1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020 InvenSense, Inc. 4 * 5 * Driver for InvenSense ICP-1010xx barometric pressure and temperature sensor. 6 * 7 * Datasheet: 8 * http://www.invensense.com/wp-content/uploads/2018/01/DS-000186-ICP-101xx-v1.2.pdf 9 */ 10 11 #include <linux/device.h> 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/i2c.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/crc8.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <linux/log2.h> 20 #include <linux/math64.h> 21 #include <linux/regulator/consumer.h> 22 #include <linux/iio/iio.h> 23 24 #define ICP10100_ID_REG_GET(_reg) ((_reg) & 0x003F) 25 #define ICP10100_ID_REG 0x08 26 #define ICP10100_RESPONSE_WORD_LENGTH 3 27 #define ICP10100_CRC8_WORD_LENGTH 2 28 #define ICP10100_CRC8_POLYNOMIAL 0x31 29 #define ICP10100_CRC8_INIT 0xFF 30 31 enum icp10100_mode { 32 ICP10100_MODE_LP, /* Low power mode: 1x sampling */ 33 ICP10100_MODE_N, /* Normal mode: 2x sampling */ 34 ICP10100_MODE_LN, /* Low noise mode: 4x sampling */ 35 ICP10100_MODE_ULN, /* Ultra low noise mode: 8x sampling */ 36 ICP10100_MODE_NB, 37 }; 38 39 struct icp10100_state { 40 struct mutex lock; 41 struct i2c_client *client; 42 struct regulator *vdd; 43 enum icp10100_mode mode; 44 int16_t cal[4]; 45 }; 46 47 struct icp10100_command { 48 __be16 cmd; 49 unsigned long wait_us; 50 unsigned long wait_max_us; 51 size_t response_word_nb; 52 }; 53 54 static const struct icp10100_command icp10100_cmd_soft_reset = { 55 .cmd = cpu_to_be16(0x805D), 56 .wait_us = 170, 57 .wait_max_us = 200, 58 .response_word_nb = 0, 59 }; 60 61 static const struct icp10100_command icp10100_cmd_read_id = { 62 .cmd = cpu_to_be16(0xEFC8), 63 .wait_us = 0, 64 .response_word_nb = 1, 65 }; 66 67 static const struct icp10100_command icp10100_cmd_read_otp = { 68 .cmd = cpu_to_be16(0xC7F7), 69 .wait_us = 0, 70 .response_word_nb = 1, 71 }; 72 73 static const struct icp10100_command icp10100_cmd_measure[] = { 74 [ICP10100_MODE_LP] = { 75 .cmd = cpu_to_be16(0x401A), 76 .wait_us = 1800, 77 .wait_max_us = 2000, 78 .response_word_nb = 3, 79 }, 80 [ICP10100_MODE_N] = { 81 .cmd = cpu_to_be16(0x48A3), 82 .wait_us = 6300, 83 .wait_max_us = 6500, 84 .response_word_nb = 3, 85 }, 86 [ICP10100_MODE_LN] = { 87 .cmd = cpu_to_be16(0x5059), 88 .wait_us = 23800, 89 .wait_max_us = 24000, 90 .response_word_nb = 3, 91 }, 92 [ICP10100_MODE_ULN] = { 93 .cmd = cpu_to_be16(0x58E0), 94 .wait_us = 94500, 95 .wait_max_us = 94700, 96 .response_word_nb = 3, 97 }, 98 }; 99 100 static const uint8_t icp10100_switch_mode_otp[] = 101 {0xC5, 0x95, 0x00, 0x66, 0x9c}; 102 103 DECLARE_CRC8_TABLE(icp10100_crc8_table); 104 105 static inline int icp10100_i2c_xfer(struct i2c_adapter *adap, 106 struct i2c_msg *msgs, int num) 107 { 108 int ret; 109 110 ret = i2c_transfer(adap, msgs, num); 111 if (ret < 0) 112 return ret; 113 114 if (ret != num) 115 return -EIO; 116 117 return 0; 118 } 119 120 static int icp10100_send_cmd(struct