1 /*
2  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3  * Copyright (c) 2012 Bosch Sensortec GmbH
4  * Copyright (c) 2012 Unixphere AB
5  * Copyright (c) 2014 Intel Corporation
6  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Datasheet:
15  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18  */
19 
20 #define pr_fmt(fmt) "bmp280: " fmt
21 
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35 
36 #include "bmp280.h"
37 
38 /*
39  * These enums are used for indexing into the array of calibration
40  * coefficients for BMP180.
41  */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43 
44 struct bmp180_calib {
45 	s16 AC1;
46 	s16 AC2;
47 	s16 AC3;
48 	u16 AC4;
49 	u16 AC5;
50 	u16 AC6;
51 	s16 B1;
52 	s16 B2;
53 	s16 MB;
54 	s16 MC;
55 	s16 MD;
56 };
57 
58 /* See datasheet Section 4.2.2. */
59 struct bmp280_calib {
60 	u16 T1;
61 	s16 T2;
62 	s16 T3;
63 	u16 P1;
64 	s16 P2;
65 	s16 P3;
66 	s16 P4;
67 	s16 P5;
68 	s16 P6;
69 	s16 P7;
70 	s16 P8;
71 	s16 P9;
72 	u8  H1;
73 	s16 H2;
74 	u8  H3;
75 	s16 H4;
76 	s16 H5;
77 	s8  H6;
78 };
79 
80 struct bmp280_data {
81 	struct device *dev;
82 	struct mutex lock;
83 	struct regmap *regmap;
84 	struct completion done;
85 	bool use_eoc;
86 	const struct bmp280_chip_info *chip_info;
87 	union {
88 		struct bmp180_calib bmp180;
89 		struct bmp280_calib bmp280;
90 	} calib;
91 	struct regulator *vddd;
92 	struct regulator *vdda;
93 	unsigned int start_up_time; /* in microseconds */
94 
95 	/* log of base 2 of oversampling rate */
96 	u8 oversampling_press;
97 	u8 oversampling_temp;
98 	u8 oversampling_humid;
99 
100 	/*
101 	 * Carryover value from temperature conversion, used in pressure
102 	 * calculation.
103 	 */
104 	s32 t_fine;
105 };
106 
107 struct bmp280_chip_info {
108 	const int *oversampling_temp_avail;
109 	int num_oversampling_temp_avail;
110 
111 	const int *oversampling_press_avail;
112 	int num_oversampling_press_avail;
113 
114 	const int *oversampling_humid_avail;
115 	int num_oversampling_humid_avail;
116 
117 	int (*chip_config)(struct bmp280_data *);
118 	int (*read_temp)(struct bmp280_data *, int *);
119 	int (*read_press)(struct bmp280_data *, int *, int *);
120 	int (*read_humid)(struct bmp280_data *, int *, int *);
121 };
122 
123 /*
124  * These enums are used for indexing into the array of compensation
125  * parameters for BMP280.
126  */
127 enum { T1, T2, T3 };
128 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
129 
130 static const struct iio_chan_spec bmp280_channels[] = {
131 	{
132 		.type = IIO_PRESSURE,
133 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
134 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
135 	},
136 	{
137 		.type = IIO_TEMP,
138 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
139 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
140 	},
141 	{
142 		.type = IIO_HUMIDITYRELATIVE,
143 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
144 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
145 	},
146 };
147 
148 static int bmp280_read_calib(struct bmp280_data *data,
149 			     struct bmp280_calib *calib,
150 			     unsigned int chip)
151 {
152 	int ret;
153 	unsigned int tmp;
154 	struct device *dev = data->dev;
155 	__le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
156 	__le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
157 
158 	/* Read temperature calibration values. */
159 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
160 			       t_buf, BMP280_COMP_TEMP_REG_COUNT);
161 	if (ret < 0) {
162 		dev_err(data->dev,
163 			"failed to read temperature calibration parameters\n");
164 		return ret;
165 	}
166 
167 	calib->T1 = le16_to_cpu(t_buf[T1]);
168 	calib->T2 = le16_to_cpu(t_buf[T2]);
169 	calib->T3 = le16_to_cpu(t_buf[T3]);
170 
171 	/* Read pressure calibration values. */
172 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
173 			       p_buf, BMP280_COMP_PRESS_REG_COUNT);
174 	if (ret < 0) {
175 		dev_err(data->dev,
176 			"failed to read pressure calibration parameters\n");
177 		return ret;
178 	}
179 
180 	calib->P1 = le16_to_cpu(p_buf[P1]);
181 	calib->P2 = le16_to_cpu(p_buf[P2]);
182 	calib->P3 = le16_to_cpu(p_buf[P3]);
183 	calib->P4 = le16_to_cpu(p_buf[P4]);
184 	calib->P5 = le16_to_cpu(p_buf[P5]);
185 	calib->P6 = le16_to_cpu(p_buf[P6]);
186 	calib->P7 = le16_to_cpu(p_buf[P7]);
187 	calib->P8 = le16_to_cpu(p_buf[P8]);
188 	calib->P9 = le16_to_cpu(p_buf[P9]);
189 
190 	/*
191 	 * Read humidity calibration values.
