1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4  * Copyright (c) 2012 Bosch Sensortec GmbH
5  * Copyright (c) 2012 Unixphere AB
6  * Copyright (c) 2014 Intel Corporation
7  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8  *
9  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10  *
11  * Datasheet:
12  * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
17  *
18  * Notice:
19  * The link to the bmp180 datasheet points to an outdated version missing these changes:
20  * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
21  * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
22  * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
23  */
24 
25 #define pr_fmt(fmt) "bmp280: " fmt
26 
27 #include <linux/bitops.h>
28 #include <linux/bitfield.h>
29 #include <linux/device.h>
30 #include <linux/module.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/regmap.h>
33 #include <linux/delay.h>
34 #include <linux/iio/iio.h>
35 #include <linux/iio/sysfs.h>
36 #include <linux/gpio/consumer.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/interrupt.h>
39 #include <linux/irq.h> /* For irq_get_irq_data() */
40 #include <linux/completion.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/random.h>
43 
44 #include <asm/unaligned.h>
45 
46 #include "bmp280.h"
47 
48 /*
49  * These enums are used for indexing into the array of calibration
50  * coefficients for BMP180.
51  */
52 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
53 
54 
55 enum bmp380_odr {
56 	BMP380_ODR_200HZ,
57 	BMP380_ODR_100HZ,
58 	BMP380_ODR_50HZ,
59 	BMP380_ODR_25HZ,
60 	BMP380_ODR_12_5HZ,
61 	BMP380_ODR_6_25HZ,
62 	BMP380_ODR_3_125HZ,
63 	BMP380_ODR_1_5625HZ,
64 	BMP380_ODR_0_78HZ,
65 	BMP380_ODR_0_39HZ,
66 	BMP380_ODR_0_2HZ,
67 	BMP380_ODR_0_1HZ,
68 	BMP380_ODR_0_05HZ,
69 	BMP380_ODR_0_02HZ,
70 	BMP380_ODR_0_01HZ,
71 	BMP380_ODR_0_006HZ,
72 	BMP380_ODR_0_003HZ,
73 	BMP380_ODR_0_0015HZ,
74 };
75 
76 enum bmp580_odr {
77 	BMP580_ODR_240HZ,
78 	BMP580_ODR_218HZ,
79 	BMP580_ODR_199HZ,
80 	BMP580_ODR_179HZ,
81 	BMP580_ODR_160HZ,
82 	BMP580_ODR_149HZ,
83 	BMP580_ODR_140HZ,
84 	BMP580_ODR_129HZ,
85 	BMP580_ODR_120HZ,
86 	BMP580_ODR_110HZ,
87 	BMP580_ODR_100HZ,
88 	BMP580_ODR_89HZ,
89 	BMP580_ODR_80HZ,
90 	BMP580_ODR_70HZ,
91 	BMP580_ODR_60HZ,
92 	BMP580_ODR_50HZ,
93 	BMP580_ODR_45HZ,
94 	BMP580_ODR_40HZ,
95 	BMP580_ODR_35HZ,
96 	BMP580_ODR_30HZ,
97 	BMP580_ODR_25HZ,
98 	BMP580_ODR_20HZ,
99 	BMP580_ODR_15HZ,
100 	BMP580_ODR_10HZ,
101 	BMP580_ODR_5HZ,
102 	BMP580_ODR_4HZ,
103 	BMP580_ODR_3HZ,
104 	BMP580_ODR_2HZ,
105 	BMP580_ODR_1HZ,
106 	BMP580_ODR_0_5HZ,
107 	BMP580_ODR_0_25HZ,
108 	BMP580_ODR_0_125HZ,
109 };
110 
111 /*
112  * These enums are used for indexing into the array of compensation
113  * parameters for BMP280.
114  */
115 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
116 
117 enum {
118 	/* Temperature calib indexes */
119 	BMP380_T1 = 0,
120 	BMP380_T2 = 2,
121 	BMP380_T3 = 4,
122 	/* Pressure calib indexes */
123 	BMP380_P1 = 5,
124 	BMP380_P2 = 7,
125 	BMP380_P3 = 9,
126 	BMP380_P4 = 10,
127 	BMP380_P5 = 11,
128 	BMP380_P6 = 13,
129 	BMP380_P7 = 15,
130 	BMP380_P8 = 16,
131 	BMP380_P9 = 17,
132 	BMP380_P10 = 19,
133 	BMP380_P11 = 20,
134 };
135 
136 static const struct iio_chan_spec bmp280_channels[] = {
137 	{
138 		.type = IIO_PRESSURE,
139 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
140 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
141 	},
142 	{
143 		.type = IIO_TEMP,
144 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
145 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
146 	},
147 	{
148 		.type = IIO_HUMIDITYRELATIVE,
149 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
150 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
151 	},
152 };
153 
154 static const struct iio_chan_spec bmp380_channels[] = {
155 	{
156 		.type = IIO_PRESSURE,
157 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
158 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
159 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
160 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
161 	},
162 	{
163 		.type = IIO_TEMP,
164 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
165 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
166 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
167 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
168 	},
169 	{
170 		.type = IIO_HUMIDITYRELATIVE,
171 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
172 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
173 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
174 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
175 	},
176 };
177 
178 static int bmp280_read_calib(struct bmp280_data *data)
179 {
180 	struct bmp280_calib *calib = &data->calib.bmp280;
181 	int ret;
182 
183 
184 	/* Read temperature and pressure calibration values. */
185 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
186 			       data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf));
187 	if (ret < 0) {
188 		dev_err(data->dev,
189 			"failed to read temperature and pressure calibration parameters\n");
190 		return ret;
191 	}
192 
193 	/* Toss the temperature and pressure calibration data into the entropy pool */
194 	add_device_randomness(data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf));
195 
196 	/* Parse temperature calibration values. */
197 	calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
198 	calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
199 	calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
200 
201 	/* Parse pressure calibration values. */
202 	calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
203 	calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
204 	calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
205 	calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
206 	calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
207 	calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
208 	calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
209 	calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
210 	calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
211 
212 	return 0;
213 }
214 
215 static int bme280_read_calib(struct bmp280_data *data)
216 {
217 	struct bmp280_calib *calib = &data->calib.bmp280;
218 	struct device *dev = data->dev;
219 	unsigned int tmp;
220 	int ret;
221 
222 	/* Load shared calibration params with bmp280 first */
223 	ret = bmp280_read_calib(data);
224 	if  (ret < 0) {
225 		dev_err(dev, "failed to read common bmp280 calibration parameters\n");
226 		return ret;
227 	}
228 
229 	/*
230 	 * Read humidity calibration values.
231 	 * Due to some odd register addressing we cannot just
232 	 * do a big bulk read. Instead, we have to read each Hx
233 	 * value separately and sometimes do some bit shifting...
234 	 * Humidity data is only available on BME280.
235 	 */
236 
237 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
238 	if (ret < 0) {
239 		dev_err(dev, "failed to read H1 comp value\n");
240 		return ret;
241 	}
242 	calib->H1 = tmp;
243 
244 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2,
245 			       &data->le16, sizeof(data->le16));
246 	if (ret < 0) {
247 		dev_err(dev, "failed to read H2 comp value\n");
248 		return ret;
249 	}
250 	calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15);
251 
252 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
253 	if (ret < 0) {
254 		dev_err(dev, "failed to read H3 comp value\n");
255 		return ret;
256 	}
257 	calib->H3 = tmp;
258 
259 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4,
260 			       &data->be16, sizeof(data->be16));
261 	if (ret < 0) {
262 		dev_err(dev, "failed to read H4 comp value\n");
263 		return ret;
264 	}
265 	calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) |
266 				  (be16_to_cpu(data->be16) & 0xf), 11);
267 
268 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5,
269 			       &data->le16, sizeof(data->le16));
270 	if (ret < 0) {
271 		dev_err(dev, "failed to read H5 comp value\n");
272 		return ret;
273 	}
274 	calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11);
275 
276 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
277 	if (ret < 0) {
278 		dev_err(dev, "failed to read H6 comp value\n");
279 		return ret;
280 	}
281 	calib->H6 = sign_extend32(tmp, 7);
282 
283 	return 0;
284 }
285 /*
286  * Returns humidity in percent, resolution is 0.01 percent. Output value of
287  * "47445" represents 47445/1024 = 46.333 %RH.
288  *
289  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
290  */
291 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
292 				      s32 adc_humidity)
293 {
294 	struct bmp280_calib *calib = &data->calib.bmp280;
295 	s32 var;
296 
297 	var = ((s32)data->t_fine) - (s32)76800;
298 	var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
299 		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
300 		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
301 		+ (s32)2097152) * calib->H2 + 8192) >> 14);
302 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
303 
304 	var = clamp_val(var, 0, 419430400);
305 
306 	return var >> 12;
307 };
308 
309 /*
310  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
311  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
312  * value.
313  *
314  * Taken from datasheet, Section 3.11.3, "Compensation formula".
