }, 558 .multi_read_bit = false, 559 .bootime = 2, 560 }, 561 }; 562 563 static int st_press_write_raw(struct iio_dev *indio_dev, 564 struct iio_chan_spec const *ch, 565 int val, 566 int val2, 567 long mask) 568 { 569 int err; 570 571 switch (mask) { 572 case IIO_CHAN_INFO_SAMP_FREQ: 573 if (val2) 574 return -EINVAL; 575 mutex_lock(&indio_dev->mlock); 576 err = st_sensors_set_odr(indio_dev, val); 577 mutex_unlock(&indio_dev->mlock); 578 return err; 579 default: 580 return -EINVAL; 581 } 582 } 583 584 static int st_press_read_raw(struct iio_dev *indio_dev, 585 struct iio_chan_spec const *ch, int *val, 586 int *val2, long mask) 587 { 588 int err; 589 struct st_sensor_data *press_data = iio_priv(indio_dev); 590 591 switch (mask) { 592 case IIO_CHAN_INFO_RAW: 593 err = st_sensors_read_info_raw(indio_dev, ch, val); 594 if (err < 0) 595 goto read_error; 596 597 return IIO_VAL_INT; 598 case IIO_CHAN_INFO_SCALE: 599 switch (ch->type) { 600 case IIO_PRESSURE: 601 *val = 0; 602 *val2 = press_data->current_fullscale->gain; 603 return IIO_VAL_INT_PLUS_NANO; 604 case IIO_TEMP: 605 *val = MCELSIUS_PER_CELSIUS; 606 *val2 = press_data->current_fullscale->gain2; 607 return IIO_VAL_FRACTIONAL; 608 default: 609 err = -EINVAL; 610 goto read_error; 611 } 612 613 case IIO_CHAN_INFO_OFFSET: 614 switch (ch->type) { 615 case IIO_TEMP: 616 *val = ST_PRESS_MILLI_CELSIUS_OFFSET * 617 press_data->current_fullscale->gain2; 618 *val2 = MCELSIUS_PER_CELSIUS; 619 break; 620 default: 621 err = -EINVAL; 622 goto read_error; 623 } 624 625 return IIO_VAL_FRACTIONAL; 626 case IIO_CHAN_INFO_SAMP_FREQ: 627 *val = press_data->odr; 628 return IIO_VAL_INT; 629 default: 630 return -EINVAL; 631 } 632 633 read_error: 634 return err; 635 } 636 637 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); 638 639 static struct attribute *st_press_attributes[] = { 640 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 641 NULL, 642 }; 643 644 static const struct attribute_group st_press_attribute_group = { 645 .attrs = st_press_attributes, 646 }; 647 648 static const struct iio_info press_info = { 649 .attrs = &st_press_attribute_group, 650 .read_raw = &st_press_read_raw, 651 .write_raw = &st_press_write_raw, 652 .debugfs_reg_access = &st_sensors_debugfs_reg_access, 653 }; 654 655 #ifdef CONFIG_IIO_TRIGGER 656 static const struct iio_trigger_ops st_press_trigger_ops = { 657 .set_trigger_state = ST_PRESS_TRIGGER_SET_STATE, 658 .validate_device = st_sensors_validate_device, 659 }; 660 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops) 661 #else 662 #define ST_PRESS_TRIGGER_OPS NULL 663 #endif 664 665 /* 666 * st_press_get_settings() - get sensor settings from device name 667 * @name: device name buffer reference. 668 * 669 * Return: valid reference on success, NULL otherwise. 670 */ 671 const struct st_sensor_settings *st_press_get_settings(const char *name) 672 { 673 int index = st_sensors_get_settings_index(name, 674 st_press_sensors_settings, 675 ARRAY_SIZE(st_press_sensors_settings)); 676 if (index < 0) 677 return NULL; 678 679 return &st_press_sensors_settings[index]; 680 } 681 EXPORT_SYMBOL(st_press_get_settings); 682 683 int st_press_common_probe(struct iio_dev *indio_dev) 684 { 685 struct st_sensor_data *press_data = iio_priv(indio_dev); 686 struct st_sensors_platform_data *pdata = 687 (struct st_sensors_platform_data *)press_data->dev->platform_data; 688 int err; 689 690 indio_dev->modes = INDIO_DIRECT_MODE; 691 indio_dev->info = &press_info; 692 693 err = st_sensors_power_enable(indio_dev); 694 if (err) 695 return err; 696 697 err = st_sensors_verify_id(indio_dev); 698 if (err < 0) 699 goto st_press_power_off; 700 701 /* 702 * Skip timestamping channel while declaring available channels to 703 * common st_sensor layer. Look at st_sensors_get_buffer_element() to 704 * see how timestamps are explicitly pushed as last samples block 705 * element. 706 */ 707 press_data->num_data_channels = press_data->sensor_settings->num_ch - 1; 708 indio_dev->channels = press_data->sensor_settings->ch; 709 indio_dev->num_channels = press_data->sensor_settings->num_ch; 710 711 press_data->current_fullscale = 712 (struct st_sensor_fullscale_avl *) 713 &press_data->sensor_settings->fs.fs_avl[0]; 714 715 press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz; 716 717 /* Some devices don't support a data ready pin. */ 718 if (!pdata && (press_data->sensor_settings->drdy_irq.int1.addr || 719 press_data->sensor_settings->drdy_irq.int2.addr)) 720 pdata = (struct st_sensors_platform_data *)&default_press_pdata; 721 722 err = st_sensors_init_sensor(indio_dev, pdata); 723 if (err < 0) 724 goto st_press_power_off; 725 726 err = st_press_allocate_ring(indio_dev); 727 if (err < 0) 728 goto st_press_power_off; 729 730 if (press_data->irq > 0) { 731 err = st_sensors_allocate_trigger(indio_dev, 732 ST_PRESS_TRIGGER_OPS); 733 if (err < 0) 734 goto st_press_probe_trigger_error; 735 } 736 737 err = iio_device_register(indio_dev); 738 if (err) 739 goto st_press_device_register_error; 740 741 dev_info(&indio_dev->dev, "registered pressure sensor %s\n", 742 indio_dev->name); 743 744 return err; 745 746 st_press_device_register_error: 747 if (press_data->irq > 0) 748 st_sensors_deallocate_trigger(indio_dev); 749 st_press_probe_trigger_error: 750 st_press_deallocate_ring(indio_dev); 751 st_press_power_off: 752 st_sensors_power_disable(indio_dev); 753 754 return err; 755 } 756 EXPORT_SYMBOL(st_press_common_probe); 757 758 void st_press_common_remove(struct iio_dev *indio_dev) 759 { 760 struct st_sensor_data *press_data = iio_priv(indio_dev); 761 762 st_sensors_power_disable(indio_dev); 763 764 iio_device_unregister(indio_dev); 765 if (press_data->irq > 0) 766 st_sensors_deallocate_trigger(indio_dev); 767 768 st_press_deallocate_ring(indio_dev); 769 } 770 EXPORT_SYMBOL(st_press_common_remove); 771 772 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>"); 773 MODULE_DESCRIPTION("STMicroelectronics pressures driver"); 774 MODULE_LICENSE("GPL v2"); 775