192 	 * Due to some odd register addressing we cannot just
193 	 * do a big bulk read. Instead, we have to read each Hx
194 	 * value separately and sometimes do some bit shifting...
195 	 * Humidity data is only available on BME280.
196 	 */
197 	if (chip != BME280_CHIP_ID)
198 		return 0;
199 
200 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
201 	if (ret < 0) {
202 		dev_err(dev, "failed to read H1 comp value\n");
203 		return ret;
204 	}
205 	calib->H1 = tmp;
206 
207 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
208 	if (ret < 0) {
209 		dev_err(dev, "failed to read H2 comp value\n");
210 		return ret;
211 	}
212 	calib->H2 = sign_extend32(le16_to_cpu(tmp), 15);
213 
214 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
215 	if (ret < 0) {
216 		dev_err(dev, "failed to read H3 comp value\n");
217 		return ret;
218 	}
219 	calib->H3 = tmp;
220 
221 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
222 	if (ret < 0) {
223 		dev_err(dev, "failed to read H4 comp value\n");
224 		return ret;
225 	}
226 	calib->H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
227 				  (be16_to_cpu(tmp) & 0xf), 11);
228 
229 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
230 	if (ret < 0) {
231 		dev_err(dev, "failed to read H5 comp value\n");
232 		return ret;
233 	}
234 	calib->H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
235 
236 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
237 	if (ret < 0) {
238 		dev_err(dev, "failed to read H6 comp value\n");
239 		return ret;
240 	}
241 	calib->H6 = sign_extend32(tmp, 7);
242 
243 	return 0;
244 }
245 /*
246  * Returns humidity in percent, resolution is 0.01 percent. Output value of
247  * "47445" represents 47445/1024 = 46.333 %RH.
248  *
249  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
250  */
251 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
252 				      s32 adc_humidity)
253 {
254 	s32 var;
255 	struct bmp280_calib *calib = &data->calib.bmp280;
256 
257 	var = ((s32)data->t_fine) - (s32)76800;
258 	var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
259 		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
260 		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
261 		+ (s32)2097152) * calib->H2 + 8192) >> 14);
262 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
263 
264 	return var >> 12;
265 };
266 
267 /*
268  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
269  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
270  * value.
271  *
272  * Taken from datasheet, Section 3.11.3, "Compensation formula".
273  */
274 static s32 bmp280_compensate_temp(struct bmp280_data *data,
275 				  s32 adc_temp)
276 {
277 	s32 var1, var2;
278 	struct bmp280_calib *calib = &data->calib.bmp280;
279 
280 	var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
281 		((s32)calib->T2)) >> 11;
282 	var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
283 		  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
284 		((s32)calib->T3)) >> 14;
285 	data->t_fine = var1 + var2;
286 
287 	return (data->t_fine * 5 + 128) >> 8;
288 }
289 
290 /*
291  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
292  * integer bits and 8 fractional bits).  Output value of "24674867"
293  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
294  *
295  * Taken from datasheet, Section 3.11.3, "Compensation formula".
