1 /*
2  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3  * Copyright (c) 2012 Bosch Sensortec GmbH
4  * Copyright (c) 2012 Unixphere AB
5  * Copyright (c) 2014 Intel Corporation
6  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Datasheet:
15  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18  */
19 
20 #define pr_fmt(fmt) "bmp280: " fmt
21 
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35 
36 #include "bmp280.h"
37 
38 /*
39  * These enums are used for indexing into the array of calibration
40  * coefficients for BMP180.
41  */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43 
44 struct bmp180_calib {
45 	s16 AC1;
46 	s16 AC2;
47 	s16 AC3;
48 	u16 AC4;
49 	u16 AC5;
50 	u16 AC6;
51 	s16 B1;
52 	s16 B2;
53 	s16 MB;
54 	s16 MC;
55 	s16 MD;
56 };
57 
58 struct bmp280_data {
59 	struct device *dev;
60 	struct mutex lock;
61 	struct regmap *regmap;
62 	struct completion done;
63 	bool use_eoc;
64 	const struct bmp280_chip_info *chip_info;
65 	struct bmp180_calib calib;
66 	struct regulator *vddd;
67 	struct regulator *vdda;
68 	unsigned int start_up_time; /* in microseconds */
69 
70 	/* log of base 2 of oversampling rate */
71 	u8 oversampling_press;
72 	u8 oversampling_temp;
73 	u8 oversampling_humid;
74 
75 	/*
76 	 * Carryover value from temperature conversion, used in pressure
77 	 * calculation.
78 	 */
79 	s32 t_fine;
80 };
81 
82 struct bmp280_chip_info {
83 	const int *oversampling_temp_avail;
84 	int num_oversampling_temp_avail;
85 
86 	const int *oversampling_press_avail;
87 	int num_oversampling_press_avail;
88 
89 	const int *oversampling_humid_avail;
90 	int num_oversampling_humid_avail;
91 
92 	int (*chip_config)(struct bmp280_data *);
93 	int (*read_temp)(struct bmp280_data *, int *);
94 	int (*read_press)(struct bmp280_data *, int *, int *);
95 	int (*read_humid)(struct bmp280_data *, int *, int *);
96 };
97 
98 /*
99  * These enums are used for indexing into the array of compensation
100  * parameters for BMP280.
101  */
102 enum { T1, T2, T3 };
103 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
104 
105 static const struct iio_chan_spec bmp280_channels[] = {
106 	{
107 		.type = IIO_PRESSURE,
108 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
109 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
110 	},
111 	{
112 		.type = IIO_TEMP,
113 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
114 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
115 	},
116 	{
117 		.type = IIO_HUMIDITYRELATIVE,
118 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
119 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
120 	},
121 };
122 
123 /*
124  * Returns humidity in percent, resolution is 0.01 percent. Output value of
125  * "47445" represents 47445/1024 = 46.333 %RH.
126  *
127  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
128  */
129 
130 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
131 				      s32 adc_humidity)
132 {
133 	struct device *dev = data->dev;
134 	unsigned int H1, H3, tmp;
135 	int H2, H4, H5, H6, ret, var;
136 
137 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
138 	if (ret < 0) {
139 		dev_err(dev, "failed to read H1 comp value\n");
140 		return ret;
141 	}
142 
143 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
144 	if (ret < 0) {
145 		dev_err(dev, "failed to read H2 comp value\n");
146 		return ret;
147 	}
148 	H2 = sign_extend32(le16_to_cpu(tmp), 15);
149 
150 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
151 	if (ret < 0) {
152 		dev_err(dev, "failed to read H3 comp value\n");
153 		return ret;
154 	}
155 
156 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
157 	if (ret < 0) {
158 		dev_err(dev, "failed to read H4 comp value\n");
159 		return ret;
160 	}
161 	H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
162 			  (be16_to_cpu(tmp) & 0xf), 11);
163 
164 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
165 	if (ret < 0) {
166 		dev_err(dev, "failed to read H5 comp value\n");
167 		return ret;
168 	}
169 	H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
170 
171 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
172 	if (ret < 0) {
173 		dev_err(dev, "failed to read H6 comp value\n");
174 		return ret;
175 	}
176 	H6 = sign_extend32(tmp, 7);
177 
178 	var = ((s32)data->t_fine) - (s32)76800;
179 	var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var))
180 		+ (s32)16384) >> 15) * (((((((var * H6) >> 10)
181 		* (((var * (s32)H3) >> 11) + (s32)32768)) >> 10)
182 		+ (s32)2097152) * H2 + 8192) >> 14);
183 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)H1) >> 4;
184 
185 	return var >> 12;
186 };
187 
188 /*
189  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
190  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
191  * value.
