xref: /openbmc/linux/drivers/iio/pressure/bmp280-core.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3  * Copyright (c) 2012 Bosch Sensortec GmbH
4  * Copyright (c) 2012 Unixphere AB
5  * Copyright (c) 2014 Intel Corporation
6  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Datasheet:
15  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18  */
19 
20 #define pr_fmt(fmt) "bmp280: " fmt
21 
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35 
36 #include "bmp280.h"
37 
38 /*
39  * These enums are used for indexing into the array of calibration
40  * coefficients for BMP180.
41  */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43 
44 struct bmp180_calib {
45 	s16 AC1;
46 	s16 AC2;
47 	s16 AC3;
48 	u16 AC4;
49 	u16 AC5;
50 	u16 AC6;
51 	s16 B1;
52 	s16 B2;
53 	s16 MB;
54 	s16 MC;
55 	s16 MD;
56 };
57 
58 /* See datasheet Section 4.2.2. */
59 struct bmp280_calib {
60 	u16 T1;
61 	s16 T2;
62 	s16 T3;
63 	u16 P1;
64 	s16 P2;
65 	s16 P3;
66 	s16 P4;
67 	s16 P5;
68 	s16 P6;
69 	s16 P7;
70 	s16 P8;
71 	s16 P9;
72 	u8  H1;
73 	s16 H2;
74 	u8  H3;
75 	s16 H4;
76 	s16 H5;
77 	s8  H6;
78 };
79 
80 struct bmp280_data {
81 	struct device *dev;
82 	struct mutex lock;
83 	struct regmap *regmap;
84 	struct completion done;
85 	bool use_eoc;
86 	const struct bmp280_chip_info *chip_info;
87 	union {
88 		struct bmp180_calib bmp180;
89 		struct bmp280_calib bmp280;
90 	} calib;
91 	struct regulator *vddd;
92 	struct regulator *vdda;
93 	unsigned int start_up_time; /* in microseconds */
94 
95 	/* log of base 2 of oversampling rate */
96 	u8 oversampling_press;
97 	u8 oversampling_temp;
98 	u8 oversampling_humid;
99 
100 	/*
101 	 * Carryover value from temperature conversion, used in pressure
102 	 * calculation.
103 	 */
104 	s32 t_fine;
105 };
106 
107 struct bmp280_chip_info {
108 	const int *oversampling_temp_avail;
109 	int num_oversampling_temp_avail;
110 
111 	const int *oversampling_press_avail;
112 	int num_oversampling_press_avail;
113 
114 	const int *oversampling_humid_avail;
115 	int num_oversampling_humid_avail;
116 
117 	int (*chip_config)(struct bmp280_data *);
118 	int (*read_temp)(struct bmp280_data *, int *);
119 	int (*read_press)(struct bmp280_data *, int *, int *);
120 	int (*read_humid)(struct bmp280_data *, int *, int *);
121 };
122 
123 /*
124  * These enums are used for indexing into the array of compensation
125  * parameters for BMP280.
126  */
127 enum { T1, T2, T3 };
128 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
129 
130 static const struct iio_chan_spec bmp280_channels[] = {
131 	{
132 		.type = IIO_PRESSURE,
133 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
134 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
135 	},
136 	{
137 		.type = IIO_TEMP,
138 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
139 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
140 	},
141 	{
142 		.type = IIO_HUMIDITYRELATIVE,
143 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
144 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
145 	},
146 };
147 
148 static int bmp280_read_calib(struct bmp280_data *data,
149 			     struct bmp280_calib *calib,
150 			     unsigned int chip)
151 {
152 	int ret;
153 	unsigned int tmp;
154 	struct device *dev = data->dev;
155 	__le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
156 	__le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
157 
158 	/* Read temperature calibration values. */
159 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
160 			       t_buf, BMP280_COMP_TEMP_REG_COUNT);
161 	if (ret < 0) {
162 		dev_err(data->dev,
163 			"failed to read temperature calibration parameters\n");
164 		return ret;
165 	}
166 
167 	/* Toss the temperature calibration data into the entropy pool */
168 	add_device_randomness(t_buf, sizeof(t_buf));
169 
170 	calib->T1 = le16_to_cpu(t_buf[T1]);
171 	calib->T2 = le16_to_cpu(t_buf[T2]);
172 	calib->T3 = le16_to_cpu(t_buf[T3]);
173 
174 	/* Read pressure calibration values. */
175 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
176 			       p_buf, BMP280_COMP_PRESS_REG_COUNT);
177 	if (ret < 0) {
178 		dev_err(data->dev,
179 			"failed to read pressure calibration parameters\n");
180 		return ret;
181 	}
182 
183 	/* Toss the pressure calibration data into the entropy pool */
184 	add_device_randomness(p_buf, sizeof(p_buf));
185 
186 	calib->P1 = le16_to_cpu(p_buf[P1]);
187 	calib->P2 = le16_to_cpu(p_buf[P2]);
188 	calib->P3 = le16_to_cpu(p_buf[P3]);
189 	calib->P4 = le16_to_cpu(p_buf[P4]);
190 	calib->P5 = le16_to_cpu(p_buf[P5]);
191 	calib->P6 = le16_to_cpu(p_buf[P6]);
192 	calib->P7 = le16_to_cpu(p_buf[P7]);
193 	calib->P8 = le16_to_cpu(p_buf[P8]);
194 	calib->P9 = le16_to_cpu(p_buf[P9]);
195 
196 	/*
197 	 * Read humidity calibration values.