296  */
297 static u32 bmp280_compensate_press(struct bmp280_data *data,
298 				   s32 adc_press)
299 {
300 	s64 var1, var2, p;
301 	struct bmp280_calib *calib = &data->calib.bmp280;
302 
303 	var1 = ((s64)data->t_fine) - 128000;
304 	var2 = var1 * var1 * (s64)calib->P6;
305 	var2 += (var1 * (s64)calib->P5) << 17;
306 	var2 += ((s64)calib->P4) << 35;
307 	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
308 		((var1 * (s64)calib->P2) << 12);
309 	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
310 
311 	if (var1 == 0)
312 		return 0;
313 
314 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
315 	p = div64_s64(p, var1);
316 	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
317 	var2 = ((s64)(calib->P8) * p) >> 19;
318 	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
319 
320 	return (u32)p;
321 }
322 
323 static int bmp280_read_temp(struct bmp280_data *data,
324 			    int *val)
325 {
326 	int ret;
327 	__be32 tmp = 0;
328 	s32 adc_temp, comp_temp;
329 
330 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
331 			       (u8 *) &tmp, 3);
332 	if (ret < 0) {
333 		dev_err(data->dev, "failed to read temperature\n");
334 		return ret;
335 	}
336 
337 	adc_temp = be32_to_cpu(tmp) >> 12;
338 	if (adc_temp == BMP280_TEMP_SKIPPED) {
339 		/* reading was skipped */
340 		dev_err(data->dev, "reading temperature skipped\n");
341 		return -EIO;
342 	}
343 	comp_temp = bmp280_compensate_temp(data, adc_temp);
344 
345 	/*
346 	 * val might be NULL if we're called by the read_press routine,
347 	 * who only cares about the carry over t_fine value.
348 	 */
349 	if (val) {
350 		*val = comp_temp * 10;
351 		return IIO_VAL_INT;
352 	}
353 
354 	return 0;
355 }
356 
357 static int bmp280_read_press(struct bmp280_data *data,
358 			     int *val, int *val2)
359 {
360 	int ret;
361 	__be32 tmp = 0;
362 	s32 adc_press;
363 	u32 comp_press;
364 
365 	/* Read and compensate temperature so we get a reading of t_fine. */
366 	ret = bmp280_read_temp(data, NULL);
367 	if (ret < 0)
368 		return ret;
369 
370 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
371 			       (u8 *) &tmp, 3);
372 	if (ret < 0) {
373 		dev_err(data->dev, "failed to read pressure\n");
374 		return ret;
375 	}
376 
377 	adc_press = be32_to_cpu(tmp) >> 12;
378 	if (adc_press == BMP280_PRESS_SKIPPED) {
379 		/* reading was skipped */
380 		dev_err(data->dev, "reading pressure skipped\n");
381 		return -EIO;
382 	}
383 	comp_press = bmp280_compensate_press(data, adc_press);
384 
385 	*val = comp_press;
386 	*val2 = 256000;
387 
388 	return IIO_VAL_FRACTIONAL;
389 }
390 
391 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
392 {
393 	int ret;
394 	__be16 tmp = 0;
395 	s32 adc_humidity;
396 	u32 comp_humidity;
397 
398 	/* Read and compensate temperature so we get a reading of t_fine. */
399 	ret = bmp280_read_temp(data, NULL);
400 	if (ret < 0)
401 		return ret;
402 
403 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
404 			       (u8 *) &tmp, 2);
405 	if (ret < 0) {
406 		dev_err(data->dev, "failed to read humidity\n");
407 		return ret;
408 	}
409 
410 	adc_humidity = be16_to_cpu(tmp);
411 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
412 		/* reading was skipped */
413 		dev_err(data->dev, "reading humidity skipped\n");
414 		return -EIO;
415 	}
416 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
417 
418 	*val = comp_humidity * 1000 / 1024;
419 
420 	return IIO_VAL_INT;
421 }
422 
423 static int bmp280_read_raw(struct iio_dev *indio_dev,
424 			   struct iio_chan_spec const *chan,
425 			   int *val, int *val2, long mask)
426 {
427 	int ret;
428 	struct bmp280_data *data = iio_priv(indio_dev);
429 
430 	pm_runtime_get_sync(data->dev);
431 	mutex_lock(&data->lock);
432 
433 	switch (mask) {
434 	case IIO_CHAN_INFO_PROCESSED:
435 		switch (chan->type) {
436 		case IIO_HUMIDITYRELATIVE:
437 			ret = data->chip_info->read_humid(data, val, val2);
438 			break;
439 		case IIO_PRESSURE:
440 			ret = data->chip_info->read_press(data, val, val2);
441 			break;
442 		case IIO_TEMP:
443 			ret = data->chip_info->read_temp(data, val);
444 			break;
445 		default:
446 			ret = -EINVAL;
447 			break;
448 		}
449 		break;
450 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
451 		switch (chan->type) {
452 		case IIO_HUMIDITYRELATIVE:
453 			*val = 1 << data->oversampling_humid;
454 			ret = IIO_VAL_INT;
455 			break;
456 		case IIO_PRESSURE:
457 			*val = 1 << data->oversampling_press;
458 			ret = IIO_VAL_INT;
459 			break;
460 		case IIO_TEMP:
461 			*val = 1 << data->oversampling_temp;
462 			ret = IIO_VAL_INT;
463 			break;
464 		default:
465 			ret = -EINVAL;
