1 /*
2  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3  * Copyright (c) 2012 Bosch Sensortec GmbH
4  * Copyright (c) 2012 Unixphere AB
5  * Copyright (c) 2014 Intel Corporation
6  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Datasheet:
15  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18  */
19 
20 #define pr_fmt(fmt) "bmp280: " fmt
21 
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35 
36 #include "bmp280.h"
37 
38 /*
39  * These enums are used for indexing into the array of calibration
40  * coefficients for BMP180.
41  */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43 
44 struct bmp180_calib {
45 	s16 AC1;
46 	s16 AC2;
47 	s16 AC3;
48 	u16 AC4;
49 	u16 AC5;
50 	u16 AC6;
51 	s16 B1;
52 	s16 B2;
53 	s16 MB;
54 	s16 MC;
55 	s16 MD;
56 };
57 
58 struct bmp280_data {
59 	struct device *dev;
60 	struct mutex lock;
61 	struct regmap *regmap;
62 	struct completion done;
63 	bool use_eoc;
64 	const struct bmp280_chip_info *chip_info;
65 	struct bmp180_calib calib;
66 	struct regulator *vddd;
67 	struct regulator *vdda;
68 	unsigned int start_up_time; /* in milliseconds */
69 
70 	/* log of base 2 of oversampling rate */
71 	u8 oversampling_press;
72 	u8 oversampling_temp;
73 	u8 oversampling_humid;
74 
75 	/*
76 	 * Carryover value from temperature conversion, used in pressure
77 	 * calculation.
78 	 */
79 	s32 t_fine;
80 };
81 
82 struct bmp280_chip_info {
83 	const int *oversampling_temp_avail;
84 	int num_oversampling_temp_avail;
85 
86 	const int *oversampling_press_avail;
87 	int num_oversampling_press_avail;
88 
89 	const int *oversampling_humid_avail;
90 	int num_oversampling_humid_avail;
91 
92 	int (*chip_config)(struct bmp280_data *);
93 	int (*read_temp)(struct bmp280_data *, int *);
94 	int (*read_press)(struct bmp280_data *, int *, int *);
95 	int (*read_humid)(struct bmp280_data *, int *, int *);
96 };
97 
98 /*
99  * These enums are used for indexing into the array of compensation
100  * parameters for BMP280.
101  */
102 enum { T1, T2, T3 };
103 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
104 
105 static const struct iio_chan_spec bmp280_channels[] = {
106 	{
107 		.type = IIO_PRESSURE,
108 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
109 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
110 	},
111 	{
112 		.type = IIO_TEMP,
113 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
114 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
115 	},
116 	{
117 		.type = IIO_HUMIDITYRELATIVE,
118 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
119 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
120 	},
121 };
122 
123 /*
124  * Returns humidity in percent, resolution is 0.01 percent. Output value of
125  * "47445" represents 47445/1024 = 46.333 %RH.
126  *
127  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
128  */
129 
130 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
131 				      s32 adc_humidity)
132 {
133 	struct device *dev = data->dev;
134 	unsigned int H1, H3, tmp;
135 	int H2, H4, H5, H6, ret, var;
136 
137 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
138 	if (ret < 0) {
139 		dev_err(dev, "failed to read H1 comp value\n");
140 		return ret;
141 	}
142 
143 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
144 	if (ret < 0) {
145 		dev_err(dev, "failed to read H2 comp value\n");
146 		return ret;
147 	}
148 	H2 = sign_extend32(le16_to_cpu(tmp), 15);
149 
150 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
151 	if (ret < 0) {
152 		dev_err(dev, "failed to read H3 comp value\n");
153 		return ret;
154 	}
155 
156 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
157 	if (ret < 0) {
158 		dev_err(dev, "failed to read H4 comp value\n");
159 		return ret;
160 	}
161 	H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
162 			  (be16_to_cpu(tmp) & 0xf), 11);
163 
164 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
165 	if (ret < 0) {
166 		dev_err(dev, "failed to read H5 comp value\n");
167 		return ret;
168 	}
169 	H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
170 
171 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
172 	if (ret < 0) {
173 		dev_err(dev, "failed to read H6 comp value\n");
174 		return ret;
175 	}
176 	H6 = sign_extend32(tmp, 7);
177 
178 	var = ((s32)data->t_fine) - 76800;
179 	var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var)) + 16384) >> 15)
180 		* (((((((var * H6) >> 10) * (((var * H3) >> 11) + 32768)) >> 10)
181 		+ 2097152) * H2 + 8192) >> 14);
182 	var -= ((((var >> 15) * (var >> 15)) >> 7) * H1) >> 4;
183 
184 	return var >> 12;
185 };
186 
187 /*
188  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
189  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
190  * value.
