1 /*
2  * STMicroelectronics magnetometers driver
3  *
4  * Copyright 2012-2013 STMicroelectronics Inc.
5  *
6  * Denis Ciocca <denis.ciocca@st.com>
7  *
8  * Licensed under the GPL-2.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/mutex.h>
17 #include <linux/interrupt.h>
18 #include <linux/i2c.h>
19 #include <linux/gpio.h>
20 #include <linux/irq.h>
21 #include <linux/delay.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/buffer.h>
25 
26 #include <linux/iio/common/st_sensors.h>
27 #include "st_magn.h"
28 
29 #define ST_MAGN_NUMBER_DATA_CHANNELS		3
30 
31 /* DEFAULT VALUE FOR SENSORS */
32 #define ST_MAGN_DEFAULT_OUT_X_H_ADDR		0X03
33 #define ST_MAGN_DEFAULT_OUT_Y_H_ADDR		0X07
34 #define ST_MAGN_DEFAULT_OUT_Z_H_ADDR		0X05
35 
36 /* FULLSCALE */
37 #define ST_MAGN_FS_AVL_1300MG			1300
38 #define ST_MAGN_FS_AVL_1900MG			1900
39 #define ST_MAGN_FS_AVL_2500MG			2500
40 #define ST_MAGN_FS_AVL_4000MG			4000
41 #define ST_MAGN_FS_AVL_4700MG			4700
42 #define ST_MAGN_FS_AVL_5600MG			5600
43 #define ST_MAGN_FS_AVL_8000MG			8000
44 #define ST_MAGN_FS_AVL_8100MG			8100
45 #define ST_MAGN_FS_AVL_10000MG			10000
46 
47 /* CUSTOM VALUES FOR SENSOR 1 */
48 #define ST_MAGN_1_WAI_EXP			0x3c
49 #define ST_MAGN_1_ODR_ADDR			0x00
50 #define ST_MAGN_1_ODR_MASK			0x1c
51 #define ST_MAGN_1_ODR_AVL_1HZ_VAL		0x00
52 #define ST_MAGN_1_ODR_AVL_2HZ_VAL		0x01
53 #define ST_MAGN_1_ODR_AVL_3HZ_VAL		0x02
54 #define ST_MAGN_1_ODR_AVL_8HZ_VAL		0x03
55 #define ST_MAGN_1_ODR_AVL_15HZ_VAL		0x04
56 #define ST_MAGN_1_ODR_AVL_30HZ_VAL		0x05
57 #define ST_MAGN_1_ODR_AVL_75HZ_VAL		0x06
58 #define ST_MAGN_1_ODR_AVL_220HZ_VAL		0x07
59 #define ST_MAGN_1_PW_ADDR			0x02
60 #define ST_MAGN_1_PW_MASK			0x03
61 #define ST_MAGN_1_PW_ON				0x00
62 #define ST_MAGN_1_PW_OFF			0x03
63 #define ST_MAGN_1_FS_ADDR			0x01
64 #define ST_MAGN_1_FS_MASK			0xe0
65 #define ST_MAGN_1_FS_AVL_1300_VAL		0x01
66 #define ST_MAGN_1_FS_AVL_1900_VAL		0x02
67 #define ST_MAGN_1_FS_AVL_2500_VAL		0x03
68 #define ST_MAGN_1_FS_AVL_4000_VAL		0x04
69 #define ST_MAGN_1_FS_AVL_4700_VAL		0x05
70 #define ST_MAGN_1_FS_AVL_5600_VAL		0x06
71 #define ST_MAGN_1_FS_AVL_8100_VAL		0x07
72 #define ST_MAGN_1_FS_AVL_1300_GAIN_XY		1100
73 #define ST_MAGN_1_FS_AVL_1900_GAIN_XY		855
74 #define ST_MAGN_1_FS_AVL_2500_GAIN_XY		670
75 #define ST_MAGN_1_FS_AVL_4000_GAIN_XY		450
76 #define ST_MAGN_1_FS_AVL_4700_GAIN_XY		400
77 #define ST_MAGN_1_FS_AVL_5600_GAIN_XY		330
78 #define ST_MAGN_1_FS_AVL_8100_GAIN_XY		230
79 #define ST_MAGN_1_FS_AVL_1300_GAIN_Z		980
80 #define ST_MAGN_1_FS_AVL_1900_GAIN_Z		760
81 #define ST_MAGN_1_FS_AVL_2500_GAIN_Z		600
82 #define ST_MAGN_1_FS_AVL_4000_GAIN_Z		400
83 #define ST_MAGN_1_FS_AVL_4700_GAIN_Z		355
