1 /* 2 * Bosch BMC150 three-axis magnetic field sensor driver 3 * 4 * Copyright (c) 2015, Intel Corporation. 5 * 6 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com: 7 * 8 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms and conditions of the GNU General Public License, 12 * version 2, as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/i2c.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/acpi.h> 26 #include <linux/pm.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/iio/iio.h> 29 #include <linux/iio/sysfs.h> 30 #include <linux/iio/buffer.h> 31 #include <linux/iio/events.h> 32 #include <linux/iio/trigger.h> 33 #include <linux/iio/trigger_consumer.h> 34 #include <linux/iio/triggered_buffer.h> 35 #include <linux/regmap.h> 36 37 #include "bmc150_magn.h" 38 39 #define BMC150_MAGN_DRV_NAME "bmc150_magn" 40 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event" 41 42 #define BMC150_MAGN_REG_CHIP_ID 0x40 43 #define BMC150_MAGN_CHIP_ID_VAL 0x32 44 45 #define BMC150_MAGN_REG_X_L 0x42 46 #define BMC150_MAGN_REG_X_M 0x43 47 #define BMC150_MAGN_REG_Y_L 0x44 48 #define BMC150_MAGN_REG_Y_M 0x45 49 #define BMC150_MAGN_SHIFT_XY_L 3 50 #define BMC150_MAGN_REG_Z_L 0x46 51 #define BMC150_MAGN_REG_Z_M 0x47 52 #define BMC150_MAGN_SHIFT_Z_L 1 53 #define BMC150_MAGN_REG_RHALL_L 0x48 54 #define BMC150_MAGN_REG_RHALL_M 0x49 55 #define BMC150_MAGN_SHIFT_RHALL_L 2 56 57 #define BMC150_MAGN_REG_INT_STATUS 0x4A 58 59 #define BMC150_MAGN_REG_POWER 0x4B 60 #define BMC150_MAGN_MASK_POWER_CTL BIT(0) 61 62 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C 63 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1) 64 #define BMC150_MAGN_SHIFT_OPMODE 1 65 #define BMC150_MAGN_MODE_NORMAL 0x00 66 #define BMC150_MAGN_MODE_FORCED 0x01 67 #define BMC150_MAGN_MODE_SLEEP 0x03 68 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3) 69 #define BMC150_MAGN_SHIFT_ODR 3 70 71 #define BMC150_MAGN_REG_INT 0x4D 72 73 #define BMC150_MAGN_REG_INT_DRDY 0x4E 74 #define BMC150_MAGN_MASK_DRDY_EN BIT(7) 75 #define BMC150_MAGN_SHIFT_DRDY_EN 7 76 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6) 77 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5) 78 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4) 79 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3) 80 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2) 81 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1) 82 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0) 83 84 #define BMC150_MAGN_REG_LOW_THRESH 0x4F 85 #define BMC150_MAGN_REG_HIGH_THRESH 0x50 86 #define BMC150_MAGN_REG_REP_XY 0x51 87 #define BMC150_MAGN_REG_REP_Z 0x52 88 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0) 89 90 #define BMC150_MAGN_REG_TRIM_START 0x5D 91 #define BMC150_MAGN_REG_TRIM_END 0x71 92 93 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096 94 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384 95 96 /* Time from SUSPEND to SLEEP */ 97 #define BMC150_MAGN_START_UP_TIME_MS 3 98 99 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000 100 101 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1) 102 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1) 103 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2) 104 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1) 105 106 enum bmc150_magn_axis { 107 AXIS_X, 108 AXIS_Y, 109 AXIS_Z, 110 RHALL, 111 AXIS_XYZ_MAX = RHALL, 112 AXIS_XYZR_MAX, 113 }; 114 115 enum bmc150_magn_power_modes { 116 BMC150_MAGN_POWER_MODE_SUSPEND, 117 BMC150_MAGN_POWER_MODE_SLEEP, 118 BMC150_MAGN_POWER_MODE_NORMAL, 119 }; 120 121 struct bmc150_magn_trim_regs { 122 s8 x1; 123 s8 y1; 124 __le16 reserved1; 125 u8 reserved2; 126 __le16 z4; 127 s8 x2; 128 s8 y2; 129 __le16 reserved3; 130 __le16 z2; 131 __le16 z1; 132 __le16 xyz1; 133 __le16 z3; 134 s8 xy2; 135 u8 xy1; 136 } __packed; 137 138 struct bmc150_magn_data { 139 struct device *dev; 140 /* 141 * 1. Protect this structure. 