191  *
192  * Taken from datasheet, Section 3.11.3, "Compensation formula".
193  */
194 static s32 bmp280_compensate_temp(struct bmp280_data *data,
195 				  s32 adc_temp)
196 {
197 	int ret;
198 	s32 var1, var2;
199 	__le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
200 
201 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
202 			       buf, BMP280_COMP_TEMP_REG_COUNT);
203 	if (ret < 0) {
204 		dev_err(data->dev,
205 			"failed to read temperature calibration parameters\n");
206 		return ret;
207 	}
208 
209 	/*
210 	 * The double casts are necessary because le16_to_cpu returns an
211 	 * unsigned 16-bit value.  Casting that value directly to a
212 	 * signed 32-bit will not do proper sign extension.
213 	 *
214 	 * Conversely, T1 and P1 are unsigned values, so they can be
215 	 * cast straight to the larger type.
216 	 */
217 	var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
218 		((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
219 	var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
220 		  ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
221 		((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
222 	data->t_fine = var1 + var2;
223 
224 	return (data->t_fine * 5 + 128) >> 8;
225 }
226 
227 /*
228  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
229  * integer bits and 8 fractional bits).  Output value of "24674867"
230  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
231  *
232  * Taken from datasheet, Section 3.11.3, "Compensation formula".
233  */
234 static u32 bmp280_compensate_press(struct bmp280_data *data,
235 				   s32 adc_press)
236 {
237 	int ret;
238 	s64 var1, var2, p;
239 	__le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
240 
241 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
242 			       buf, BMP280_COMP_PRESS_REG_COUNT);
243 	if (ret < 0) {
244 		dev_err(data->dev,
245 			"failed to read pressure calibration parameters\n");
246 		return ret;
247 	}
248 
249 	var1 = ((s64)data->t_fine) - 128000;
250 	var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
251 	var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
252 	var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
253 	var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
254 		((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
255 	var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
256 
257 	if (var1 == 0)
258 		return 0;
259 
260 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
261 	p = div64_s64(p, var1);
262 	var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
263 	var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
264 	p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
265 
266 	return (u32)p;
267 }
268 
269 static int bmp280_read_temp(struct bmp280_data *data,
270 			    int *val)
271 {
272 	int ret;
273 	__be32 tmp = 0;
274 	s32 adc_temp, comp_temp;
275 
276 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
277 			       (u8 *) &tmp, 3);
278 	if (ret < 0) {
279 		dev_err(data->dev, "failed to read temperature\n");
280 		return ret;
281 	}
282 
283 	adc_temp = be32_to_cpu(tmp) >> 12;
284 	comp_temp = bmp280_compensate_temp(data, adc_temp);
285 
286 	/*
287 	 * val might be NULL if we're called by the read_press routine,
288 	 * who only cares about the carry over t_fine value.