466 			break;
467 		}
468 		break;
469 	default:
470 		ret = -EINVAL;
471 		break;
472 	}
473 
474 	mutex_unlock(&data->lock);
475 	pm_runtime_mark_last_busy(data->dev);
476 	pm_runtime_put_autosuspend(data->dev);
477 
478 	return ret;
479 }
480 
481 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
482 					       int val)
483 {
484 	int i;
485 	const int *avail = data->chip_info->oversampling_humid_avail;
486 	const int n = data->chip_info->num_oversampling_humid_avail;
487 
488 	for (i = 0; i < n; i++) {
489 		if (avail[i] == val) {
490 			data->oversampling_humid = ilog2(val);
491 
492 			return data->chip_info->chip_config(data);
493 		}
494 	}
495 	return -EINVAL;
496 }
497 
498 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
499 					       int val)
500 {
501 	int i;
502 	const int *avail = data->chip_info->oversampling_temp_avail;
503 	const int n = data->chip_info->num_oversampling_temp_avail;
504 
505 	for (i = 0; i < n; i++) {
506 		if (avail[i] == val) {
507 			data->oversampling_temp = ilog2(val);
508 
509 			return data->chip_info->chip_config(data);
510 		}
511 	}
512 	return -EINVAL;
513 }
514 
515 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
516 					       int val)
517 {
518 	int i;
519 	const int *avail = data->chip_info->oversampling_press_avail;
520 	const int n = data->chip_info->num_oversampling_press_avail;
521 
522 	for (i = 0; i < n; i++) {
523 		if (avail[i] == val) {
524 			data->oversampling_press = ilog2(val);
525 
526 			return data->chip_info->chip_config(data);
527 		}
528 	}
529 	return -EINVAL;
530 }
531 
532 static int bmp280_write_raw(struct iio_dev *indio_dev,
533 			    struct iio_chan_spec const *chan,
534 			    int val, int val2, long mask)
535 {
536 	int ret = 0;
537 	struct bmp280_data *data = iio_priv(indio_dev);
538 
539 	switch (mask) {
540 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
541 		pm_runtime_get_sync(data->dev);
542 		mutex_lock(&data->lock);
543 		switch (chan->type) {
544 		case IIO_HUMIDITYRELATIVE:
545 			ret = bmp280_write_oversampling_ratio_humid(data, val);
546 			break;
547 		case IIO_PRESSURE:
548 			ret = bmp280_write_oversampling_ratio_press(data, val);
549 			break;
550 		case IIO_TEMP:
551 			ret = bmp280_write_oversampling_ratio_temp(data, val);
552 			break;
553 		default:
554 			ret = -EINVAL;
555 			break;
556 		}
557 		mutex_unlock(&data->lock);
558 		pm_runtime_mark_last_busy(data->dev);
559 		pm_runtime_put_autosuspend(data->dev);
560 		break;
561 	default:
562 		return -EINVAL;
563 	}
564 
565 	return ret;
566 }
567 
568 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
569 {
570 	size_t len = 0;
571 	int i;
572 
573 	for (i = 0; i < n; i++)
574 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
575 
576 	buf[len - 1] = '\n';
577 
578 	return len;
579 }
580 
581 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
582 				struct device_attribute *attr, char *buf)
583 {
584 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
585 
586 	return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
587 				 data->chip_info->num_oversampling_temp_avail);
588 }
589 
590 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
591 				struct device_attribute *attr, char *buf)
592 {
593 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
594 
595 	return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
596 				 data->chip_info->num_oversampling_press_avail);
597 }
598 
599 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
600 	S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
601 
602 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
603 	S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
604 
605 static struct attribute *bmp280_attributes[] = {
606 	&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
607 	&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
608 	NULL,
609 };
610 
611 static const struct attribute_group bmp280_attrs_group = {
612 	.attrs = bmp280_attributes,
613 };
614 
615 static const struct iio_info bmp280_info = {
616 	.read_raw = &bmp280_read_raw,
617 	.write_raw = &bmp280_write_raw,
618 	.attrs = &bmp280_attrs_group,
619 };
620 
621 static int bmp280_chip_config(struct bmp280_data *data)
622 {
623 	int ret;
624 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
625 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
626 
627 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
628 				 BMP280_OSRS_TEMP_MASK |
629 				 BMP280_OSRS_PRESS_MASK |
630 				 BMP280_MODE_MASK,
631 				 osrs | BMP280_MODE_NORMAL);
632 	if (ret < 0) {
633 		dev_err(data->dev,
634 			"failed to write ctrl_meas register\n");