142 * 2. Serialize sequences that power on/off the device and access HW. 143 */ 144 struct mutex mutex; 145 struct regmap *regmap; 146 /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */ 147 s32 buffer[6]; 148 struct iio_trigger *dready_trig; 149 bool dready_trigger_on; 150 int max_odr; 151 int irq; 152 }; 153 154 static const struct { 155 int freq; 156 u8 reg_val; 157 } bmc150_magn_samp_freq_table[] = { {2, 0x01}, 158 {6, 0x02}, 159 {8, 0x03}, 160 {10, 0x00}, 161 {15, 0x04}, 162 {20, 0x05}, 163 {25, 0x06}, 164 {30, 0x07} }; 165 166 enum bmc150_magn_presets { 167 LOW_POWER_PRESET, 168 REGULAR_PRESET, 169 ENHANCED_REGULAR_PRESET, 170 HIGH_ACCURACY_PRESET 171 }; 172 173 static const struct bmc150_magn_preset { 174 u8 rep_xy; 175 u8 rep_z; 176 u8 odr; 177 } bmc150_magn_presets_table[] = { 178 [LOW_POWER_PRESET] = {3, 3, 10}, 179 [REGULAR_PRESET] = {9, 15, 10}, 180 [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, 181 [HIGH_ACCURACY_PRESET] = {47, 83, 20}, 182 }; 183 184 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET 185 186 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg) 187 { 188 switch (reg) { 189 case BMC150_MAGN_REG_POWER: 190 case BMC150_MAGN_REG_OPMODE_ODR: 191 case BMC150_MAGN_REG_INT: 192 case BMC150_MAGN_REG_INT_DRDY: 193 case BMC150_MAGN_REG_LOW_THRESH: 194 case BMC150_MAGN_REG_HIGH_THRESH: 195 case BMC150_MAGN_REG_REP_XY: 196 case BMC150_MAGN_REG_REP_Z: 197 return true; 198 default: 199 return false; 200 }; 201 } 202 203 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg) 204 { 205 switch (reg) { 206 case BMC150_MAGN_REG_X_L: 207 case BMC150_MAGN_REG_X_M: 208 case BMC150_MAGN_REG_Y_L: 209 case BMC150_MAGN_REG_Y_M: 210 case BMC150_MAGN_REG_Z_L: 211 case BMC150_MAGN_REG_Z_M: 212 case BMC150_MAGN_REG_RHALL_L: 213 case BMC150_MAGN_REG_RHALL_M: 214 case BMC150_MAGN_REG_INT_STATUS: 215 return true; 216 default: 217 return false; 218 } 219 } 220 221 const struct regmap_config bmc150_magn_regmap_config = { 222 .reg_bits = 8, 223 .val_bits = 8, 224 225 .max_register = BMC150_MAGN_REG_TRIM_END, 226 .cache_type = REGCACHE_RBTREE, 227 228 .writeable_reg = bmc150_magn_is_writeable_reg, 229 .volatile_reg = bmc150_magn_is_volatile_reg, 230 }; 231 EXPORT_SYMBOL(bmc150_magn_regmap_config); 232 233 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data, 234 enum bmc150_magn_power_modes mode, 235 bool state) 236 { 237 int ret; 238 239 switch (mode) { 240 case BMC150_MAGN_POWER_MODE_SUSPEND: 241 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER, 242 BMC150_MAGN_MASK_POWER_CTL, !state); 243 if (ret < 0) 244 return ret; 245 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000); 246 return 0; 247 case BMC150_MAGN_POWER_MODE_SLEEP: 248 return regmap_update_bits(data->regmap, 249 BMC150_MAGN_REG_OPMODE_ODR, 250 BMC150_MAGN_MASK_OPMODE, 251 BMC150_MAGN_MODE_SLEEP << 252 BMC150_MAGN_SHIFT_OPMODE); 253 case BMC150_MAGN_POWER_MODE_NORMAL: 254 return regmap_update_bits(data->regmap, 255 BMC150_MAGN_REG_OPMODE_ODR, 256 BMC150_MAGN_MASK_OPMODE, 257 BMC150_MAGN_MODE_NORMAL << 258 BMC150_MAGN_SHIFT_OPMODE); 259 } 260 261 return -EINVAL; 262 } 263 264 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on) 265 { 266 #ifdef CONFIG_PM 267 int ret; 268 269 if (on) { 270 ret = pm_runtime_get_sync(data->dev); 271 } else { 272 