289 	 */
290 	if (val) {
291 		*val = comp_temp * 10;
292 		return IIO_VAL_INT;
293 	}
294 
295 	return 0;
296 }
297 
298 static int bmp280_read_press(struct bmp280_data *data,
299 			     int *val, int *val2)
300 {
301 	int ret;
302 	__be32 tmp = 0;
303 	s32 adc_press;
304 	u32 comp_press;
305 
306 	/* Read and compensate temperature so we get a reading of t_fine. */
307 	ret = bmp280_read_temp(data, NULL);
308 	if (ret < 0)
309 		return ret;
310 
311 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
312 			       (u8 *) &tmp, 3);
313 	if (ret < 0) {
314 		dev_err(data->dev, "failed to read pressure\n");
315 		return ret;
316 	}
317 
318 	adc_press = be32_to_cpu(tmp) >> 12;
319 	comp_press = bmp280_compensate_press(data, adc_press);
320 
321 	*val = comp_press;
322 	*val2 = 256000;
323 
324 	return IIO_VAL_FRACTIONAL;
325 }
326 
327 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
328 {
329 	int ret;
330 	__be16 tmp = 0;
331 	s32 adc_humidity;
332 	u32 comp_humidity;
333 
334 	/* Read and compensate temperature so we get a reading of t_fine. */
335 	ret = bmp280_read_temp(data, NULL);
336 	if (ret < 0)
337 		return ret;
338 
339 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
340 			       (u8 *) &tmp, 2);
341 	if (ret < 0) {
342 		dev_err(data->dev, "failed to read humidity\n");
343 		return ret;
344 	}
345 
346 	adc_humidity = be16_to_cpu(tmp);
347 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
348 
349 	*val = comp_humidity;
350 	*val2 = 1024;
351 
352 	return IIO_VAL_FRACTIONAL;
353 }
354 
355 static int bmp280_read_raw(struct iio_dev *indio_dev,
356 			   struct iio_chan_spec const *chan,
357 			   int *val, int *val2, long mask)
358 {
359 	int ret;
360 	struct bmp280_data *data = iio_priv(indio_dev);
361 
362 	pm_runtime_get_sync(data->dev);
363 	mutex_lock(&data->lock);
364 
365 	switch (mask) {
366 	case IIO_CHAN_INFO_PROCESSED:
367 		switch (chan->type) {
368 		case IIO_HUMIDITYRELATIVE:
369 			ret = data->chip_info->read_humid(data, val, val2);
370 			break;
371 		case IIO_PRESSURE:
372 			ret = data->chip_info->read_press(data, val, val2);
373 			break;
374 		case IIO_TEMP:
375 			ret = data->chip_info->read_temp(data, val);
376 			break;
377 		default:
378 			ret = -EINVAL;
379 			break;
380 		}
381 		break;
382 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
383 		switch (chan->type) {
384 		case IIO_HUMIDITYRELATIVE:
385 			*val = 1 << data->oversampling_humid;
386 			ret = IIO_VAL_INT;
387 			break;
388 		case IIO_PRESSURE:
389 			*val = 1 << data->oversampling_press;
390 			ret = IIO_VAL_INT;
391 			break;
392 		case IIO_TEMP:
393 			*val = 1 << data->oversampling_temp;
394 			ret = IIO_VAL_INT;
395 			break;
396 		default:
397 			ret = -EINVAL;
398 			break;
399 		}
400 		break;
401 	default:
402 		ret = -EINVAL;
403 		break;
404 	}
405 
406 	mutex_unlock(&data->lock);
407 	pm_runtime_mark_last_busy(data->dev);
408 	pm_runtime_put_autosuspend(data->dev);
409 
410 	return ret;
411 }
412 
413 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
414 					       int val)
415 {
416 	int i;
417 	const int *avail = data->chip_info->oversampling_humid_avail;
418 	const int n = data->chip_info->num_oversampling_humid_avail;
419 
420 	for (i = 0; i < n; i++) {
421 		if (avail[i] == val) {
422 			data->oversampling_humid = ilog2(val);
423 
424 			return data->chip_info->chip_config(data);
425 		}
426 	}
427 	return -EINVAL;
428 }
429 
430 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
431 					       int val)
432 {
433 	int i;
434 	const int *avail = data->chip_info->oversampling_temp_avail;
435 	const int n = data->chip_info->num_oversampling_temp_avail;
436 
437 	for (i = 0; i < n; i++) {
438 		if (avail[i] == val) {
439 			data->oversampling_temp = ilog2(val);
440 
441 			return data->chip_info->chip_config(data);
442 		}
443 	}
444 	return -EINVAL;
445 }
446 
447 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