315  */
316 static s32 bmp280_compensate_temp(struct bmp280_data *data,
317 				  s32 adc_temp)
318 {
319 	struct bmp280_calib *calib = &data->calib.bmp280;
320 	s32 var1, var2;
321 
322 	var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
323 		((s32)calib->T2)) >> 11;
324 	var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
325 		  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
326 		((s32)calib->T3)) >> 14;
327 	data->t_fine = var1 + var2;
328 
329 	return (data->t_fine * 5 + 128) >> 8;
330 }
331 
332 /*
333  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
334  * integer bits and 8 fractional bits).  Output value of "24674867"
335  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
336  *
337  * Taken from datasheet, Section 3.11.3, "Compensation formula".
338  */
339 static u32 bmp280_compensate_press(struct bmp280_data *data,
340 				   s32 adc_press)
341 {
342 	struct bmp280_calib *calib = &data->calib.bmp280;
343 	s64 var1, var2, p;
344 
345 	var1 = ((s64)data->t_fine) - 128000;
346 	var2 = var1 * var1 * (s64)calib->P6;
347 	var2 += (var1 * (s64)calib->P5) << 17;
348 	var2 += ((s64)calib->P4) << 35;
349 	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
350 		((var1 * (s64)calib->P2) << 12);
351 	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
352 
353 	if (var1 == 0)
354 		return 0;
355 
356 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
357 	p = div64_s64(p, var1);
358 	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
359 	var2 = ((s64)(calib->P8) * p) >> 19;
360 	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
361 
362 	return (u32)p;
363 }
364 
365 static int bmp280_read_temp(struct bmp280_data *data,
366 			    int *val, int *val2)
367 {
368 	s32 adc_temp, comp_temp;
369 	int ret;
370 
371 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
372 			       data->buf, sizeof(data->buf));
373 	if (ret < 0) {
374 		dev_err(data->dev, "failed to read temperature\n");
375 		return ret;
376 	}
377 
378 	adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
379 	if (adc_temp == BMP280_TEMP_SKIPPED) {
380 		/* reading was skipped */
381 		dev_err(data->dev, "reading temperature skipped\n");
382 		return -EIO;
383 	}
384 	comp_temp = bmp280_compensate_temp(data, adc_temp);
385 
386 	/*
387 	 * val might be NULL if we're called by the read_press routine,
388 	 * who only cares about the carry over t_fine value.
389 	 */
390 	if (val) {
391 		*val = comp_temp * 10;
392 		return IIO_VAL_INT;
393 	}
394 
395 	return 0;
396 }
397 
398 static int bmp280_read_press(struct bmp280_data *data,
399 			     int *val, int *val2)
400 {
401 	u32 comp_press;
402 	s32 adc_press;
403 	int ret;
404 
405 	/* Read and compensate temperature so we get a reading of t_fine. */
406 	ret = bmp280_read_temp(data, NULL, NULL);
407 	if (ret < 0)
408 		return ret;
409 
410 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
411 			       data->buf, sizeof(data->buf));
412 	if (ret < 0) {
413 		dev_err(data->dev, "failed to read pressure\n");
414 		return ret;
415 	}
416 
417 	adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
418 	if (adc_press == BMP280_PRESS_SKIPPED) {
419 		/* reading was skipped */
420 		dev_err(data->dev, "reading pressure skipped\n");
421 		return -EIO;
422 	}
423 	comp_press = bmp280_compensate_press(data, adc_press);
424 
425 	*val = comp_press;
426 	*val2 = 256000;
427 
428 	return IIO_VAL_FRACTIONAL;
429 }
430 
431 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
432 {
433 	u32 comp_humidity;
434 	s32 adc_humidity;
435 	int ret;
436 
437 	/* Read and compensate temperature so we get a reading of t_fine. */
438 	ret = bmp280_read_temp(data, NULL, NULL);
439 	if (ret < 0)
440 		return ret;
441 
442 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
443 			       &data->be16, sizeof(data->be16));
444 	if (ret < 0) {
445 		dev_err(data->dev, "failed to read humidity\n");
446 		return ret;
447 	}
448 
449 	adc_humidity = be16_to_cpu(data->be16);
450 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
451 		/* reading was skipped */
452 		dev_err(data->dev, "reading humidity skipped\n");
453 		return -EIO;
454 	}
455 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
456 
457 	*val = comp_humidity * 1000 / 1024;
458 
459 	return IIO_VAL_INT;
460 }
461 
462 static int bmp280_read_raw(struct iio_dev *indio_dev,
463 			   struct iio_chan_spec const *chan,
464 			   int *val, int *val2, long mask)
465 {
466 	struct bmp280_data *data = iio_priv(indio_dev);
467 	int ret;
468 
469 	pm_runtime_get_sync(data->dev);
470 	mutex_lock(&data->lock);
471 
472 	switch (mask) {
473 	case IIO_CHAN_INFO_PROCESSED:
474 		switch (chan->type) {
475 		case IIO_HUMIDITYRELATIVE:
476 			ret = data->chip_info->read_humid(data, val, val2);
477 			break;
478 		case IIO_PRESSURE:
479 			ret = data->chip_info->read_press(data, val, val2);
480 			break;
481 		case IIO_TEMP:
482 			ret = data->chip_info->read_temp(data, val, val2);
483 			break;
484 		default:
485 			ret = -EINVAL;
486 			break;
487 		}
488 		break;
489 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
490 		switch (chan->type) {
491 		case IIO_HUMIDITYRELATIVE:
492 			*val = 1 << data->oversampling_humid;
493 			ret = IIO_VAL_INT;
494 			break;
495 		case IIO_PRESSURE:
496 			*val = 1 << data->oversampling_press;
497 			ret = IIO_VAL_INT;
498 			break;
499 		case IIO_TEMP:
500 			*val = 1 << data->oversampling_temp;
501 			ret = IIO_VAL_INT;
502 			break;
503 		default:
504 			ret = -EINVAL;
505 			break;
506 		}
507 		break;
508 	case IIO_CHAN_INFO_SAMP_FREQ:
509 		if (!data->chip_info->sampling_freq_avail) {
510 			ret = -EINVAL;
511 			break;
512 		}
513 
514 		*val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
515 		*val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
516 		ret = IIO_VAL_INT_PLUS_MICRO;
517 		break;
518 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
519 		if (!data->chip_info->iir_filter_coeffs_avail) {
520 			ret = -EINVAL;
521 			break;
522 		}
523 
524 		*val = (1 << data->iir_filter_coeff) - 1;
525 		ret = IIO_VAL_INT;
526 		break;
527 	default:
528 		ret = -EINVAL;
529 		break;
530 	}
531 
532 	mutex_unlock(&data->lock);
533 	pm_runtime_mark_last_busy(data->dev);
534 	pm_runtime_put_autosuspend(data->dev);
535 
536 	return ret;
537 }
538 
539 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
540 					       int val)
541 {
542 	const int *avail = data->chip_info->oversampling_humid_avail;
543 	const int n = data->chip_info->num_oversampling_humid_avail;
544 	int ret, prev;
545 	int i;
546 
547 	for (i = 0; i < n; i++) {
548 		if (avail[i] == val) {
549 			prev = data->oversampling_humid;
550 			data->oversampling_humid = ilog2(val);
551 
552 			ret = data->chip_info->chip_config(data);
553 			if (ret) {
554 				data->oversampling_humid = prev;
555 				data->chip_info->chip_config(data);
556 				return ret;
557 			}
558 			return 0;
559 		}
560 	}
561 	return -EINVAL;
562 }
563 
564 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
565 					       int val)
566 {
567 	const int *avail = data->chip_info->oversampling_temp_avail;
568 	const int n = data->chip_info->num_oversampling_temp_avail;
569 	int ret, prev;
570 	int i;
571 
572 	for (i = 0; i < n; i++) {
573 		if (avail[i] == val) {
574 			prev = data->oversampling_temp;
575 			data->oversampling_temp = ilog2(val);
576 
577 			ret = data->chip_info->chip_config(data);
578 			if (ret) {
579 				data->oversampling_temp = prev;
580 				data->chip_info->chip_config(data);
581 				return ret;
582 			}
583 			return 0;
584 		}
585 	}
586 	return -EINVAL;
587 }
588 
589 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
590 					       int val)
591 {
592 	const int *avail = data->chip_info->oversampling_press_avail;
593 	const int n = data->chip_info->num_oversampling_press_avail;
594 	int ret, prev;
595 	int i;
596 
597 	for (i = 0; i < n; i++) {
598 		if (avail[i] == val) {
599 			prev = data->oversampling_press;
600 			data->oversampling_press = ilog2(val);
601 
602 			ret = data->chip_info->chip_config(data);
603 			if (ret) {
604 				data->oversampling_press = prev;
605 				data->chip_info->chip_config(data);
606 				return ret;
607 			}
608 			return 0;
609 		}
610 	}
611 	return -EINVAL;
612 }
613 
614 static int bmp280_write_sampling_frequency(struct bmp280_data *data,
615 					   int val, int val2)
616 {
617 	const int (*avail)[2] = data->chip_info->sampling_freq_avail;
618 	const int n = data->chip_info->num_sampling_freq_avail;
619 	int ret, prev;
620 	int i;
621 
622 	for (i = 0; i < n; i++) {
623 		if (avail[i][0] == val && avail[i][1] == val2) {
624 			prev = data->sampling_freq;
625 			data->sampling_freq = i;
626 
627 			ret = data->chip_info->chip_config(data);
628 			if (ret) {
629 				data->sampling_freq = prev;
630 				data->chip_info->chip_config(data);
631 				return ret;
632 			}
633 			return 0;
634 		}
635 	}
636 	return -EINVAL;
637 }
638 
639 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
640 {
641 	const int *avail = data->chip_info->iir_filter_coeffs_avail;
642 	const int n = data->chip_info->num_iir_filter_coeffs_avail;
643 	int ret, prev;
644 	int i;
645 
646 	for (i = 0; i < n; i++) {
647 		if (avail[i] - 1  == val) {
648 			prev = data->iir_filter_coeff;
649 			data->iir_filter_coeff = i;
650 
651 			ret = data->chip_info->chip_config(data);
652 			if (ret) {
653 				data->iir_filter_coeff = prev;
654 				data->chip_info->chip_config(data);
655 				return ret;
656 
657 			}
658 			return 0;
659 		}
660 	}
661 	return -EINVAL;
662 }
663 
664 static int bmp280_write_raw(struct iio_dev *indio_dev,
665 			    struct iio_chan_spec const *chan,
666 			    int val, int val2, long mask)
667 {
668 	struct bmp280_data *data = iio_priv(indio_dev);
669 	int ret = 0;
670 
671 	/*
672 	 * Helper functions to update sensor running configuration.