635 		return ret;
636 	}
637 
638 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
639 				 BMP280_FILTER_MASK,
640 				 BMP280_FILTER_4X);
641 	if (ret < 0) {
642 		dev_err(data->dev,
643 			"failed to write config register\n");
644 		return ret;
645 	}
646 
647 	return ret;
648 }
649 
650 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
651 
652 static const struct bmp280_chip_info bmp280_chip_info = {
653 	.oversampling_temp_avail = bmp280_oversampling_avail,
654 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
655 
656 	.oversampling_press_avail = bmp280_oversampling_avail,
657 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
658 
659 	.chip_config = bmp280_chip_config,
660 	.read_temp = bmp280_read_temp,
661 	.read_press = bmp280_read_press,
662 };
663 
664 static int bme280_chip_config(struct bmp280_data *data)
665 {
666 	int ret;
667 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
668 
669 	/*
670 	 * Oversampling of humidity must be set before oversampling of
671 	 * temperature/pressure is set to become effective.
672 	 */
673 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
674 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
675 
676 	if (ret < 0)
677 		return ret;
678 
679 	return bmp280_chip_config(data);
680 }
681 
682 static const struct bmp280_chip_info bme280_chip_info = {
683 	.oversampling_temp_avail = bmp280_oversampling_avail,
684 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
685 
686 	.oversampling_press_avail = bmp280_oversampling_avail,
687 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
688 
689 	.oversampling_humid_avail = bmp280_oversampling_avail,
690 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
691 
692 	.chip_config = bme280_chip_config,
693 	.read_temp = bmp280_read_temp,
694 	.read_press = bmp280_read_press,
695 	.read_humid = bmp280_read_humid,
696 };
697 
698 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
699 {
700 	int ret;
701 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
702 	unsigned int delay_us;
703 	unsigned int ctrl;
704 
705 	if (data->use_eoc)
706 		init_completion(&data->done);
707 
708 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
709 	if (ret)
710 		return ret;
711 
712 	if (data->use_eoc) {
713 		/*
714 		 * If we have a completion interrupt, use it, wait up to
715 		 * 100ms. The longest conversion time listed is 76.5 ms for
716 		 * advanced resolution mode.
717 		 */
718 		ret = wait_for_completion_timeout(&data->done,
719 						  1 + msecs_to_jiffies(100));
720 		if (!ret)
721 			dev_err(data->dev, "timeout waiting for completion\n");
722 	} else {
723 		if (ctrl_meas == BMP180_MEAS_TEMP)
724 			delay_us = 4500;
725 		else
726 			delay_us =
727 				conversion_time_max[data->oversampling_press];
728 
729 		usleep_range(delay_us, delay_us + 1000);
730 	}
731 
732 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
733 	if (ret)
734 		return ret;
735 
736 	/* The value of this bit reset to "0" after conversion is complete */
737 	if (ctrl & BMP180_MEAS_SCO)
738 		return -EIO;
739 
740 	return 0;
741 }
742 
743 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
744 {
745 	int ret;
746 	__be16 tmp = 0;
747 
748 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
749 	if (ret)
750 		return ret;
751 
752 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
753 	if (ret)
754 		return ret;
755 
756 	*val = be16_to_cpu(tmp);
757 
758 	return 0;
759 }
760 
761 static int bmp180_read_calib(struct bmp280_data *data,
762 			     struct bmp180_calib *calib)
763 {
764 	int ret;
765 	int i;
766 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
767 
768 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
769 			       sizeof(buf));
770 
771 	if (ret < 0)
772 		return ret;
773 
774 	/* None of the words has the value 0 or 0xFFFF */
775 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
776 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
777 			return -EIO;
778 	}
779 
780 	/* Toss the calibration data into the entropy pool */
781 	add_device_randomness(buf, sizeof(buf));
782 
783 	calib->AC1 = be16_to_cpu(buf[AC1]);
784 	calib->AC2 = be16_to_cpu(buf[AC2]);
785 	calib->AC3 = be16_to_cpu(buf[AC3]);
786 	calib->AC4 = be16_to_cpu(buf[AC4]);
787 	calib->AC5 = be16_to_cpu(buf[AC5]);
788 	calib->AC6 = be16_to_cpu(buf[AC6]);
789 	calib->B1 = be16_to_cpu(buf[B1]);
790 	calib->B2 = be16_to_cpu(buf[B2]);
791 	calib->MB = be16_to_cpu(buf[MB]);
792 	calib->MC = be16_to_cpu(buf[MC]);
793 	calib->MD = be16_to_cpu(buf[MD]);
794 
795 	return 0;
796 }
797 
798 /*
799  * Returns temperature in DegC, resolution is 0.1 DegC.