448 					       int val)
449 {
450 	int i;
451 	const int *avail = data->chip_info->oversampling_press_avail;
452 	const int n = data->chip_info->num_oversampling_press_avail;
453 
454 	for (i = 0; i < n; i++) {
455 		if (avail[i] == val) {
456 			data->oversampling_press = ilog2(val);
457 
458 			return data->chip_info->chip_config(data);
459 		}
460 	}
461 	return -EINVAL;
462 }
463 
464 static int bmp280_write_raw(struct iio_dev *indio_dev,
465 			    struct iio_chan_spec const *chan,
466 			    int val, int val2, long mask)
467 {
468 	int ret = 0;
469 	struct bmp280_data *data = iio_priv(indio_dev);
470 
471 	switch (mask) {
472 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
473 		pm_runtime_get_sync(data->dev);
474 		mutex_lock(&data->lock);
475 		switch (chan->type) {
476 		case IIO_HUMIDITYRELATIVE:
477 			ret = bmp280_write_oversampling_ratio_humid(data, val);
478 			break;
479 		case IIO_PRESSURE:
480 			ret = bmp280_write_oversampling_ratio_press(data, val);
481 			break;
482 		case IIO_TEMP:
483 			ret = bmp280_write_oversampling_ratio_temp(data, val);
484 			break;
485 		default:
486 			ret = -EINVAL;
487 			break;
488 		}
489 		mutex_unlock(&data->lock);
490 		pm_runtime_mark_last_busy(data->dev);
491 		pm_runtime_put_autosuspend(data->dev);
492 		break;
493 	default:
494 		return -EINVAL;
495 	}
496 
497 	return ret;
498 }
499 
500 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
501 {
502 	size_t len = 0;
503 	int i;
504 
505 	for (i = 0; i < n; i++)
506 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
507 
508 	buf[len - 1] = '\n';
509 
510 	return len;
511 }
512 
513 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
514 				struct device_attribute *attr, char *buf)
515 {
516 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
517 
518 	return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
519 				 data->chip_info->num_oversampling_temp_avail);
520 }
521 
522 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
526 
527 	return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
528 				 data->chip_info->num_oversampling_press_avail);
529 }
530 
531 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
532 	S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
533 
534 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
535 	S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
536 
537 static struct attribute *bmp280_attributes[] = {
538 	&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
539 	&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
540 	NULL,
541 };
542 
543 static const struct attribute_group bmp280_attrs_group = {
544 	.attrs = bmp280_attributes,
545 };
546 
547 static const struct iio_info bmp280_info = {
548 	.driver_module = THIS_MODULE,
549 	.read_raw = &bmp280_read_raw,
550 	.write_raw = &bmp280_write_raw,
551 	.attrs = &bmp280_attrs_group,
552 };
553 
554 static int bmp280_chip_config(struct bmp280_data *data)
555 {
556 	int ret;
557 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
558 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
559 
560 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS,
561 				 BMP280_OSRS_TEMP_MASK |
562 				 BMP280_OSRS_PRESS_MASK |
563 				 BMP280_MODE_MASK,
564 				 osrs | BMP280_MODE_NORMAL);
565 	if (ret < 0) {
566 		dev_err(data->dev,
567 			"failed to write ctrl_meas register\n");
568 		return ret;
569 	}
570 
571 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
572 				 BMP280_FILTER_MASK,
573 				 BMP280_FILTER_4X);
574 	if (ret < 0) {
575 		dev_err(data->dev,
576 			"failed to write config register\n");
577 		return ret;
578 	}
579 
580 	return ret;
581 }
582 
583 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
584 
585 static const struct bmp280_chip_info bmp280_chip_info = {
586 	.oversampling_temp_avail = bmp280_oversampling_avail,
587 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
588 
589 	.oversampling_press_avail = bmp280_oversampling_avail,
