1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> 4 * Copyright (c) 2012 Bosch Sensortec GmbH 5 * Copyright (c) 2012 Unixphere AB 6 * Copyright (c) 2014 Intel Corporation 7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> 8 * 9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. 10 * 11 * Datasheet: 12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf 13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf 14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf 15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf 16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf 17 * 18 * Notice: 19 * The link to the bmp180 datasheet points to an outdated version missing these changes: 20 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 21 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 22 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 23 */ 24 25 #define pr_fmt(fmt) "bmp280: " fmt 26 27 #include <linux/bitops.h> 28 #include <linux/bitfield.h> 29 #include <linux/device.h> 30 #include <linux/module.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/regmap.h> 33 #include <linux/delay.h> 34 #include <linux/iio/iio.h> 35 #include <linux/iio/sysfs.h> 36 #include <linux/gpio/consumer.h> 37 #include <linux/regulator/consumer.h> 38 #include <linux/interrupt.h> 39 #include <linux/irq.h> /* For irq_get_irq_data() */ 40 #include <linux/completion.h> 41 #include <linux/pm_runtime.h> 42 #include <linux/random.h> 43 44 #include <asm/unaligned.h> 45 46 #include "bmp280.h" 47 48 /* 49 * These enums are used for indexing into the array of calibration 50 * coefficients for BMP180. 51 */ 52 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; 53 54 enum bmp380_odr { 55 BMP380_ODR_200HZ, 56 BMP380_ODR_100HZ, 57 BMP380_ODR_50HZ, 58 BMP380_ODR_25HZ, 59 BMP380_ODR_12_5HZ, 60 BMP380_ODR_6_25HZ, 61 BMP380_ODR_3_125HZ, 62 BMP380_ODR_1_5625HZ, 63 BMP380_ODR_0_78HZ, 64 BMP380_ODR_0_39HZ, 65 BMP380_ODR_0_2HZ, 66 BMP380_ODR_0_1HZ, 67 BMP380_ODR_0_05HZ, 68 BMP380_ODR_0_02HZ, 69 BMP380_ODR_0_01HZ, 70 BMP380_ODR_0_006HZ, 71 BMP380_ODR_0_003HZ, 72 BMP380_ODR_0_0015HZ, 73 }; 74 75 enum bmp580_odr { 76 BMP580_ODR_240HZ, 77 BMP580_ODR_218HZ, 78 BMP580_ODR_199HZ, 79 BMP580_ODR_179HZ, 80 BMP580_ODR_160HZ, 81 BMP580_ODR_149HZ, 82 BMP580_ODR_140HZ, 83 BMP580_ODR_129HZ, 84 BMP580_ODR_120HZ, 85 BMP580_ODR_110HZ, 86 BMP580_ODR_100HZ, 87 BMP580_ODR_89HZ, 88 BMP580_ODR_80HZ, 89 BMP580_ODR_70HZ, 90 BMP580_ODR_60HZ, 91 BMP580_ODR_50HZ, 92 BMP580_ODR_45HZ, 93 BMP580_ODR_40HZ, 94 BMP580_ODR_35HZ, 95 BMP580_ODR_30HZ, 96 BMP580_ODR_25HZ, 97 BMP580_ODR_20HZ, 98 BMP580_ODR_15HZ, 99 BMP580_ODR_10HZ, 100 BMP580_ODR_5HZ, 101 BMP580_ODR_4HZ, 102 BMP580_ODR_3HZ, 103 BMP580_ODR_2HZ, 104 BMP580_ODR_1HZ, 105 BMP580_ODR_0_5HZ, 106 BMP580_ODR_0_25HZ, 107 BMP580_ODR_0_125HZ, 108 }; 109 110 /* 111 * These enums are used for indexing into the array of compensation 112 * parameters for BMP280. 113 */ 114 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; 115 116 enum { 117 /* Temperature calib indexes */ 118 BMP380_T1 = 0, 119 BMP380_T2 = 2, 120 BMP380_T3 = 4, 121 /* Pressure calib indexes */ 122 BMP380_P1 = 5, 123 BMP380_P2 = 7, 124 BMP380_P3 = 9, 125 BMP380_P4 = 10, 126 BMP380_P5 = 11, 127 BMP380_P6 = 13, 128 BMP380_P7 = 15, 129 BMP380_P8 = 16, 130 BMP380_P9 = 17, 131 BMP380_P10 = 19, 132 BMP380_P11 = 20, 133 }; 134 135 static const struct iio_chan_spec bmp280_channels[] = { 136 { 137 .type = IIO_PRESSURE, 138 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 139 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 140 }, 141 { 142 .type = IIO_TEMP, 143 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 144 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 145 }, 146 { 147 .type = IIO_HUMIDITYRELATIVE, 148 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 149 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 150 }, 151 }; 152 153 static const struct iio_chan_spec bmp380_channels[] = { 154 { 155 .type = IIO_PRESSURE, 156 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 157 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 158 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 159 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 160 }, 161 { 162 .type = IIO_TEMP, 163 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 164 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 165 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 166 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 167 }, 168 { 169 .type = IIO_HUMIDITYRELATIVE, 170 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 171 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 172 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 173 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 174 }, 175 }; 176 177 static int bmp280_read_calib(struct bmp280_data *data) 178 { 179 struct bmp280_calib *calib = &data->calib.bmp280; 180 int ret; 181 182 /* Read temperature and pressure calibration values. */ 183 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, 184 data->bmp280_cal_buf, 185 sizeof(data->bmp280_cal_buf)); 186 if (ret < 0) { 187 dev_err(data->dev, 188 "failed to read calibration parameters\n"); 189 return ret; 190 } 191 192 /* Toss calibration data into the entropy pool */ 193 add_device_randomness(data->bmp280_cal_buf, 194 sizeof(data->bmp280_cal_buf)); 195 196 /* Parse temperature calibration values. */ 197 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); 198 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); 199 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); 200 201 /* Parse pressure calibration values. */ 202 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); 203 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); 204 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); 205 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); 206 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); 207 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); 208 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); 209 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); 210 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); 211 212 return 0; 213 } 214 215 static int bme280_read_calib(struct bmp280_data *data) 216 { 217 struct bmp280_calib *calib = &data->calib.bmp280; 218 struct device *dev = data->dev; 219 unsigned int tmp; 220 int ret; 221 222 /* Load shared calibration params with bmp280 first */ 223 ret = bmp280_read_calib(data); 224 if (ret < 0) { 225 dev_err(dev, "failed to read calibration parameters\n"); 226 return ret; 227 } 228 229 /* 230 * Read humidity calibration values. 231 * Due to some odd register addressing we cannot just 232 * do a big bulk read. Instead, we have to read each Hx 233 * value separately and sometimes do some bit shifting... 234 * Humidity data is only available on BME280. 235 */ 236 237 ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp); 238 if (ret < 0) { 239 dev_err(dev, "failed to read H1 comp value\n"); 240 return ret; 241 } 242 calib->H1 = tmp; 243 244 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2, 245 &data->le16, sizeof(data->le16)); 246 if (ret < 0) { 247 dev_err(dev, "failed to read H2 comp value\n"); 248 return ret; 249 } 250 calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15); 251 252 ret = regmap_read(data->regmap, BME280_REG_COMP_H3, &tmp); 253 if (ret < 0) { 254 dev_err(dev, "failed to read H3 comp value\n"); 255 return ret; 256 } 257 calib->H3 = tmp; 258 259 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H4, 260 &data->be16, sizeof(data->be16)); 261 if (ret < 0) { 262 dev_err(dev, "failed to read H4 comp value\n"); 263 return ret; 264 } 265 calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) | 266 (be16_to_cpu(data->be16) & 0xf), 11); 267 268 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H5, 269 &data->le16, sizeof(data->le16)); 270 if (ret < 0) { 271 dev_err(dev, "failed to read H5 comp value\n"); 272 return ret; 273 } 274 calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11); 275 276 ret = regmap_read(data->regmap, BME280_REG_COMP_H6, &tmp); 277 if (ret < 0) { 278 dev_err(dev, "failed to read H6 comp value\n"); 279 return ret; 280 } 281 calib->H6 = sign_extend32(tmp, 7); 282 283 return 0; 284 } 285 286 /* 287 * Returns humidity in percent, resolution is 0.01 percent. Output value of 288 * "47445" represents 47445/1024 = 46.333 %RH. 289 * 290 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". 