198 	 * Due to some odd register addressing we cannot just
199 	 * do a big bulk read. Instead, we have to read each Hx
200 	 * value separately and sometimes do some bit shifting...
201 	 * Humidity data is only available on BME280.
202 	 */
203 	if (chip != BME280_CHIP_ID)
204 		return 0;
205 
206 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
207 	if (ret < 0) {
208 		dev_err(dev, "failed to read H1 comp value\n");
209 		return ret;
210 	}
211 	calib->H1 = tmp;
212 
213 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
214 	if (ret < 0) {
215 		dev_err(dev, "failed to read H2 comp value\n");
216 		return ret;
217 	}
218 	calib->H2 = sign_extend32(le16_to_cpu(tmp), 15);
219 
220 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
221 	if (ret < 0) {
222 		dev_err(dev, "failed to read H3 comp value\n");
223 		return ret;
224 	}
225 	calib->H3 = tmp;
226 
227 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
228 	if (ret < 0) {
229 		dev_err(dev, "failed to read H4 comp value\n");
230 		return ret;
231 	}
232 	calib->H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
233 				  (be16_to_cpu(tmp) & 0xf), 11);
234 
235 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
236 	if (ret < 0) {
237 		dev_err(dev, "failed to read H5 comp value\n");
238 		return ret;
239 	}
240 	calib->H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
241 
242 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
243 	if (ret < 0) {
244 		dev_err(dev, "failed to read H6 comp value\n");
245 		return ret;
246 	}
247 	calib->H6 = sign_extend32(tmp, 7);
248 
249 	return 0;
250 }
251 /*
252  * Returns humidity in percent, resolution is 0.01 percent. Output value of
253  * "47445" represents 47445/1024 = 46.333 %RH.
254  *
255  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
256  */
257 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
258 				      s32 adc_humidity)
259 {
260 	s32 var;
261 	struct bmp280_calib *calib = &data->calib.bmp280;
262 
263 	var = ((s32)data->t_fine) - (s32)76800;
264 	var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
265 		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
266 		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
267 		+ (s32)2097152) * calib->H2 + 8192) >> 14);
268 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
269 
270 	return var >> 12;
271 };
272 
273 /*
274  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
275  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
276  * value.
277  *
278  * Taken from datasheet, Section 3.11.3, "Compensation formula".
279  */
280 static s32 bmp280_compensate_temp(struct bmp280_data *data,
281 				  s32 adc_temp)
282 {
283 	s32 var1, var2;
284 	struct bmp280_calib *calib = &data->calib.bmp280;
285 
286 	var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
287 		((s32)calib->T2)) >> 11;
288 	var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
289 		  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
290 		((s32)calib->T3)) >> 14;
291 	data->t_fine = var1 + var2;
292 
293 	return (data->t_fine * 5 + 128) >> 8;
294 }
295 
296 /*
297  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
298  * integer bits and 8 fractional bits).  Output value of "24674867"
299  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
300  *
301  * Taken from datasheet, Section 3.11.3, "Compensation formula".