icp10100_state *st, 121 const struct icp10100_command *cmd, 122 __be16 *buf, size_t buf_len) 123 { 124 size_t size = cmd->response_word_nb * ICP10100_RESPONSE_WORD_LENGTH; 125 uint8_t data[16]; 126 uint8_t *ptr; 127 uint8_t *buf_ptr = (uint8_t *)buf; 128 struct i2c_msg msgs[2] = { 129 { 130 .addr = st->client->addr, 131 .flags = 0, 132 .len = 2, 133 .buf = (uint8_t *)&cmd->cmd, 134 }, { 135 .addr = st->client->addr, 136 .flags = I2C_M_RD, 137 .len = size, 138 .buf = data, 139 }, 140 }; 141 uint8_t crc; 142 unsigned int i; 143 int ret; 144 145 if (size > sizeof(data)) 146 return -EINVAL; 147 148 if (cmd->response_word_nb > 0 && 149 (buf == NULL || buf_len < (cmd->response_word_nb * 2))) 150 return -EINVAL; 151 152 dev_dbg(&st->client->dev, "sending cmd %#x\n", be16_to_cpu(cmd->cmd)); 153 154 if (cmd->response_word_nb > 0 && cmd->wait_us == 0) { 155 /* direct command-response without waiting */ 156 ret = icp10100_i2c_xfer(st->client->adapter, msgs, 157 ARRAY_SIZE(msgs)); 158 if (ret) 159 return ret; 160 } else { 161 /* transfer command write */ 162 ret = icp10100_i2c_xfer(st->client->adapter, &msgs[0], 1); 163 if (ret) 164 return ret; 165 if (cmd->wait_us > 0) 166 usleep_range(cmd->wait_us, cmd->wait_max_us); 167 /* transfer response read if needed */ 168 if (cmd->response_word_nb > 0) { 169 ret = icp10100_i2c_xfer(st->client->adapter, &msgs[1], 1); 170 if (ret) 171 return ret; 172 } else { 173 return 0; 174 } 175 } 176 177 /* process read words with crc checking */ 178 for (i = 0; i < cmd->response_word_nb; ++i) { 179 ptr = &data[i * ICP10100_RESPONSE_WORD_LENGTH]; 180 crc = crc8(icp10100_crc8_table, ptr, ICP10100_CRC8_WORD_LENGTH, 181 ICP10100_CRC8_INIT); 182 if (crc != ptr[ICP10100_CRC8_WORD_LENGTH]) { 183 dev_err(&st->client->dev, "crc error recv=%#x calc=%#x\n", 184 ptr[ICP10100_CRC8_WORD_LENGTH], crc); 185 return -EIO; 186 } 187 *buf_ptr++ = ptr[0]; 188 *buf_ptr++ = ptr[1]; 189 } 190 191 return 0; 192 } 193 194 static int icp10100_read_cal_otp(struct icp10100_state *st) 195 { 196 __be16 val; 197 int i; 198 int ret; 199 200 /* switch into OTP read mode */ 201 ret = i2c_master_send(st->client, icp10100_switch_mode_otp, 202 ARRAY_SIZE(icp10100_switch_mode_otp)); 203 if (ret < 0) 204 return ret; 205 if (ret != ARRAY_SIZE(icp10100_switch_mode_otp)) 206 return -EIO; 207 208 /* read 4 calibration values */ 209 for (i = 0; i < 4; ++i) { 210 ret = icp10100_send_cmd(st, &icp10100_cmd_read_otp, 211 &val, sizeof(val)); 212 if (ret) 213 return ret; 214 st->cal[i] = be16_to_cpu(val); 215 dev_dbg(&st->client->dev, "cal[%d] = %d\n", i, st->cal[i]); 216 } 217 218 return 0; 219 } 220 221 static int icp10100_init_chip(struct icp10100_state *st) 222 { 223 __be16 val; 224 uint16_t id; 225 int ret; 226 227 /* read and check id */ 228 ret = icp10100_send_cmd(st, &icp10100_cmd_read_id, &val, sizeof(val)); 229 if (ret) 230 return ret; 231 id = ICP10100_ID_REG_GET(be16_to_cpu(val)); 232 if (id != ICP10100_ID_REG) { 233 