291 */ 292 static u32 bme280_compensate_humidity(struct bmp280_data *data, 293 s32 adc_humidity) 294 { 295 struct bmp280_calib *calib = &data->calib.bmp280; 296 s32 var; 297 298 var = ((s32)data->t_fine) - (s32)76800; 299 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) 300 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) 301 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) 302 + (s32)2097152) * calib->H2 + 8192) >> 14); 303 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; 304 305 var = clamp_val(var, 0, 419430400); 306 307 return var >> 12; 308 } 309 310 /* 311 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of 312 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global 313 * value. 314 * 315 * Taken from datasheet, Section 3.11.3, "Compensation formula". 316 */ 317 static s32 bmp280_compensate_temp(struct bmp280_data *data, 318 s32 adc_temp) 319 { 320 struct bmp280_calib *calib = &data->calib.bmp280; 321 s32 var1, var2; 322 323 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) * 324 ((s32)calib->T2)) >> 11; 325 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) * 326 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) * 327 ((s32)calib->T3)) >> 14; 328 data->t_fine = var1 + var2; 329 330 return (data->t_fine * 5 + 128) >> 8; 331 } 332 333 /* 334 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 335 * integer bits and 8 fractional bits). Output value of "24674867" 336 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa 337 * 338 * Taken from datasheet, Section 3.11.3, "Compensation formula". 339 */ 340 static u32 bmp280_compensate_press(struct bmp280_data *data, 341 s32 adc_press) 342 { 343 struct bmp280_calib *calib = &data->calib.bmp280; 344 s64 var1, var2, p; 345 346 var1 = ((s64)data->t_fine) - 128000; 347 var2 = var1 * var1 * (s64)calib->P6; 348 var2 += (var1 * (s64)calib->P5) << 17; 349 var2 += ((s64)calib->P4) << 35; 350 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + 351 ((var1 * (s64)calib->P2) << 12); 352 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; 353 354 if (var1 == 0) 355 return 0; 356 357 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125; 358 p = div64_s64(p, var1); 359 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; 360 var2 = ((s64)(calib->P8) * p) >> 19; 361 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); 362 363 return (u32)p; 364 } 365 366 static int bmp280_read_temp(struct bmp280_data *data, 367 int *val, int *val2) 368 { 369 s32 adc_temp, comp_temp; 370 int ret; 371 372 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, 373 data->buf, sizeof(data->buf)); 374 if (ret < 0) { 375 dev_err(data->dev, "failed to read temperature\n"); 376 return ret; 377 } 378 379 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 380 if (adc_temp == BMP280_TEMP_SKIPPED) { 381 /* reading was skipped */ 382 dev_err(data->dev, "reading temperature skipped\n"); 383 return -EIO; 384 } 385 comp_temp = bmp280_compensate_temp(data, adc_temp); 386 387 /* 388 * val might be NULL if we're called by the read_press routine, 389 * who only cares about the carry over t_fine value. 390 */ 391 if (val) { 392 *val = comp_temp * 10; 393 return IIO_VAL_INT; 394 } 395 396 return 0; 397 } 398 399 static int bmp280_read_press(struct bmp280_data *data, 400 int *val, int *val2) 401 { 402 u32 comp_press; 403 s32 adc_press; 404 int ret; 405 406 /* Read and compensate temperature so we get a reading of t_fine. */ 407 ret = bmp280_read_temp(data, NULL, NULL); 408 if (ret < 0) 409 return ret; 410 411 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 412 data->buf, sizeof(data->buf)); 413 if (ret < 0) { 414 dev_err(data->dev, "failed to read pressure\n"); 415 return ret; 416 } 417 418 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 419 if (adc_press == BMP280_PRESS_SKIPPED) { 420 /* reading was skipped */ 421 dev_err(data->dev, "reading pressure skipped\n"); 422 return -EIO; 423 } 424 comp_press = bmp280_compensate_press(data, adc_press); 425 426 *val = comp_press; 427 *val2 = 256000; 428 429 return IIO_VAL_FRACTIONAL; 430 } 431 432 static int bme280_read_humid(struct bmp280_data *data, int *val, int *val2) 433 { 434 u32 comp_humidity; 435 s32 adc_humidity; 436 int ret; 437 438 /* Read and compensate temperature so we get a reading of t_fine. */ 439 ret = bmp280_read_temp(data, NULL, NULL); 440 if (ret < 0) 441 return ret; 442 443 ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB, 444 &data->be16, sizeof(data->be16)); 445 if (ret < 0) { 446 dev_err(data->dev, "failed to read humidity\n"); 447 return ret; 448 } 449 450 adc_humidity = be16_to_cpu(data->be16); 451 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { 452 /* reading was skipped */ 453 dev_err(data->dev, "reading humidity skipped\n"); 454 return -EIO; 455 } 456 comp_humidity = bme280_compensate_humidity(data, adc_humidity); 457 458 *val = comp_humidity * 1000 / 1024; 459 460 return IIO_VAL_INT; 461 } 462 463 static int bmp280_read_raw(struct iio_dev *indio_dev, 464 struct iio_chan_spec const *chan, 465 int *val, int *val2, long mask) 466 { 467 struct bmp280_data *data = iio_priv(indio_dev); 468 int ret; 469 470 pm_runtime_get_sync(data->dev); 471 mutex_lock(&data->lock); 472 473 switch (mask) { 474 case IIO_CHAN_INFO_PROCESSED: 475 switch (chan->type) { 476 case IIO_HUMIDITYRELATIVE: 477 ret = data->chip_info->read_humid(data, val, val2); 478 break; 479 case IIO_PRESSURE: 480 ret = data->chip_info->read_press(data, val, val2); 481 break; 482 case IIO_TEMP: 483 ret = data->chip_info->read_temp(data, val, val2); 484 break; 485 default: 486 ret = -EINVAL; 487 break; 488 } 489 break; 490 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 491 switch (chan->type) { 492 case IIO_HUMIDITYRELATIVE: 493 *val = 1 << data->oversampling_humid; 494 ret = IIO_VAL_INT; 495 break; 496 case IIO_PRESSURE: 497 *val = 1 << data->oversampling_press; 498 ret = IIO_VAL_INT; 499 break; 500 case IIO_TEMP: 501 *val = 1 << data->oversampling_temp; 502 ret = IIO_VAL_INT; 503 break; 504 default: 505 ret = -EINVAL; 506 break; 507 } 508 break; 509 case IIO_CHAN_INFO_SAMP_FREQ: 510 if (!data->chip_info->sampling_freq_avail) { 511 ret = -EINVAL; 512 break; 513 } 514 515 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; 516 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; 517 ret = IIO_VAL_INT_PLUS_MICRO; 518 break; 519 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 520 if (!data->chip_info->iir_filter_coeffs_avail) { 521 ret = -EINVAL; 522 break; 523 } 524 525 *val = (1 << data->iir_filter_coeff) - 1; 526 ret = IIO_VAL_INT; 527 break; 528 default: 529 ret = -EINVAL; 530 break; 531 } 532 533 mutex_unlock(&data->lock); 534 pm_runtime_mark_last_busy(data->dev); 535 pm_runtime_put_autosuspend(data->dev); 536 537 return ret; 538 } 539 540 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data, 541 int val) 542 { 543 const int *avail = data->chip_info->oversampling_humid_avail; 544 const int n = data->chip_info->num_oversampling_humid_avail; 545 int ret, prev; 546 int i; 547 548 for (i = 0; i < n; i++) { 549 if (avail[i] == val) { 550 prev = data->oversampling_humid; 551 data->oversampling_humid = ilog2(val); 552 553 ret = data->chip_info->chip_config(data); 554 if (ret) { 555 data->oversampling_humid = prev; 556 data->chip_info->chip_config(data); 557 return ret; 558 } 559 return 0; 560 } 561 } 562 return -EINVAL; 563 } 564 565 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, 566 int val) 567 { 568 const int *avail = data->chip_info->oversampling_temp_avail; 569 const int n = data->chip_info->num_oversampling_temp_avail; 570 int ret, prev; 571 int i; 572 573 for (i = 0; i < n; i++) { 574 if (avail[i] == val) { 575 prev = data->oversampling_temp; 576 data->oversampling_temp = ilog2(val); 577 578 ret = data->chip_info->chip_config(data); 579 if (ret) { 580 data->oversampling_temp = prev; 581 data->chip_info->chip_config(data); 582 return ret; 583 } 584 return 0; 585 } 586 } 587 return -EINVAL; 588 } 589 590 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, 591 int val) 592 { 593 const int *avail = data->chip_info->oversampling_press_avail; 594 const int n = data->chip_info->num_oversampling_press_avail; 595 int ret, prev; 596 int i; 597 598 for (i = 0; i < n; i++) { 599 if (avail[i] == val) { 600 prev = data->oversampling_press; 