192  *
193  * Taken from datasheet, Section 3.11.3, "Compensation formula".
194  */
195 static s32 bmp280_compensate_temp(struct bmp280_data *data,
196 				  s32 adc_temp)
197 {
198 	int ret;
199 	s32 var1, var2;
200 	__le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
201 
202 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
203 			       buf, BMP280_COMP_TEMP_REG_COUNT);
204 	if (ret < 0) {
205 		dev_err(data->dev,
206 			"failed to read temperature calibration parameters\n");
207 		return ret;
208 	}
209 
210 	/*
211 	 * The double casts are necessary because le16_to_cpu returns an
212 	 * unsigned 16-bit value.  Casting that value directly to a
213 	 * signed 32-bit will not do proper sign extension.
214 	 *
215 	 * Conversely, T1 and P1 are unsigned values, so they can be
216 	 * cast straight to the larger type.
217 	 */
218 	var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
219 		((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
220 	var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
221 		  ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
222 		((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
223 	data->t_fine = var1 + var2;
224 
225 	return (data->t_fine * 5 + 128) >> 8;
226 }
227 
228 /*
229  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
230  * integer bits and 8 fractional bits).  Output value of "24674867"
231  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
232  *
233  * Taken from datasheet, Section 3.11.3, "Compensation formula".
234  */
235 static u32 bmp280_compensate_press(struct bmp280_data *data,
236 				   s32 adc_press)
237 {
238 	int ret;
239 	s64 var1, var2, p;
240 	__le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
241 
242 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
243 			       buf, BMP280_COMP_PRESS_REG_COUNT);
244 	if (ret < 0) {
245 		dev_err(data->dev,
246 			"failed to read pressure calibration parameters\n");
247 		return ret;
248 	}
249 
250 	var1 = ((s64)data->t_fine) - 128000;
251 	var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
252 	var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
253 	var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
254 	var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
255 		((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
256 	var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
257 
258 	if (var1 == 0)
259 		return 0;
260 
261 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
262 	p = div64_s64(p, var1);
263 	var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
264 	var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
265 	p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
266 
267 	return (u32)p;
268 }
269 
270 static int bmp280_read_temp(struct bmp280_data *data,
271 			    int *val)
272 {
273 	int ret;
274 	__be32 tmp = 0;
275 	s32 adc_temp, comp_temp;
276 
277 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
278 			       (u8 *) &tmp, 3);
279 	if (ret < 0) {
280 		dev_err(data->dev, "failed to read temperature\n");
281 		return ret;
282 	}
283 
284 	adc_temp = be32_to_cpu(tmp) >> 12;
285 	if (adc_temp == BMP280_TEMP_SKIPPED) {
286 		/* reading was skipped */
287 		dev_err(data->dev, "reading temperature skipped\n");
288 		return -EIO;
289 	}
290 	comp_temp = bmp280_compensate_temp(data, adc_temp);
291 
292 	/*
293 	 * val might be NULL if we're called by the read_press routine,
294 	 * who only cares about the carry over t_fine value.