dev_err(&st->client->dev, "invalid id %#x\n", id); 234 return -ENODEV; 235 } 236 237 /* read calibration data from OTP */ 238 ret = icp10100_read_cal_otp(st); 239 if (ret) 240 return ret; 241 242 /* reset chip */ 243 return icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0); 244 } 245 246 static int icp10100_get_measures(struct icp10100_state *st, 247 uint32_t *pressure, uint16_t *temperature) 248 { 249 const struct icp10100_command *cmd; 250 __be16 measures[3]; 251 int ret; 252 253 ret = pm_runtime_resume_and_get(&st->client->dev); 254 if (ret < 0) 255 return ret; 256 257 mutex_lock(&st->lock); 258 cmd = &icp10100_cmd_measure[st->mode]; 259 ret = icp10100_send_cmd(st, cmd, measures, sizeof(measures)); 260 mutex_unlock(&st->lock); 261 if (ret) 262 goto error_measure; 263 264 *pressure = (be16_to_cpu(measures[0]) << 8) | 265 (be16_to_cpu(measures[1]) >> 8); 266 *temperature = be16_to_cpu(measures[2]); 267 268 pm_runtime_mark_last_busy(&st->client->dev); 269 error_measure: 270 pm_runtime_put_autosuspend(&st->client->dev); 271 return ret; 272 } 273 274 static uint32_t icp10100_get_pressure(struct icp10100_state *st, 275 uint32_t raw_pressure, uint16_t raw_temp) 276 { 277 static int32_t p_calib[] = {45000, 80000, 105000}; 278 static int32_t lut_lower = 3670016; 279 static int32_t lut_upper = 12058624; 280 static int32_t inv_quadr_factor = 16777216; 281 static int32_t offset_factor = 2048; 282 int64_t val1, val2; 283 int32_t p_lut[3]; 284 int32_t t, t_square; 285 int64_t a, b, c; 286 uint32_t pressure_mPa; 287 288 dev_dbg(&st->client->dev, "raw: pressure = %u, temp = %u\n", 289 raw_pressure, raw_temp); 290 291 /* compute p_lut values */ 292 t = (int32_t)raw_temp - 32768; 293 t_square = t * t; 294 val1 = (int64_t)st->cal[0] * (int64_t)t_square; 295 p_lut[0] = lut_lower + (int32_t)div_s64(val1, inv_quadr_factor); 296 val1 = (int64_t)st->cal[1] * (int64_t)t_square; 297 p_lut[1] = offset_factor * st->cal[3] + 298 (int32_t)div_s64(val1, inv_quadr_factor); 299 val1 = (int64_t)st->cal[2] * (int64_t)t_square; 300 p_lut[2] = lut_upper + (int32_t)div_s64(val1, inv_quadr_factor); 301 dev_dbg(&st->client->dev, "p_lut = [%d, %d, %d]\n", 302 p_lut[0], p_lut[1], p_lut[2]); 303 304 /* compute a, b, c factors */ 305 val1 = (int64_t)p_lut[0] * (int64_t)p_lut[1] * 306 (int64_t)(p_calib[0] - p_calib[1]) + 307 (int64_t)p_lut[1] * (int64_t)p_lut[2] * 308 (int64_t)(p_calib[1] - p_calib[2]) + 309 (int64_t)p_lut[2] * (int64_t)p_lut[0] * 310 (int64_t)(p_calib[2] - p_calib[0]); 311 val2 = (int64_t)p_lut[2] * (int64_t)(p_calib[0] - p_calib[1]) + 312 (int64_t)p_lut[0] * (int64_t)(p_calib[1] - p_calib[2]) + 313 (int64_t)p_lut[1] * (int64_t)(p_calib[2] - p_calib[0]); 314 c = div64_s64(val1, val2); 315 dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, c = %lld\n", 316 val1, val2, c); 317 val1 = (int64_t)p_calib[0] * (int64_t)p_lut[0] - 318 (int64_t)p_calib[1] * (int64_t)p_lut[1] - 319 (int64_t)(p_calib[1] - p_calib[0]) * c; 320 val2 = (int64_t)p_lut[0] - (int64_t)p_lut[1]; 321 a = div64_s64(val1, val2); 322 dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, a = %lld\n", 323 val1, val2, a); 324 b = ((int64_t)p_calib[0] - a) * ((int64_t)p_lut[0] + c); 325 dev_dbg(&st->client->dev, "b = %lld\n", b); 326 327 /* 328 * pressure_Pa = a + (b / (c + raw_pressure)) 329 * pressure_mPa = 1000 * pressure_Pa 330 */ 331 pressure_mPa = 1000LL * a + div64_s64(1000LL * b, c + raw_pressure); 332 333 return pressure_mPa; 334 } 335 336 static int icp10100_read_raw_measures(struct iio_dev *indio_dev, 337 struct iio_chan_spec const *chan, 338 int *val, int *val2) 339 { 340 struct icp10100_state *st = iio_priv(indio_dev); 341 uint32_t raw_pressure; 342 uint16_t raw_temp; 343 uint32_t pressure_mPa; 344 int ret; 345 346 ret = iio_device_claim_direct_mode(indio_dev); 347 if (ret) 348 return ret; 349 350 ret = icp10100_get_measures(st, &raw_pressure, &raw_temp); 351 if (ret) 352 goto error_release; 353 354 switch (chan->type) { 355 case IIO_PRESSURE: 356 pressure_mPa = icp10100_get_pressure(st, raw_pressure, 357 raw_temp); 358 /* mPa to kPa */ 359 *val = pressure_mPa / 1000000; 360 *val2 = pressure_mPa % 1000000; 361 ret = IIO_VAL_INT_PLUS_MICRO; 362 break; 363 case IIO_TEMP: 364 *val = raw_temp; 365 ret = IIO_VAL_INT; 366 break; 367 default: 368 ret = -EINVAL; 369 break; 370 } 371 372 error_release: 373 iio_device_release_direct_mode(indio_dev); 374 return ret; 375 } 376 377 static int icp10100_read_raw(struct iio_dev *indio_dev, 378 struct iio_chan_spec const *chan, 379 int *val, int *val2, long mask) 380 { 381 struct icp10100_state *st = iio_priv(indio_dev); 382 383 switch (mask) { 384 case IIO_CHAN_INFO_RAW: 385 case IIO_CHAN_INFO_PROCESSED: 386 return icp10100_read_raw_measures(indio_dev, chan, val, val2); 387 case IIO_CHAN_INFO_SCALE: 388 switch (chan->type) { 389 case IIO_TEMP: 390 /* 1000 * 175°C / 65536 in m°C */ 391 *val = 2; 392 *val2 = 670288; 393 return IIO_VAL_INT_PLUS_MICRO; 394 default: 395 return -EINVAL; 396 } 397 break; 398 case IIO_CHAN_INFO_OFFSET: 399 switch (chan->type) { 400 case IIO_TEMP: 401 /* 1000 * -45°C in m°C */ 402 *val = -45000; 403 return IIO_VAL_INT; 404 default: 405 return -EINVAL; 406 } 407 break; 408 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 409 mutex_lock(&st->lock); 410 *val = 1 << st->mode; 411 mutex_unlock(&st->lock); 412 return IIO_VAL_INT; 413 default: 414 return -EINVAL; 415 } 416 } 417 418 static int icp10100_read_avail(struct iio_dev *indio_dev, 419 struct iio_chan_spec const *chan, 420 const int **vals, int *type, int *length, 421 long mask) 422 { 423 static int oversamplings[] = {1, 2, 4, 8}; 424 425 switch (mask) { 426 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 427 *vals = oversamplings; 428 *type = IIO_VAL_INT; 429 *length = ARRAY_SIZE(oversamplings); 430 return IIO_AVAIL_LIST; 431 default: 432 return -EINVAL; 433 } 434 } 435 436 static int icp10100_write_raw(struct iio_dev *indio_dev, 