84 #define ST_MAGN_1_FS_AVL_5600_GAIN_Z		295
85 #define ST_MAGN_1_FS_AVL_8100_GAIN_Z		205
86 #define ST_MAGN_1_MULTIREAD_BIT			false
87 
88 /* CUSTOM VALUES FOR SENSOR 2 */
89 #define ST_MAGN_2_WAI_EXP			0x3d
90 #define ST_MAGN_2_ODR_ADDR			0x20
91 #define ST_MAGN_2_ODR_MASK			0x1c
92 #define ST_MAGN_2_ODR_AVL_1HZ_VAL		0x00
93 #define ST_MAGN_2_ODR_AVL_2HZ_VAL		0x01
94 #define ST_MAGN_2_ODR_AVL_3HZ_VAL		0x02
95 #define ST_MAGN_2_ODR_AVL_5HZ_VAL		0x03
96 #define ST_MAGN_2_ODR_AVL_10HZ_VAL		0x04
97 #define ST_MAGN_2_ODR_AVL_20HZ_VAL		0x05
98 #define ST_MAGN_2_ODR_AVL_40HZ_VAL		0x06
99 #define ST_MAGN_2_ODR_AVL_80HZ_VAL		0x07
100 #define ST_MAGN_2_PW_ADDR			0x22
101 #define ST_MAGN_2_PW_MASK			0x03
102 #define ST_MAGN_2_PW_ON				0x00
103 #define ST_MAGN_2_PW_OFF			0x03
104 #define ST_MAGN_2_FS_ADDR			0x21
105 #define ST_MAGN_2_FS_MASK			0x60
106 #define ST_MAGN_2_FS_AVL_4000_VAL		0x00
107 #define ST_MAGN_2_FS_AVL_8000_VAL		0x01
108 #define ST_MAGN_2_FS_AVL_10000_VAL		0x02
109 #define ST_MAGN_2_FS_AVL_4000_GAIN		430
110 #define ST_MAGN_2_FS_AVL_8000_GAIN		230
111 #define ST_MAGN_2_FS_AVL_10000_GAIN		230
112 #define ST_MAGN_2_MULTIREAD_BIT			false
113 #define ST_MAGN_2_OUT_X_L_ADDR			0x28
114 #define ST_MAGN_2_OUT_Y_L_ADDR			0x2a
115 #define ST_MAGN_2_OUT_Z_L_ADDR			0x2c
116 
117 static const struct iio_chan_spec st_magn_16bit_channels[] = {
118 	ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
119 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
120 			ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_BE, 16, 16,
121 			ST_MAGN_DEFAULT_OUT_X_H_ADDR),
122 	ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
123 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
124 			ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_BE, 16, 16,
125 			ST_MAGN_DEFAULT_OUT_Y_H_ADDR),
126 	ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
127 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
128 			ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_BE, 16, 16,
129 			ST_MAGN_DEFAULT_OUT_Z_H_ADDR),
130 	IIO_CHAN_SOFT_TIMESTAMP(3)
131 };
132 
133 static const struct iio_chan_spec st_magn_2_16bit_channels[] = {
134 	ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
135 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
136 			ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
137 			ST_MAGN_2_OUT_X_L_ADDR),
138 	ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
139 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
140 			ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
141 			ST_MAGN_2_OUT_Y_L_ADDR),
142 	ST_SENSORS_LSM_CHANNELS(IIO_MAGN,
143 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
144 			ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