pm_runtime_mark_last_busy(data->dev); 273 ret = pm_runtime_put_autosuspend(data->dev); 274 } 275 276 if (ret < 0) { 277 dev_err(data->dev, 278 "failed to change power state to %d\n", on); 279 if (on) 280 pm_runtime_put_noidle(data->dev); 281 282 return ret; 283 } 284 #endif 285 286 return 0; 287 } 288 289 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val) 290 { 291 int ret, reg_val; 292 u8 i, odr_val; 293 294 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val); 295 if (ret < 0) 296 return ret; 297 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; 298 299 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) 300 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { 301 *val = bmc150_magn_samp_freq_table[i].freq; 302 return 0; 303 } 304 305 return -EINVAL; 306 } 307 308 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val) 309 { 310 int ret; 311 u8 i; 312 313 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 314 if (bmc150_magn_samp_freq_table[i].freq == val) { 315 ret = regmap_update_bits(data->regmap, 316 BMC150_MAGN_REG_OPMODE_ODR, 317 BMC150_MAGN_MASK_ODR, 318 bmc150_magn_samp_freq_table[i]. 319 reg_val << 320 BMC150_MAGN_SHIFT_ODR); 321 if (ret < 0) 322 return ret; 323 return 0; 324 } 325 } 326 327 return -EINVAL; 328 } 329 330 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy, 331 int rep_z, int odr) 332 { 333 int ret, reg_val, max_odr; 334 335 if (rep_xy <= 0) { 336 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 337 ®_val); 338 if (ret < 0) 339 return ret; 340 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val); 341 } 342 if (rep_z <= 0) { 343 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 344 ®_val); 345 if (ret < 0) 346 return ret; 347 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val); 348 } 349 if (odr <= 0) { 350 ret = bmc150_magn_get_odr(data, &odr); 351 if (ret < 0) 352 return ret; 353 } 354 /* the maximum selectable read-out frequency from datasheet */ 355 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); 356 if (odr > max_odr) { 357 dev_err(data->dev, 358 "Can't set oversampling with sampling freq %d\n", 359 odr); 360 return -EINVAL; 361 } 362 data->max_odr = max_odr; 363 364 return 0; 365 } 366 367 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x, 368 u16 rhall) 369 { 370 s16 val; 371 u16 xyz1 = le16_to_cpu(tregs->xyz1); 372 373 if (x == BMC150_MAGN_XY_OVERFLOW_VAL) 374 return S32_MIN; 375 376 if (!rhall) 377 rhall = xyz1; 378 379 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 380 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) * 381 ((s32)val)) >> 7)) + (((s32)val) * 382 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 383 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) + 384 (((s16)tregs->x1) << 3); 385 386 return (s32)val; 387 } 388 389 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y, 390 u16 rhall) 391 { 392 s16 val; 393 u16 xyz1 = le16_to_cpu(tregs->xyz1); 394 395 if (y == BMC150_MAGN_XY_OVERFLOW_VAL) 396 return S32_MIN; 397 398 if (!rhall) 399 rhall = xyz1; 400 401 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 402 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) * 403 ((s32)val)) >> 7)) + (((s32)val) * 404 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 405 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) + 406 (((s16)tregs->y1) << 3); 407 408 return (s32)val; 409 } 410 411 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z, 412 u16 rhall) 413 { 414 s32 val; 415 u16 xyz1 = le16_to_cpu(tregs->xyz1); 416 u16 z1 = le16_to_cpu(tregs->z1); 417 s16 z2 = le16_to_cpu(tregs->z2); 418 s16 z3 = le16_to_cpu(tregs->z3); 419 s16 