437 struct iio_chan_spec const *chan, 438 int val, int val2, long mask) 439 { 440 struct icp10100_state *st = iio_priv(indio_dev); 441 unsigned int mode; 442 int ret; 443 444 switch (mask) { 445 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 446 /* oversampling is always positive and a power of 2 */ 447 if (val <= 0 || !is_power_of_2(val)) 448 return -EINVAL; 449 mode = ilog2(val); 450 if (mode >= ICP10100_MODE_NB) 451 return -EINVAL; 452 ret = iio_device_claim_direct_mode(indio_dev); 453 if (ret) 454 return ret; 455 mutex_lock(&st->lock); 456 st->mode = mode; 457 mutex_unlock(&st->lock); 458 iio_device_release_direct_mode(indio_dev); 459 return 0; 460 default: 461 return -EINVAL; 462 } 463 } 464 465 static int icp10100_write_raw_get_fmt(struct iio_dev *indio_dev, 466 struct iio_chan_spec const *chan, 467 long mask) 468 { 469 switch (mask) { 470 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 471 return IIO_VAL_INT; 472 default: 473 return -EINVAL; 474 } 475 } 476 477 static const struct iio_info icp10100_info = { 478 .read_raw = icp10100_read_raw, 479 .read_avail = icp10100_read_avail, 480 .write_raw = icp10100_write_raw, 481 .write_raw_get_fmt = icp10100_write_raw_get_fmt, 482 }; 483 484 static const struct iio_chan_spec icp10100_channels[] = { 485 { 486 .type = IIO_PRESSURE, 487 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 488 .info_mask_shared_by_all = 489 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 490 .info_mask_shared_by_all_available = 491 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 492 }, { 493 .type = IIO_TEMP, 494 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 495 BIT(IIO_CHAN_INFO_SCALE) | 496 BIT(IIO_CHAN_INFO_OFFSET), 497 .info_mask_shared_by_all = 498 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 499 .info_mask_shared_by_all_available = 500 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 501 }, 502 }; 503 504 static int icp10100_enable_regulator(struct icp10100_state *st) 505 { 506 int ret; 507 508 ret = regulator_enable(st->vdd); 509 if (ret) 510 return ret; 511 msleep(100); 512 513 return 0; 514 } 515 516 static void icp10100_disable_regulator_action(void *data) 517 { 518 struct icp10100_state *st = data; 519 int ret; 520 521 ret = regulator_disable(st->vdd); 522 if (ret) 523 dev_err(&st->client->dev, "error %d disabling vdd\n", ret); 524 } 525 526 static void icp10100_pm_disable(void *data) 527 { 528 struct device *dev = data; 529 530 pm_runtime_disable(dev); 531 } 532 533 static int icp10100_probe(struct i2c_client *client, 534 const struct i2c_device_id *id) 535 { 536 struct iio_dev *indio_dev; 537 struct icp10100_state *st; 538 int ret; 539 540 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 541 dev_err(&client->dev, "plain i2c transactions not supported\n"); 542 return -ENODEV; 543 } 544 545 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st)); 546 if (!indio_dev) 547 return -ENOMEM; 548 549 