601 data->oversampling_press = ilog2(val); 602 603 ret = data->chip_info->chip_config(data); 604 if (ret) { 605 data->oversampling_press = prev; 606 data->chip_info->chip_config(data); 607 return ret; 608 } 609 return 0; 610 } 611 } 612 return -EINVAL; 613 } 614 615 static int bmp280_write_sampling_frequency(struct bmp280_data *data, 616 int val, int val2) 617 { 618 const int (*avail)[2] = data->chip_info->sampling_freq_avail; 619 const int n = data->chip_info->num_sampling_freq_avail; 620 int ret, prev; 621 int i; 622 623 for (i = 0; i < n; i++) { 624 if (avail[i][0] == val && avail[i][1] == val2) { 625 prev = data->sampling_freq; 626 data->sampling_freq = i; 627 628 ret = data->chip_info->chip_config(data); 629 if (ret) { 630 data->sampling_freq = prev; 631 data->chip_info->chip_config(data); 632 return ret; 633 } 634 return 0; 635 } 636 } 637 return -EINVAL; 638 } 639 640 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) 641 { 642 const int *avail = data->chip_info->iir_filter_coeffs_avail; 643 const int n = data->chip_info->num_iir_filter_coeffs_avail; 644 int ret, prev; 645 int i; 646 647 for (i = 0; i < n; i++) { 648 if (avail[i] - 1 == val) { 649 prev = data->iir_filter_coeff; 650 data->iir_filter_coeff = i; 651 652 ret = data->chip_info->chip_config(data); 653 if (ret) { 654 data->iir_filter_coeff = prev; 655 data->chip_info->chip_config(data); 656 return ret; 657 658 } 659 return 0; 660 } 661 } 662 return -EINVAL; 663 } 664 665 static int bmp280_write_raw(struct iio_dev *indio_dev, 666 struct iio_chan_spec const *chan, 667 int val, int val2, long mask) 668 { 669 struct bmp280_data *data = iio_priv(indio_dev); 670 int ret = 0; 671 672 /* 673 * Helper functions to update sensor running configuration. 674 * If an error happens applying new settings, will try restore 675 * previous parameters to ensure the sensor is left in a known 676 * working configuration. 677 */ 678 switch (mask) { 679 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 680 pm_runtime_get_sync(data->dev); 681 mutex_lock(&data->lock); 682 switch (chan->type) { 683 case IIO_HUMIDITYRELATIVE: 684 ret = bme280_write_oversampling_ratio_humid(data, val); 685 break; 686 case IIO_PRESSURE: 687 ret = bmp280_write_oversampling_ratio_press(data, val); 688 break; 689 case IIO_TEMP: 690 ret = bmp280_write_oversampling_ratio_temp(data, val); 691 break; 692 default: 693 ret = -EINVAL; 694 break; 695 } 696 mutex_unlock(&data->lock); 697 pm_runtime_mark_last_busy(data->dev); 698 pm_runtime_put_autosuspend(data->dev); 699 break; 700 case IIO_CHAN_INFO_SAMP_FREQ: 701 pm_runtime_get_sync(data->dev); 702 mutex_lock(&data->lock); 703 ret = bmp280_write_sampling_frequency(data, val, val2); 704 mutex_unlock(&data->lock); 705 pm_runtime_mark_last_busy(data->dev); 706 pm_runtime_put_autosuspend(data->dev); 707 break; 708 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 709 pm_runtime_get_sync(data->dev); 710 mutex_lock(&data->lock); 711 ret = bmp280_write_iir_filter_coeffs(data, val); 712 mutex_unlock(&data->lock); 713 pm_runtime_mark_last_busy(data->dev); 714 pm_runtime_put_autosuspend(data->dev); 715 break; 716 default: 717 return -EINVAL; 718 } 719 720 return ret; 721 } 722 723 static int bmp280_read_avail(struct iio_dev *indio_dev, 724 struct iio_chan_spec const *chan, 725 const int **vals, int *type, int *length, 726 long mask) 727 { 728 struct bmp280_data *data = iio_priv(indio_dev); 729 730 switch (mask) { 731 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 732 switch (chan->type) { 733 case IIO_PRESSURE: 734 *vals = data->chip_info->oversampling_press_avail; 735 *length = data->chip_info->num_oversampling_press_avail; 736 break; 737 case IIO_TEMP: 738 *vals = data->chip_info->oversampling_temp_avail; 739 *length = data->chip_info->num_oversampling_temp_avail; 740 break; 741 default: 742 return -EINVAL; 743 } 744 *type = IIO_VAL_INT; 745 return IIO_AVAIL_LIST; 746 case IIO_CHAN_INFO_SAMP_FREQ: 747 *vals = (const int *)data->chip_info->sampling_freq_avail; 748 *type = IIO_VAL_INT_PLUS_MICRO; 749 /* Values are stored in a 2D matrix */ 750 *length = data->chip_info->num_sampling_freq_avail; 751 return IIO_AVAIL_LIST; 752 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 753 *vals = data->chip_info->iir_filter_coeffs_avail; 754 *type = IIO_VAL_INT; 755 *length = data->chip_info->num_iir_filter_coeffs_avail; 756 return IIO_AVAIL_LIST; 757 default: 758 return -EINVAL; 759 } 760 } 761 762 static const struct iio_info bmp280_info = { 763 .read_raw = &bmp280_read_raw, 764 .read_avail = &bmp280_read_avail, 765 .write_raw = &bmp280_write_raw, 766 }; 767 768 static int bmp280_chip_config(struct bmp280_data *data) 769 { 770 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | 771 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); 772 int ret; 773 774 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, 775 BMP280_OSRS_TEMP_MASK | 776 BMP280_OSRS_PRESS_MASK | 777 BMP280_MODE_MASK, 778 osrs | BMP280_MODE_NORMAL); 779 if (ret < 0) { 780 dev_err(data->dev, "failed to write ctrl_meas register\n"); 781 return ret; 782 } 783 784 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, 785 BMP280_FILTER_MASK, 786 BMP280_FILTER_4X); 787 if (ret < 0) { 788 dev_err(data->dev, "failed to write config register\n"); 789 return ret; 790 } 791 792 return ret; 793 } 794 795 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; 796 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; 797 798 const struct bmp280_chip_info bmp280_chip_info = { 799 .id_reg = BMP280_REG_ID, 800 .chip_id = bmp280_chip_ids, 801 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), 802 .regmap_config = &bmp280_regmap_config, 803 .start_up_time = 2000, 804 .channels = bmp280_channels, 805 .num_channels = 2, 806 807 .oversampling_temp_avail = bmp280_oversampling_avail, 808 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 809 /* 810 * Oversampling config values on BMx280 have one additional setting 811 * that other generations of the family don't: 812 * The value 0 means the measurement is bypassed instead of 813 * oversampling set to x1. 814 * 815 * To account for this difference, and preserve the same common 816 * config logic, this is handled later on chip_config callback 817 * incrementing one unit the oversampling setting. 818 */ 819 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 820 821 .oversampling_press_avail = bmp280_oversampling_avail, 822 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 823 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 824 825 .chip_config = bmp280_chip_config, 826 .read_temp = bmp280_read_temp, 827 .read_press = bmp280_read_press, 828 .read_calib = bmp280_read_calib, 829 }; 830 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); 831 832 static int bme280_chip_config(struct bmp280_data *data) 833 { 834 u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); 835 int ret; 836 837 /* 838 * Oversampling of humidity must be set before oversampling of 839 * temperature/pressure is set to become effective. 840 */ 841 ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY, 842 BME280_OSRS_HUMIDITY_MASK, osrs); 843 if (ret < 0) 844 return ret; 845 846 return bmp280_chip_config(data); 847 } 848 849 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; 850 851 const struct bmp280_chip_info bme280_chip_info = { 852 .id_reg = BMP280_REG_ID, 853 .chip_id = bme280_chip_ids, 854 .num_chip_id = ARRAY_SIZE(bme280_chip_ids), 855 .regmap_config = &bme280_regmap_config, 856 .start_up_time = 2000, 857 .channels = bmp280_channels, 858 .num_channels = 3, 859 860 .oversampling_temp_avail = bmp280_oversampling_avail, 861 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 862 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 863 864 .oversampling_press_avail = bmp280_oversampling_avail, 865 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 866 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 867 868 .oversampling_humid_avail = bmp280_oversampling_avail, 869 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), 870 .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1, 871 872 .chip_config = bme280_chip_config, 873 .read_temp = bmp280_read_temp, 874 .read_press = bmp280_read_press, 875 .read_humid = bme280_read_humid, 876 .read_calib = bme280_read_calib, 877 }; 878 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); 879 880 /* 881 * Helper function to send a command to BMP3XX sensors. 