295 	 */
296 	if (val) {
297 		*val = comp_temp * 10;
298 		return IIO_VAL_INT;
299 	}
300 
301 	return 0;
302 }
303 
304 static int bmp280_read_press(struct bmp280_data *data,
305 			     int *val, int *val2)
306 {
307 	int ret;
308 	__be32 tmp = 0;
309 	s32 adc_press;
310 	u32 comp_press;
311 
312 	/* Read and compensate temperature so we get a reading of t_fine. */
313 	ret = bmp280_read_temp(data, NULL);
314 	if (ret < 0)
315 		return ret;
316 
317 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
318 			       (u8 *) &tmp, 3);
319 	if (ret < 0) {
320 		dev_err(data->dev, "failed to read pressure\n");
321 		return ret;
322 	}
323 
324 	adc_press = be32_to_cpu(tmp) >> 12;
325 	if (adc_press == BMP280_PRESS_SKIPPED) {
326 		/* reading was skipped */
327 		dev_err(data->dev, "reading pressure skipped\n");
328 		return -EIO;
329 	}
330 	comp_press = bmp280_compensate_press(data, adc_press);
331 
332 	*val = comp_press;
333 	*val2 = 256000;
334 
335 	return IIO_VAL_FRACTIONAL;
336 }
337 
338 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
339 {
340 	int ret;
341 	__be16 tmp = 0;
342 	s32 adc_humidity;
343 	u32 comp_humidity;
344 
345 	/* Read and compensate temperature so we get a reading of t_fine. */
346 	ret = bmp280_read_temp(data, NULL);
347 	if (ret < 0)
348 		return ret;
349 
350 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
351 			       (u8 *) &tmp, 2);
352 	if (ret < 0) {
353 		dev_err(data->dev, "failed to read humidity\n");
354 		return ret;
355 	}
356 
357 	adc_humidity = be16_to_cpu(tmp);
358 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
359 		/* reading was skipped */
360 		dev_err(data->dev, "reading humidity skipped\n");
361 		return -EIO;
362 	}
363 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
364 
365 	*val = comp_humidity;
366 	*val2 = 1024;
367 
368 	return IIO_VAL_FRACTIONAL;
369 }
370 
371 static int bmp280_read_raw(struct iio_dev *indio_dev,
372 			   struct iio_chan_spec const *chan,
373 			   int *val, int *val2, long mask)
374 {
375 	int ret;
376 	struct bmp280_data *data = iio_priv(indio_dev);
377 
378 	pm_runtime_get_sync(data->dev);
379 	mutex_lock(&data->lock);
380 
381 	switch (mask) {
382 	case IIO_CHAN_INFO_PROCESSED:
383 		switch (chan->type) {
384 		case IIO_HUMIDITYRELATIVE:
385 			ret = data->chip_info->read_humid(data, val, val2);
386 			break;
387 		case IIO_PRESSURE:
388 			ret = data->chip_info->read_press(data, val, val2);
389 			break;
390 		case IIO_TEMP:
391 			ret = data->chip_info->read_temp(data, val);
392 			break;
393 		default:
394 			ret = -EINVAL;
395 			break;
396 		}
397 		break;
398 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
399 		switch (chan->type) {
400 		case IIO_HUMIDITYRELATIVE:
401 			*val = 1 << data->oversampling_humid;
402 			ret = IIO_VAL_INT;
403 			break;
404 		case IIO_PRESSURE:
405 			*val = 1 << data->oversampling_press;
406 			ret = IIO_VAL_INT;
407 			break;
408 		case IIO_TEMP:
409 			*val = 1 << data->oversampling_temp;
410 			ret = IIO_VAL_INT;
411 			break;
412 		default:
413 			ret = -EINVAL;
414 			break;
415 		}
416 		break;
417 	default:
418 		ret = -EINVAL;
419 		break;
420 	}
421 
422 	mutex_unlock(&data->lock);
423 	pm_runtime_mark_last_busy(data->dev);
424 	pm_runtime_put_autosuspend(data->dev);
425 
426 	return ret;
427 }
428 
429 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
430 					       int val)
431 {
432 	int i;
433 	const int *avail = data->chip_info->oversampling_humid_avail;
434 	const int n = data->chip_info->num_oversampling_humid_avail;
435 
436 	for (i = 0; i < n; i++) {
437 		if (avail[i] == val) {
438 			data->oversampling_humid = ilog2(val);
439 
440 			return data->chip_info->chip_config(data);
441 		}
442 	}
443 	return -EINVAL;
444 }
445 
446 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
447 					       int val)
448 {
449 	int i;
450 	const int *avail = data->chip_info->oversampling_temp_avail;
451 	const int n = data->chip_info->num_oversampling_temp_avail;
452 
453 	for (i = 0; i < n; i++) {
454 		if (avail[i] == val) {
455 			data->oversampling_temp = ilog2(val);
456 
457 			return data->chip_info->chip_config(data);
458 		}
459 	}
460 	return -EINVAL;
461 }
462 
463 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
464 					       int val)
465 {
466 	int i;
467 	const int *avail = data->chip_info->oversampling_press_avail;