302  */
303 static u32 bmp280_compensate_press(struct bmp280_data *data,
304 				   s32 adc_press)
305 {
306 	s64 var1, var2, p;
307 	struct bmp280_calib *calib = &data->calib.bmp280;
308 
309 	var1 = ((s64)data->t_fine) - 128000;
310 	var2 = var1 * var1 * (s64)calib->P6;
311 	var2 += (var1 * (s64)calib->P5) << 17;
312 	var2 += ((s64)calib->P4) << 35;
313 	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
314 		((var1 * (s64)calib->P2) << 12);
315 	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
316 
317 	if (var1 == 0)
318 		return 0;
319 
320 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
321 	p = div64_s64(p, var1);
322 	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
323 	var2 = ((s64)(calib->P8) * p) >> 19;
324 	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
325 
326 	return (u32)p;
327 }
328 
329 static int bmp280_read_temp(struct bmp280_data *data,
330 			    int *val)
331 {
332 	int ret;
333 	__be32 tmp = 0;
334 	s32 adc_temp, comp_temp;
335 
336 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
337 			       (u8 *) &tmp, 3);
338 	if (ret < 0) {
339 		dev_err(data->dev, "failed to read temperature\n");
340 		return ret;
341 	}
342 
343 	adc_temp = be32_to_cpu(tmp) >> 12;
344 	if (adc_temp == BMP280_TEMP_SKIPPED) {
345 		/* reading was skipped */
346 		dev_err(data->dev, "reading temperature skipped\n");
347 		return -EIO;
348 	}
349 	comp_temp = bmp280_compensate_temp(data, adc_temp);
350 
351 	/*
352 	 * val might be NULL if we're called by the read_press routine,
353 	 * who only cares about the carry over t_fine value.
354 	 */
355 	if (val) {
356 		*val = comp_temp * 10;
357 		return IIO_VAL_INT;
358 	}
359 
360 	return 0;
361 }
362 
363 static int bmp280_read_press(struct bmp280_data *data,
364 			     int *val, int *val2)
365 {
366 	int ret;
367 	__be32 tmp = 0;
368 	s32 adc_press;
369 	u32 comp_press;
370 
371 	/* Read and compensate temperature so we get a reading of t_fine. */
372 	ret = bmp280_read_temp(data, NULL);
373 	if (ret < 0)
374 		return ret;
375 
376 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
377 			       (u8 *) &tmp, 3);
378 	if (ret < 0) {
379 		dev_err(data->dev, "failed to read pressure\n");
380 		return ret;
381 	}
382 
383 	adc_press = be32_to_cpu(tmp) >> 12;
384 	if (adc_press == BMP280_PRESS_SKIPPED) {
385 		/* reading was skipped */
386 		dev_err(data->dev, "reading pressure skipped\n");
387 		return -EIO;
388 	}
389 	comp_press = bmp280_compensate_press(data, adc_press);
390 
391 	*val = comp_press;
392 	*val2 = 256000;
393 
394 	return IIO_VAL_FRACTIONAL;
395 }
396 
397 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
398 {
399 	int ret;
400 	__be16 tmp = 0;
401 	s32 adc_humidity;
402 	u32 comp_humidity;
403 
404 	/* Read and compensate temperature so we get a reading of t_fine. */
405 	ret = bmp280_read_temp(data, NULL);
406 	if (ret < 0)
407 		return ret;
408 
409 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
410 			       (u8 *) &tmp, 2);
411 	if (ret < 0) {
412 		dev_err(data->dev, "failed to read humidity\n");
413 		return ret;
414 	}
415 
416 	adc_humidity = be16_to_cpu(tmp);
417 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
418 		/* reading was skipped */
419 		dev_err(data->dev, "reading humidity skipped\n");
420 		return -EIO;
421 	}
422 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
423 
424 	*val = comp_humidity * 1000 / 1024;
425 
426 	return IIO_VAL_INT;
427 }
428 
429 static int bmp280_read_raw(struct iio_dev *indio_dev,
430 			   struct iio_chan_spec const *chan,
431 			   int *val, int *val2, long mask)
432 {
433 	int ret;
434 	struct bmp280_data *data = iio_priv(indio_dev);
435 
436 	pm_runtime_get_sync(data->dev);
437 	mutex_lock(&data->lock);
438 
439 	switch (mask) {
440 	case IIO_CHAN_INFO_PROCESSED:
441 		switch (chan->type) {
442 		case IIO_HUMIDITYRELATIVE:
443 			ret = data->chip_info->read_humid(data, val, val2);
444 			break;
445 		case IIO_PRESSURE:
446 			ret = data->chip_info->read_press(data, val, val2);
447 			break;
448 		case IIO_TEMP:
449 			ret = data->chip_info->read_temp(data, val);
450 			break;
451 		default:
452 			ret = -EINVAL;
453 			break;
454 		}
455 		break;
456 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
457 		switch (chan->type) {
458 		case IIO_HUMIDITYRELATIVE:
459 			*val = 1 << data->oversampling_humid;
460 			ret = IIO_VAL_INT;
461 			break;
462 		case IIO_PRESSURE:
463 			*val = 1 << data->oversampling_press;
464 			ret = IIO_VAL_INT;
465 			break;
466 		case IIO_TEMP:
467 			*val = 1 << data->oversampling_temp;
468 			ret = IIO_VAL_INT;
469 			break;
470 		default:
471 			ret = -EINVAL;