590 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
591 
592 	.chip_config = bmp280_chip_config,
593 	.read_temp = bmp280_read_temp,
594 	.read_press = bmp280_read_press,
595 };
596 
597 static int bme280_chip_config(struct bmp280_data *data)
598 {
599 	int ret = bmp280_chip_config(data);
600 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
601 
602 	if (ret < 0)
603 		return ret;
604 
605 	return regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
606 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
607 }
608 
609 static const struct bmp280_chip_info bme280_chip_info = {
610 	.oversampling_temp_avail = bmp280_oversampling_avail,
611 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
612 
613 	.oversampling_press_avail = bmp280_oversampling_avail,
614 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
615 
616 	.oversampling_humid_avail = bmp280_oversampling_avail,
617 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
618 
619 	.chip_config = bme280_chip_config,
620 	.read_temp = bmp280_read_temp,
621 	.read_press = bmp280_read_press,
622 	.read_humid = bmp280_read_humid,
623 };
624 
625 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
626 {
627 	int ret;
628 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
629 	unsigned int delay_us;
630 	unsigned int ctrl;
631 
632 	if (data->use_eoc)
633 		init_completion(&data->done);
634 
635 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
636 	if (ret)
637 		return ret;
638 
639 	if (data->use_eoc) {
640 		/*
641 		 * If we have a completion interrupt, use it, wait up to
642 		 * 100ms. The longest conversion time listed is 76.5 ms for
643 		 * advanced resolution mode.
644 		 */
645 		ret = wait_for_completion_timeout(&data->done,
646 						  1 + msecs_to_jiffies(100));
647 		if (!ret)
648 			dev_err(data->dev, "timeout waiting for completion\n");
649 	} else {
650 		if (ctrl_meas == BMP180_MEAS_TEMP)
651 			delay_us = 4500;
652 		else
653 			delay_us =
654 				conversion_time_max[data->oversampling_press];
655 
656 		usleep_range(delay_us, delay_us + 1000);
657 	}
658 
659 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
660 	if (ret)
661 		return ret;
662 
663 	/* The value of this bit reset to "0" after conversion is complete */
664 	if (ctrl & BMP180_MEAS_SCO)
665 		return -EIO;
666 
667 	return 0;
668 }
669 
670 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
671 {
672 	int ret;
673 	__be16 tmp = 0;
674 
675 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
676 	if (ret)
677 		return ret;
678 
679 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
680 	if (ret)
681 		return ret;
682 
683 	*val = be16_to_cpu(tmp);
684 
685 	return 0;
686 }
687 
688 static int bmp180_read_calib(struct bmp280_data *data,
689 			     struct bmp180_calib *calib)
690 {
691 	int ret;
692 	int i;
693 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
694 
695 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
696 			       sizeof(buf));
697 
698 	if (ret < 0)
699 		return ret;
700 
701 	/* None of the words has the value 0 or 0xFFFF */
702 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
703 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
704 			return -EIO;
705 	}
706 
707 	/* Toss the calibration data into the entropy pool */
708 	add_device_randomness(buf, sizeof(buf));
709 
710 	calib->AC1 = be16_to_cpu(buf[AC1]);
711 	calib->AC2 = be16_to_cpu(buf[AC2]);
712 	calib->AC3 = be16_to_cpu(buf[AC3]);
713 	calib->AC4 = be16_to_cpu(buf[AC4]);
714 	calib->AC5 = be16_to_cpu(buf[AC5]);
715 	calib->AC6 = be16_to_cpu(buf[AC6]);
716 	calib->B1 = be16_to_cpu(buf[B1]);
717 	calib->B2 = be16_to_cpu(buf[B2]);
718 	calib->MB = be16_to_cpu(buf[MB]);
719 	calib->MC = be16_to_cpu(buf[MC]);
720 	calib->MD = be16_to_cpu(buf[MD]);
721 
722 	return 0;
723 }
724 
725 /*
726  * Returns temperature in DegC, resolution is 0.1 DegC.
727  * t_fine carries fine temperature as global value.
