1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * HID Sensors Driver
4  * Copyright (c) 2014, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/platform_device.h>
9 #include <linux/module.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/hid-sensor-hub.h>
12 #include <linux/iio/iio.h>
13 #include <linux/iio/sysfs.h>
14 #include <linux/iio/buffer.h>
15 #include "../common/hid-sensors/hid-sensor-trigger.h"
16 
17 struct dev_rot_state {
18 	struct hid_sensor_hub_callbacks callbacks;
19 	struct hid_sensor_common common_attributes;
20 	struct hid_sensor_hub_attribute_info quaternion;
21 	struct {
22 		s32 sampled_vals[4] __aligned(16);
23 		u64 timestamp __aligned(8);
24 	} scan;
25 	int scale_pre_decml;
26 	int scale_post_decml;
27 	int scale_precision;
28 	int value_offset;
29 	s64 timestamp;
30 };
31 
32 static const u32 rotation_sensitivity_addresses[] = {
33 	HID_USAGE_SENSOR_DATA_ORIENTATION,
34 	HID_USAGE_SENSOR_ORIENT_QUATERNION,
35 };
36 
37 /* Channel definitions */
38 static const struct iio_chan_spec dev_rot_channels[] = {
39 	{
40 		.type = IIO_ROT,
41 		.modified = 1,
42 		.channel2 = IIO_MOD_QUATERNION,
43 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
44 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
45 					BIT(IIO_CHAN_INFO_OFFSET) |
46 					BIT(IIO_CHAN_INFO_SCALE) |
47 					BIT(IIO_CHAN_INFO_HYSTERESIS),
48 		.scan_index = 0
49 	},
50 	IIO_CHAN_SOFT_TIMESTAMP(1)
51 };
52 
53 /* Adjust channel real bits based on report descriptor */
54 static void dev_rot_adjust_channel_bit_mask(struct iio_chan_spec *chan,
55 						int size)
56 {
57 	chan->scan_type.sign = 's';
58 	/* Real storage bits will change based on the report desc. */
59 	chan->scan_type.realbits = size * 8;
60 	/* Maximum size of a sample to capture is u32 */
61 	chan->scan_type.storagebits = sizeof(u32) * 8;
62 	chan->scan_type.repeat = 4;
63 }
64 
65 /* Channel read_raw handler */
66 static int dev_rot_read_raw(struct iio_dev *indio_dev,
67 				struct iio_chan_spec const *chan,
68 				int size, int *vals, int *val_len,
69 				long mask)
70 {
71 	struct dev_rot_state *rot_state = iio_priv(indio_dev);
72 	int ret_type;
73 	int i;
74 
75 	vals[0] = 0;
76 	vals[1] = 0;
77 
78 	switch (mask) {
79 	case IIO_CHAN_INFO_RAW:
80 		if (size >= 4) {
81 			for (i = 0; i < 4; ++i)
82 				vals[i] = rot_state->scan.sampled_vals[i];
83 			ret_type = IIO_VAL_INT_MULTIPLE;
84 			*val_len =  4;
85 		} else
86 			ret_type = -EINVAL;
87 		break;
88 	case IIO_CHAN_INFO_SCALE:
89 		vals[0] = rot_state->scale_pre_decml;
90 		vals[1] = rot_state->scale_post_decml;
91 		return rot_state->scale_precision;
92 
93 	case IIO_CHAN_INFO_OFFSET:
94 		*vals = rot_state->value_offset;
95 		return IIO_VAL_INT;
96 
97 	case IIO_CHAN_INFO_SAMP_FREQ:
98 		ret_type = hid_sensor_read_samp_freq_value(
99 			&rot_state->common_attributes, &vals[0], &vals[1]);
100 		break;
101 	case IIO_CHAN_INFO_HYSTERESIS:
102 		ret_type = hid_sensor_read_raw_hyst_value(
103 			&rot_state->common_attributes, &vals[0], &vals[1]);
104 		break;
105 	default:
106 		ret_type = -EINVAL;
107 		break;
108 	}
109 
110 	return ret_type;
111 }
112 
113 /* Channel write_raw handler */
114 static int dev_rot_write_raw(struct iio_dev *indio_dev,
115 			       struct iio_chan_spec const *chan,
116 			       int val,
117 			       int val2,
118 			       long mask)
119 {
120 	struct dev_rot_state *rot_state = iio_priv(indio_dev);
121 	int ret;
122 
123 	switch (mask) {
124 	case IIO_CHAN_INFO_SAMP_FREQ:
125 		ret = hid_sensor_write_samp_freq_value(
126 				&rot_state->common_attributes, val, val2);
127 		break;
128 	case IIO_CHAN_INFO_HYSTERESIS:
129 		ret = hid_sensor_write_raw_hyst_value(
130 				&rot_state->common_attributes, val, val2);
131 		break;
132 	default:
133 		ret = -EINVAL;
134 	}
135 
136 	return ret;
137 }
138 
139 static const struct iio_info dev_rot_info = {
140 	.read_raw_multi = &dev_rot_read_raw,
141 	.write_raw = &dev_rot_write_raw,
142 };
143 
144 /* Callback handler to send event after all samples are received and captured */
145 static int dev_rot_proc_event(struct hid_sensor_hub_device *hsdev,
146 				unsigned usage_id,
147 				void *priv)
148 {
149 	struct iio_dev *indio_dev = platform_get_drvdata(priv);
150 	struct dev_rot_state *rot_state = iio_priv(indio_dev);
151 
152 	dev_dbg(&indio_dev->dev, "dev_rot_proc_event\n");
153 	if (atomic_read(&rot_state->common_attributes.data_ready)) {
154 		if (!rot_state->timestamp)
155 			rot_state->timestamp = iio_get_time_ns(indio_dev);
156 
157 		iio_push_to_buffers_with_timestamp(indio_dev, &rot_state->scan,
158 						   rot_state->timestamp);
159 
160 		rot_state->timestamp = 0;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Capture samples in local storage */
167 static int dev_rot_capture_sample(struct hid_sensor_hub_device *hsdev,
168 				unsigned usage_id,
169 				size_t raw_len, char *raw_data,
170 				void *priv)
171 {
172 	struct iio_dev *indio_dev = platform_get_drvdata(priv);
173 	struct dev_rot_state *rot_state = iio_priv(indio_dev);
174 
175 	if (usage_id == HID_USAGE_SENSOR_ORIENT_QUATERNION) {
176 		if (raw_len / 4 == sizeof(s16)) {
177 			rot_state->scan.sampled_vals[0] = ((s16 *)raw_data)[0];
178 			rot_state->scan.sampled_vals[1] = ((s16 *)raw_data)[1];
179 			rot_state->scan.sampled_vals[2] = ((s16 *)raw_data)[2];
180 			rot_state->scan.sampled_vals[3] = ((s16 *)raw_data)[3];
181 		} else {
182 			memcpy(&rot_state->scan.sampled_vals, raw_data,
183 			       sizeof(rot_state->scan.sampled_vals));
184 		}
185 
186 		dev_dbg(&indio_dev->dev, "Recd Quat len:%zu::%zu\n", raw_len,
187 			sizeof(rot_state->scan.sampled_vals));
188 	} else if (usage_id == HID_USAGE_SENSOR_TIME_TIMESTAMP) {
189 		rot_state->timestamp = hid_sensor_convert_timestamp(&rot_state->common_attributes,
190 								    *(s64 *)raw_data);
191 	}
192 
193 	return 0;
194 }
195 
196 /* Parse report which is specific to an usage id*/
197 static int dev_rot_parse_report(struct platform_device *pdev,
198 				struct hid_sensor_hub_device *hsdev,
199 				struct iio_chan_spec *channels,
200 				unsigned usage_id,
201 				struct dev_rot_state *st)
202 {
203 	int ret;
204 
205 	ret = sensor_hub_input_get_attribute_info(hsdev,
206 				HID_INPUT_REPORT,
207 				usage_id,
208 				HID_USAGE_SENSOR_ORIENT_QUATERNION,
209 				&st->quaternion);
210 	if (ret)
211 		return ret;
212 
213 	dev_rot_adjust_channel_bit_mask(&channels[0],
214 		st->quaternion.size / 4);
215 
216 	dev_dbg(&pdev->dev, "dev_rot %x:%x\n", st->quaternion.index,
217 		st->quaternion.report_id);
218 
219 	dev_dbg(&pdev->dev, "dev_rot: attrib size %d\n",
220 				st->quaternion.size);
221 
222 	st->scale_precision = hid_sensor_format_scale(
223 				hsdev->usage,
224 				&st->quaternion,
225 				&st->scale_pre_decml, &st->scale_post_decml);
226 
227 	return 0;
228 }
229 
230 /* Function to initialize the processing for usage id */
231 static int hid_dev_rot_probe(struct platform_device *pdev)
232 {
233 	int ret;
234 	char *name;
235 	struct iio_dev *indio_dev;
236 	struct dev_rot_state *rot_state;
237 	struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data;
238 
239 	indio_dev = devm_iio_device_alloc(&pdev->dev,
240 					  sizeof(struct dev_rot_state));
241 	if (indio_dev == NULL)
242 		return -ENOMEM;
243 
244 	platform_set_drvdata(pdev, indio_dev);
245 
246 	rot_state = iio_priv(indio_dev);
247 	rot_state->common_attributes.hsdev = hsdev;
248 	rot_state->common_attributes.pdev = pdev;
249 
250 	switch (hsdev->usage) {
251 	case HID_USAGE_SENSOR_DEVICE_ORIENTATION:
252 		name = "dev_rotation";
253 		break;
254 	case HID_USAGE_SENSOR_RELATIVE_ORIENTATION:
255 		name = "relative_orientation";
256 		break;
257 	case HID_USAGE_SENSOR_GEOMAGNETIC_ORIENTATION:
258 		name = "geomagnetic_orientation";
259 		break;
260 	default:
261 		return -EINVAL;
262 	}
263 
264 	ret = hid_sensor_parse_common_attributes(hsdev,
265 						 hsdev->usage,
266 						 &rot_state->common_attributes,
267 						 rotation_sensitivity_addresses,
268 						 ARRAY_SIZE(rotation_sensitivity_addresses));
269 	if (ret) {
270 		dev_err(&pdev->dev, "failed to setup common attributes\n");
271 		return ret;
272 	}
273 
274 	indio_dev->channels = devm_kmemdup(&pdev->dev, dev_rot_channels,
275 					   sizeof(dev_rot_channels),
276 					   GFP_KERNEL);
277 	if (!indio_dev->channels) {
278 		dev_err(&pdev->dev, "failed to duplicate channels\n");
279 		return -ENOMEM;
280 	}
281 
282 	ret = dev_rot_parse_report(pdev, hsdev,
283 				   (struct iio_chan_spec *)indio_dev->channels,
284 					hsdev->usage, rot_state);
285 	if (ret) {
286 		dev_err(&pdev->dev, "failed to setup attributes\n");
287 		return ret;
288 	}
289 
290 	indio_dev->num_channels = ARRAY_SIZE(dev_rot_channels);
291 	indio_dev->info = &dev_rot_info;
292 	indio_dev->name = name;
293 	indio_dev->modes = INDIO_DIRECT_MODE;
294 
295 	atomic_set(&rot_state->common_attributes.data_ready, 0);
296 
297 	ret = hid_sensor_setup_trigger(indio_dev, name,
298 					&rot_state->common_attributes);
299 	if (ret) {
300 		dev_err(&pdev->dev, "trigger setup failed\n");
301 		return ret;
302 	}
303 
304 	ret = iio_device_register(indio_dev);
305 	if (ret) {
306 		dev_err(&pdev->dev, "device register failed\n");
307 		goto error_remove_trigger;
308 	}
309 
310 	rot_state->callbacks.send_event = dev_rot_proc_event;
311 	rot_state->callbacks.capture_sample = dev_rot_capture_sample;
312 	rot_state->callbacks.pdev = pdev;
313 	ret = sensor_hub_register_callback(hsdev, hsdev->usage,
314 					&rot_state->callbacks);
315 	if (ret) {
316 		dev_err(&pdev->dev, "callback reg failed\n");
317 		goto error_iio_unreg;
318 	}
319 
320 	return 0;
321 
322 error_iio_unreg:
323 	iio_device_unregister(indio_dev);
324 error_remove_trigger:
325 	hid_sensor_remove_trigger(indio_dev, &rot_state->common_attributes);
326 	return ret;
327 }
328 
329 /* Function to deinitialize the processing for usage id */
330 static int hid_dev_rot_remove(struct platform_device *pdev)
331 {
332 	struct hid_sensor_hub_device *hsdev = pdev->dev.platform_data;
333 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
334 	struct dev_rot_state *rot_state = iio_priv(indio_dev);
335 
336 	sensor_hub_remove_callback(hsdev, hsdev->usage);
337 	iio_device_unregister(indio_dev);
338 	hid_sensor_remove_trigger(indio_dev, &rot_state->common_attributes);
339 
340 	return 0;
341 }
342 
343 static const struct platform_device_id hid_dev_rot_ids[] = {
344 	{
345 		/* Format: HID-SENSOR-usage_id_in_hex_lowercase */
346 		.name = "HID-SENSOR-20008a",
347 	},
348 	{
349 		/* Relative orientation(AG) sensor */
350 		.name = "HID-SENSOR-20008e",
351 	},
352 	{
353 		/* Geomagnetic orientation(AM) sensor */
354 		.name = "HID-SENSOR-2000c1",
355 	},
356 	{ /* sentinel */ }
357 };
358 MODULE_DEVICE_TABLE(platform, hid_dev_rot_ids);
359 
360 static struct platform_driver hid_dev_rot_platform_driver = {
361 	.id_table = hid_dev_rot_ids,
362 	.driver = {
363 		.name	= KBUILD_MODNAME,
364 		.pm     = &hid_sensor_pm_ops,
365 	},
366 	.probe		= hid_dev_rot_probe,
367 	.remove		= hid_dev_rot_remove,
368 };
369 module_platform_driver(hid_dev_rot_platform_driver);
370 
371 MODULE_DESCRIPTION("HID Sensor Device Rotation");
372 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
373 MODULE_LICENSE("GPL");
374 MODULE_IMPORT_NS(IIO_HID);
375