472 			break;
473 		}
474 		break;
475 	default:
476 		ret = -EINVAL;
477 		break;
478 	}
479 
480 	mutex_unlock(&data->lock);
481 	pm_runtime_mark_last_busy(data->dev);
482 	pm_runtime_put_autosuspend(data->dev);
483 
484 	return ret;
485 }
486 
487 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
488 					       int val)
489 {
490 	int i;
491 	const int *avail = data->chip_info->oversampling_humid_avail;
492 	const int n = data->chip_info->num_oversampling_humid_avail;
493 
494 	for (i = 0; i < n; i++) {
495 		if (avail[i] == val) {
496 			data->oversampling_humid = ilog2(val);
497 
498 			return data->chip_info->chip_config(data);
499 		}
500 	}
501 	return -EINVAL;
502 }
503 
504 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
505 					       int val)
506 {
507 	int i;
508 	const int *avail = data->chip_info->oversampling_temp_avail;
509 	const int n = data->chip_info->num_oversampling_temp_avail;
510 
511 	for (i = 0; i < n; i++) {
512 		if (avail[i] == val) {
513 			data->oversampling_temp = ilog2(val);
514 
515 			return data->chip_info->chip_config(data);
516 		}
517 	}
518 	return -EINVAL;
519 }
520 
521 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
522 					       int val)
523 {
524 	int i;
525 	const int *avail = data->chip_info->oversampling_press_avail;
526 	const int n = data->chip_info->num_oversampling_press_avail;
527 
528 	for (i = 0; i < n; i++) {
529 		if (avail[i] == val) {
530 			data->oversampling_press = ilog2(val);
531 
532 			return data->chip_info->chip_config(data);
533 		}
534 	}
535 	return -EINVAL;
536 }
537 
538 static int bmp280_write_raw(struct iio_dev *indio_dev,
539 			    struct iio_chan_spec const *chan,
540 			    int val, int val2, long mask)
541 {
542 	int ret = 0;
543 	struct bmp280_data *data = iio_priv(indio_dev);
544 
545 	switch (mask) {
546 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
547 		pm_runtime_get_sync(data->dev);
548 		mutex_lock(&data->lock);
549 		switch (chan->type) {
550 		case IIO_HUMIDITYRELATIVE:
551 			ret = bmp280_write_oversampling_ratio_humid(data, val);
552 			break;
553 		case IIO_PRESSURE:
554 			ret = bmp280_write_oversampling_ratio_press(data, val);
555 			break;
556 		case IIO_TEMP:
557 			ret = bmp280_write_oversampling_ratio_temp(data, val);
558 			break;
559 		default:
560 			ret = -EINVAL;
561 			break;
562 		}
563 		mutex_unlock(&data->lock);
564 		pm_runtime_mark_last_busy(data->dev);
565 		pm_runtime_put_autosuspend(data->dev);
566 		break;
567 	default:
568 		return -EINVAL;
569 	}
570 
571 	return ret;
572 }
573 
574 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
575 {
576 	size_t len = 0;
577 	int i;
578 
579 	for (i = 0; i < n; i++)
580 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
581 
582 	buf[len - 1] = '\n';
583 
584 	return len;
585 }
586 
587 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
588 				struct device_attribute *attr, char *buf)
589 {
590 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
591 
592 	return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
593 				 data->chip_info->num_oversampling_temp_avail);
594 }
595 
596 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
597 				struct device_attribute *attr, char *buf)
598 {
599 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
600 
601 	return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
602 				 data->chip_info->num_oversampling_press_avail);
603 }
604 
605 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
606 	S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
607 
608 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
609 	S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
610 
611 static struct attribute *bmp280_attributes[] = {
612 	&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
613 	&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
614 	NULL,
615 };
616 
617 static const struct attribute_group bmp280_attrs_group = {
618 	.attrs = bmp280_attributes,
619 };
620 
621 static const struct iio_info bmp280_info = {
622 	.read_raw = &bmp280_read_raw,
623 	.write_raw = &bmp280_write_raw,
624 	.attrs = &bmp280_attrs_group,
625 };
626 
627 static int bmp280_chip_config(struct bmp280_data *data)
628 {
629 	int ret;
630 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
631 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
632 
633 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
634 				 BMP280_OSRS_TEMP_MASK |
635 				 BMP280_OSRS_PRESS_MASK |
636 				 BMP280_MODE_MASK,
637 				 osrs | BMP280_MODE_NORMAL);
638 	if (ret < 0) {
639 		dev_err(data->dev,
640 			"failed to write ctrl_meas register\n");