882 * 883 * Sensor processes commands written to the CMD register and signals 884 * execution result through "cmd_rdy" and "cmd_error" flags available on 885 * STATUS and ERROR registers. 886 */ 887 static int bmp380_cmd(struct bmp280_data *data, u8 cmd) 888 { 889 unsigned int reg; 890 int ret; 891 892 /* Check if device is ready to process a command */ 893 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); 894 if (ret) { 895 dev_err(data->dev, "failed to read error register\n"); 896 return ret; 897 } 898 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { 899 dev_err(data->dev, "device is not ready to accept commands\n"); 900 return -EBUSY; 901 } 902 903 /* Send command to process */ 904 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); 905 if (ret) { 906 dev_err(data->dev, "failed to send command to device\n"); 907 return ret; 908 } 909 /* Wait for 2ms for command to be processed */ 910 usleep_range(data->start_up_time, data->start_up_time + 100); 911 /* Check for command processing error */ 912 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); 913 if (ret) { 914 dev_err(data->dev, "error reading ERROR reg\n"); 915 return ret; 916 } 917 if (reg & BMP380_ERR_CMD_MASK) { 918 dev_err(data->dev, "error processing command 0x%X\n", cmd); 919 return -EINVAL; 920 } 921 922 return 0; 923 } 924 925 /* 926 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value 927 * of "5123" equals 51.2º C. t_fine carries fine temperature as global value. 928 * 929 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo 930 * https://github.com/BoschSensortec/BMP3-Sensor-API. 931 */ 932 static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) 933 { 934 s64 var1, var2, var3, var4, var5, var6, comp_temp; 935 struct bmp380_calib *calib = &data->calib.bmp380; 936 937 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); 938 var2 = var1 * ((s64) calib->T2); 939 var3 = var1 * var1; 940 var4 = var3 * ((s64) calib->T3); 941 var5 = (var2 << 18) + var4; 942 var6 = var5 >> 32; 943 data->t_fine = (s32) var6; 944 comp_temp = (var6 * 25) >> 14; 945 946 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); 947 return (s32) comp_temp; 948 } 949 950 /* 951 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. 952 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. 953 * 954 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository 955 * https://github.com/BoschSensortec/BMP3-Sensor-API. 956 */ 957 static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press) 958 { 959 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; 960 struct bmp380_calib *calib = &data->calib.bmp380; 961 u32 comp_press; 962 963 var1 = (s64)data->t_fine * (s64)data->t_fine; 964 var2 = var1 >> 6; 965 var3 = (var2 * ((s64) data->t_fine)) >> 8; 966 var4 = ((s64)calib->P8 * var3) >> 5; 967 var5 = ((s64)calib->P7 * var1) << 4; 968 var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22; 969 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; 970 var2 = ((s64)calib->P4 * var3) >> 5; 971 var4 = ((s64)calib->P3 * var1) << 2; 972 var5 = ((s64)calib->P2 - ((s64)1 << 14)) * 973 ((s64)data->t_fine << 21); 974 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + 975 var2 + var4 + var5; 976 var1 = (sensitivity >> 24) * (s64)adc_press; 977 var2 = (s64)calib->P10 * (s64)data->t_fine; 978 var3 = var2 + ((s64)calib->P9 << 16); 979 var4 = (var3 * (s64)adc_press) >> 13; 980 981 /* 982 * Dividing by 10 followed by multiplying by 10 to avoid 983 * possible overflow caused by (uncomp_data->pressure * partial_data4). 984 */ 985 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; 986 var5 *= 10; 987 var6 = (s64)adc_press * (s64)adc_press; 988 var2 = ((s64)calib->P11 * var6) >> 16; 989 var3 = (var2 * (s64)adc_press) >> 7; 990 var4 = (offset >> 2) + var1 + var5 + var3; 991 comp_press = ((u64)var4 * 25) >> 40; 992 993 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); 994 return comp_press; 995 } 996 997 static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2) 998 { 999 s32 comp_temp; 1000 u32 adc_temp; 1001 int ret; 1002 1003 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, 1004 data->buf, sizeof(data->buf)); 1005 if (ret) { 1006 dev_err(data->dev, "failed to read temperature\n"); 1007 return ret; 1008 } 1009 1010 adc_temp = get_unaligned_le24(data->buf); 1011 if (adc_temp == BMP380_TEMP_SKIPPED) { 1012 dev_err(data->dev, "reading temperature skipped\n"); 1013 return -EIO; 1014 } 1015 comp_temp = bmp380_compensate_temp(data, adc_temp); 1016 1017 /* 1018 * Val might be NULL if we're called by the read_press routine, 1019 * who only cares about the carry over t_fine value. 1020 */ 1021 if (val) { 1022 /* IIO reports temperatures in milli Celsius */ 1023 *val = comp_temp * 10; 1024 return IIO_VAL_INT; 1025 } 1026 1027 return 0; 1028 } 1029 1030 static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2) 1031 { 1032 s32 comp_press; 1033 u32 adc_press; 1034 int ret; 1035 1036 /* Read and compensate for temperature so we get a reading of t_fine */ 1037 ret = bmp380_read_temp(data, NULL, NULL); 1038 if (ret) 1039 return ret; 1040 1041 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1042 data->buf, sizeof(data->buf)); 1043 if (ret) { 1044 dev_err(data->dev, "failed to read pressure\n"); 1045 return ret; 1046 } 1047 1048 adc_press = get_unaligned_le24(data->buf); 1049 if (adc_press == BMP380_PRESS_SKIPPED) { 1050 dev_err(data->dev, "reading pressure skipped\n"); 1051 return -EIO; 1052 } 1053 comp_press = bmp380_compensate_press(data, adc_press); 1054 1055 *val = comp_press; 1056 /* Compensated pressure is in cPa (centipascals) */ 1057 *val2 = 100000; 1058 1059 return IIO_VAL_FRACTIONAL; 1060 } 1061 1062 static int bmp380_read_calib(struct bmp280_data *data) 1063 { 1064 struct bmp380_calib *calib = &data->calib.bmp380; 1065 int ret; 1066 1067 /* Read temperature and pressure calibration data */ 1068 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, 1069 data->bmp380_cal_buf, 1070 sizeof(data->bmp380_cal_buf)); 1071 if (ret) { 1072 dev_err(data->dev, 1073 "failed to read temperature calibration parameters\n"); 1074 return ret; 1075 } 1076 1077 /* Toss the temperature calibration data into the entropy pool */ 1078 add_device_randomness(data->bmp380_cal_buf, 1079 sizeof(data->bmp380_cal_buf)); 1080 1081 /* Parse calibration values */ 1082 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); 1083 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); 1084 calib->T3 = data->bmp380_cal_buf[BMP380_T3]; 1085 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); 1086 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); 1087 calib->P3 = data->bmp380_cal_buf[BMP380_P3]; 1088 calib->P4 = data->bmp380_cal_buf[BMP380_P4]; 1089 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); 1090 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); 1091 calib->P7 = data->bmp380_cal_buf[BMP380_P7]; 1092 calib->P8 = data->bmp380_cal_buf[BMP380_P8]; 1093 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); 1094 calib->P10 = data->bmp380_cal_buf[BMP380_P10]; 1095 calib->P11 = data->bmp380_cal_buf[BMP380_P11]; 1096 1097 return 0; 1098 } 1099 1100 static const int bmp380_odr_table[][2] = { 1101 [BMP380_ODR_200HZ] = {200, 0}, 1102 [BMP380_ODR_100HZ] = {100, 0}, 1103 [BMP380_ODR_50HZ] = {50, 0}, 1104 [BMP380_ODR_25HZ] = {25, 0}, 1105 [BMP380_ODR_12_5HZ] = {12, 500000}, 1106 [BMP380_ODR_6_25HZ] = {6, 250000}, 1107 [BMP380_ODR_3_125HZ] = {3, 125000}, 1108 [BMP380_ODR_1_5625HZ] = {1, 562500}, 1109 [BMP380_ODR_0_78HZ] = {0, 781250}, 1110 [BMP380_ODR_0_39HZ] = {0, 390625}, 1111 [BMP380_ODR_0_2HZ] = {0, 195313}, 1112 [BMP380_ODR_0_1HZ] = {0, 97656}, 1113 [BMP380_ODR_0_05HZ] = {0, 48828}, 1114 [BMP380_ODR_0_02HZ] = {0, 24414}, 1115 [BMP380_ODR_0_01HZ] = {0, 12207}, 1116 [BMP380_ODR_0_006HZ] = {0, 6104}, 1117 [BMP380_ODR_0_003HZ] = {0, 3052}, 1118 [BMP380_ODR_0_0015HZ] = {0, 1526}, 1119 }; 1120 1121 static int bmp380_preinit(struct bmp280_data *data) 1122 { 1123 /* BMP3xx requires soft-reset as part of initialization */ 1124 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); 1125 } 1126 1127 static int bmp380_chip_config(struct bmp280_data *data) 1128 { 1129 bool change = false, aux; 1130 unsigned int tmp; 1131 u8 osrs; 1132 int ret; 1133 1134 /* Configure power control register */ 1135 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1136 