673 	 * If an error happens applying new settings, will try restore
674 	 * previous parameters to ensure the sensor is left in a known
675 	 * working configuration.
676 	 */
677 	switch (mask) {
678 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
679 		pm_runtime_get_sync(data->dev);
680 		mutex_lock(&data->lock);
681 		switch (chan->type) {
682 		case IIO_HUMIDITYRELATIVE:
683 			ret = bmp280_write_oversampling_ratio_humid(data, val);
684 			break;
685 		case IIO_PRESSURE:
686 			ret = bmp280_write_oversampling_ratio_press(data, val);
687 			break;
688 		case IIO_TEMP:
689 			ret = bmp280_write_oversampling_ratio_temp(data, val);
690 			break;
691 		default:
692 			ret = -EINVAL;
693 			break;
694 		}
695 		mutex_unlock(&data->lock);
696 		pm_runtime_mark_last_busy(data->dev);
697 		pm_runtime_put_autosuspend(data->dev);
698 		break;
699 	case IIO_CHAN_INFO_SAMP_FREQ:
700 		pm_runtime_get_sync(data->dev);
701 		mutex_lock(&data->lock);
702 		ret = bmp280_write_sampling_frequency(data, val, val2);
703 		mutex_unlock(&data->lock);
704 		pm_runtime_mark_last_busy(data->dev);
705 		pm_runtime_put_autosuspend(data->dev);
706 		break;
707 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
708 		pm_runtime_get_sync(data->dev);
709 		mutex_lock(&data->lock);
710 		ret = bmp280_write_iir_filter_coeffs(data, val);
711 		mutex_unlock(&data->lock);
712 		pm_runtime_mark_last_busy(data->dev);
713 		pm_runtime_put_autosuspend(data->dev);
714 		break;
715 	default:
716 		return -EINVAL;
717 	}
718 
719 	return ret;
720 }
721 
722 static int bmp280_read_avail(struct iio_dev *indio_dev,
723 			     struct iio_chan_spec const *chan,
724 			     const int **vals, int *type, int *length,
725 			     long mask)
726 {
727 	struct bmp280_data *data = iio_priv(indio_dev);
728 
729 	switch (mask) {
730 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
731 		switch (chan->type) {
732 		case IIO_PRESSURE:
733 			*vals = data->chip_info->oversampling_press_avail;
734 			*length = data->chip_info->num_oversampling_press_avail;
735 			break;
736 		case IIO_TEMP:
737 			*vals = data->chip_info->oversampling_temp_avail;
738 			*length = data->chip_info->num_oversampling_temp_avail;
739 			break;
740 		default:
741 			return -EINVAL;
742 		}
743 		*type = IIO_VAL_INT;
744 		return IIO_AVAIL_LIST;
745 	case IIO_CHAN_INFO_SAMP_FREQ:
746 		*vals = (const int *)data->chip_info->sampling_freq_avail;
747 		*type = IIO_VAL_INT_PLUS_MICRO;
748 		/* Values are stored in a 2D matrix */
749 		*length = data->chip_info->num_sampling_freq_avail;
750 		return IIO_AVAIL_LIST;
751 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
752 		*vals = data->chip_info->iir_filter_coeffs_avail;
753 		*type = IIO_VAL_INT;
754 		*length = data->chip_info->num_iir_filter_coeffs_avail;
755 		return IIO_AVAIL_LIST;
756 	default:
757 		return -EINVAL;
758 	}
759 }
760 
761 static const struct iio_info bmp280_info = {
762 	.read_raw = &bmp280_read_raw,
763 	.read_avail = &bmp280_read_avail,
764 	.write_raw = &bmp280_write_raw,
765 };
766 
767 static int bmp280_chip_config(struct bmp280_data *data)
768 {
769 	u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
770 		  FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
771 	int ret;
772 
773 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
774 				 BMP280_OSRS_TEMP_MASK |
775 				 BMP280_OSRS_PRESS_MASK |
776 				 BMP280_MODE_MASK,
777 				 osrs | BMP280_MODE_NORMAL);
778 	if (ret < 0) {
779 		dev_err(data->dev,
780 			"failed to write ctrl_meas register\n");
781 		return ret;
782 	}
783 
784 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
785 				 BMP280_FILTER_MASK,
786 				 BMP280_FILTER_4X);
787 	if (ret < 0) {
788 		dev_err(data->dev,
789 			"failed to write config register\n");
790 		return ret;
791 	}
792 
793 	return ret;
794 }
795 
796 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
797 
798 const struct bmp280_chip_info bmp280_chip_info = {
799 	.id_reg = BMP280_REG_ID,
800 	.chip_id = BMP280_CHIP_ID,
801 	.regmap_config = &bmp280_regmap_config,
802 	.start_up_time = 2000,
803 	.channels = bmp280_channels,
804 	.num_channels = 2,
805 
806 	.oversampling_temp_avail = bmp280_oversampling_avail,
807 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
808 	/*
809 	 * Oversampling config values on BMx280 have one additional setting
810 	 * that other generations of the family don't:
811 	 * The value 0 means the measurement is bypassed instead of
812 	 * oversampling set to x1.
813 	 *
814 	 * To account for this difference, and preserve the same common
815 	 * config logic, this is handled later on chip_config callback
816 	 * incrementing one unit the oversampling setting.
817 	 */
818 	.oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
819 
820 	.oversampling_press_avail = bmp280_oversampling_avail,
821 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
822 	.oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
823 
824 	.chip_config = bmp280_chip_config,
825 	.read_temp = bmp280_read_temp,
826 	.read_press = bmp280_read_press,
827 	.read_calib = bmp280_read_calib,
828 };
829 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280);
830 
831 static int bme280_chip_config(struct bmp280_data *data)
832 {
833 	u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
834 	int ret;
835 
836 	/*
837 	 * Oversampling of humidity must be set before oversampling of
838 	 * temperature/pressure is set to become effective.
839 	 */
840 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
841 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
842 
843 	if (ret < 0)
844 		return ret;
845 
846 	return bmp280_chip_config(data);
847 }
848 
849 const struct bmp280_chip_info bme280_chip_info = {
850 	.id_reg = BMP280_REG_ID,
851 	.chip_id = BME280_CHIP_ID,
852 	.regmap_config = &bmp280_regmap_config,
853 	.start_up_time = 2000,
854 	.channels = bmp280_channels,
855 	.num_channels = 3,
856 
857 	.oversampling_temp_avail = bmp280_oversampling_avail,
858 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
859 	.oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
860 
861 	.oversampling_press_avail = bmp280_oversampling_avail,
862 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
863 	.oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
864 
865 	.oversampling_humid_avail = bmp280_oversampling_avail,
866 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
867 	.oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1,
868 
869 	.chip_config = bme280_chip_config,
870 	.read_temp = bmp280_read_temp,
871 	.read_press = bmp280_read_press,
872 	.read_humid = bmp280_read_humid,
873 	.read_calib = bme280_read_calib,
874 };
875 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280);
876 
877 /*
878  * Helper function to send a command to BMP3XX sensors.
879  *
880  * Sensor processes commands written to the CMD register and signals
881  * execution result through "cmd_rdy" and "cmd_error" flags available on
882  * STATUS and ERROR registers.