468 	const int n = data->chip_info->num_oversampling_press_avail;
469 
470 	for (i = 0; i < n; i++) {
471 		if (avail[i] == val) {
472 			data->oversampling_press = ilog2(val);
473 
474 			return data->chip_info->chip_config(data);
475 		}
476 	}
477 	return -EINVAL;
478 }
479 
480 static int bmp280_write_raw(struct iio_dev *indio_dev,
481 			    struct iio_chan_spec const *chan,
482 			    int val, int val2, long mask)
483 {
484 	int ret = 0;
485 	struct bmp280_data *data = iio_priv(indio_dev);
486 
487 	switch (mask) {
488 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
489 		pm_runtime_get_sync(data->dev);
490 		mutex_lock(&data->lock);
491 		switch (chan->type) {
492 		case IIO_HUMIDITYRELATIVE:
493 			ret = bmp280_write_oversampling_ratio_humid(data, val);
494 			break;
495 		case IIO_PRESSURE:
496 			ret = bmp280_write_oversampling_ratio_press(data, val);
497 			break;
498 		case IIO_TEMP:
499 			ret = bmp280_write_oversampling_ratio_temp(data, val);
500 			break;
501 		default:
502 			ret = -EINVAL;
503 			break;
504 		}
505 		mutex_unlock(&data->lock);
506 		pm_runtime_mark_last_busy(data->dev);
507 		pm_runtime_put_autosuspend(data->dev);
508 		break;
509 	default:
510 		return -EINVAL;
511 	}
512 
513 	return ret;
514 }
515 
516 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
517 {
518 	size_t len = 0;
519 	int i;
520 
521 	for (i = 0; i < n; i++)
522 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
523 
524 	buf[len - 1] = '\n';
525 
526 	return len;
527 }
528 
529 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
530 				struct device_attribute *attr, char *buf)
531 {
532 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
533 
534 	return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
535 				 data->chip_info->num_oversampling_temp_avail);
536 }
537 
538 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
539 				struct device_attribute *attr, char *buf)
540 {
541 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
542 
543 	return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
544 				 data->chip_info->num_oversampling_press_avail);
545 }
546 
547 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
548 	S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
549 
550 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
551 	S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
552 
553 static struct attribute *bmp280_attributes[] = {
554 	&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
555 	&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
556 	NULL,
557 };
558 
559 static const struct attribute_group bmp280_attrs_group = {
560 	.attrs = bmp280_attributes,
561 };
562 
563 static const struct iio_info bmp280_info = {
564 	.driver_module = THIS_MODULE,
565 	.read_raw = &bmp280_read_raw,
566 	.write_raw = &bmp280_write_raw,
567 	.attrs = &bmp280_attrs_group,
568 };
569 
570 static int bmp280_chip_config(struct bmp280_data *data)
571 {
572 	int ret;
573 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
574 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
575 
576 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
577 				 BMP280_OSRS_TEMP_MASK |
578 				 BMP280_OSRS_PRESS_MASK |
579 				 BMP280_MODE_MASK,
580 				 osrs | BMP280_MODE_NORMAL);
581 	if (ret < 0) {
582 		dev_err(data->dev,
583 			"failed to write ctrl_meas register\n");
584 		return ret;
585 	}
586 
587 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
588 				 BMP280_FILTER_MASK,
589 				 BMP280_FILTER_4X);
590 	if (ret < 0) {
591 		dev_err(data->dev,
592 			"failed to write config register\n");
593 		return ret;
594 	}
595 
596 	return ret;
597 }
598 
599 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
600 
601 static const struct bmp280_chip_info bmp280_chip_info = {
602 	.oversampling_temp_avail = bmp280_oversampling_avail,
603 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
604 
605 	.oversampling_press_avail = bmp280_oversampling_avail,
606 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
607 
608 	.chip_config = bmp280_chip_config,
609 	.read_temp = bmp280_read_temp,
610 	.read_press = bmp280_read_press,
611 };
612 
613 static int bme280_chip_config(struct bmp280_data *data)
614 {
615 	int ret;
616 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
617 
618 	/*
619 	 * Oversampling of humidity must be set before oversampling of
620 	 * temperature/pressure is set to become effective.