BMP380_CTRL_SENSORS_MASK, 1137 BMP380_CTRL_SENSORS_PRESS_EN | 1138 BMP380_CTRL_SENSORS_TEMP_EN); 1139 if (ret) { 1140 dev_err(data->dev, 1141 "failed to write operation control register\n"); 1142 return ret; 1143 } 1144 1145 /* Configure oversampling */ 1146 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | 1147 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); 1148 1149 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, 1150 BMP380_OSRS_TEMP_MASK | 1151 BMP380_OSRS_PRESS_MASK, 1152 osrs, &aux); 1153 if (ret) { 1154 dev_err(data->dev, "failed to write oversampling register\n"); 1155 return ret; 1156 } 1157 change = change || aux; 1158 1159 /* Configure output data rate */ 1160 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, 1161 BMP380_ODRS_MASK, data->sampling_freq, 1162 &aux); 1163 if (ret) { 1164 dev_err(data->dev, "failed to write ODR selection register\n"); 1165 return ret; 1166 } 1167 change = change || aux; 1168 1169 /* Set filter data */ 1170 ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, 1171 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), 1172 &aux); 1173 if (ret) { 1174 dev_err(data->dev, "failed to write config register\n"); 1175 return ret; 1176 } 1177 change = change || aux; 1178 1179 if (change) { 1180 /* 1181 * The configurations errors are detected on the fly during a 1182 * measurement cycle. If the sampling frequency is too low, it's 1183 * faster to reset the measurement loop than wait until the next 1184 * measurement is due. 1185 * 1186 * Resets sensor measurement loop toggling between sleep and 1187 * normal operating modes. 1188 */ 1189 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1190 BMP380_MODE_MASK, 1191 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); 1192 if (ret) { 1193 dev_err(data->dev, "failed to set sleep mode\n"); 1194 return ret; 1195 } 1196 usleep_range(2000, 2500); 1197 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1198 BMP380_MODE_MASK, 1199 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); 1200 if (ret) { 1201 dev_err(data->dev, "failed to set normal mode\n"); 1202 return ret; 1203 } 1204 /* 1205 * Waits for measurement before checking configuration error 1206 * flag. Selected longest measurement time, calculated from 1207 * formula in datasheet section 3.9.2 with an offset of ~+15% 1208 * as it seen as well in table 3.9.1. 1209 */ 1210 msleep(150); 1211 1212 /* Check config error flag */ 1213 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); 1214 if (ret) { 1215 dev_err(data->dev, "failed to read error register\n"); 1216 return ret; 1217 } 1218 if (tmp & BMP380_ERR_CONF_MASK) { 1219 dev_warn(data->dev, 1220 "sensor flagged configuration as incompatible\n"); 1221 return -EINVAL; 1222 } 1223 } 1224 1225 return 0; 1226 } 1227 1228 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; 1229 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; 1230 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID }; 1231 1232 const struct bmp280_chip_info bmp380_chip_info = { 1233 .id_reg = BMP380_REG_ID, 1234 .chip_id = bmp380_chip_ids, 1235 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), 1236 .regmap_config = &bmp380_regmap_config, 1237 .start_up_time = 2000, 1238 .channels = bmp380_channels, 1239 .num_channels = 2, 1240 1241 .oversampling_temp_avail = bmp380_oversampling_avail, 1242 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1243 .oversampling_temp_default = ilog2(1), 1244 1245 .oversampling_press_avail = bmp380_oversampling_avail, 1246 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1247 .oversampling_press_default = ilog2(4), 1248 1249 .sampling_freq_avail = bmp380_odr_table, 1250 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, 1251 .sampling_freq_default = BMP380_ODR_50HZ, 1252 1253 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1254 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1255 .iir_filter_coeff_default = 2, 1256 1257 .chip_config = bmp380_chip_config, 1258 .read_temp = bmp380_read_temp, 1259 .read_press = bmp380_read_press, 1260 .read_calib = bmp380_read_calib, 1261 .preinit = bmp380_preinit, 1262 }; 1263 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); 1264 1265 static int bmp580_soft_reset(struct bmp280_data *data) 1266 { 1267 unsigned int reg; 1268 int ret; 1269 1270 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); 1271 if (ret) { 1272 dev_err(data->dev, "failed to send reset command to device\n"); 1273 return ret; 1274 } 1275 usleep_range(2000, 2500); 1276 1277 /* Dummy read of chip_id */ 1278 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1279 if (ret) { 1280 dev_err(data->dev, "failed to reestablish comms after reset\n"); 1281 return ret; 1282 } 1283 1284 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®); 1285 if (ret) { 1286 dev_err(data->dev, "error reading interrupt status register\n"); 1287 return ret; 1288 } 1289 if (!(reg & BMP580_INT_STATUS_POR_MASK)) { 1290 dev_err(data->dev, "error resetting sensor\n"); 1291 return -EINVAL; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * bmp580_nvm_operation() - Helper function to commit NVM memory operations 1299 * @data: sensor data struct 1300 * @is_write: flag to signal write operation 1301 */ 1302 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) 1303 { 1304 unsigned long timeout, poll; 1305 unsigned int reg; 1306 int ret; 1307 1308 /* Check NVM ready flag */ 1309 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1310 if (ret) { 1311 dev_err(data->dev, "failed to check nvm status\n"); 1312 return ret; 1313 } 1314 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { 1315 dev_err(data->dev, "sensor's nvm is not ready\n"); 1316 return -EIO; 1317 } 1318 1319 /* Start NVM operation sequence */ 1320 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1321 BMP580_CMD_NVM_OP_SEQ_0); 1322 if (ret) { 1323 dev_err(data->dev, 1324 "failed to send nvm operation's first sequence\n"); 1325 return ret; 1326 } 1327 if (is_write) { 1328 /* Send NVM write sequence */ 1329 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1330 BMP580_CMD_NVM_WRITE_SEQ_1); 1331 if (ret) { 1332 dev_err(data->dev, 1333 "failed to send nvm write sequence\n"); 1334 return ret; 1335 } 1336 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ 1337 poll = 2000; 1338 timeout = 12000; 1339 } else { 1340 /* Send NVM read sequence */ 1341 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1342 BMP580_CMD_NVM_READ_SEQ_1); 1343 if (ret) { 1344 dev_err(data->dev, 1345 "failed to send nvm read sequence\n"); 1346 return ret; 1347 } 1348 /* Datasheet says on 4.8.1.1 it takes approximately 200us */ 1349 poll = 50; 1350 timeout = 400; 1351 } 1352 if (ret) { 1353 dev_err(data->dev, "failed to write command sequence\n"); 1354 return -EIO; 1355 } 1356 1357 /* Wait until NVM is ready again */ 1358 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, 1359 (reg & BMP580_STATUS_NVM_RDY_MASK), 1360 poll, timeout); 1361 if (ret) { 1362 dev_err(data->dev, "error checking nvm operation status\n"); 1363 return ret; 1364 } 1365 1366 /* Check NVM error flags */ 1367 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { 1368 dev_err(data->dev, "error processing nvm operation\n"); 1369 return -EIO; 1370 } 1371 1372 return 0; 1373 } 1374 1375 /* 1376 * Contrary to previous sensors families, compensation algorithm is builtin. 1377 * We are only required to read the register raw data and adapt the ranges 1378 * for what is expected on IIO ABI. 1379 */ 1380 1381 static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2) 1382 { 1383 s32 raw_temp; 1384 int ret; 1385 1386 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf, 1387 sizeof(data->buf)); 1388 if (ret) { 1389 dev_err(data->dev, "failed to read temperature\n"); 1390 return ret; 1391 } 1392 1393 raw_temp = get_unaligned_le24(data->buf); 1394 if (raw_temp == BMP580_TEMP_SKIPPED) { 1395 dev_err(data->dev, "reading temperature skipped\n"); 1396 return -EIO; 1397 } 1398 1399 /* 1400 * Temperature is returned in Celsius degrees in fractional 1401 * form down 2^16. We rescale by x1000 to return millidegrees 1402 * Celsius to respect IIO ABI. 1403 */ 1404 raw_temp = sign_extend32(raw_temp, 23); 1405 *val = ((s64)raw_temp * 1000) / (1 << 16); 1406 return IIO_VAL_INT; 1407 } 1408 1409 static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2) 1410 { 1411 u32 raw_press; 1412 int ret; 1413 1414 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf, 1415 sizeof(data->buf)); 1416 if (ret) { 1417 dev_err(data->dev, "failed to read pressure\n"); 1418 return ret; 1419 } 1420 1421 raw_press = get_unaligned_le24(data->buf); 1422 if (raw_press == BMP580_PRESS_SKIPPED) { 1423 dev_err(data->dev, "reading pressure skipped\n"); 1424 return -EIO; 1425 } 1426 /* 1427 * Pressure is returned in Pascals in fractional form down 2^16. 