883  */
884 static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
885 {
886 	unsigned int reg;
887 	int ret;
888 
889 	/* Check if device is ready to process a command */
890 	ret = regmap_read(data->regmap, BMP380_REG_STATUS, &reg);
891 	if (ret) {
892 		dev_err(data->dev, "failed to read error register\n");
893 		return ret;
894 	}
895 	if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
896 		dev_err(data->dev, "device is not ready to accept commands\n");
897 		return -EBUSY;
898 	}
899 
900 	/* Send command to process */
901 	ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd);
902 	if (ret) {
903 		dev_err(data->dev, "failed to send command to device\n");
904 		return ret;
905 	}
906 	/* Wait for 2ms for command to be processed */
907 	usleep_range(data->start_up_time, data->start_up_time + 100);
908 	/* Check for command processing error */
909 	ret = regmap_read(data->regmap, BMP380_REG_ERROR, &reg);
910 	if (ret) {
911 		dev_err(data->dev, "error reading ERROR reg\n");
912 		return ret;
913 	}
914 	if (reg & BMP380_ERR_CMD_MASK) {
915 		dev_err(data->dev, "error processing command 0x%X\n", cmd);
916 		return -EINVAL;
917 	}
918 
919 	return 0;
920 }
921 
922 /*
923  * Returns temperature in Celsius dregrees, resolution is 0.01º C. Output value of
924  * "5123" equals 51.2º C. t_fine carries fine temperature as global value.
925  *
926  * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
927  * https://github.com/BoschSensortec/BMP3-Sensor-API.
928  */
929 static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
930 {
931 	s64 var1, var2, var3, var4, var5, var6, comp_temp;
932 	struct bmp380_calib *calib = &data->calib.bmp380;
933 
934 	var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
935 	var2 = var1 * ((s64) calib->T2);
936 	var3 = var1 * var1;
937 	var4 = var3 * ((s64) calib->T3);
938 	var5 = (var2 << 18) + var4;
939 	var6 = var5 >> 32;
940 	data->t_fine = (s32) var6;
941 	comp_temp = (var6 * 25) >> 14;
942 
943 	comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
944 	return (s32) comp_temp;
945 }
946 
947 /*
948  * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
949  * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
950  *
951  * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
952  * https://github.com/BoschSensortec/BMP3-Sensor-API.
953  */
954 static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press)
955 {
956 	s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
957 	struct bmp380_calib *calib = &data->calib.bmp380;
958 	u32 comp_press;
959 
960 	var1 = (s64)data->t_fine * (s64)data->t_fine;
961 	var2 = var1 >> 6;
962 	var3 = (var2 * ((s64) data->t_fine)) >> 8;
963 	var4 = ((s64)calib->P8 * var3) >> 5;
964 	var5 = ((s64)calib->P7 * var1) << 4;
965 	var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22;
966 	offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
967 	var2 = ((s64)calib->P4 * var3) >> 5;
968 	var4 = ((s64)calib->P3 * var1) << 2;
969 	var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
970 	       ((s64)data->t_fine << 21);
971 	sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
972 			var2 + var4 + var5;
973 	var1 = (sensitivity >> 24) * (s64)adc_press;
974 	var2 = (s64)calib->P10 * (s64)data->t_fine;
975 	var3 = var2 + ((s64)calib->P9 << 16);
976 	var4 = (var3 * (s64)adc_press) >> 13;
977 
978 	/*
979 	 * Dividing by 10 followed by multiplying by 10 to avoid
980 	 * possible overflow caused by (uncomp_data->pressure * partial_data4).
981 	 */
982 	var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9;
983 	var5 *= 10;
984 	var6 = (s64)adc_press * (s64)adc_press;
985 	var2 = ((s64)calib->P11 * var6) >> 16;
986 	var3 = (var2 * (s64)adc_press) >> 7;
987 	var4 = (offset >> 2) + var1 + var5 + var3;
988 	comp_press = ((u64)var4 * 25) >> 40;
989 
990 	comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
991 	return comp_press;
992 }
993 
994 static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2)
995 {
996 	s32 comp_temp;
997 	u32 adc_temp;
998 	int ret;
999 
1000 	ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB,
1001 			       data->buf, sizeof(data->buf));
1002 	if (ret) {
1003 		dev_err(data->dev, "failed to read temperature\n");
1004 		return ret;
1005 	}
1006 
1007 	adc_temp = get_unaligned_le24(data->buf);
1008 	if (adc_temp == BMP380_TEMP_SKIPPED) {
1009 		dev_err(data->dev, "reading temperature skipped\n");
1010 		return -EIO;
1011 	}
1012 	comp_temp = bmp380_compensate_temp(data, adc_temp);
1013 
1014 	/*
1015 	 * Val might be NULL if we're called by the read_press routine,
1016 	 * who only cares about the carry over t_fine value.
1017 	 */
1018 	if (val) {
1019 		/* IIO reports temperatures in milli Celsius */
1020 		*val = comp_temp * 10;
1021 		return IIO_VAL_INT;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2)
1028 {
1029 	s32 comp_press;
1030 	u32 adc_press;
1031 	int ret;
1032 
1033 	/* Read and compensate for temperature so we get a reading of t_fine */
1034 	ret = bmp380_read_temp(data, NULL, NULL);
1035 	if (ret)
1036 		return ret;
1037 
1038 	ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1039 			       data->buf, sizeof(data->buf));
1040 	if (ret) {
1041 		dev_err(data->dev, "failed to read pressure\n");
1042 		return ret;
1043 	}
1044 
1045 	adc_press = get_unaligned_le24(data->buf);
1046 	if (adc_press == BMP380_PRESS_SKIPPED) {
1047 		dev_err(data->dev, "reading pressure skipped\n");
1048 		return -EIO;
1049 	}
1050 	comp_press = bmp380_compensate_press(data, adc_press);
1051 
1052 	*val = comp_press;
1053 	/* Compensated pressure is in cPa (centipascals) */
1054 	*val2 = 100000;
1055 
1056 	return IIO_VAL_FRACTIONAL;
1057 }
1058 
1059 static int bmp380_read_calib(struct bmp280_data *data)
1060 {
1061 	struct bmp380_calib *calib = &data->calib.bmp380;
1062 	int ret;
1063 
1064 	/* Read temperature and pressure calibration data */
1065 	ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START,
1066 			       data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf));
1067 	if (ret) {
1068 		dev_err(data->dev,
1069 			"failed to read temperature calibration parameters\n");
1070 		return ret;
1071 	}
1072 
1073 	/* Toss the temperature calibration data into the entropy pool */
1074 	add_device_randomness(data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf));
1075 
1076 	/* Parse calibration values */
1077 	calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]);
1078 	calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]);
1079 	calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1080 	calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]);
1081 	calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]);
1082 	calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1083 	calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1084 	calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]);
1085 	calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]);
1086 	calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1087 	calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1088 	calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]);
1089 	calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1090 	calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1091 
1092 	return 0;
1093 }
1094 
1095 static const int bmp380_odr_table[][2] = {
1096 	[BMP380_ODR_200HZ]	= {200, 0},
1097 	[BMP380_ODR_100HZ]	= {100, 0},
1098 	[BMP380_ODR_50HZ]	= {50, 0},
1099 	[BMP380_ODR_25HZ]	= {25, 0},
1100 	[BMP380_ODR_12_5HZ]	= {12, 500000},
1101 	[BMP380_ODR_6_25HZ]	= {6, 250000},
1102 	[BMP380_ODR_3_125HZ]	= {3, 125000},
1103 	[BMP380_ODR_1_5625HZ]	= {1, 562500},
1104 	[BMP380_ODR_0_78HZ]	= {0, 781250},
1105 	[BMP380_ODR_0_39HZ]	= {0, 390625},
1106 	[BMP380_ODR_0_2HZ]	= {0, 195313},
1107 	[BMP380_ODR_0_1HZ]	= {0, 97656},
1108 	[BMP380_ODR_0_05HZ]	= {0, 48828},
1109 	[BMP380_ODR_0_02HZ]	= {0, 24414},
1110 	[BMP380_ODR_0_01HZ]	= {0, 12207},
1111 	[BMP380_ODR_0_006HZ]	= {0, 6104},
1112 	[BMP380_ODR_0_003HZ]	= {0, 3052},
1113 	[BMP380_ODR_0_0015HZ]	= {0, 1526},
1114 };
1115 
1116 static int bmp380_preinit(struct bmp280_data *data)
1117 {
1118 	/* BMP3xx requires soft-reset as part of initialization */
1119 	return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1120 }
1121 
1122 static int bmp380_chip_config(struct bmp280_data *data)
1123 {
1124 	bool change = false, aux;
1125 	unsigned int tmp;
1126 	u8 osrs;
1127 	int ret;
1128 
1129 	/* Configure power control register */
1130 	ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1131 				 BMP380_CTRL_SENSORS_MASK,
1132 				 BMP380_CTRL_SENSORS_PRESS_EN |
1133 				 BMP380_CTRL_SENSORS_TEMP_EN);
1134 	if (ret) {
1135 		dev_err(data->dev,
1136 			"failed to write operation control register\n");
1137 		return ret;
1138 	}
1139 
1140 	/* Configure oversampling */
1141 	osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1142 	       FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1143 
1144 	ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR,
1145 				       BMP380_OSRS_TEMP_MASK |
1146 				       BMP380_OSRS_PRESS_MASK,
1147 				       osrs, &aux);
1148 	if (ret) {
1149 		dev_err(data->dev, "failed to write oversampling register\n");
1150 		return ret;
1151 	}
1152 	change = change || aux;
1153 
1154 	/* Configure output data rate */
1155 	ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR,
1156 				       BMP380_ODRS_MASK, data->sampling_freq, &aux);
1157 	if (ret) {
1158 		dev_err(data->dev, "failed to write ODR selection register\n");
1159 		return ret;
1160 	}
1161 	change = change || aux;
1162 
1163 	/* Set filter data */
1164 	ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1165 				       FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
1166 				       &aux);
1167 	if (ret) {
1168 		dev_err(data->dev, "failed to write config register\n");
1169 		return ret;
1170 	}
1171 	change = change || aux;
1172 
1173 	if (change) {
1174 		/*
1175 		 * The configurations errors are detected on the fly during a measurement
1176 		 * cycle. If the sampling frequency is too low, it's faster to reset
1177 		 * the measurement loop than wait until the next measurement is due.