621 	 */
622 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
623 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
624 
625 	if (ret < 0)
626 		return ret;
627 
628 	return bmp280_chip_config(data);
629 }
630 
631 static const struct bmp280_chip_info bme280_chip_info = {
632 	.oversampling_temp_avail = bmp280_oversampling_avail,
633 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
634 
635 	.oversampling_press_avail = bmp280_oversampling_avail,
636 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
637 
638 	.oversampling_humid_avail = bmp280_oversampling_avail,
639 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
640 
641 	.chip_config = bme280_chip_config,
642 	.read_temp = bmp280_read_temp,
643 	.read_press = bmp280_read_press,
644 	.read_humid = bmp280_read_humid,
645 };
646 
647 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
648 {
649 	int ret;
650 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
651 	unsigned int delay_us;
652 	unsigned int ctrl;
653 
654 	if (data->use_eoc)
655 		init_completion(&data->done);
656 
657 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
658 	if (ret)
659 		return ret;
660 
661 	if (data->use_eoc) {
662 		/*
663 		 * If we have a completion interrupt, use it, wait up to
664 		 * 100ms. The longest conversion time listed is 76.5 ms for
665 		 * advanced resolution mode.
666 		 */
667 		ret = wait_for_completion_timeout(&data->done,
668 						  1 + msecs_to_jiffies(100));
669 		if (!ret)
670 			dev_err(data->dev, "timeout waiting for completion\n");
671 	} else {
672 		if (ctrl_meas == BMP180_MEAS_TEMP)
673 			delay_us = 4500;
674 		else
675 			delay_us =
676 				conversion_time_max[data->oversampling_press];
677 
678 		usleep_range(delay_us, delay_us + 1000);
679 	}
680 
681 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
682 	if (ret)
683 		return ret;
684 
685 	/* The value of this bit reset to "0" after conversion is complete */
686 	if (ctrl & BMP180_MEAS_SCO)
687 		return -EIO;
688 
689 	return 0;
690 }
691 
692 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
693 {
694 	int ret;
695 	__be16 tmp = 0;
696 
697 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
698 	if (ret)
699 		return ret;
700 
701 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
702 	if (ret)
703 		return ret;
704 
705 	*val = be16_to_cpu(tmp);
706 
707 	return 0;
708 }
709 
710 static int bmp180_read_calib(struct bmp280_data *data,
711 			     struct bmp180_calib *calib)
712 {
713 	int ret;
714 	int i;
715 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
716 
717 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
718 			       sizeof(buf));
719 
720 	if (ret < 0)
721 		return ret;
722 
723 	/* None of the words has the value 0 or 0xFFFF */
724 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
725 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
726 			return -EIO;
727 	}
728 
729 	/* Toss the calibration data into the entropy pool */
730 	add_device_randomness(buf, sizeof(buf));
731 
732 	calib->AC1 = be16_to_cpu(buf[AC1]);
733 	calib->AC2 = be16_to_cpu(buf[AC2]);
734 	calib->AC3 = be16_to_cpu(buf[AC3]);
735 	calib->AC4 = be16_to_cpu(buf[AC4]);
736 	calib->AC5 = be16_to_cpu(buf[AC5]);
737 	calib->AC6 = be16_to_cpu(buf[AC6]);
738 	calib->B1 = be16_to_cpu(buf[B1]);
739 	calib->B2 = be16_to_cpu(buf[B2]);
740 	calib->MB = be16_to_cpu(buf[MB]);
741 	calib->MC = be16_to_cpu(buf[MC]);
742 	calib->MD = be16_to_cpu(buf[MD]);
743 
744 	return 0;
745 }
746 
747 /*
748  * Returns temperature in DegC, resolution is 0.1 DegC.