i2c_set_clientdata(client, indio_dev); 550 indio_dev->name = client->name; 551 indio_dev->modes = INDIO_DIRECT_MODE; 552 indio_dev->channels = icp10100_channels; 553 indio_dev->num_channels = ARRAY_SIZE(icp10100_channels); 554 indio_dev->info = &icp10100_info; 555 556 st = iio_priv(indio_dev); 557 mutex_init(&st->lock); 558 st->client = client; 559 st->mode = ICP10100_MODE_N; 560 561 st->vdd = devm_regulator_get(&client->dev, "vdd"); 562 if (IS_ERR(st->vdd)) 563 return PTR_ERR(st->vdd); 564 565 ret = icp10100_enable_regulator(st); 566 if (ret) 567 return ret; 568 569 ret = devm_add_action_or_reset(&client->dev, 570 icp10100_disable_regulator_action, st); 571 if (ret) 572 return ret; 573 574 /* has to be done before the first i2c communication */ 575 crc8_populate_msb(icp10100_crc8_table, ICP10100_CRC8_POLYNOMIAL); 576 577 ret = icp10100_init_chip(st); 578 if (ret) { 579 dev_err(&client->dev, "init chip error %d\n", ret); 580 return ret; 581 } 582 583 /* enable runtime pm with autosuspend delay of 2s */ 584 pm_runtime_get_noresume(&client->dev); 585 pm_runtime_set_active(&client->dev); 586 pm_runtime_enable(&client->dev); 587 pm_runtime_set_autosuspend_delay(&client->dev, 2000); 588 pm_runtime_use_autosuspend(&client->dev); 589 pm_runtime_put(&client->dev); 590 ret = devm_add_action_or_reset(&client->dev, icp10100_pm_disable, 591 &client->dev); 592 if (ret) 593 return ret; 594 595 return devm_iio_device_register(&client->dev, indio_dev); 596 } 597 598 static int icp10100_suspend(struct device *dev) 599 { 600 struct icp10100_state *st = iio_priv(dev_get_drvdata(dev)); 601 int ret; 602 603 mutex_lock(&st->lock); 604 ret = regulator_disable(st->vdd); 605 mutex_unlock(&st->lock); 606 607 return ret; 608 } 609 610 static int icp10100_resume(struct device *dev) 611 { 612 struct icp10100_state *st = iio_priv(dev_get_drvdata(dev)); 613 int ret; 614 615 mutex_lock(&st->lock); 616 617 ret = icp10100_enable_regulator(st); 618 if (ret) 619 goto out_unlock; 620 621 /* reset chip */ 622 ret = icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0); 623 624 out_unlock: 625 mutex_unlock(&st->lock); 626 return ret; 627 } 628 629 static DEFINE_RUNTIME_DEV_PM_OPS(icp10100_pm, icp10100_suspend, icp10100_resume, 630 NULL); 631 632 static const struct of_device_id icp10100_of_match[] = { 633 { 634 .compatible = "invensense,icp10100", 635 }, 636 { } 637 }; 638 MODULE_DEVICE_TABLE(of, icp10100_of_match); 639 640 static const struct i2c_device_id icp10100_id[] = { 641 { "icp10100", 0 }, 642 { } 643 }; 644 MODULE_DEVICE_TABLE(i2c, icp10100_id); 645 646 static struct i2c_driver icp10100_driver = { 647 .driver = { 648 .name = "icp10100", 649 .pm = pm_ptr(&icp10100_pm), 650 .of_match_table = icp10100_of_match, 651 }, 652 .probe = icp10100_probe, 653 .id_table = icp10100_id, 654 }; 655 module_i2c_driver(icp10100_driver); 656 657 MODULE_AUTHOR("InvenSense, Inc."); 658 MODULE_DESCRIPTION("InvenSense icp10100 driver"); 659 MODULE_LICENSE("GPL"); 660