1178 		 *
1179 		 * Resets sensor measurement loop toggling between sleep and normal
1180 		 * operating modes.
1181 		 */
1182 		ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1183 					BMP380_MODE_MASK,
1184 					FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
1185 		if (ret) {
1186 			dev_err(data->dev, "failed to set sleep mode\n");
1187 			return ret;
1188 		}
1189 		usleep_range(2000, 2500);
1190 		ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1191 					BMP380_MODE_MASK,
1192 					FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
1193 		if (ret) {
1194 			dev_err(data->dev, "failed to set normal mode\n");
1195 			return ret;
1196 		}
1197 		/*
1198 		 * Waits for measurement before checking configuration error flag.
1199 		 * Selected longest measure time indicated in section 3.9.1
1200 		 * in the datasheet.
1201 		 */
1202 		msleep(80);
1203 
1204 		/* Check config error flag */
1205 		ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp);
1206 		if (ret) {
1207 			dev_err(data->dev,
1208 				"failed to read error register\n");
1209 			return ret;
1210 		}
1211 		if (tmp & BMP380_ERR_CONF_MASK) {
1212 			dev_warn(data->dev,
1213 				"sensor flagged configuration as incompatible\n");
1214 			return -EINVAL;
1215 		}
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1222 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1223 
1224 const struct bmp280_chip_info bmp380_chip_info = {
1225 	.id_reg = BMP380_REG_ID,
1226 	.chip_id = BMP380_CHIP_ID,
1227 	.regmap_config = &bmp380_regmap_config,
1228 	.start_up_time = 2000,
1229 	.channels = bmp380_channels,
1230 	.num_channels = 2,
1231 
1232 	.oversampling_temp_avail = bmp380_oversampling_avail,
1233 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1234 	.oversampling_temp_default = ilog2(1),
1235 
1236 	.oversampling_press_avail = bmp380_oversampling_avail,
1237 	.num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1238 	.oversampling_press_default = ilog2(4),
1239 
1240 	.sampling_freq_avail = bmp380_odr_table,
1241 	.num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1242 	.sampling_freq_default = BMP380_ODR_50HZ,
1243 
1244 	.iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1245 	.num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1246 	.iir_filter_coeff_default = 2,
1247 
1248 	.chip_config = bmp380_chip_config,
1249 	.read_temp = bmp380_read_temp,
1250 	.read_press = bmp380_read_press,
1251 	.read_calib = bmp380_read_calib,
1252 	.preinit = bmp380_preinit,
1253 };
1254 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280);
1255 
1256 static int bmp580_soft_reset(struct bmp280_data *data)
1257 {
1258 	unsigned int reg;
1259 	int ret;
1260 
1261 	ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
1262 	if (ret) {
1263 		dev_err(data->dev, "failed to send reset command to device\n");
1264 		return ret;
1265 	}
1266 	usleep_range(2000, 2500);
1267 
1268 	/* Dummy read of chip_id */
1269 	ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, &reg);
1270 	if (ret) {
1271 		dev_err(data->dev, "failed to reestablish comms after reset\n");
1272 		return ret;
1273 	}
1274 
1275 	ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, &reg);
1276 	if (ret) {
1277 		dev_err(data->dev, "error reading interrupt status register\n");
1278 		return ret;
1279 	}
1280 	if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
1281 		dev_err(data->dev, "error resetting sensor\n");
1282 		return -EINVAL;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * bmp580_nvm_operation() - Helper function to commit NVM memory operations
1290  * @data: sensor data struct
1291  * @is_write: flag to signal write operation
1292  */
1293 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
1294 {
1295 	unsigned long timeout, poll;
1296 	unsigned int reg;
1297 	int ret;
1298 
1299 	/* Check NVM ready flag */
1300 	ret = regmap_read(data->regmap, BMP580_REG_STATUS, &reg);
1301 	if (ret) {
1302 		dev_err(data->dev, "failed to check nvm status\n");
1303 		return ret;
1304 	}
1305 	if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
1306 		dev_err(data->dev, "sensor's nvm is not ready\n");
1307 		return -EIO;
1308 	}
1309 
1310 	/* Start NVM operation sequence */
1311 	ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0);
1312 	if (ret) {
1313 		dev_err(data->dev, "failed to send nvm operation's first sequence\n");
1314 		return ret;
1315 	}
1316 	if (is_write) {
1317 		/* Send NVM write sequence */
1318 		ret = regmap_write(data->regmap, BMP580_REG_CMD,
1319 				   BMP580_CMD_NVM_WRITE_SEQ_1);
1320 		if (ret) {
1321 			dev_err(data->dev, "failed to send nvm write sequence\n");
1322 			return ret;
1323 		}
1324 		/* Datasheet says on 4.8.1.2 it takes approximately 10ms */
1325 		poll = 2000;
1326 		timeout = 12000;
1327 	} else {
1328 		/* Send NVM read sequence */
1329 		ret = regmap_write(data->regmap, BMP580_REG_CMD,
1330 				   BMP580_CMD_NVM_READ_SEQ_1);
1331 		if (ret) {
1332 			dev_err(data->dev, "failed to send nvm read sequence\n");
1333 			return ret;
1334 		}
1335 		/* Datasheet says on 4.8.1.1 it takes approximately 200us */
1336 		poll = 50;
1337 		timeout = 400;
1338 	}
1339 	if (ret) {
1340 		dev_err(data->dev, "failed to write command sequence\n");
1341 		return -EIO;
1342 	}
1343 
1344 	/* Wait until NVM is ready again */
1345 	ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
1346 				       (reg & BMP580_STATUS_NVM_RDY_MASK),
1347 				       poll, timeout);
1348 	if (ret) {
1349 		dev_err(data->dev, "error checking nvm operation status\n");
1350 		return ret;
1351 	}
1352 
1353 	/* Check NVM error flags */
1354 	if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
1355 		dev_err(data->dev, "error processing nvm operation\n");
1356 		return -EIO;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Contrary to previous sensors families, compensation algorithm is builtin.
1364  * We are only required to read the register raw data and adapt the ranges
1365  * for what is expected on IIO ABI.
1366  */
1367 
1368 static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2)
1369 {
1370 	s32 raw_temp;
1371 	int ret;
1372 
1373 	ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf,
1374 			       sizeof(data->buf));
1375 	if (ret) {
1376 		dev_err(data->dev, "failed to read temperature\n");
1377 		return ret;
1378 	}
1379 
1380 	raw_temp = get_unaligned_le24(data->buf);
1381 	if (raw_temp == BMP580_TEMP_SKIPPED) {
1382 		dev_err(data->dev, "reading temperature skipped\n");
1383 		return -EIO;
1384 	}
1385 
1386 	/*
1387 	 * Temperature is returned in Celsius degrees in fractional
1388 	 * form down 2^16. We reescale by x1000 to return milli Celsius
1389 	 * to respect IIO ABI.
1390 	 */
1391 	*val = raw_temp * 1000;
1392 	*val2 = 16;
1393 	return IIO_VAL_FRACTIONAL_LOG2;
1394 }
1395 
1396 static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2)
1397 {
1398 	u32 raw_press;
1399 	int ret;
1400 
1401 	ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf,
1402 			       sizeof(data->buf));
1403 	if (ret) {
1404 		dev_err(data->dev, "failed to read pressure\n");
1405 		return ret;
1406 	}
1407 
1408 	raw_press = get_unaligned_le24(data->buf);
1409 	if (raw_press == BMP580_PRESS_SKIPPED) {
1410 		dev_err(data->dev, "reading pressure skipped\n");
1411 		return -EIO;
1412 	}
1413 	/*
1414 	 * Pressure is returned in Pascals in fractional form down 2^16.