641 		return ret;
642 	}
643 
644 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
645 				 BMP280_FILTER_MASK,
646 				 BMP280_FILTER_4X);
647 	if (ret < 0) {
648 		dev_err(data->dev,
649 			"failed to write config register\n");
650 		return ret;
651 	}
652 
653 	return ret;
654 }
655 
656 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
657 
658 static const struct bmp280_chip_info bmp280_chip_info = {
659 	.oversampling_temp_avail = bmp280_oversampling_avail,
660 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
661 
662 	.oversampling_press_avail = bmp280_oversampling_avail,
663 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
664 
665 	.chip_config = bmp280_chip_config,
666 	.read_temp = bmp280_read_temp,
667 	.read_press = bmp280_read_press,
668 };
669 
670 static int bme280_chip_config(struct bmp280_data *data)
671 {
672 	int ret;
673 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
674 
675 	/*
676 	 * Oversampling of humidity must be set before oversampling of
677 	 * temperature/pressure is set to become effective.
678 	 */
679 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
680 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
681 
682 	if (ret < 0)
683 		return ret;
684 
685 	return bmp280_chip_config(data);
686 }
687 
688 static const struct bmp280_chip_info bme280_chip_info = {
689 	.oversampling_temp_avail = bmp280_oversampling_avail,
690 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
691 
692 	.oversampling_press_avail = bmp280_oversampling_avail,
693 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
694 
695 	.oversampling_humid_avail = bmp280_oversampling_avail,
696 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
697 
698 	.chip_config = bme280_chip_config,
699 	.read_temp = bmp280_read_temp,
700 	.read_press = bmp280_read_press,
701 	.read_humid = bmp280_read_humid,
702 };
703 
704 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
705 {
706 	int ret;
707 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
708 	unsigned int delay_us;
709 	unsigned int ctrl;
710 
711 	if (data->use_eoc)
712 		init_completion(&data->done);
713 
714 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
715 	if (ret)
716 		return ret;
717 
718 	if (data->use_eoc) {
719 		/*
720 		 * If we have a completion interrupt, use it, wait up to
721 		 * 100ms. The longest conversion time listed is 76.5 ms for
722 		 * advanced resolution mode.
723 		 */
724 		ret = wait_for_completion_timeout(&data->done,
725 						  1 + msecs_to_jiffies(100));
726 		if (!ret)
727 			dev_err(data->dev, "timeout waiting for completion\n");
728 	} else {
729 		if (ctrl_meas == BMP180_MEAS_TEMP)
730 			delay_us = 4500;
731 		else
732 			delay_us =
733 				conversion_time_max[data->oversampling_press];
734 
735 		usleep_range(delay_us, delay_us + 1000);
736 	}
737 
738 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
739 	if (ret)
740 		return ret;
741 
742 	/* The value of this bit reset to "0" after conversion is complete */
743 	if (ctrl & BMP180_MEAS_SCO)
744 		return -EIO;
745 
746 	return 0;
747 }
748 
749 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
750 {
751 	int ret;
752 	__be16 tmp = 0;
753 
754 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
755 	if (ret)
756 		return ret;
757 
758 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
759 	if (ret)
760 		return ret;
761 
762 	*val = be16_to_cpu(tmp);
763 
764 	return 0;
765 }
766 
767 static int bmp180_read_calib(struct bmp280_data *data,
768 			     struct bmp180_calib *calib)
769 {
770 	int ret;
771 	int i;
772 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
773 
774 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
775 			       sizeof(buf));
776 
777 	if (ret < 0)
778 		return ret;
779 
780 	/* None of the words has the value 0 or 0xFFFF */
781 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
782 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
783 			return -EIO;
784 	}
785 
786 	/* Toss the calibration data into the entropy pool */
787 	add_device_randomness(buf, sizeof(buf));
788 
789 	calib->AC1 = be16_to_cpu(buf[AC1]);
790 	calib->AC2 = be16_to_cpu(buf[AC2]);
791 	calib->AC3 = be16_to_cpu(buf[AC3]);
792 	calib->AC4 = be16_to_cpu(buf[AC4]);
793 	calib->AC5 = be16_to_cpu(buf[AC5]);
794 	calib->AC6 = be16_to_cpu(buf[AC6]);
795 	calib->B1 = be16_to_cpu(buf[B1]);
796 	calib->B2 = be16_to_cpu(buf[B2]);
797 	calib->MB = be16_to_cpu(buf[MB]);
798 	calib->MC = be16_to_cpu(buf[MC]);
799 	calib->MD = be16_to_cpu(buf[MD]);
800 
801 	return 0;
802 }
803 
804 /*
805  * Returns temperature in DegC, resolution is 0.1 DegC.