800  * t_fine carries fine temperature as global value.
801  *
802  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
803  */
804 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
805 {
806 	s32 x1, x2;
807 	struct bmp180_calib *calib = &data->calib.bmp180;
808 
809 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
810 	x2 = (calib->MC << 11) / (x1 + calib->MD);
811 	data->t_fine = x1 + x2;
812 
813 	return (data->t_fine + 8) >> 4;
814 }
815 
816 static int bmp180_read_temp(struct bmp280_data *data, int *val)
817 {
818 	int ret;
819 	s32 adc_temp, comp_temp;
820 
821 	ret = bmp180_read_adc_temp(data, &adc_temp);
822 	if (ret)
823 		return ret;
824 
825 	comp_temp = bmp180_compensate_temp(data, adc_temp);
826 
827 	/*
828 	 * val might be NULL if we're called by the read_press routine,
829 	 * who only cares about the carry over t_fine value.
830 	 */
831 	if (val) {
832 		*val = comp_temp * 100;
833 		return IIO_VAL_INT;
834 	}
835 
836 	return 0;
837 }
838 
839 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
840 {
841 	int ret;
842 	__be32 tmp = 0;
843 	u8 oss = data->oversampling_press;
844 
845 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
846 	if (ret)
847 		return ret;
848 
849 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
850 	if (ret)
851 		return ret;
852 
853 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
854 
855 	return 0;
856 }
857 
858 /*
859  * Returns pressure in Pa, resolution is 1 Pa.
860  *
861  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
862  */
863 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
864 {
865 	s32 x1, x2, x3, p;
866 	s32 b3, b6;
867 	u32 b4, b7;
868 	s32 oss = data->oversampling_press;
869 	struct bmp180_calib *calib = &data->calib.bmp180;
870 
871 	b6 = data->t_fine - 4000;
872 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
873 	x2 = calib->AC2 * b6 >> 11;
874 	x3 = x1 + x2;
875 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
876 	x1 = calib->AC3 * b6 >> 13;
877 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
878 	x3 = (x1 + x2 + 2) >> 2;
879 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
880 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
881 	if (b7 < 0x80000000)
882 		p = (b7 * 2) / b4;
883 	else
884 		p = (b7 / b4) * 2;
885 
886 	x1 = (p >> 8) * (p >> 8);
887 	x1 = (x1 * 3038) >> 16;
888 	x2 = (-7357 * p) >> 16;
889 
890 	return p + ((x1 + x2 + 3791) >> 4);
891 }
892 
893 static int bmp180_read_press(struct bmp280_data *data,
894 			     int *val, int *val2)
895 {
896 	int ret;
897 	s32 adc_press;
898 	u32 comp_press;
899 
900 	/* Read and compensate temperature so we get a reading of t_fine. */
901 	ret = bmp180_read_temp(data, NULL);
902 	if (ret)
903 		return ret;
904 
905 	ret = bmp180_read_adc_press(data, &adc_press);
906 	if (ret)
907 		return ret;
908 
909 	comp_press = bmp180_compensate_press(data, adc_press);
910 
911 	*val = comp_press;
912 	*val2 = 1000;
913 
914 	return IIO_VAL_FRACTIONAL;
915 }
916 
917 static int bmp180_chip_config(struct bmp280_data *data)
918 {
919 	return 0;
920 }
921 
922 static const int bmp180_oversampling_temp_avail[] = { 1 };
923 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
924 
925 static const struct bmp280_chip_info bmp180_chip_info = {
926 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
927 	.num_oversampling_temp_avail =
928 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
929 
930 	.oversampling_press_avail = bmp180_oversampling_press_avail,
931 	.num_oversampling_press_avail =
932 		ARRAY_SIZE(bmp180_oversampling_press_avail),
933 
934 	.chip_config = bmp180_chip_config,
935 	.read_temp = bmp180_read_temp,
936 	.read_press = bmp180_read_press,
937 };
938 
939 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
940 {
941 	struct bmp280_data *data = d;
942 
943 	complete(&data->done);
944 
945 	return IRQ_HANDLED;
946 }
947 
948 static int bmp085_fetch_eoc_irq(struct device *dev,
949 				const char *name,
950 				int irq,