1415 	 * We reescale /1000 to convert to kilopascal to respect IIO ABI.
1416 	 */
1417 	*val = raw_press;
1418 	*val2 = 64000; /* 2^6 * 1000 */
1419 	return IIO_VAL_FRACTIONAL;
1420 }
1421 
1422 static const int bmp580_odr_table[][2] = {
1423 	[BMP580_ODR_240HZ] =	{240, 0},
1424 	[BMP580_ODR_218HZ] =	{218, 0},
1425 	[BMP580_ODR_199HZ] =	{199, 0},
1426 	[BMP580_ODR_179HZ] =	{179, 0},
1427 	[BMP580_ODR_160HZ] =	{160, 0},
1428 	[BMP580_ODR_149HZ] =	{149, 0},
1429 	[BMP580_ODR_140HZ] =	{140, 0},
1430 	[BMP580_ODR_129HZ] =	{129, 0},
1431 	[BMP580_ODR_120HZ] =	{120, 0},
1432 	[BMP580_ODR_110HZ] =	{110, 0},
1433 	[BMP580_ODR_100HZ] =	{100, 0},
1434 	[BMP580_ODR_89HZ] =	{89, 0},
1435 	[BMP580_ODR_80HZ] =	{80, 0},
1436 	[BMP580_ODR_70HZ] =	{70, 0},
1437 	[BMP580_ODR_60HZ] =	{60, 0},
1438 	[BMP580_ODR_50HZ] =	{50, 0},
1439 	[BMP580_ODR_45HZ] =	{45, 0},
1440 	[BMP580_ODR_40HZ] =	{40, 0},
1441 	[BMP580_ODR_35HZ] =	{35, 0},
1442 	[BMP580_ODR_30HZ] =	{30, 0},
1443 	[BMP580_ODR_25HZ] =	{25, 0},
1444 	[BMP580_ODR_20HZ] =	{20, 0},
1445 	[BMP580_ODR_15HZ] =	{15, 0},
1446 	[BMP580_ODR_10HZ] =	{10, 0},
1447 	[BMP580_ODR_5HZ] =	{5, 0},
1448 	[BMP580_ODR_4HZ] =	{4, 0},
1449 	[BMP580_ODR_3HZ] =	{3, 0},
1450 	[BMP580_ODR_2HZ] =	{2, 0},
1451 	[BMP580_ODR_1HZ] =	{1, 0},
1452 	[BMP580_ODR_0_5HZ] =	{0, 500000},
1453 	[BMP580_ODR_0_25HZ] =	{0, 250000},
1454 	[BMP580_ODR_0_125HZ] =	{0, 125000},
1455 };
1456 
1457 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
1458 
1459 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
1460 			     size_t bytes)
1461 {
1462 	struct bmp280_data *data = priv;
1463 	u16 *dst = val;
1464 	int ret, addr;
1465 
1466 	pm_runtime_get_sync(data->dev);
1467 	mutex_lock(&data->lock);
1468 
1469 	/* Set sensor in standby mode */
1470 	ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1471 				 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1472 				 BMP580_ODR_DEEPSLEEP_DIS |
1473 				 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1474 	if (ret) {
1475 		dev_err(data->dev, "failed to change sensor to standby mode\n");
1476 		goto exit;
1477 	}
1478 	/* Wait standby transition time */
1479 	usleep_range(2500, 3000);
1480 
1481 	while (bytes >= sizeof(*dst)) {
1482 		addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
1483 
1484 		ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
1485 				   FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1486 		if (ret) {
1487 			dev_err(data->dev, "error writing nvm address\n");
1488 			goto exit;
1489 		}
1490 
1491 		ret = bmp580_nvm_operation(data, false);
1492 		if (ret)
1493 			goto exit;
1494 
1495 		ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16,
1496 				       sizeof(data->le16));
1497 		if (ret) {
1498 			dev_err(data->dev, "error reading nvm data regs\n");
1499 			goto exit;
1500 		}
1501 
1502 		*dst++ = le16_to_cpu(data->le16);
1503 		bytes -= sizeof(*dst);
1504 		offset += sizeof(*dst);
1505 	}
1506 exit:
1507 	/* Restore chip config */
1508 	data->chip_info->chip_config(data);
1509 	mutex_unlock(&data->lock);
1510 	pm_runtime_mark_last_busy(data->dev);
1511 	pm_runtime_put_autosuspend(data->dev);
1512 	return ret;
1513 }
1514 
1515 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
1516 			      size_t bytes)
1517 {
1518 	struct bmp280_data *data = priv;
1519 	u16 *buf = val;
1520 	int ret, addr;
1521 
1522 	pm_runtime_get_sync(data->dev);
1523 	mutex_lock(&data->lock);
1524 
1525 	/* Set sensor in standby mode */
1526 	ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1527 				 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1528 				 BMP580_ODR_DEEPSLEEP_DIS |
1529 				 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1530 	if (ret) {
1531 		dev_err(data->dev, "failed to change sensor to standby mode\n");
1532 		goto exit;
1533 	}
1534 	/* Wait standby transition time */
1535 	usleep_range(2500, 3000);
1536 
1537 	while (bytes >= sizeof(*buf)) {
1538 		addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
1539 
1540 		ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN |
1541 				   FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1542 		if (ret) {
1543 			dev_err(data->dev, "error writing nvm address\n");
1544 			goto exit;
1545 		}
1546 		data->le16 = cpu_to_le16(*buf++);
1547 
1548 		ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16,
1549 					sizeof(data->le16));
1550 		if (ret) {
1551 			dev_err(data->dev, "error writing LSB NVM data regs\n");
1552 			goto exit;
1553 		}
1554 
1555 		ret = bmp580_nvm_operation(data, true);
1556 		if (ret)
1557 			goto exit;
1558 
1559 		/* Disable programming mode bit */
1560 		ret = regmap_update_bits(data->regmap, BMP580_REG_NVM_ADDR,
1561 					 BMP580_NVM_PROG_EN, 0);
1562 		if (ret) {
1563 			dev_err(data->dev, "error resetting nvm write\n");
1564 			goto exit;
1565 		}
1566 
1567 		bytes -= sizeof(*buf);
1568 		offset += sizeof(*buf);
1569 	}
1570 exit:
1571 	/* Restore chip config */
1572 	data->chip_info->chip_config(data);
1573 	mutex_unlock(&data->lock);
1574 	pm_runtime_mark_last_busy(data->dev);
1575 	pm_runtime_put_autosuspend(data->dev);
1576 	return ret;
1577 }
1578 
1579 static int bmp580_preinit(struct bmp280_data *data)
1580 {
1581 	struct nvmem_config config = {
1582 		.dev = data->dev,
1583 		.priv = data,
1584 		.name = "bmp580_nvmem",
1585 		.word_size = sizeof(u16),
1586 		.stride = sizeof(u16),
1587 		.size = 3 * sizeof(u16),
1588 		.reg_read = bmp580_nvmem_read,
1589 		.reg_write = bmp580_nvmem_write,
1590 	};
1591 	unsigned int reg;
1592 	int ret;
1593 
1594 	/* Issue soft-reset command */
1595 	ret = bmp580_soft_reset(data);
1596 	if (ret)
1597 		return ret;
1598 
1599 	/* Post powerup sequence */
1600 	ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, &reg);
1601 	if (ret)
1602 		return ret;
1603 
1604 	/* Print warn message if we don't know the chip id */
1605 	if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
1606 		dev_warn(data->dev, "preinit: unexpected chip_id\n");
1607 
1608 	ret = regmap_read(data->regmap, BMP580_REG_STATUS, &reg);
1609 	if (ret)
1610 		return ret;
1611 
1612 	/* Check nvm status */
1613 	if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
1614 		dev_err(data->dev, "preinit: nvm error on powerup sequence\n");
1615 		return -EIO;
1616 	}
1617 
1618 	/* Register nvmem device */
1619 	return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config));
1620 }
1621 
1622 static int bmp580_chip_config(struct bmp280_data *data)
1623 {
1624 	bool change = false, aux;
1625 	unsigned int tmp;
1626 	u8 reg_val;
1627 	int ret;
1628 
1629 	/* Sets sensor in standby mode */
1630 	ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1631 				 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1632 				 BMP580_ODR_DEEPSLEEP_DIS |
1633 				 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1634 	if (ret) {
1635 		dev_err(data->dev, "failed to change sensor to standby mode\n");
1636 		return ret;
1637 	}
1638 	/* From datasheet's table 4: electrical characteristics */
1639 	usleep_range(2500, 3000);
1640 
1641 	/* Set default DSP mode settings */
1642 	reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
1643 		  BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
1644 
1645 	ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG,
1646 				 BMP580_DSP_COMP_MASK |
1647 				 BMP580_DSP_SHDW_IIR_TEMP_EN |
1648 				 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val);
1649 
1650 	/* Configure oversampling */
1651 	reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
1652 		  FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
1653 		  BMP580_OSR_PRESS_EN;
1654 
1655 	ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG,
1656 				       BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK |
1657 				       BMP580_OSR_PRESS_EN,
1658 				       reg_val, &aux);
1659 	if (ret) {
1660 		dev_err(data->dev, "failed to write oversampling register\n");
1661 		return ret;
1662 	}
1663 	change = change || aux;
1664 
1665 	/* Configure output data rate */
1666 	ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
1667 				       FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
1668 				       &aux);
1669 	if (ret) {
1670 		dev_err(data->dev, "failed to write ODR configuration register\n");
1671 		return ret;
1672 	}
1673 	change = change || aux;
1674 
1675 	/* Set filter data */
1676 	reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
1677 		  FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
1678 
1679 	ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR,
1680 				       BMP580_DSP_IIR_PRESS_MASK |
1681 				       BMP580_DSP_IIR_TEMP_MASK,
1682 				       reg_val, &aux);
1683 	if (ret) {
1684 		dev_err(data->dev, "failed to write config register\n");
1685 		return ret;
1686 	}
1687 	change = change || aux;
1688 
1689 	/* Restore sensor to normal operation mode */
1690 	ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1691 				BMP580_MODE_MASK,
1692 				FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL));
1693 	if (ret) {
1694 		dev_err(data->dev, "failed to set normal mode\n");
1695 		return ret;
1696 	}
1697 	/* From datasheet's table 4: electrical characteristics */
1698 	usleep_range(3000, 3500);
1699 
1700 	if (change) {
1701 		/*
1702 		 * Check if ODR and OSR settings are valid or we are
1703 		 * operating in a degraded mode.