1428 * We rescale /1000 to convert to kilopascal to respect IIO ABI. 1429 */ 1430 *val = raw_press; 1431 *val2 = 64000; /* 2^6 * 1000 */ 1432 return IIO_VAL_FRACTIONAL; 1433 } 1434 1435 static const int bmp580_odr_table[][2] = { 1436 [BMP580_ODR_240HZ] = {240, 0}, 1437 [BMP580_ODR_218HZ] = {218, 0}, 1438 [BMP580_ODR_199HZ] = {199, 0}, 1439 [BMP580_ODR_179HZ] = {179, 0}, 1440 [BMP580_ODR_160HZ] = {160, 0}, 1441 [BMP580_ODR_149HZ] = {149, 0}, 1442 [BMP580_ODR_140HZ] = {140, 0}, 1443 [BMP580_ODR_129HZ] = {129, 0}, 1444 [BMP580_ODR_120HZ] = {120, 0}, 1445 [BMP580_ODR_110HZ] = {110, 0}, 1446 [BMP580_ODR_100HZ] = {100, 0}, 1447 [BMP580_ODR_89HZ] = {89, 0}, 1448 [BMP580_ODR_80HZ] = {80, 0}, 1449 [BMP580_ODR_70HZ] = {70, 0}, 1450 [BMP580_ODR_60HZ] = {60, 0}, 1451 [BMP580_ODR_50HZ] = {50, 0}, 1452 [BMP580_ODR_45HZ] = {45, 0}, 1453 [BMP580_ODR_40HZ] = {40, 0}, 1454 [BMP580_ODR_35HZ] = {35, 0}, 1455 [BMP580_ODR_30HZ] = {30, 0}, 1456 [BMP580_ODR_25HZ] = {25, 0}, 1457 [BMP580_ODR_20HZ] = {20, 0}, 1458 [BMP580_ODR_15HZ] = {15, 0}, 1459 [BMP580_ODR_10HZ] = {10, 0}, 1460 [BMP580_ODR_5HZ] = {5, 0}, 1461 [BMP580_ODR_4HZ] = {4, 0}, 1462 [BMP580_ODR_3HZ] = {3, 0}, 1463 [BMP580_ODR_2HZ] = {2, 0}, 1464 [BMP580_ODR_1HZ] = {1, 0}, 1465 [BMP580_ODR_0_5HZ] = {0, 500000}, 1466 [BMP580_ODR_0_25HZ] = {0, 250000}, 1467 [BMP580_ODR_0_125HZ] = {0, 125000}, 1468 }; 1469 1470 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; 1471 1472 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, 1473 size_t bytes) 1474 { 1475 struct bmp280_data *data = priv; 1476 u16 *dst = val; 1477 int ret, addr; 1478 1479 pm_runtime_get_sync(data->dev); 1480 mutex_lock(&data->lock); 1481 1482 /* Set sensor in standby mode */ 1483 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1484 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1485 BMP580_ODR_DEEPSLEEP_DIS | 1486 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1487 if (ret) { 1488 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1489 goto exit; 1490 } 1491 /* Wait standby transition time */ 1492 usleep_range(2500, 3000); 1493 1494 while (bytes >= sizeof(*dst)) { 1495 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; 1496 1497 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1498 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1499 if (ret) { 1500 dev_err(data->dev, "error writing nvm address\n"); 1501 goto exit; 1502 } 1503 1504 ret = bmp580_nvm_operation(data, false); 1505 if (ret) 1506 goto exit; 1507 1508 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, 1509 &data->le16, sizeof(data->le16)); 1510 if (ret) { 1511 dev_err(data->dev, "error reading nvm data regs\n"); 1512 goto exit; 1513 } 1514 1515 *dst++ = le16_to_cpu(data->le16); 1516 bytes -= sizeof(*dst); 1517 offset += sizeof(*dst); 1518 } 1519 exit: 1520 /* Restore chip config */ 1521 data->chip_info->chip_config(data); 1522 mutex_unlock(&data->lock); 1523 pm_runtime_mark_last_busy(data->dev); 1524 pm_runtime_put_autosuspend(data->dev); 1525 return ret; 1526 } 1527 1528 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, 1529 size_t bytes) 1530 { 1531 struct bmp280_data *data = priv; 1532 u16 *buf = val; 1533 int ret, addr; 1534 1535 pm_runtime_get_sync(data->dev); 1536 mutex_lock(&data->lock); 1537 1538 /* Set sensor in standby mode */ 1539 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1540 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1541 BMP580_ODR_DEEPSLEEP_DIS | 1542 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1543 if (ret) { 1544 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1545 goto exit; 1546 } 1547 /* Wait standby transition time */ 1548 usleep_range(2500, 3000); 1549 1550 while (bytes >= sizeof(*buf)) { 1551 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; 1552 1553 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1554 BMP580_NVM_PROG_EN | 1555 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1556 if (ret) { 1557 dev_err(data->dev, "error writing nvm address\n"); 1558 goto exit; 1559 } 1560 data->le16 = cpu_to_le16(*buf++); 1561 1562 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, 1563 &data->le16, sizeof(data->le16)); 1564 if (ret) { 1565 dev_err(data->dev, "error writing LSB NVM data regs\n"); 1566 goto exit; 1567 } 1568 1569 ret = bmp580_nvm_operation(data, true); 1570 if (ret) 1571 goto exit; 1572 1573 /* Disable programming mode bit */ 1574 ret = regmap_update_bits(data->regmap, BMP580_REG_NVM_ADDR, 1575 BMP580_NVM_PROG_EN, 0); 1576 if (ret) { 1577 dev_err(data->dev, "error resetting nvm write\n"); 1578 goto exit; 1579 } 1580 1581 bytes -= sizeof(*buf); 1582 offset += sizeof(*buf); 1583 } 1584 exit: 1585 /* Restore chip config */ 1586 data->chip_info->chip_config(data); 1587 mutex_unlock(&data->lock); 1588 pm_runtime_mark_last_busy(data->dev); 1589 pm_runtime_put_autosuspend(data->dev); 1590 return ret; 1591 } 1592 1593 static int bmp580_preinit(struct bmp280_data *data) 1594 { 1595 struct nvmem_config config = { 1596 .dev = data->dev, 1597 .priv = data, 1598 .name = "bmp580_nvmem", 1599 .word_size = sizeof(u16), 1600 .stride = sizeof(u16), 1601 .size = 3 * sizeof(u16), 1602 .reg_read = bmp580_nvmem_read, 1603 .reg_write = bmp580_nvmem_write, 1604 }; 1605 unsigned int reg; 1606 int ret; 1607 1608 /* Issue soft-reset command */ 1609 ret = bmp580_soft_reset(data); 1610 if (ret) 1611 return ret; 1612 1613 /* Post powerup sequence */ 1614 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1615 if (ret) 1616 return ret; 1617 1618 /* Print warn message if we don't know the chip id */ 1619 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) 1620 dev_warn(data->dev, "preinit: unexpected chip_id\n"); 1621 1622 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1623 if (ret) 1624 return ret; 1625 1626 /* Check nvm status */ 1627 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { 1628 dev_err(data->dev, "preinit: nvm error on powerup sequence\n"); 1629 return -EIO; 1630 } 1631 1632 /* Register nvmem device */ 1633 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config)); 1634 } 1635 1636 static int bmp580_chip_config(struct bmp280_data *data) 1637 { 1638 bool change = false, aux; 1639 unsigned int tmp; 1640 u8 reg_val; 1641 int ret; 1642 1643 /* Sets sensor in standby mode */ 1644 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1645 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1646 BMP580_ODR_DEEPSLEEP_DIS | 1647 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1648 if (ret) { 1649 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1650 return ret; 1651 } 1652 /* From datasheet's table 4: electrical characteristics */ 1653 usleep_range(2500, 3000); 1654 1655 /* Set default DSP mode settings */ 1656 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | 1657 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; 1658 1659 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG, 1660 BMP580_DSP_COMP_MASK | 1661 BMP580_DSP_SHDW_IIR_TEMP_EN | 1662 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val); 1663 1664 /* Configure oversampling */ 1665 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | 1666 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | 1667 BMP580_OSR_PRESS_EN; 1668 1669 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG, 1670 BMP580_OSR_TEMP_MASK | 1671 BMP580_OSR_PRESS_MASK | 1672 BMP580_OSR_PRESS_EN, 1673 reg_val, &aux); 1674 if (ret) { 1675 dev_err(data->dev, "failed to write oversampling register\n"); 1676 return ret; 1677 } 1678 change = change || aux; 1679 1680 /* Configure output data rate */ 1681 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, 1682 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), 1683 &aux); 1684 if (ret) { 1685 dev_err(data->dev, "failed to write ODR configuration register\n"); 1686 return ret; 1687 } 1688 change = change || aux; 1689 1690 /* Set filter data */ 1691 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | 1692 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); 1693 