145 			ST_MAGN_2_OUT_Z_L_ADDR),
146 	IIO_CHAN_SOFT_TIMESTAMP(3)
147 };
148 
149 static const struct st_sensors st_magn_sensors[] = {
150 	{
151 		.wai = ST_MAGN_1_WAI_EXP,
152 		.sensors_supported = {
153 			[0] = LSM303DLHC_MAGN_DEV_NAME,
154 			[1] = LSM303DLM_MAGN_DEV_NAME,
155 		},
156 		.ch = (struct iio_chan_spec *)st_magn_16bit_channels,
157 		.odr = {
158 			.addr = ST_MAGN_1_ODR_ADDR,
159 			.mask = ST_MAGN_1_ODR_MASK,
160 			.odr_avl = {
161 				{ 1, ST_MAGN_1_ODR_AVL_1HZ_VAL, },
162 				{ 2, ST_MAGN_1_ODR_AVL_2HZ_VAL, },
163 				{ 3, ST_MAGN_1_ODR_AVL_3HZ_VAL, },
164 				{ 8, ST_MAGN_1_ODR_AVL_8HZ_VAL, },
165 				{ 15, ST_MAGN_1_ODR_AVL_15HZ_VAL, },
166 				{ 30, ST_MAGN_1_ODR_AVL_30HZ_VAL, },
167 				{ 75, ST_MAGN_1_ODR_AVL_75HZ_VAL, },
168 				{ 220, ST_MAGN_1_ODR_AVL_220HZ_VAL, },
169 			},
170 		},
171 		.pw = {
172 			.addr = ST_MAGN_1_PW_ADDR,
173 			.mask = ST_MAGN_1_PW_MASK,
174 			.value_on = ST_MAGN_1_PW_ON,
175 			.value_off = ST_MAGN_1_PW_OFF,
176 		},
177 		.fs = {
178 			.addr = ST_MAGN_1_FS_ADDR,
179 			.mask = ST_MAGN_1_FS_MASK,
180 			.fs_avl = {
181 				[0] = {
182 					.num = ST_MAGN_FS_AVL_1300MG,
183 					.value = ST_MAGN_1_FS_AVL_1300_VAL,
184 					.gain = ST_MAGN_1_FS_AVL_1300_GAIN_XY,
185 					.gain2 = ST_MAGN_1_FS_AVL_1300_GAIN_Z,
186 				},
187 				[1] = {
188 					.num = ST_MAGN_FS_AVL_1900MG,
189 					.value = ST_MAGN_1_FS_AVL_1900_VAL,
190 					.gain = ST_MAGN_1_FS_AVL_1900_GAIN_XY,
191 					.gain2 = ST_MAGN_1_FS_AVL_1900_GAIN_Z,
192 				},
193 				[2] = {
194 					.num = ST_MAGN_FS_AVL_2500MG,
195 					.value = ST_MAGN_1_FS_AVL_2500_VAL,
196 					.gain = ST_MAGN_1_FS_AVL_2500_GAIN_XY,
197 					.gain2 = ST_MAGN_1_FS_AVL_2500_GAIN_Z,
198 				},
199 				[3] = {
200 					.num = ST_MAGN_FS_AVL_4000MG,
201 					.value = ST_MAGN_1_FS_AVL_4000_VAL,
202 					.gain = ST_MAGN_1_FS_AVL_4000_GAIN_XY,
203 					.gain2 = ST_MAGN_1_FS_AVL_4000_GAIN_Z,
204 				},
205 				[4] = {
206 					.num = ST_MAGN_FS_AVL_4700MG,
207 					.value = ST_MAGN_1_FS_AVL_4700_VAL,
208 					.gain = ST_MAGN_1_FS_AVL_4700_GAIN_XY,
209 					.gain2 = ST_MAGN_1_FS_AVL_4700_GAIN_Z,
210 				},
211 				[5] = {
212 					.num = ST_MAGN_FS_AVL_5600MG,
213 					.value = ST_MAGN_1_FS_AVL_5600_VAL,
214 					.gain = ST_MAGN_1_FS_AVL_5600_GAIN_XY,
215 					.gain2 = ST_MAGN_1_FS_AVL_5600_GAIN_Z,
216 				},
217 				[6] = {
218 					.num = ST_MAGN_FS_AVL_8100MG,
219 					.value = ST_MAGN_1_FS_AVL_8100_VAL,
220 					.gain = ST_MAGN_1_FS_AVL_8100_GAIN_XY,
221 					.gain2 = ST_MAGN_1_FS_AVL_8100_GAIN_Z,
222 				},
223 			},
224 		},
225 		.multi_read_bit = ST_MAGN_1_MULTIREAD_BIT,
226 		.bootime = 2,
227 	},
228 	{
229 		.wai = ST_MAGN_2_WAI_EXP,
230 		.sensors_supported = {