z4 = le16_to_cpu(tregs->z4); 420 421 if (z == BMC150_MAGN_Z_OVERFLOW_VAL) 422 return S32_MIN; 423 424 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) - 425 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) * 426 ((((s16)rhall) << 1))) + (1 << 15)) >> 16)))); 427 428 return val; 429 } 430 431 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer) 432 { 433 int ret; 434 __le16 values[AXIS_XYZR_MAX]; 435 s16 raw_x, raw_y, raw_z; 436 u16 rhall; 437 struct bmc150_magn_trim_regs tregs; 438 439 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L, 440 values, sizeof(values)); 441 if (ret < 0) 442 return ret; 443 444 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; 445 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; 446 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; 447 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; 448 449 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START, 450 &tregs, sizeof(tregs)); 451 if (ret < 0) 452 return ret; 453 454 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall); 455 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall); 456 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall); 457 458 return 0; 459 } 460 461 static int bmc150_magn_read_raw(struct iio_dev *indio_dev, 462 struct iio_chan_spec const *chan, 463 int *val, int *val2, long mask) 464 { 465 struct bmc150_magn_data *data = iio_priv(indio_dev); 466 int ret, tmp; 467 s32 values[AXIS_XYZ_MAX]; 468 469 switch (mask) { 470 case IIO_CHAN_INFO_RAW: 471 if (iio_buffer_enabled(indio_dev)) 472 return -EBUSY; 473 mutex_lock(&data->mutex); 474 475 ret = bmc150_magn_set_power_state(data, true); 476 if (ret < 0) { 477 mutex_unlock(&data->mutex); 478 return ret; 479 } 480 481 ret = bmc150_magn_read_xyz(data, values); 482 if (ret < 0) { 483 bmc150_magn_set_power_state(data, false); 484 mutex_unlock(&data->mutex); 485 return ret; 486 } 487 *val = values[chan->scan_index]; 488 489 ret = bmc150_magn_set_power_state(data, false); 490 if (ret < 0) { 491 mutex_unlock(&data->mutex); 492 return ret; 493 } 494 495 mutex_unlock(&data->mutex); 496 return IIO_VAL_INT; 497 case IIO_CHAN_INFO_SCALE: 498 /* 499 * The API/driver performs an off-chip temperature 500 * compensation and outputs x/y/z magnetic field data in 501 * 16 LSB/uT to the upper application layer. 502 */ 503 *val = 0; 504 *val2 = 625; 505 return IIO_VAL_INT_PLUS_MICRO; 506 case IIO_CHAN_INFO_SAMP_FREQ: 507 ret = bmc150_magn_get_odr(data, val); 508 if (ret < 0) 509 return ret; 510 return IIO_VAL_INT; 511 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 512 switch (chan->channel2) { 513 case IIO_MOD_X: 514 case IIO_MOD_Y: 515 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 516 &tmp); 517 if (ret < 0) 518 return ret; 519 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp); 520 return IIO_VAL_INT; 521 case IIO_MOD_Z: 522 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 523 &tmp); 524 if (ret < 0) 525 return ret; 526 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp); 527 return IIO_VAL_INT; 528 default: 529 return -EINVAL; 530 } 531 default: 532 return -EINVAL; 533 } 534 } 535 536 static int bmc150_magn_write_raw(struct iio_dev *indio_dev, 537 struct iio_chan_spec const *chan, 538 int val, int val2, long mask) 539 { 540 struct bmc150_magn_data *data = iio_priv(indio_dev); 541 int ret; 542 543 switch (mask) { 544 case IIO_CHAN_INFO_SAMP_FREQ: 545 if (val > data->max_odr) 546 return -EINVAL; 547 mutex_lock(&data->mutex); 548 ret = bmc150_magn_set_odr(data, val); 549 mutex_unlock(&data->mutex); 550 return ret; 551 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 