749  * t_fine carries fine temperature as global value.
750  *
751  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
752  */
753 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
754 {
755 	s32 x1, x2;
756 	struct bmp180_calib *calib = &data->calib;
757 
758 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
759 	x2 = (calib->MC << 11) / (x1 + calib->MD);
760 	data->t_fine = x1 + x2;
761 
762 	return (data->t_fine + 8) >> 4;
763 }
764 
765 static int bmp180_read_temp(struct bmp280_data *data, int *val)
766 {
767 	int ret;
768 	s32 adc_temp, comp_temp;
769 
770 	ret = bmp180_read_adc_temp(data, &adc_temp);
771 	if (ret)
772 		return ret;
773 
774 	comp_temp = bmp180_compensate_temp(data, adc_temp);
775 
776 	/*
777 	 * val might be NULL if we're called by the read_press routine,
778 	 * who only cares about the carry over t_fine value.
779 	 */
780 	if (val) {
781 		*val = comp_temp * 100;
782 		return IIO_VAL_INT;
783 	}
784 
785 	return 0;
786 }
787 
788 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
789 {
790 	int ret;
791 	__be32 tmp = 0;
792 	u8 oss = data->oversampling_press;
793 
794 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
795 	if (ret)
796 		return ret;
797 
798 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
799 	if (ret)
800 		return ret;
801 
802 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
803 
804 	return 0;
805 }
806 
807 /*
808  * Returns pressure in Pa, resolution is 1 Pa.
809  *
810  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
811  */
812 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
813 {
814 	s32 x1, x2, x3, p;
815 	s32 b3, b6;
816 	u32 b4, b7;
817 	s32 oss = data->oversampling_press;
818 	struct bmp180_calib *calib = &data->calib;
819 
820 	b6 = data->t_fine - 4000;
821 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
822 	x2 = calib->AC2 * b6 >> 11;
823 	x3 = x1 + x2;
824 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
825 	x1 = calib->AC3 * b6 >> 13;
826 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
827 	x3 = (x1 + x2 + 2) >> 2;
828 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
829 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
830 	if (b7 < 0x80000000)
831 		p = (b7 * 2) / b4;
832 	else
833 		p = (b7 / b4) * 2;
834 
835 	x1 = (p >> 8) * (p >> 8);
836 	x1 = (x1 * 3038) >> 16;
837 	x2 = (-7357 * p) >> 16;
838 
839 	return p + ((x1 + x2 + 3791) >> 4);
840 }
841 
842 static int bmp180_read_press(struct bmp280_data *data,
843 			     int *val, int *val2)
844 {
845 	int ret;
846 	s32 adc_press;
847 	u32 comp_press;
848 
849 	/* Read and compensate temperature so we get a reading of t_fine. */
850 	ret = bmp180_read_temp(data, NULL);
851 	if (ret)
852 		return ret;
853 
854 	ret = bmp180_read_adc_press(data, &adc_press);
855 	if (ret)
856 		return ret;
857 
858 	comp_press = bmp180_compensate_press(data, adc_press);
859 
860 	*val = comp_press;
861 	*val2 = 1000;
862 
863 	return IIO_VAL_FRACTIONAL;
864 }
865 
866 static int bmp180_chip_config(struct bmp280_data *data)
867 {
868 	return 0;
869 }
870 
871 static const int bmp180_oversampling_temp_avail[] = { 1 };
872 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
873 
874 static const struct bmp280_chip_info bmp180_chip_info = {
875 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
876 	.num_oversampling_temp_avail =
877 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
878 
879 	.oversampling_press_avail = bmp180_oversampling_press_avail,
880 	.num_oversampling_press_avail =
881 		ARRAY_SIZE(bmp180_oversampling_press_avail),
882 
883 	.chip_config = bmp180_chip_config,
884 	.read_temp = bmp180_read_temp,
885 	.read_press = bmp180_read_press,
886 };
887 
888 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
889 {
890 	struct bmp280_data *data = d;
891 
892 	complete(&data->done);
893 
894 	return IRQ_HANDLED;
895 }
896 
897 static int bmp085_fetch_eoc_irq(struct device *dev,