231 			[0] = LIS3MDL_MAGN_DEV_NAME,
232 		},
233 		.ch = (struct iio_chan_spec *)st_magn_2_16bit_channels,
234 		.odr = {
235 			.addr = ST_MAGN_2_ODR_ADDR,
236 			.mask = ST_MAGN_2_ODR_MASK,
237 			.odr_avl = {
238 				{ 1, ST_MAGN_2_ODR_AVL_1HZ_VAL, },
239 				{ 2, ST_MAGN_2_ODR_AVL_2HZ_VAL, },
240 				{ 3, ST_MAGN_2_ODR_AVL_3HZ_VAL, },
241 				{ 5, ST_MAGN_2_ODR_AVL_5HZ_VAL, },
242 				{ 10, ST_MAGN_2_ODR_AVL_10HZ_VAL, },
243 				{ 20, ST_MAGN_2_ODR_AVL_20HZ_VAL, },
244 				{ 40, ST_MAGN_2_ODR_AVL_40HZ_VAL, },
245 				{ 80, ST_MAGN_2_ODR_AVL_80HZ_VAL, },
246 			},
247 		},
248 		.pw = {
249 			.addr = ST_MAGN_2_PW_ADDR,
250 			.mask = ST_MAGN_2_PW_MASK,
251 			.value_on = ST_MAGN_2_PW_ON,
252 			.value_off = ST_MAGN_2_PW_OFF,
253 		},
254 		.fs = {
255 			.addr = ST_MAGN_2_FS_ADDR,
256 			.mask = ST_MAGN_2_FS_MASK,
257 			.fs_avl = {
258 				[0] = {
259 					.num = ST_MAGN_FS_AVL_4000MG,
260 					.value = ST_MAGN_2_FS_AVL_4000_VAL,
261 					.gain = ST_MAGN_2_FS_AVL_4000_GAIN,
262 				},
263 				[1] = {
264 					.num = ST_MAGN_FS_AVL_8000MG,
265 					.value = ST_MAGN_2_FS_AVL_8000_VAL,
266 					.gain = ST_MAGN_2_FS_AVL_8000_GAIN,
267 				},
268 				[2] = {
269 					.num = ST_MAGN_FS_AVL_10000MG,
270 					.value = ST_MAGN_2_FS_AVL_10000_VAL,
271 					.gain = ST_MAGN_2_FS_AVL_10000_GAIN,
272 				},
273 			},
274 		},
275 		.multi_read_bit = ST_MAGN_2_MULTIREAD_BIT,
276 		.bootime = 2,
277 	},
278 };
279 
280 static int st_magn_read_raw(struct iio_dev *indio_dev,
281 			struct iio_chan_spec const *ch, int *val,
282 							int *val2, long mask)
283 {
284 	int err;
285 	struct st_sensor_data *mdata = iio_priv(indio_dev);
286 
287 	switch (mask) {
288 	case IIO_CHAN_INFO_RAW:
289 		err = st_sensors_read_info_raw(indio_dev, ch, val);
290 		if (err < 0)
291 			goto read_error;
292 
293 		return IIO_VAL_INT;
294 	case IIO_CHAN_INFO_SCALE:
295 		*val = 0;
296 		if ((ch->scan_index == ST_SENSORS_SCAN_Z) &&
297 					(mdata->current_fullscale->gain2 != 0))
298 			*val2 = mdata->current_fullscale->gain2;
299 		else
300 			*val2 = mdata->current_fullscale->gain;
301 		return IIO_VAL_INT_PLUS_MICRO;
302 	default:
303 		return -EINVAL;
304 	}
305 
306 read_error:
307 	return err;
308 }
309 
310 static int st_magn_write_raw(struct iio_dev *indio_dev,
311 		struct iio_chan_spec const *chan, int val, int val2, long mask)
312 {
313 	int err;
314 
315 	switch (mask) {
316 	case IIO_CHAN_INFO_SCALE:
317 		err = st_sensors_set_fullscale_by_gain(indio_dev, val2);
318 		break;
319 	default:
320 		err = -EINVAL;
321 	}
322 
323 	return err;
324 }
325 
326 static ST_SENSOR_DEV_ATTR_SAMP_FREQ();
327 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