552 switch (chan->channel2) { 553 case IIO_MOD_X: 554 case IIO_MOD_Y: 555 if (val < 1 || val > 511) 556 return -EINVAL; 557 mutex_lock(&data->mutex); 558 ret = bmc150_magn_set_max_odr(data, val, 0, 0); 559 if (ret < 0) { 560 mutex_unlock(&data->mutex); 561 return ret; 562 } 563 ret = regmap_update_bits(data->regmap, 564 BMC150_MAGN_REG_REP_XY, 565 BMC150_MAGN_REG_REP_DATAMASK, 566 BMC150_MAGN_REPXY_TO_REGVAL 567 (val)); 568 mutex_unlock(&data->mutex); 569 return ret; 570 case IIO_MOD_Z: 571 if (val < 1 || val > 256) 572 return -EINVAL; 573 mutex_lock(&data->mutex); 574 ret = bmc150_magn_set_max_odr(data, 0, val, 0); 575 if (ret < 0) { 576 mutex_unlock(&data->mutex); 577 return ret; 578 } 579 ret = regmap_update_bits(data->regmap, 580 BMC150_MAGN_REG_REP_Z, 581 BMC150_MAGN_REG_REP_DATAMASK, 582 BMC150_MAGN_REPZ_TO_REGVAL 583 (val)); 584 mutex_unlock(&data->mutex); 585 return ret; 586 default: 587 return -EINVAL; 588 } 589 default: 590 return -EINVAL; 591 } 592 } 593 594 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev, 595 struct device_attribute *attr, 596 char *buf) 597 { 598 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 599 struct bmc150_magn_data *data = iio_priv(indio_dev); 600 size_t len = 0; 601 u8 i; 602 603 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 604 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr) 605 break; 606 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", 607 bmc150_magn_samp_freq_table[i].freq); 608 } 609 /* replace last space with a newline */ 610 buf[len - 1] = '\n'; 611 612 return len; 613 } 614 615 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail); 616 617 static struct attribute *bmc150_magn_attributes[] = { 618 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 619 NULL, 620 }; 621 622 static const struct attribute_group bmc150_magn_attrs_group = { 623 .attrs = bmc150_magn_attributes, 624 }; 625 626 #define BMC150_MAGN_CHANNEL(_axis) { \ 627 .type = IIO_MAGN, \ 628 .modified = 1, \ 629 .channel2 = IIO_MOD_##_axis, \ 630 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 631 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 632 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ 633 BIT(IIO_CHAN_INFO_SCALE), \ 634 .scan_index = AXIS_##_axis, \ 635 .scan_type = { \ 636 .sign = 's', \ 637 .realbits = 32, \ 638 .storagebits = 32, \ 639 .endianness = IIO_LE \ 640 }, \ 641 } 642 643 static const struct iio_chan_spec bmc150_magn_channels[] = { 644 BMC150_MAGN_CHANNEL(X), 645 BMC150_MAGN_CHANNEL(Y), 646 BMC150_MAGN_CHANNEL(Z), 647 IIO_CHAN_SOFT_TIMESTAMP(3), 648 }; 649 650 static const struct iio_info bmc150_magn_info = { 651 .attrs = &bmc150_magn_attrs_group, 652 .read_raw = bmc150_magn_read_raw, 653 .write_raw = bmc150_magn_write_raw, 654 .driver_module = THIS_MODULE, 655 }; 656 657 static const unsigned long bmc150_magn_scan_masks[] = { 658 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 659 0}; 660 661 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p) 662 { 663 struct iio_poll_func *pf = p; 664 struct iio_dev *indio_dev = pf->indio_dev; 665 struct bmc150_magn_data *data = iio_priv(indio_dev); 666 int ret; 667 668 mutex_lock(&data->mutex); 669 ret = bmc150_magn_read_xyz(data, data->buffer); 670 if (ret < 0) 671 goto err; 672 673 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 674 pf->timestamp); 675 676 err: 677 mutex_unlock(&data->mutex); 678 iio_trigger_notify_done(indio_dev->trig); 679 680 return IRQ_HANDLED; 681 } 682 683 static int bmc150_magn_init(struct bmc150_magn_data *data) 684 { 685 int ret, chip_id; 686 struct bmc150_magn_preset preset; 