728  *
729  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
730  */
731 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
732 {
733 	s32 x1, x2;
734 	struct bmp180_calib *calib = &data->calib;
735 
736 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
737 	x2 = (calib->MC << 11) / (x1 + calib->MD);
738 	data->t_fine = x1 + x2;
739 
740 	return (data->t_fine + 8) >> 4;
741 }
742 
743 static int bmp180_read_temp(struct bmp280_data *data, int *val)
744 {
745 	int ret;
746 	s32 adc_temp, comp_temp;
747 
748 	ret = bmp180_read_adc_temp(data, &adc_temp);
749 	if (ret)
750 		return ret;
751 
752 	comp_temp = bmp180_compensate_temp(data, adc_temp);
753 
754 	/*
755 	 * val might be NULL if we're called by the read_press routine,
756 	 * who only cares about the carry over t_fine value.
757 	 */
758 	if (val) {
759 		*val = comp_temp * 100;
760 		return IIO_VAL_INT;
761 	}
762 
763 	return 0;
764 }
765 
766 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
767 {
768 	int ret;
769 	__be32 tmp = 0;
770 	u8 oss = data->oversampling_press;
771 
772 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
773 	if (ret)
774 		return ret;
775 
776 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
777 	if (ret)
778 		return ret;
779 
780 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
781 
782 	return 0;
783 }
784 
785 /*
786  * Returns pressure in Pa, resolution is 1 Pa.
787  *
788  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
789  */
790 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
791 {
792 	s32 x1, x2, x3, p;
793 	s32 b3, b6;
794 	u32 b4, b7;
795 	s32 oss = data->oversampling_press;
796 	struct bmp180_calib *calib = &data->calib;
797 
798 	b6 = data->t_fine - 4000;
799 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
800 	x2 = calib->AC2 * b6 >> 11;
801 	x3 = x1 + x2;
802 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
803 	x1 = calib->AC3 * b6 >> 13;
804 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
805 	x3 = (x1 + x2 + 2) >> 2;
806 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
807 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
808 	if (b7 < 0x80000000)
809 		p = (b7 * 2) / b4;
810 	else
811 		p = (b7 / b4) * 2;
812 
813 	x1 = (p >> 8) * (p >> 8);
814 	x1 = (x1 * 3038) >> 16;
815 	x2 = (-7357 * p) >> 16;
816 
817 	return p + ((x1 + x2 + 3791) >> 4);
818 }
819 
820 static int bmp180_read_press(struct bmp280_data *data,
821 			     int *val, int *val2)
822 {
823 	int ret;
824 	s32 adc_press;
825 	u32 comp_press;
826 
827 	/* Read and compensate temperature so we get a reading of t_fine. */
828 	ret = bmp180_read_temp(data, NULL);
829 	if (ret)
830 		return ret;
831 
832 	ret = bmp180_read_adc_press(data, &adc_press);
833 	if (ret)
834 		return ret;
835 
836 	comp_press = bmp180_compensate_press(data, adc_press);
837 
838 	*val = comp_press;
839 	*val2 = 1000;
840 
841 	return IIO_VAL_FRACTIONAL;
842 }
843 
844 static int bmp180_chip_config(struct bmp280_data *data)
845 {
846 	return 0;
847 }
848 
849 static const int bmp180_oversampling_temp_avail[] = { 1 };
850 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
851 
852 static const struct bmp280_chip_info bmp180_chip_info = {
853 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
854 	.num_oversampling_temp_avail =
855 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
856 
857 	.oversampling_press_avail = bmp180_oversampling_press_avail,
858 	.num_oversampling_press_avail =
859 		ARRAY_SIZE(bmp180_oversampling_press_avail),
860 
861 	.chip_config = bmp180_chip_config,
862 	.read_temp = bmp180_read_temp,
863 	.read_press = bmp180_read_press,
864 };
865 
866 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
867 {
868 	struct bmp280_data *data = d;
869 
870 	complete(&data->done);
871 
872 	return IRQ_HANDLED;
873 }
874 
875 static int bmp085_fetch_eoc_irq(struct device *dev,