1694 ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR, 1695 BMP580_DSP_IIR_PRESS_MASK | 1696 BMP580_DSP_IIR_TEMP_MASK, 1697 reg_val, &aux); 1698 if (ret) { 1699 dev_err(data->dev, "failed to write config register\n"); 1700 return ret; 1701 } 1702 change = change || aux; 1703 1704 /* Restore sensor to normal operation mode */ 1705 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1706 BMP580_MODE_MASK, 1707 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); 1708 if (ret) { 1709 dev_err(data->dev, "failed to set normal mode\n"); 1710 return ret; 1711 } 1712 /* From datasheet's table 4: electrical characteristics */ 1713 usleep_range(3000, 3500); 1714 1715 if (change) { 1716 /* 1717 * Check if ODR and OSR settings are valid or we are 1718 * operating in a degraded mode. 1719 */ 1720 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp); 1721 if (ret) { 1722 dev_err(data->dev, 1723 "error reading effective OSR register\n"); 1724 return ret; 1725 } 1726 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { 1727 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); 1728 /* Set current OSR settings from data on effective OSR */ 1729 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); 1730 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); 1731 return -EINVAL; 1732 } 1733 } 1734 1735 return 0; 1736 } 1737 1738 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; 1739 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; 1740 1741 const struct bmp280_chip_info bmp580_chip_info = { 1742 .id_reg = BMP580_REG_CHIP_ID, 1743 .chip_id = bmp580_chip_ids, 1744 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), 1745 .regmap_config = &bmp580_regmap_config, 1746 .start_up_time = 2000, 1747 .channels = bmp380_channels, 1748 .num_channels = 2, 1749 1750 .oversampling_temp_avail = bmp580_oversampling_avail, 1751 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), 1752 .oversampling_temp_default = ilog2(1), 1753 1754 .oversampling_press_avail = bmp580_oversampling_avail, 1755 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), 1756 .oversampling_press_default = ilog2(4), 1757 1758 .sampling_freq_avail = bmp580_odr_table, 1759 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, 1760 .sampling_freq_default = BMP580_ODR_50HZ, 1761 1762 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1763 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1764 .iir_filter_coeff_default = 2, 1765 1766 .chip_config = bmp580_chip_config, 1767 .read_temp = bmp580_read_temp, 1768 .read_press = bmp580_read_press, 1769 .preinit = bmp580_preinit, 1770 }; 1771 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); 1772 1773 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas) 1774 { 1775 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; 1776 unsigned int delay_us; 1777 unsigned int ctrl; 1778 int ret; 1779 1780 if (data->use_eoc) 1781 reinit_completion(&data->done); 1782 1783 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); 1784 if (ret) 1785 return ret; 1786 1787 if (data->use_eoc) { 1788 /* 1789 * If we have a completion interrupt, use it, wait up to 1790 * 100ms. The longest conversion time listed is 76.5 ms for 1791 * advanced resolution mode. 1792 */ 1793 ret = wait_for_completion_timeout(&data->done, 1794 1 + msecs_to_jiffies(100)); 1795 if (!ret) 1796 dev_err(data->dev, "timeout waiting for completion\n"); 1797 } else { 1798 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) 1799 delay_us = 4500; 1800 else 1801 delay_us = 1802 conversion_time_max[data->oversampling_press]; 1803 1804 usleep_range(delay_us, delay_us + 1000); 1805 } 1806 1807 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); 1808 if (ret) 1809 return ret; 1810 1811 /* The value of this bit reset to "0" after conversion is complete */ 1812 if (ctrl & BMP180_MEAS_SCO) 1813 return -EIO; 1814 1815 return 0; 1816 } 1817 1818 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val) 1819 { 1820 int ret; 1821 1822 ret = bmp180_measure(data, 1823 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | 1824 BMP180_MEAS_SCO); 1825 if (ret) 1826 return ret; 1827 1828 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 1829 &data->be16, sizeof(data->be16)); 1830 if (ret) 1831 return ret; 1832 1833 *val = be16_to_cpu(data->be16); 1834 1835 return 0; 1836 } 1837 1838 static int bmp180_read_calib(struct bmp280_data *data) 1839 { 1840 struct bmp180_calib *calib = &data->calib.bmp180; 1841 int ret; 1842 int i; 1843 1844 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, 1845 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); 1846 1847 if (ret < 0) 1848 return ret; 1849 1850 /* None of the words has the value 0 or 0xFFFF */ 1851 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { 1852 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || 1853 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) 1854 return -EIO; 1855 } 1856 1857 /* Toss the calibration data into the entropy pool */ 1858 add_device_randomness(data->bmp180_cal_buf, 1859 sizeof(data->bmp180_cal_buf)); 1860 1861 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); 1862 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); 1863 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); 1864 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); 1865 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); 1866 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); 1867 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); 1868 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); 1869 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); 1870 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); 1871 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); 1872 1873 return 0; 1874 } 1875 1876 /* 1877 * Returns temperature in DegC, resolution is 0.1 DegC. 1878 * t_fine carries fine temperature as global value. 1879 * 1880 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 1881 */ 1882 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp) 1883 { 1884 struct bmp180_calib *calib = &data->calib.bmp180; 1885 s32 x1, x2; 1886 1887 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15; 1888 x2 = (calib->MC << 11) / (x1 + calib->MD); 1889 data->t_fine = x1 + x2; 1890 1891 return (data->t_fine + 8) >> 4; 1892 } 1893 1894 static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2) 1895 { 1896 s32 adc_temp, comp_temp; 1897 int ret; 1898 1899 ret = bmp180_read_adc_temp(data, &adc_temp); 1900 if (ret) 1901 return ret; 1902 1903 comp_temp = bmp180_compensate_temp(data, adc_temp); 1904 1905 /* 1906 * val might be NULL if we're called by the read_press routine, 1907 * who only cares about the carry over t_fine value. 1908 */ 1909 if (val) { 1910 *val = comp_temp * 100; 1911 return IIO_VAL_INT; 1912 } 1913 1914 return 0; 1915 } 1916 1917 static int bmp180_read_adc_press(struct bmp280_data *data, int *val) 1918 { 1919 u8 oss = data->oversampling_press; 1920 int ret; 1921 1922 ret = bmp180_measure(data, 1923 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | 1924 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | 1925 BMP180_MEAS_SCO); 1926 if (ret) 1927 return ret; 1928 1929 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 1930 data->buf, sizeof(data->buf)); 1931 if (ret) 1932 return ret; 1933 1934 *val = get_unaligned_be24(data->buf) >> (8 - oss); 1935 1936 return 0; 1937 } 1938 1939 /* 1940 * Returns pressure in Pa, resolution is 1 Pa. 1941 * 1942 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 1943 */ 1944 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press) 1945 { 1946 struct bmp180_calib *calib = &data->calib.bmp180; 1947 s32 oss = data->oversampling_press; 1948 s32 x1, x2, x3, p; 1949 s32 b3, b6; 1950 u32 b4, b7; 1951 1952 b6 = data->t_fine - 4000; 1953 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; 1954 x2 = calib->AC2 * b6 >> 11; 1955 x3 = x1 + x2; 1956 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; 1957 x1 = calib->AC3 * b6 >> 13; 1958 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; 1959 x3 = (x1 + x2 + 2) >> 2; 1960 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; 1961 b7 = ((u32)adc_press - b3) * (50000 >> oss); 1962 if (b7 < 0x80000000) 1963 p = (b7 * 2) / b4; 1964 else 1965 p = (b7 / b4) * 2; 1966 1967 x1 = (p >> 8) * (p >> 8); 1968 x1 = (x1 * 3038) >> 16; 1969 x2 = (-7357 * p) >> 16; 1970 1971 return p + ((x1 + x2 + 3791) >> 4); 1972 } 1973 1974 static int bmp180_read_press(struct bmp280_data *data, int *val, int *val2) 1975 { 1976 u32 comp_press; 1977 s32 adc_press; 1978 int ret; 1979 1980 /* Read and compensate temperature so we get a reading of t_fine. */ 1981 ret = bmp180_read_temp(data, NULL, NULL); 1982 if (ret) 1983 return ret; 1984 1985 ret = bmp180_read_adc_press(data, &adc_press); 1986 if (ret) 1987 return ret; 1988 1989 comp_press = bmp180_compensate_press(data, adc_press); 1990 1991 *val = comp_press; 1992 *val2 = 1000; 1993 1994 return IIO_VAL_FRACTIONAL; 1995 } 1996 1997 static int bmp180_chip_config(struct bmp280_data *data) 1998 { 1999 return 0; 2000 } 2001 2002 static const int bmp180_oversampling_temp_avail[] = { 1 }; 2003 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; 2004 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; 2005 2006 const struct bmp280_chip_info bmp180_chip_info = { 2007 .id_reg = BMP280_REG_ID, 2008 .chip_id = bmp180_chip_ids, 2009 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), 2010 .regmap_config = &bmp180_regmap_config, 2011 .start_up_time = 2000, 2012 .channels = bmp280_channels, 2013 .num_channels = 2, 2014 2015 .oversampling_temp_avail = bmp180_oversampling_temp_avail, 2016 .num_oversampling_temp_avail = 2017 ARRAY_SIZE(bmp180_oversampling_temp_avail), 2018 .oversampling_temp_default = 0, 2019 2020 .oversampling_press_avail = bmp180_oversampling_press_avail, 2021 .num_oversampling_press_avail = 2022 ARRAY_SIZE(bmp180_oversampling_press_avail), 2023 .oversampling_press_default = BMP180_MEAS_PRESS_8X, 2024 2025 .chip_config = bmp180_chip_config, 2026 .read_temp = bmp180_read_temp, 2027 .read_press = bmp180_read_press, 2028 .read_calib = bmp180_read_calib, 2029 }; 2030 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); 2031 2032 static irqreturn_t bmp085_eoc_irq(int irq, void *d) 2033 { 2034 struct bmp280_data *data = d; 2035 2036 complete(&data->done); 2037 2038 return IRQ_HANDLED; 2039 } 2040 2041 static int bmp085_fetch_eoc_irq(struct device *dev, 2042 const char *name, 2043 int irq, 2044 struct bmp280_data *data) 2045 { 2046 unsigned long irq_trig; 2047 int ret; 2048 2049 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); 2050 if (irq_trig != IRQF_TRIGGER_RISING) { 2051 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); 2052 irq_trig = IRQF_TRIGGER_RISING; 2053 } 2054 2055 init_completion(&data->done); 2056 2057 ret = devm_request_threaded_irq(dev, 2058 irq, 2059 bmp085_eoc_irq, 2060 NULL, 2061 irq_trig, 2062 name, 2063 data); 2064 if (ret) { 2065 /* Bail out without IRQ but keep the driver in place */ 2066 dev_err(dev, "unable to request DRDY IRQ\n"); 2067 return 0; 2068 } 2069 2070 data->use_eoc = true; 2071 return 0; 2072 } 2073 2074 static void bmp280_pm_disable(void *data) 2075 { 2076 struct device *dev = data; 2077 2078 pm_runtime_get_sync(dev); 2079 pm_runtime_put_noidle(dev); 2080 pm_runtime_disable(dev); 2081 } 2082 2083 static void bmp280_regulators_disable(void *data) 2084 { 2085 struct regulator_bulk_data *supplies = data; 2086 2087 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); 2088 } 2089 2090 int bmp280_common_probe(struct device *dev, 2091 struct regmap *regmap, 2092 const struct bmp280_chip_info *chip_info, 2093 const char *name, 2094 int irq) 2095 { 2096 struct iio_dev *indio_dev; 2097 struct bmp280_data *data; 2098 struct gpio_desc *gpiod; 2099 unsigned int chip_id; 2100 unsigned int i; 2101 int ret; 2102 2103 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 2104 if (!indio_dev) 2105 return -ENOMEM; 2106 2107 data = iio_priv(indio_dev); 2108 mutex_init(&data->lock); 2109 data->dev = dev; 2110 2111 indio_dev->name = name; 2112 indio_dev->info = &bmp280_info; 2113 indio_dev->modes = INDIO_DIRECT_MODE; 2114 2115 data->chip_info = chip_info; 2116 2117 /* Apply initial values from chip info structure */ 2118 indio_dev->channels = chip_info->channels; 2119 indio_dev->num_channels = chip_info->num_channels; 2120 data->oversampling_press = chip_info->oversampling_press_default; 2121 data->oversampling_humid = chip_info->oversampling_humid_default; 2122 data->oversampling_temp = chip_info->oversampling_temp_default; 2123 data->iir_filter_coeff = chip_info->iir_filter_coeff_default; 2124 data->sampling_freq = chip_info->sampling_freq_default; 2125 data->start_up_time = chip_info->start_up_time; 2126 2127 /* Bring up regulators */ 2128 regulator_bulk_set_supply_names(data->supplies, 2129 bmp280_supply_names, 2130 BMP280_NUM_SUPPLIES); 2131 2132 ret = devm_regulator_bulk_get(dev, 2133 BMP280_NUM_SUPPLIES, data->supplies); 2134 if (ret) { 2135 dev_err(dev, "failed to get regulators\n"); 2136 return ret; 2137 } 2138 2139 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2140 if (ret) { 2141 dev_err(dev, "failed to enable regulators\n"); 2142 return ret; 2143 } 2144 2145 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, 2146 data->supplies); 2147 if (ret) 2148 return ret; 2149 2150 /* Wait to make sure we started up properly */ 2151 usleep_range(data->start_up_time, data->start_up_time + 100); 2152 2153 /* Bring chip out of reset if there is an assigned GPIO line */ 2154 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 2155 /* Deassert the signal */ 2156 if (gpiod) { 2157 dev_info(dev, "release reset\n"); 2158 gpiod_set_value(gpiod, 0); 2159 } 2160 2161 data->regmap = regmap; 2162 2163 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); 2164 if (ret < 0) 2165 return ret; 2166 2167 for (i = 0; i < data->chip_info->num_chip_id; i++) { 2168 if (chip_id == data->chip_info->chip_id[i]) { 2169 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); 2170 break; 2171 } 2172 } 2173 2174 if (i == data->chip_info->num_chip_id) 2175 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); 2176 2177 if (data->chip_info->preinit) { 2178 ret = data->chip_info->preinit(data); 2179 if (ret) 2180 return dev_err_probe(data->dev, ret, 2181 "error running preinit tasks\n"); 2182 } 2183 2184 ret = data->chip_info->chip_config(data); 2185 if (ret < 0) 2186 return ret; 2187 2188 dev_set_drvdata(dev, indio_dev); 2189 2190 /* 2191 * Some chips have calibration parameters "programmed into the devices' 2192 * non-volatile memory during production". Let's read them out at probe 2193 * time once. They will not change. 2194 */ 2195 2196 if (data->chip_info->read_calib) { 2197 ret = data->chip_info->read_calib(data); 2198 if (ret < 0) 2199 return dev_err_probe(data->dev, ret, 2200 "failed to read calibration coefficients\n"); 2201 } 2202 2203 /* 2204 * Attempt to grab an optional EOC IRQ - only the BMP085 has this 2205 * however as it happens, the BMP085 shares the chip ID of BMP180 2206 * so we look for an IRQ if we have that. 2207 */ 2208 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { 2209 ret = bmp085_fetch_eoc_irq(dev, name, irq, data); 2210 if (ret) 2211 return ret; 2212 } 2213 2214 /* Enable runtime PM */ 2215 pm_runtime_get_noresume(dev); 2216 pm_runtime_set_active(dev); 2217 pm_runtime_enable(dev); 2218 /* 2219 * Set autosuspend to two orders of magnitude larger than the 2220 * start-up time. 2221 */ 2222 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); 2223 pm_runtime_use_autosuspend(dev); 2224 pm_runtime_put(dev); 2225 2226 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); 2227 if (ret) 2228 return ret; 2229 2230 return devm_iio_device_register(dev, indio_dev); 2231 } 2232 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); 2233 2234 static int bmp280_runtime_suspend(struct device *dev) 2235 { 2236 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2237 struct bmp280_data *data = iio_priv(indio_dev); 2238 2239 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); 2240 } 2241 2242 static int bmp280_runtime_resume(struct device *dev) 2243 { 2244 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2245 struct bmp280_data *data = iio_priv(indio_dev); 2246 int ret; 2247 2248 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2249 if (ret) 2250 return ret; 2251 2252 usleep_range(data->start_up_time, data->start_up_time + 100); 2253 return data->chip_info->chip_config(data); 2254 } 2255 2256 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, 2257 bmp280_runtime_resume, NULL); 2258 2259 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); 2260 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); 2261 MODULE_LICENSE("GPL v2"); 2262