806  * t_fine carries fine temperature as global value.
807  *
808  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
809  */
810 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
811 {
812 	s32 x1, x2;
813 	struct bmp180_calib *calib = &data->calib.bmp180;
814 
815 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
816 	x2 = (calib->MC << 11) / (x1 + calib->MD);
817 	data->t_fine = x1 + x2;
818 
819 	return (data->t_fine + 8) >> 4;
820 }
821 
822 static int bmp180_read_temp(struct bmp280_data *data, int *val)
823 {
824 	int ret;
825 	s32 adc_temp, comp_temp;
826 
827 	ret = bmp180_read_adc_temp(data, &adc_temp);
828 	if (ret)
829 		return ret;
830 
831 	comp_temp = bmp180_compensate_temp(data, adc_temp);
832 
833 	/*
834 	 * val might be NULL if we're called by the read_press routine,
835 	 * who only cares about the carry over t_fine value.
836 	 */
837 	if (val) {
838 		*val = comp_temp * 100;
839 		return IIO_VAL_INT;
840 	}
841 
842 	return 0;
843 }
844 
845 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
846 {
847 	int ret;
848 	__be32 tmp = 0;
849 	u8 oss = data->oversampling_press;
850 
851 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
852 	if (ret)
853 		return ret;
854 
855 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
856 	if (ret)
857 		return ret;
858 
859 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
860 
861 	return 0;
862 }
863 
864 /*
865  * Returns pressure in Pa, resolution is 1 Pa.
866  *
867  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
868  */
869 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
870 {
871 	s32 x1, x2, x3, p;
872 	s32 b3, b6;
873 	u32 b4, b7;
874 	s32 oss = data->oversampling_press;
875 	struct bmp180_calib *calib = &data->calib.bmp180;
876 
877 	b6 = data->t_fine - 4000;
878 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
879 	x2 = calib->AC2 * b6 >> 11;
880 	x3 = x1 + x2;
881 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
882 	x1 = calib->AC3 * b6 >> 13;
883 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
884 	x3 = (x1 + x2 + 2) >> 2;
885 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
886 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
887 	if (b7 < 0x80000000)
888 		p = (b7 * 2) / b4;
889 	else
890 		p = (b7 / b4) * 2;
891 
892 	x1 = (p >> 8) * (p >> 8);
893 	x1 = (x1 * 3038) >> 16;
894 	x2 = (-7357 * p) >> 16;
895 
896 	return p + ((x1 + x2 + 3791) >> 4);
897 }
898 
899 static int bmp180_read_press(struct bmp280_data *data,
900 			     int *val, int *val2)
901 {
902 	int ret;
903 	s32 adc_press;
904 	u32 comp_press;
905 
906 	/* Read and compensate temperature so we get a reading of t_fine. */
907 	ret = bmp180_read_temp(data, NULL);
908 	if (ret)
909 		return ret;
910 
911 	ret = bmp180_read_adc_press(data, &adc_press);
912 	if (ret)
913 		return ret;
914 
915 	comp_press = bmp180_compensate_press(data, adc_press);
916 
917 	*val = comp_press;
918 	*val2 = 1000;
919 
920 	return IIO_VAL_FRACTIONAL;
921 }
922 
923 static int bmp180_chip_config(struct bmp280_data *data)
924 {
925 	return 0;
926 }
927 
928 static const int bmp180_oversampling_temp_avail[] = { 1 };
929 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
930 
931 static const struct bmp280_chip_info bmp180_chip_info = {
932 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
933 	.num_oversampling_temp_avail =
934 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
935 
936 	.oversampling_press_avail = bmp180_oversampling_press_avail,
937 	.num_oversampling_press_avail =
938 		ARRAY_SIZE(bmp180_oversampling_press_avail),
939 
940 	.chip_config = bmp180_chip_config,
941 	.read_temp = bmp180_read_temp,
942 	.read_press = bmp180_read_press,
943 };
944 
945 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
946 {
947 	struct bmp280_data *data = d;
948 
949 	complete(&data->done);
950 
951 	return IRQ_HANDLED;
952 }
953 
954 static int bmp085_fetch_eoc_irq(struct device *dev,
955 				const char *name,
956 				int irq,