876 				const char *name,
877 				int irq,
878 				struct bmp280_data *data)
879 {
880 	unsigned long irq_trig;
881 	int ret;
882 
883 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
884 	if (irq_trig != IRQF_TRIGGER_RISING) {
885 		dev_err(dev, "non-rising trigger given for EOC interrupt, "
886 			"trying to enforce it\n");
887 		irq_trig = IRQF_TRIGGER_RISING;
888 	}
889 	ret = devm_request_threaded_irq(dev,
890 			irq,
891 			bmp085_eoc_irq,
892 			NULL,
893 			irq_trig,
894 			name,
895 			data);
896 	if (ret) {
897 		/* Bail out without IRQ but keep the driver in place */
898 		dev_err(dev, "unable to request DRDY IRQ\n");
899 		return 0;
900 	}
901 
902 	data->use_eoc = true;
903 	return 0;
904 }
905 
906 int bmp280_common_probe(struct device *dev,
907 			struct regmap *regmap,
908 			unsigned int chip,
909 			const char *name,
910 			int irq)
911 {
912 	int ret;
913 	struct iio_dev *indio_dev;
914 	struct bmp280_data *data;
915 	unsigned int chip_id;
916 	struct gpio_desc *gpiod;
917 
918 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
919 	if (!indio_dev)
920 		return -ENOMEM;
921 
922 	data = iio_priv(indio_dev);
923 	mutex_init(&data->lock);
924 	data->dev = dev;
925 
926 	indio_dev->dev.parent = dev;
927 	indio_dev->name = name;
928 	indio_dev->channels = bmp280_channels;
929 	indio_dev->info = &bmp280_info;
930 	indio_dev->modes = INDIO_DIRECT_MODE;
931 
932 	switch (chip) {
933 	case BMP180_CHIP_ID:
934 		indio_dev->num_channels = 2;
935 		data->chip_info = &bmp180_chip_info;
936 		data->oversampling_press = ilog2(8);
937 		data->oversampling_temp = ilog2(1);
938 		data->start_up_time = 10;
939 		break;
940 	case BMP280_CHIP_ID:
941 		indio_dev->num_channels = 2;
942 		data->chip_info = &bmp280_chip_info;
943 		data->oversampling_press = ilog2(16);
944 		data->oversampling_temp = ilog2(2);
945 		data->start_up_time = 2;
946 		break;
947 	case BME280_CHIP_ID:
948 		indio_dev->num_channels = 3;
949 		data->chip_info = &bme280_chip_info;
950 		data->oversampling_press = ilog2(16);
951 		data->oversampling_humid = ilog2(16);
952 		data->oversampling_temp = ilog2(2);
953 		data->start_up_time = 2;
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	/* Bring up regulators */
960 	data->vddd = devm_regulator_get(dev, "vddd");
961 	if (IS_ERR(data->vddd)) {
962 		dev_err(dev, "failed to get VDDD regulator\n");
963 		return PTR_ERR(data->vddd);
964 	}
965 	ret = regulator_enable(data->vddd);
966 	if (ret) {
967 		dev_err(dev, "failed to enable VDDD regulator\n");
968 		return ret;
969 	}
970 	data->vdda = devm_regulator_get(dev, "vdda");
971 	if (IS_ERR(data->vdda)) {
972 		dev_err(dev, "failed to get VDDA regulator\n");
973 		ret = PTR_ERR(data->vdda);
974 		goto out_disable_vddd;
975 	}
976 	ret = regulator_enable(data->vdda);
977 	if (ret) {
978 		dev_err(dev, "failed to enable VDDA regulator\n");
979 		goto out_disable_vddd;
980 	}
981 	/* Wait to make sure we started up properly */
982 	mdelay(data->start_up_time);
983 
984 	/* Bring chip out of reset if there is an assigned GPIO line */
985 	gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
986 	/* Deassert the signal */
987 	if (!IS_ERR(gpiod)) {
988 		dev_info(dev, "release reset\n");
989 		gpiod_set_value(gpiod, 0);
990 	}
991 
992 	data->regmap = regmap;
993 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
994 	if (ret < 0)
995 		goto out_disable_vdda;
996 	if (chip_id != chip) {
997 		dev_err(dev, "bad chip id: expected %x got %x\n",
998 			chip, chip_id);
999 		ret = -EINVAL;
1000 		goto out_disable_vdda;
1001 	}
1002 
1003 	ret = data->chip_info->chip_config(data);
1004 	if (ret < 0)
1005 		goto out_disable_vdda;
1006 
1007 	dev_set_drvdata(dev, indio_dev);
1008 
1009 	/*
1010 	 * The BMP085 and BMP180 has calibration in an E2PROM, read it out
1011 	 * at probe time. It will not change.