951 				struct bmp280_data *data)
952 {
953 	unsigned long irq_trig;
954 	int ret;
955 
956 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
957 	if (irq_trig != IRQF_TRIGGER_RISING) {
958 		dev_err(dev, "non-rising trigger given for EOC interrupt, "
959 			"trying to enforce it\n");
960 		irq_trig = IRQF_TRIGGER_RISING;
961 	}
962 	ret = devm_request_threaded_irq(dev,
963 			irq,
964 			bmp085_eoc_irq,
965 			NULL,
966 			irq_trig,
967 			name,
968 			data);
969 	if (ret) {
970 		/* Bail out without IRQ but keep the driver in place */
971 		dev_err(dev, "unable to request DRDY IRQ\n");
972 		return 0;
973 	}
974 
975 	data->use_eoc = true;
976 	return 0;
977 }
978 
979 int bmp280_common_probe(struct device *dev,
980 			struct regmap *regmap,
981 			unsigned int chip,
982 			const char *name,
983 			int irq)
984 {
985 	int ret;
986 	struct iio_dev *indio_dev;
987 	struct bmp280_data *data;
988 	unsigned int chip_id;
989 	struct gpio_desc *gpiod;
990 
991 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
992 	if (!indio_dev)
993 		return -ENOMEM;
994 
995 	data = iio_priv(indio_dev);
996 	mutex_init(&data->lock);
997 	data->dev = dev;
998 
999 	indio_dev->dev.parent = dev;
1000 	indio_dev->name = name;
1001 	indio_dev->channels = bmp280_channels;
1002 	indio_dev->info = &bmp280_info;
1003 	indio_dev->modes = INDIO_DIRECT_MODE;
1004 
1005 	switch (chip) {
1006 	case BMP180_CHIP_ID:
1007 		indio_dev->num_channels = 2;
1008 		data->chip_info = &bmp180_chip_info;
1009 		data->oversampling_press = ilog2(8);
1010 		data->oversampling_temp = ilog2(1);
1011 		data->start_up_time = 10000;
1012 		break;
1013 	case BMP280_CHIP_ID:
1014 		indio_dev->num_channels = 2;
1015 		data->chip_info = &bmp280_chip_info;
1016 		data->oversampling_press = ilog2(16);
1017 		data->oversampling_temp = ilog2(2);
1018 		data->start_up_time = 2000;
1019 		break;
1020 	case BME280_CHIP_ID:
1021 		indio_dev->num_channels = 3;
1022 		data->chip_info = &bme280_chip_info;
1023 		data->oversampling_press = ilog2(16);
1024 		data->oversampling_humid = ilog2(16);
1025 		data->oversampling_temp = ilog2(2);
1026 		data->start_up_time = 2000;
1027 		break;
1028 	default:
1029 		return -EINVAL;
1030 	}
1031 
1032 	/* Bring up regulators */
1033 	data->vddd = devm_regulator_get(dev, "vddd");
1034 	if (IS_ERR(data->vddd)) {
1035 		dev_err(dev, "failed to get VDDD regulator\n");
1036 		return PTR_ERR(data->vddd);
1037 	}
1038 	ret = regulator_enable(data->vddd);
1039 	if (ret) {
1040 		dev_err(dev, "failed to enable VDDD regulator\n");
1041 		return ret;
1042 	}
1043 	data->vdda = devm_regulator_get(dev, "vdda");
1044 	if (IS_ERR(data->vdda)) {
1045 		dev_err(dev, "failed to get VDDA regulator\n");
1046 		ret = PTR_ERR(data->vdda);
1047 		goto out_disable_vddd;
1048 	}
1049 	ret = regulator_enable(data->vdda);
1050 	if (ret) {
1051 		dev_err(dev, "failed to enable VDDA regulator\n");
1052 		goto out_disable_vddd;
1053 	}
1054 	/* Wait to make sure we started up properly */
1055 	usleep_range(data->start_up_time, data->start_up_time + 100);
1056 
1057 	/* Bring chip out of reset if there is an assigned GPIO line */
1058 	gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1059 	/* Deassert the signal */
1060 	if (!IS_ERR(gpiod)) {
1061 		dev_info(dev, "release reset\n");
1062 		gpiod_set_value(gpiod, 0);
1063 	}
1064 
1065 	data->regmap = regmap;
1066 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1067 	if (ret < 0)
1068 		goto out_disable_vdda;
1069 	if (chip_id != chip) {
1070 		dev_err(dev, "bad chip id: expected %x got %x\n",
1071 			chip, chip_id);
1072 		ret = -EINVAL;
1073 		goto out_disable_vdda;
1074 	}
1075 
1076 	ret = data->chip_info->chip_config(data);
1077 	if (ret < 0)
1078 		goto out_disable_vdda;
1079 
1080 	dev_set_drvdata(dev, indio_dev);
1081 
1082 	/*
1083 	 * Some chips have calibration parameters "programmed into the devices'
1084 	 * non-volatile memory during production". Let's read them out at probe
1085 	 * time once. They will not change.