957 				struct bmp280_data *data)
958 {
959 	unsigned long irq_trig;
960 	int ret;
961 
962 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
963 	if (irq_trig != IRQF_TRIGGER_RISING) {
964 		dev_err(dev, "non-rising trigger given for EOC interrupt, "
965 			"trying to enforce it\n");
966 		irq_trig = IRQF_TRIGGER_RISING;
967 	}
968 	ret = devm_request_threaded_irq(dev,
969 			irq,
970 			bmp085_eoc_irq,
971 			NULL,
972 			irq_trig,
973 			name,
974 			data);
975 	if (ret) {
976 		/* Bail out without IRQ but keep the driver in place */
977 		dev_err(dev, "unable to request DRDY IRQ\n");
978 		return 0;
979 	}
980 
981 	data->use_eoc = true;
982 	return 0;
983 }
984 
985 int bmp280_common_probe(struct device *dev,
986 			struct regmap *regmap,
987 			unsigned int chip,
988 			const char *name,
989 			int irq)
990 {
991 	int ret;
992 	struct iio_dev *indio_dev;
993 	struct bmp280_data *data;
994 	unsigned int chip_id;
995 	struct gpio_desc *gpiod;
996 
997 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
998 	if (!indio_dev)
999 		return -ENOMEM;
1000 
1001 	data = iio_priv(indio_dev);
1002 	mutex_init(&data->lock);
1003 	data->dev = dev;
1004 
1005 	indio_dev->dev.parent = dev;
1006 	indio_dev->name = name;
1007 	indio_dev->channels = bmp280_channels;
1008 	indio_dev->info = &bmp280_info;
1009 	indio_dev->modes = INDIO_DIRECT_MODE;
1010 
1011 	switch (chip) {
1012 	case BMP180_CHIP_ID:
1013 		indio_dev->num_channels = 2;
1014 		data->chip_info = &bmp180_chip_info;
1015 		data->oversampling_press = ilog2(8);
1016 		data->oversampling_temp = ilog2(1);
1017 		data->start_up_time = 10000;
1018 		break;
1019 	case BMP280_CHIP_ID:
1020 		indio_dev->num_channels = 2;
1021 		data->chip_info = &bmp280_chip_info;
1022 		data->oversampling_press = ilog2(16);
1023 		data->oversampling_temp = ilog2(2);
1024 		data->start_up_time = 2000;
1025 		break;
1026 	case BME280_CHIP_ID:
1027 		indio_dev->num_channels = 3;
1028 		data->chip_info = &bme280_chip_info;
1029 		data->oversampling_press = ilog2(16);
1030 		data->oversampling_humid = ilog2(16);
1031 		data->oversampling_temp = ilog2(2);
1032 		data->start_up_time = 2000;
1033 		break;
1034 	default:
1035 		return -EINVAL;
1036 	}
1037 
1038 	/* Bring up regulators */
1039 	data->vddd = devm_regulator_get(dev, "vddd");
1040 	if (IS_ERR(data->vddd)) {
1041 		dev_err(dev, "failed to get VDDD regulator\n");
1042 		return PTR_ERR(data->vddd);
1043 	}
1044 	ret = regulator_enable(data->vddd);
1045 	if (ret) {
1046 		dev_err(dev, "failed to enable VDDD regulator\n");
1047 		return ret;
1048 	}
1049 	data->vdda = devm_regulator_get(dev, "vdda");
1050 	if (IS_ERR(data->vdda)) {
1051 		dev_err(dev, "failed to get VDDA regulator\n");
1052 		ret = PTR_ERR(data->vdda);
1053 		goto out_disable_vddd;
1054 	}
1055 	ret = regulator_enable(data->vdda);
1056 	if (ret) {
1057 		dev_err(dev, "failed to enable VDDA regulator\n");
1058 		goto out_disable_vddd;
1059 	}
1060 	/* Wait to make sure we started up properly */
1061 	usleep_range(data->start_up_time, data->start_up_time + 100);
1062 
1063 	/* Bring chip out of reset if there is an assigned GPIO line */
1064 	gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1065 	/* Deassert the signal */
1066 	if (!IS_ERR(gpiod)) {
1067 		dev_info(dev, "release reset\n");
1068 		gpiod_set_value(gpiod, 0);
1069 	}
1070 
1071 	data->regmap = regmap;
1072 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1073 	if (ret < 0)
1074 		goto out_disable_vdda;
1075 	if (chip_id != chip) {
1076 		dev_err(dev, "bad chip id: expected %x got %x\n",
1077 			chip, chip_id);
1078 		ret = -EINVAL;
1079 		goto out_disable_vdda;
1080 	}
1081 
1082 	ret = data->chip_info->chip_config(data);
1083 	if (ret < 0)
1084 		goto out_disable_vdda;
1085 
1086 	dev_set_drvdata(dev, indio_dev);
1087 
1088 	/*
1089 	 * Some chips have calibration parameters "programmed into the devices'
1090 	 * non-volatile memory during production". Let's read them out at probe
1091 	 * time once. They will not change.