328 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_magn_scale_available);
329 
330 static struct attribute *st_magn_attributes[] = {
331 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
332 	&iio_dev_attr_in_magn_scale_available.dev_attr.attr,
333 	&iio_dev_attr_sampling_frequency.dev_attr.attr,
334 	NULL,
335 };
336 
337 static const struct attribute_group st_magn_attribute_group = {
338 	.attrs = st_magn_attributes,
339 };
340 
341 static const struct iio_info magn_info = {
342 	.driver_module = THIS_MODULE,
343 	.attrs = &st_magn_attribute_group,
344 	.read_raw = &st_magn_read_raw,
345 	.write_raw = &st_magn_write_raw,
346 };
347 
348 int st_magn_common_probe(struct iio_dev *indio_dev,
349 					struct st_sensors_platform_data *pdata)
350 {
351 	struct st_sensor_data *mdata = iio_priv(indio_dev);
352 	int irq = mdata->get_irq_data_ready(indio_dev);
353 	int err;
354 
355 	indio_dev->modes = INDIO_DIRECT_MODE;
356 	indio_dev->info = &magn_info;
357 
358 	err = st_sensors_check_device_support(indio_dev,
359 				ARRAY_SIZE(st_magn_sensors), st_magn_sensors);
360 	if (err < 0)
361 		return err;
362 
363 	mdata->num_data_channels = ST_MAGN_NUMBER_DATA_CHANNELS;
364 	mdata->multiread_bit = mdata->sensor->multi_read_bit;
365 	indio_dev->channels = mdata->sensor->ch;
366 	indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
367 
368 	mdata->current_fullscale = (struct st_sensor_fullscale_avl *)
369 						&mdata->sensor->fs.fs_avl[0];
370 	mdata->odr = mdata->sensor->odr.odr_avl[0].hz;
371 
372 	err = st_sensors_init_sensor(indio_dev, pdata);
373 	if (err < 0)
374 		return err;
375 
376 	err = st_magn_allocate_ring(indio_dev);
377 	if (err < 0)
378 		return err;
379 
380 	if (irq > 0) {
381 		err = st_sensors_allocate_trigger(indio_dev, NULL);
382 		if (err < 0)
383 			goto st_magn_probe_trigger_error;
384 	}
385 
386 	err = iio_device_register(indio_dev);
387 	if (err)
388 		goto st_magn_device_register_error;
389 
390 	return 0;
391 
392 st_magn_device_register_error:
393 	if (irq > 0)
394 		st_sensors_deallocate_trigger(indio_dev);
395 st_magn_probe_trigger_error:
396 	st_magn_deallocate_ring(indio_dev);
397 
398 	return err;
399 }
400 EXPORT_SYMBOL(st_magn_common_probe);
401 
402 void st_magn_common_remove(struct iio_dev *indio_dev)
403 {
404 	struct st_sensor_data *mdata = iio_priv(indio_dev);
405 
406 	iio_device_unregister(indio_dev);
407 	if (mdata->get_irq_data_ready(indio_dev) > 0)
408 		st_sensors_deallocate_trigger(indio_dev);
409 
410 	st_magn_deallocate_ring(indio_dev);
411 }
412 EXPORT_SYMBOL(st_magn_common_remove);
413 
414 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
415 MODULE_DESCRIPTION("STMicroelectronics magnetometers driver");
416 MODULE_LICENSE("GPL v2");
417