1086 	 */
1087 	if (chip_id  == BMP180_CHIP_ID) {
1088 		ret = bmp180_read_calib(data, &data->calib.bmp180);
1089 		if (ret < 0) {
1090 			dev_err(data->dev,
1091 				"failed to read calibration coefficients\n");
1092 			goto out_disable_vdda;
1093 		}
1094 	} else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1095 		ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1096 		if (ret < 0) {
1097 			dev_err(data->dev,
1098 				"failed to read calibration coefficients\n");
1099 			goto out_disable_vdda;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1105 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1106 	 * so we look for an IRQ if we have that.
1107 	 */
1108 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1109 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1110 		if (ret)
1111 			goto out_disable_vdda;
1112 	}
1113 
1114 	/* Enable runtime PM */
1115 	pm_runtime_get_noresume(dev);
1116 	pm_runtime_set_active(dev);
1117 	pm_runtime_enable(dev);
1118 	/*
1119 	 * Set autosuspend to two orders of magnitude larger than the
1120 	 * start-up time.
1121 	 */
1122 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1123 	pm_runtime_use_autosuspend(dev);
1124 	pm_runtime_put(dev);
1125 
1126 	ret = iio_device_register(indio_dev);
1127 	if (ret)
1128 		goto out_runtime_pm_disable;
1129 
1130 
1131 	return 0;
1132 
1133 out_runtime_pm_disable:
1134 	pm_runtime_get_sync(data->dev);
1135 	pm_runtime_put_noidle(data->dev);
1136 	pm_runtime_disable(data->dev);
1137 out_disable_vdda:
1138 	regulator_disable(data->vdda);
1139 out_disable_vddd:
1140 	regulator_disable(data->vddd);
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL(bmp280_common_probe);
1144 
1145 int bmp280_common_remove(struct device *dev)
1146 {
1147 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1148 	struct bmp280_data *data = iio_priv(indio_dev);
1149 
1150 	iio_device_unregister(indio_dev);
1151 	pm_runtime_get_sync(data->dev);
1152 	pm_runtime_put_noidle(data->dev);
1153 	pm_runtime_disable(data->dev);
1154 	regulator_disable(data->vdda);
1155 	regulator_disable(data->vddd);
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL(bmp280_common_remove);
1159 
1160 #ifdef CONFIG_PM
1161 static int bmp280_runtime_suspend(struct device *dev)
1162 {
1163 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1164 	struct bmp280_data *data = iio_priv(indio_dev);
1165 	int ret;
1166 
1167 	ret = regulator_disable(data->vdda);
1168 	if (ret)
1169 		return ret;
1170 	return regulator_disable(data->vddd);
1171 }
1172 
1173 static int bmp280_runtime_resume(struct device *dev)
1174 {
1175 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1176 	struct bmp280_data *data = iio_priv(indio_dev);
1177 	int ret;
1178 
1179 	ret = regulator_enable(data->vddd);
1180 	if (ret)
1181 		return ret;
1182 	ret = regulator_enable(data->vdda);
1183 	if (ret)
1184 		return ret;
1185 	usleep_range(data->start_up_time, data->start_up_time + 100);
1186 	return data->chip_info->chip_config(data);
1187 }
1188 #endif /* CONFIG_PM */
1189 
1190 const struct dev_pm_ops bmp280_dev_pm_ops = {
1191 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1192 				pm_runtime_force_resume)
1193 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1194 			   bmp280_runtime_resume, NULL)
1195 };
1196 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1197 
1198 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1199 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1200 MODULE_LICENSE("GPL v2");
1201