1092 	 */
1093 	if (chip_id  == BMP180_CHIP_ID) {
1094 		ret = bmp180_read_calib(data, &data->calib.bmp180);
1095 		if (ret < 0) {
1096 			dev_err(data->dev,
1097 				"failed to read calibration coefficients\n");
1098 			goto out_disable_vdda;
1099 		}
1100 	} else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1101 		ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1102 		if (ret < 0) {
1103 			dev_err(data->dev,
1104 				"failed to read calibration coefficients\n");
1105 			goto out_disable_vdda;
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1111 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1112 	 * so we look for an IRQ if we have that.
1113 	 */
1114 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1115 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1116 		if (ret)
1117 			goto out_disable_vdda;
1118 	}
1119 
1120 	/* Enable runtime PM */
1121 	pm_runtime_get_noresume(dev);
1122 	pm_runtime_set_active(dev);
1123 	pm_runtime_enable(dev);
1124 	/*
1125 	 * Set autosuspend to two orders of magnitude larger than the
1126 	 * start-up time.
1127 	 */
1128 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1129 	pm_runtime_use_autosuspend(dev);
1130 	pm_runtime_put(dev);
1131 
1132 	ret = iio_device_register(indio_dev);
1133 	if (ret)
1134 		goto out_runtime_pm_disable;
1135 
1136 
1137 	return 0;
1138 
1139 out_runtime_pm_disable:
1140 	pm_runtime_get_sync(data->dev);
1141 	pm_runtime_put_noidle(data->dev);
1142 	pm_runtime_disable(data->dev);
1143 out_disable_vdda:
1144 	regulator_disable(data->vdda);
1145 out_disable_vddd:
1146 	regulator_disable(data->vddd);
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL(bmp280_common_probe);
1150 
1151 int bmp280_common_remove(struct device *dev)
1152 {
1153 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1154 	struct bmp280_data *data = iio_priv(indio_dev);
1155 
1156 	iio_device_unregister(indio_dev);
1157 	pm_runtime_get_sync(data->dev);
1158 	pm_runtime_put_noidle(data->dev);
1159 	pm_runtime_disable(data->dev);
1160 	regulator_disable(data->vdda);
1161 	regulator_disable(data->vddd);
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL(bmp280_common_remove);
1165 
1166 #ifdef CONFIG_PM
1167 static int bmp280_runtime_suspend(struct device *dev)
1168 {
1169 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1170 	struct bmp280_data *data = iio_priv(indio_dev);
1171 	int ret;
1172 
1173 	ret = regulator_disable(data->vdda);
1174 	if (ret)
1175 		return ret;
1176 	return regulator_disable(data->vddd);
1177 }
1178 
1179 static int bmp280_runtime_resume(struct device *dev)
1180 {
1181 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1182 	struct bmp280_data *data = iio_priv(indio_dev);
1183 	int ret;
1184 
1185 	ret = regulator_enable(data->vddd);
1186 	if (ret)
1187 		return ret;
1188 	ret = regulator_enable(data->vdda);
1189 	if (ret)
1190 		return ret;
1191 	usleep_range(data->start_up_time, data->start_up_time + 100);
1192 	return data->chip_info->chip_config(data);
1193 }
1194 #endif /* CONFIG_PM */
1195 
1196 const struct dev_pm_ops bmp280_dev_pm_ops = {
1197 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1198 				pm_runtime_force_resume)
1199 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1200 			   bmp280_runtime_resume, NULL)
1201 };
1202 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1203 
1204 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1205 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1206 MODULE_LICENSE("GPL v2");
1207