1704 		 */
1705 		ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp);
1706 		if (ret) {
1707 			dev_err(data->dev, "error reading effective OSR register\n");
1708 			return ret;
1709 		}
1710 		if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
1711 			dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
1712 			/* Set current OSR settings from data on effective OSR */
1713 			data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
1714 			data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
1715 			return -EINVAL;
1716 		}
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
1723 
1724 const struct bmp280_chip_info bmp580_chip_info = {
1725 	.id_reg = BMP580_REG_CHIP_ID,
1726 	.chip_id = BMP580_CHIP_ID,
1727 	.regmap_config = &bmp580_regmap_config,
1728 	.start_up_time = 2000,
1729 	.channels = bmp380_channels,
1730 	.num_channels = 2,
1731 
1732 	.oversampling_temp_avail = bmp580_oversampling_avail,
1733 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1734 	.oversampling_temp_default = ilog2(1),
1735 
1736 	.oversampling_press_avail = bmp580_oversampling_avail,
1737 	.num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
1738 	.oversampling_press_default = ilog2(4),
1739 
1740 	.sampling_freq_avail = bmp580_odr_table,
1741 	.num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
1742 	.sampling_freq_default = BMP580_ODR_50HZ,
1743 
1744 	.iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1745 	.num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1746 	.iir_filter_coeff_default = 2,
1747 
1748 	.chip_config = bmp580_chip_config,
1749 	.read_temp = bmp580_read_temp,
1750 	.read_press = bmp580_read_press,
1751 	.preinit = bmp580_preinit,
1752 };
1753 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280);
1754 
1755 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
1756 {
1757 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
1758 	unsigned int delay_us;
1759 	unsigned int ctrl;
1760 	int ret;
1761 
1762 	if (data->use_eoc)
1763 		reinit_completion(&data->done);
1764 
1765 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
1766 	if (ret)
1767 		return ret;
1768 
1769 	if (data->use_eoc) {
1770 		/*
1771 		 * If we have a completion interrupt, use it, wait up to
1772 		 * 100ms. The longest conversion time listed is 76.5 ms for
1773 		 * advanced resolution mode.
1774 		 */
1775 		ret = wait_for_completion_timeout(&data->done,
1776 						  1 + msecs_to_jiffies(100));
1777 		if (!ret)
1778 			dev_err(data->dev, "timeout waiting for completion\n");
1779 	} else {
1780 		if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
1781 			delay_us = 4500;
1782 		else
1783 			delay_us =
1784 				conversion_time_max[data->oversampling_press];
1785 
1786 		usleep_range(delay_us, delay_us + 1000);
1787 	}
1788 
1789 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
1790 	if (ret)
1791 		return ret;
1792 
1793 	/* The value of this bit reset to "0" after conversion is complete */
1794 	if (ctrl & BMP180_MEAS_SCO)
1795 		return -EIO;
1796 
1797 	return 0;
1798 }
1799 
1800 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
1801 {
1802 	int ret;
1803 
1804 	ret = bmp180_measure(data,
1805 			     FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
1806 			     BMP180_MEAS_SCO);
1807 	if (ret)
1808 		return ret;
1809 
1810 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
1811 			       &data->be16, sizeof(data->be16));
1812 	if (ret)
1813 		return ret;
1814 
1815 	*val = be16_to_cpu(data->be16);
1816 
1817 	return 0;
1818 }
1819 
1820 static int bmp180_read_calib(struct bmp280_data *data)
1821 {
1822 	struct bmp180_calib *calib = &data->calib.bmp180;
1823 	int ret;
1824 	int i;
1825 
1826 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START,
1827 			       data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
1828 
1829 	if (ret < 0)
1830 		return ret;
1831 
1832 	/* None of the words has the value 0 or 0xFFFF */
1833 	for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
1834 		if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
1835 		    data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
1836 			return -EIO;
1837 	}
1838 
1839 	/* Toss the calibration data into the entropy pool */
1840 	add_device_randomness(data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
1841 
1842 	calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
1843 	calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
1844 	calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
1845 	calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
1846 	calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
1847 	calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
1848 	calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
1849 	calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
1850 	calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
1851 	calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
1852 	calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
1853 
1854 	return 0;
1855 }
1856 
1857 /*
1858  * Returns temperature in DegC, resolution is 0.1 DegC.
1859  * t_fine carries fine temperature as global value.
1860  *
1861  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1862  */
1863 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
1864 {
1865 	struct bmp180_calib *calib = &data->calib.bmp180;
1866 	s32 x1, x2;
1867 
1868 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
1869 	x2 = (calib->MC << 11) / (x1 + calib->MD);
1870 	data->t_fine = x1 + x2;
1871 
1872 	return (data->t_fine + 8) >> 4;
1873 }
1874 
1875 static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2)
1876 {
1877 	s32 adc_temp, comp_temp;
1878 	int ret;
1879 
1880 	ret = bmp180_read_adc_temp(data, &adc_temp);
1881 	if (ret)
1882 		return ret;
1883 
1884 	comp_temp = bmp180_compensate_temp(data, adc_temp);
1885 
1886 	/*
1887 	 * val might be NULL if we're called by the read_press routine,
1888 	 * who only cares about the carry over t_fine value.
1889 	 */
1890 	if (val) {
1891 		*val = comp_temp * 100;
1892 		return IIO_VAL_INT;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
1899 {
1900 	u8 oss = data->oversampling_press;
1901 	int ret;
1902 
1903 	ret = bmp180_measure(data,
1904 			     FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
1905 			     FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
1906 			     BMP180_MEAS_SCO);
1907 	if (ret)
1908 		return ret;
1909 
1910 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
1911 			       data->buf, sizeof(data->buf));
1912 	if (ret)
1913 		return ret;
1914 
1915 	*val = get_unaligned_be24(data->buf) >> (8 - oss);
1916 
1917 	return 0;
1918 }
1919 
1920 /*
1921  * Returns pressure in Pa, resolution is 1 Pa.