898 				const char *name,
899 				int irq,
900 				struct bmp280_data *data)
901 {
902 	unsigned long irq_trig;
903 	int ret;
904 
905 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
906 	if (irq_trig != IRQF_TRIGGER_RISING) {
907 		dev_err(dev, "non-rising trigger given for EOC interrupt, "
908 			"trying to enforce it\n");
909 		irq_trig = IRQF_TRIGGER_RISING;
910 	}
911 	ret = devm_request_threaded_irq(dev,
912 			irq,
913 			bmp085_eoc_irq,
914 			NULL,
915 			irq_trig,
916 			name,
917 			data);
918 	if (ret) {
919 		/* Bail out without IRQ but keep the driver in place */
920 		dev_err(dev, "unable to request DRDY IRQ\n");
921 		return 0;
922 	}
923 
924 	data->use_eoc = true;
925 	return 0;
926 }
927 
928 int bmp280_common_probe(struct device *dev,
929 			struct regmap *regmap,
930 			unsigned int chip,
931 			const char *name,
932 			int irq)
933 {
934 	int ret;
935 	struct iio_dev *indio_dev;
936 	struct bmp280_data *data;
937 	unsigned int chip_id;
938 	struct gpio_desc *gpiod;
939 
940 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
941 	if (!indio_dev)
942 		return -ENOMEM;
943 
944 	data = iio_priv(indio_dev);
945 	mutex_init(&data->lock);
946 	data->dev = dev;
947 
948 	indio_dev->dev.parent = dev;
949 	indio_dev->name = name;
950 	indio_dev->channels = bmp280_channels;
951 	indio_dev->info = &bmp280_info;
952 	indio_dev->modes = INDIO_DIRECT_MODE;
953 
954 	switch (chip) {
955 	case BMP180_CHIP_ID:
956 		indio_dev->num_channels = 2;
957 		data->chip_info = &bmp180_chip_info;
958 		data->oversampling_press = ilog2(8);
959 		data->oversampling_temp = ilog2(1);
960 		data->start_up_time = 10000;
961 		break;
962 	case BMP280_CHIP_ID:
963 		indio_dev->num_channels = 2;
964 		data->chip_info = &bmp280_chip_info;
965 		data->oversampling_press = ilog2(16);
966 		data->oversampling_temp = ilog2(2);
967 		data->start_up_time = 2000;
968 		break;
969 	case BME280_CHIP_ID:
970 		indio_dev->num_channels = 3;
971 		data->chip_info = &bme280_chip_info;
972 		data->oversampling_press = ilog2(16);
973 		data->oversampling_humid = ilog2(16);
974 		data->oversampling_temp = ilog2(2);
975 		data->start_up_time = 2000;
976 		break;
977 	default:
978 		return -EINVAL;
979 	}
980 
981 	/* Bring up regulators */
982 	data->vddd = devm_regulator_get(dev, "vddd");
983 	if (IS_ERR(data->vddd)) {
984 		dev_err(dev, "failed to get VDDD regulator\n");
985 		return PTR_ERR(data->vddd);
986 	}
987 	ret = regulator_enable(data->vddd);
988 	if (ret) {
989 		dev_err(dev, "failed to enable VDDD regulator\n");
990 		return ret;
991 	}
992 	data->vdda = devm_regulator_get(dev, "vdda");
993 	if (IS_ERR(data->vdda)) {
994 		dev_err(dev, "failed to get VDDA regulator\n");
995 		ret = PTR_ERR(data->vdda);
996 		goto out_disable_vddd;
997 	}
998 	ret = regulator_enable(data->vdda);
999 	if (ret) {
1000 		dev_err(dev, "failed to enable VDDA regulator\n");
1001 		goto out_disable_vddd;
1002 	}
1003 	/* Wait to make sure we started up properly */
1004 	usleep_range(data->start_up_time, data->start_up_time + 100);
1005 
1006 	/* Bring chip out of reset if there is an assigned GPIO line */
1007 	gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1008 	/* Deassert the signal */
1009 	if (!IS_ERR(gpiod)) {
1010 		dev_info(dev, "release reset\n");
1011 		gpiod_set_value(gpiod, 0);
1012 	}
1013 
1014 	data->regmap = regmap;
1015 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1016 	if (ret < 0)
1017 		goto out_disable_vdda;
1018 	if (chip_id != chip) {
1019 		dev_err(dev, "bad chip id: expected %x got %x\n",
1020 			chip, chip_id);
1021 		ret = -EINVAL;
1022 		goto out_disable_vdda;
1023 	}
1024 
1025 	ret = data->chip_info->chip_config(data);
1026 	if (ret < 0)
1027 		goto out_disable_vdda;
1028 
1029 	dev_set_drvdata(dev, indio_dev);
1030 
1031 	/*
1032 	 * The BMP085 and BMP180 has calibration in an E2PROM, read it out
1033 	 * at probe time. It will not change.