1012 	 */
1013 	if (chip_id  == BMP180_CHIP_ID) {
1014 		ret = bmp180_read_calib(data, &data->calib);
1015 		if (ret < 0) {
1016 			dev_err(data->dev,
1017 				"failed to read calibration coefficients\n");
1018 			goto out_disable_vdda;
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1024 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1025 	 * so we look for an IRQ if we have that.
1026 	 */
1027 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1028 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1029 		if (ret)
1030 			goto out_disable_vdda;
1031 	}
1032 
1033 	/* Enable runtime PM */
1034 	pm_runtime_get_noresume(dev);
1035 	pm_runtime_set_active(dev);
1036 	pm_runtime_enable(dev);
1037 	/*
1038 	 * Set autosuspend to two orders of magnitude larger than the
1039 	 * start-up time.
1040 	 */
1041 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time *100);
1042 	pm_runtime_use_autosuspend(dev);
1043 	pm_runtime_put(dev);
1044 
1045 	ret = iio_device_register(indio_dev);
1046 	if (ret)
1047 		goto out_runtime_pm_disable;
1048 
1049 
1050 	return 0;
1051 
1052 out_runtime_pm_disable:
1053 	pm_runtime_get_sync(data->dev);
1054 	pm_runtime_put_noidle(data->dev);
1055 	pm_runtime_disable(data->dev);
1056 out_disable_vdda:
1057 	regulator_disable(data->vdda);
1058 out_disable_vddd:
1059 	regulator_disable(data->vddd);
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL(bmp280_common_probe);
1063 
1064 int bmp280_common_remove(struct device *dev)
1065 {
1066 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1067 	struct bmp280_data *data = iio_priv(indio_dev);
1068 
1069 	iio_device_unregister(indio_dev);
1070 	pm_runtime_get_sync(data->dev);
1071 	pm_runtime_put_noidle(data->dev);
1072 	pm_runtime_disable(data->dev);
1073 	regulator_disable(data->vdda);
1074 	regulator_disable(data->vddd);
1075 	return 0;
1076 }
1077 EXPORT_SYMBOL(bmp280_common_remove);
1078 
1079 #ifdef CONFIG_PM
1080 static int bmp280_runtime_suspend(struct device *dev)
1081 {
1082 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1083 	struct bmp280_data *data = iio_priv(indio_dev);
1084 	int ret;
1085 
1086 	ret = regulator_disable(data->vdda);
1087 	if (ret)
1088 		return ret;
1089 	return regulator_disable(data->vddd);
1090 }
1091 
1092 static int bmp280_runtime_resume(struct device *dev)
1093 {
1094 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1095 	struct bmp280_data *data = iio_priv(indio_dev);
1096 	int ret;
1097 
1098 	ret = regulator_enable(data->vddd);
1099 	if (ret)
1100 		return ret;
1101 	ret = regulator_enable(data->vdda);
1102 	if (ret)
1103 		return ret;
1104 	msleep(data->start_up_time);
1105 	return data->chip_info->chip_config(data);
1106 }
1107 #endif /* CONFIG_PM */
1108 
1109 const struct dev_pm_ops bmp280_dev_pm_ops = {
1110 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1111 				pm_runtime_force_resume)
1112 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1113 			   bmp280_runtime_resume, NULL)
1114 };
1115 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1116 
1117 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1118 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1119 MODULE_LICENSE("GPL v2");
1120