1922  *
1923  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
1924  */
1925 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
1926 {
1927 	struct bmp180_calib *calib = &data->calib.bmp180;
1928 	s32 oss = data->oversampling_press;
1929 	s32 x1, x2, x3, p;
1930 	s32 b3, b6;
1931 	u32 b4, b7;
1932 
1933 	b6 = data->t_fine - 4000;
1934 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
1935 	x2 = calib->AC2 * b6 >> 11;
1936 	x3 = x1 + x2;
1937 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
1938 	x1 = calib->AC3 * b6 >> 13;
1939 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
1940 	x3 = (x1 + x2 + 2) >> 2;
1941 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
1942 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
1943 	if (b7 < 0x80000000)
1944 		p = (b7 * 2) / b4;
1945 	else
1946 		p = (b7 / b4) * 2;
1947 
1948 	x1 = (p >> 8) * (p >> 8);
1949 	x1 = (x1 * 3038) >> 16;
1950 	x2 = (-7357 * p) >> 16;
1951 
1952 	return p + ((x1 + x2 + 3791) >> 4);
1953 }
1954 
1955 static int bmp180_read_press(struct bmp280_data *data,
1956 			     int *val, int *val2)
1957 {
1958 	u32 comp_press;
1959 	s32 adc_press;
1960 	int ret;
1961 
1962 	/* Read and compensate temperature so we get a reading of t_fine. */
1963 	ret = bmp180_read_temp(data, NULL, NULL);
1964 	if (ret)
1965 		return ret;
1966 
1967 	ret = bmp180_read_adc_press(data, &adc_press);
1968 	if (ret)
1969 		return ret;
1970 
1971 	comp_press = bmp180_compensate_press(data, adc_press);
1972 
1973 	*val = comp_press;
1974 	*val2 = 1000;
1975 
1976 	return IIO_VAL_FRACTIONAL;
1977 }
1978 
1979 static int bmp180_chip_config(struct bmp280_data *data)
1980 {
1981 	return 0;
1982 }
1983 
1984 static const int bmp180_oversampling_temp_avail[] = { 1 };
1985 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
1986 
1987 const struct bmp280_chip_info bmp180_chip_info = {
1988 	.id_reg = BMP280_REG_ID,
1989 	.chip_id = BMP180_CHIP_ID,
1990 	.regmap_config = &bmp180_regmap_config,
1991 	.start_up_time = 2000,
1992 	.channels = bmp280_channels,
1993 	.num_channels = 2,
1994 
1995 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
1996 	.num_oversampling_temp_avail =
1997 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
1998 	.oversampling_temp_default = 0,
1999 
2000 	.oversampling_press_avail = bmp180_oversampling_press_avail,
2001 	.num_oversampling_press_avail =
2002 		ARRAY_SIZE(bmp180_oversampling_press_avail),
2003 	.oversampling_press_default = BMP180_MEAS_PRESS_8X,
2004 
2005 	.chip_config = bmp180_chip_config,
2006 	.read_temp = bmp180_read_temp,
2007 	.read_press = bmp180_read_press,
2008 	.read_calib = bmp180_read_calib,
2009 };
2010 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280);
2011 
2012 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
2013 {
2014 	struct bmp280_data *data = d;
2015 
2016 	complete(&data->done);
2017 
2018 	return IRQ_HANDLED;
2019 }
2020 
2021 static int bmp085_fetch_eoc_irq(struct device *dev,
2022 				const char *name,
2023 				int irq,
2024 				struct bmp280_data *data)
2025 {
2026 	unsigned long irq_trig;
2027 	int ret;
2028 
2029 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
2030 	if (irq_trig != IRQF_TRIGGER_RISING) {
2031 		dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
2032 		irq_trig = IRQF_TRIGGER_RISING;
2033 	}
2034 
2035 	init_completion(&data->done);
2036 
2037 	ret = devm_request_threaded_irq(dev,
2038 			irq,
2039 			bmp085_eoc_irq,
2040 			NULL,
2041 			irq_trig,
2042 			name,
2043 			data);
2044 	if (ret) {
2045 		/* Bail out without IRQ but keep the driver in place */
2046 		dev_err(dev, "unable to request DRDY IRQ\n");
2047 		return 0;
2048 	}
2049 
2050 	data->use_eoc = true;
2051 	return 0;
2052 }
2053 
2054 static void bmp280_pm_disable(void *data)
2055 {
2056 	struct device *dev = data;
2057 
2058 	pm_runtime_get_sync(dev);
2059 	pm_runtime_put_noidle(dev);
2060 	pm_runtime_disable(dev);
2061 }
2062 
2063 static void bmp280_regulators_disable(void *data)
2064 {
2065 	struct regulator_bulk_data *supplies = data;
2066 
2067 	regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
2068 }
2069 
2070 int bmp280_common_probe(struct device *dev,
2071 			struct regmap *regmap,
2072 			const struct bmp280_chip_info *chip_info,
2073 			const char *name,
2074 			int irq)
2075 {
2076 	struct iio_dev *indio_dev;
2077 	struct bmp280_data *data;
2078 	struct gpio_desc *gpiod;
2079 	unsigned int chip_id;
2080 	int ret;
2081 
2082 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
2083 	if (!indio_dev)
2084 		return -ENOMEM;
2085 
2086 	data = iio_priv(indio_dev);
2087 	mutex_init(&data->lock);
2088 	data->dev = dev;
2089 
2090 	indio_dev->name = name;
2091 	indio_dev->info = &bmp280_info;
2092 	indio_dev->modes = INDIO_DIRECT_MODE;
2093 
2094 	data->chip_info = chip_info;
2095 
2096 	/* Apply initial values from chip info structure */
2097 	indio_dev->channels = chip_info->channels;
2098 	indio_dev->num_channels = chip_info->num_channels;
2099 	data->oversampling_press = chip_info->oversampling_press_default;
2100 	data->oversampling_humid = chip_info->oversampling_humid_default;
2101 	data->oversampling_temp = chip_info->oversampling_temp_default;
2102 	data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
2103 	data->sampling_freq = chip_info->sampling_freq_default;
2104 	data->start_up_time = chip_info->start_up_time;
2105 
2106 	/* Bring up regulators */
2107 	regulator_bulk_set_supply_names(data->supplies,
2108 					bmp280_supply_names,
2109 					BMP280_NUM_SUPPLIES);
2110 
2111 	ret = devm_regulator_bulk_get(dev,
2112 				      BMP280_NUM_SUPPLIES, data->supplies);
2113 	if (ret) {
2114 		dev_err(dev, "failed to get regulators\n");
2115 		return ret;
2116 	}
2117 
2118 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2119 	if (ret) {
2120 		dev_err(dev, "failed to enable regulators\n");
2121 		return ret;
2122 	}
2123 
2124 	ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
2125 				       data->supplies);
2126 	if (ret)
2127 		return ret;
2128 
2129 	/* Wait to make sure we started up properly */
2130 	usleep_range(data->start_up_time, data->start_up_time + 100);
2131 
2132 	/* Bring chip out of reset if there is an assigned GPIO line */
2133 	gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
2134 	/* Deassert the signal */
2135 	if (gpiod) {
2136 		dev_info(dev, "release reset\n");
2137 		gpiod_set_value(gpiod, 0);
2138 	}
2139 
2140 	data->regmap = regmap;
2141 
2142 	ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id);
2143 	if (ret < 0)
2144 		return ret;
2145 	if (chip_id != data->chip_info->chip_id) {
2146 		dev_err(dev, "bad chip id: expected %x got %x\n",
2147 			data->chip_info->chip_id, chip_id);
2148 		return -EINVAL;
2149 	}
2150 
2151 	if (data->chip_info->preinit) {
2152 		ret = data->chip_info->preinit(data);
2153 		if (ret)
2154 			return dev_err_probe(data->dev, ret,
2155 					     "error running preinit tasks\n");
2156 	}
2157 
2158 	ret = data->chip_info->chip_config(data);
2159 	if (ret < 0)
2160 		return ret;
2161 
2162 	dev_set_drvdata(dev, indio_dev);
2163 
2164 	/*
2165 	 * Some chips have calibration parameters "programmed into the devices'
2166 	 * non-volatile memory during production". Let's read them out at probe
2167 	 * time once. They will not change.
2168 	 */
2169 
2170 	if (data->chip_info->read_calib) {
2171 		ret = data->chip_info->read_calib(data);
2172 		if (ret < 0)
2173 			return dev_err_probe(data->dev, ret,
2174 					     "failed to read calibration coefficients\n");
2175 	}
2176 
2177 	/*
2178 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
2179 	 * however as it happens, the BMP085 shares the chip ID of BMP180
2180 	 * so we look for an IRQ if we have that.
2181 	 */
2182 	if (irq > 0 && (chip_id  == BMP180_CHIP_ID)) {
2183 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
2184 		if (ret)
2185 			return ret;
2186 	}
2187 
2188 	/* Enable runtime PM */
2189 	pm_runtime_get_noresume(dev);
2190 	pm_runtime_set_active(dev);
2191 	pm_runtime_enable(dev);
2192 	/*
2193 	 * Set autosuspend to two orders of magnitude larger than the
2194 	 * start-up time.
2195 	 */
2196 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
2197 	pm_runtime_use_autosuspend(dev);
2198 	pm_runtime_put(dev);
2199 
2200 	ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
2201 	if (ret)
2202 		return ret;
2203 
2204 	return devm_iio_device_register(dev, indio_dev);
2205 }
2206 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
2207 
2208 static int bmp280_runtime_suspend(struct device *dev)
2209 {
2210 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2211 	struct bmp280_data *data = iio_priv(indio_dev);
2212 
2213 	return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
2214 }
2215 
2216 static int bmp280_runtime_resume(struct device *dev)
2217 {
2218 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2219 	struct bmp280_data *data = iio_priv(indio_dev);
2220 	int ret;
2221 
2222 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2223 	if (ret)
2224 		return ret;
2225 	usleep_range(data->start_up_time, data->start_up_time + 100);
2226 	return data->chip_info->chip_config(data);
2227 }
2228 
2229 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
2230 			  bmp280_runtime_resume, NULL);
2231 
2232 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
2233 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
2234 MODULE_LICENSE("GPL v2");
2235