1034 	 */
1035 	if (chip_id  == BMP180_CHIP_ID) {
1036 		ret = bmp180_read_calib(data, &data->calib);
1037 		if (ret < 0) {
1038 			dev_err(data->dev,
1039 				"failed to read calibration coefficients\n");
1040 			goto out_disable_vdda;
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1046 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1047 	 * so we look for an IRQ if we have that.
1048 	 */
1049 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1050 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1051 		if (ret)
1052 			goto out_disable_vdda;
1053 	}
1054 
1055 	/* Enable runtime PM */
1056 	pm_runtime_get_noresume(dev);
1057 	pm_runtime_set_active(dev);
1058 	pm_runtime_enable(dev);
1059 	/*
1060 	 * Set autosuspend to two orders of magnitude larger than the
1061 	 * start-up time.
1062 	 */
1063 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1064 	pm_runtime_use_autosuspend(dev);
1065 	pm_runtime_put(dev);
1066 
1067 	ret = iio_device_register(indio_dev);
1068 	if (ret)
1069 		goto out_runtime_pm_disable;
1070 
1071 
1072 	return 0;
1073 
1074 out_runtime_pm_disable:
1075 	pm_runtime_get_sync(data->dev);
1076 	pm_runtime_put_noidle(data->dev);
1077 	pm_runtime_disable(data->dev);
1078 out_disable_vdda:
1079 	regulator_disable(data->vdda);
1080 out_disable_vddd:
1081 	regulator_disable(data->vddd);
1082 	return ret;
1083 }
1084 EXPORT_SYMBOL(bmp280_common_probe);
1085 
1086 int bmp280_common_remove(struct device *dev)
1087 {
1088 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1089 	struct bmp280_data *data = iio_priv(indio_dev);
1090 
1091 	iio_device_unregister(indio_dev);
1092 	pm_runtime_get_sync(data->dev);
1093 	pm_runtime_put_noidle(data->dev);
1094 	pm_runtime_disable(data->dev);
1095 	regulator_disable(data->vdda);
1096 	regulator_disable(data->vddd);
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL(bmp280_common_remove);
1100 
1101 #ifdef CONFIG_PM
1102 static int bmp280_runtime_suspend(struct device *dev)
1103 {
1104 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1105 	struct bmp280_data *data = iio_priv(indio_dev);
1106 	int ret;
1107 
1108 	ret = regulator_disable(data->vdda);
1109 	if (ret)
1110 		return ret;
1111 	return regulator_disable(data->vddd);
1112 }
1113 
1114 static int bmp280_runtime_resume(struct device *dev)
1115 {
1116 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1117 	struct bmp280_data *data = iio_priv(indio_dev);
1118 	int ret;
1119 
1120 	ret = regulator_enable(data->vddd);
1121 	if (ret)
1122 		return ret;
1123 	ret = regulator_enable(data->vdda);
1124 	if (ret)
1125 		return ret;
1126 	usleep_range(data->start_up_time, data->start_up_time + 100);
1127 	return data->chip_info->chip_config(data);
1128 }
1129 #endif /* CONFIG_PM */
1130 
1131 const struct dev_pm_ops bmp280_dev_pm_ops = {
1132 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1133 				pm_runtime_force_resume)
1134 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1135 			   bmp280_runtime_resume, NULL)
1136 };
1137 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1138 
1139 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1140 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1141 MODULE_LICENSE("GPL v2");
1142