687 688 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, 689 false); 690 if (ret < 0) { 691 dev_err(data->dev, 692 "Failed to bring up device from suspend mode\n"); 693 return ret; 694 } 695 696 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id); 697 if (ret < 0) { 698 dev_err(data->dev, "Failed reading chip id\n"); 699 goto err_poweroff; 700 } 701 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) { 702 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id); 703 ret = -ENODEV; 704 goto err_poweroff; 705 } 706 dev_dbg(data->dev, "Chip id %x\n", chip_id); 707 708 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET]; 709 ret = bmc150_magn_set_odr(data, preset.odr); 710 if (ret < 0) { 711 dev_err(data->dev, "Failed to set ODR to %d\n", 712 preset.odr); 713 goto err_poweroff; 714 } 715 716 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY, 717 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy)); 718 if (ret < 0) { 719 dev_err(data->dev, "Failed to set REP XY to %d\n", 720 preset.rep_xy); 721 goto err_poweroff; 722 } 723 724 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z, 725 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)); 726 if (ret < 0) { 727 dev_err(data->dev, "Failed to set REP Z to %d\n", 728 preset.rep_z); 729 goto err_poweroff; 730 } 731 732 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z, 733 preset.odr); 734 if (ret < 0) 735 goto err_poweroff; 736 737 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 738 true); 739 if (ret < 0) { 740 dev_err(data->dev, "Failed to power on device\n"); 741 goto err_poweroff; 742 } 743 744 return 0; 745 746 err_poweroff: 747 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 748 return ret; 749 } 750 751 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data) 752 { 753 int tmp; 754 755 /* 756 * Data Ready (DRDY) is always cleared after 757 * readout of data registers ends. 758 */ 759 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp); 760 } 761 762 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig) 763 { 764 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 765 struct bmc150_magn_data *data = iio_priv(indio_dev); 766 int ret; 767 768 if (!data->dready_trigger_on) 769 return 0; 770 771 mutex_lock(&data->mutex); 772 ret = bmc150_magn_reset_intr(data); 773 mutex_unlock(&data->mutex); 774 775 return ret; 776 } 777 778 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig, 779 bool state) 780 { 781 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 782 struct bmc150_magn_data *data = iio_priv(indio_dev); 783 int ret = 0; 784 785 mutex_lock(&data->mutex); 786 if (state == data->dready_trigger_on) 787 goto err_unlock; 788 789 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY, 790 BMC150_MAGN_MASK_DRDY_EN, 791 state << BMC150_MAGN_SHIFT_DRDY_EN); 792 if (ret < 0) 793 goto err_unlock; 794 795 data->dready_trigger_on = state; 796 797 if (state) { 798 ret = bmc150_magn_reset_intr(data); 799 if (ret < 0) 800 goto err_unlock; 801 } 802 mutex_unlock(&data->mutex); 803 804 return 0; 805 806 err_unlock: 807 mutex_unlock(&data->mutex); 808 return ret; 809 } 810 811 static const struct iio_trigger_ops bmc150_magn_trigger_ops = { 812 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state, 813 .try_reenable = bmc150_magn_trig_try_reen, 814 .owner = THIS_MODULE, 815 }; 816 817 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev) 818 { 819 struct bmc150_magn_data *data = iio_priv(indio_dev); 820 821 return bmc150_magn_set_power_state(data, true); 822 } 823 824 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev) 825 { 826 struct bmc150_magn_data *data = iio_priv(indio_dev); 827 828 return bmc150_magn_set_power_state(data, false); 829 } 830 831 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = { 832 .preenable = bmc150_magn_buffer_preenable, 833 .postenable = iio_triggered_buffer_postenable, 834 .predisable = iio_triggered_buffer_predisable, 835 .postdisable = bmc150_magn_buffer_postdisable, 836 }; 837 838 static const char *bmc150_magn_match_acpi_device(struct device *dev) 839 { 840 const struct acpi_device_id *id; 841 842 id = acpi_match_device(dev->driver->acpi_match_table, dev); 843 if (!id) 844 return NULL; 845 846 return dev_name(dev); 847 } 848 849 int bmc150_magn_probe(struct device *dev, struct regmap *regmap, 850 int irq, const char *name) 851 { 852 struct bmc150_magn_data *data; 853 struct iio_dev *indio_dev; 854 int ret; 855 856 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 857 if (!indio_dev) 858 return -ENOMEM; 859 860 data = iio_priv(indio_dev); 861 dev_set_drvdata(dev, indio_dev); 862 data->regmap = regmap; 863 data->irq = irq; 864 data->dev = dev; 865 866 if (!name && ACPI_HANDLE(dev)) 867 name = bmc150_magn_match_acpi_device(dev); 868 869 mutex_init(&data->mutex); 870 871 ret = bmc150_magn_init(data); 872 if (ret < 0) 873 return ret; 874 875 indio_dev->dev.parent = dev; 876 indio_dev->channels = bmc150_magn_channels; 877 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels); 878 indio_dev->available_scan_masks = bmc150_magn_scan_masks; 879 indio_dev->name = name; 880 indio_dev->modes = INDIO_DIRECT_MODE; 881 indio_dev->info = &bmc150_magn_info; 882 883 if (irq > 0) { 884 data->dready_trig = devm_iio_trigger_alloc(dev, 885 "%s-dev%d", 886 indio_dev->name, 887 indio_dev->id); 888 if (!data->dready_trig) { 889 ret = -ENOMEM; 890 dev_err(dev, "iio trigger alloc failed\n"); 891 goto err_poweroff; 892 } 893 894 data->dready_trig->dev.parent = dev; 895 data->dready_trig->ops = &bmc150_magn_trigger_ops; 896 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 897 ret = iio_trigger_register(data->dready_trig); 898 if (ret) { 899 dev_err(dev, "iio trigger register failed\n"); 900 goto err_poweroff; 901 } 902 903 ret = request_threaded_irq(irq, 904 iio_trigger_generic_data_rdy_poll, 905 NULL, 906 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 907 BMC150_MAGN_IRQ_NAME, 908 data->dready_trig); 909 if (ret < 0) { 910 dev_err(dev, "request irq %d failed\n", irq); 911 goto err_trigger_unregister; 912 } 913 } 914 915 ret = iio_triggered_buffer_setup(indio_dev, 916 iio_pollfunc_store_time, 917 bmc150_magn_trigger_handler, 918 &bmc150_magn_buffer_setup_ops); 919 if (ret < 0) { 920 dev_err(dev, "iio triggered buffer setup failed\n"); 921 goto err_free_irq; 922 } 923 924 ret = pm_runtime_set_active(dev); 925 if (ret) 926 goto err_buffer_cleanup; 927 928 pm_runtime_enable(dev); 929 pm_runtime_set_autosuspend_delay(dev, 930 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS); 931 pm_runtime_use_autosuspend(dev); 932 933 ret = iio_device_register(indio_dev); 934 if (ret < 0) { 935 dev_err(dev, "unable to register iio device\n"); 936 goto err_buffer_cleanup; 937 } 938 939 dev_dbg(dev, "Registered device %s\n", name); 940 return 0; 941 942 err_buffer_cleanup: 943 iio_triggered_buffer_cleanup(indio_dev); 944 err_free_irq: 945 if (irq > 0) 946 free_irq(irq, data->dready_trig); 947 err_trigger_unregister: 948 if (data->dready_trig) 949 iio_trigger_unregister(data->dready_trig); 950 err_poweroff: 951 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 952 return ret; 953 } 954 EXPORT_SYMBOL(bmc150_magn_probe); 955 956 int bmc150_magn_remove(struct device *dev) 957 { 958 struct iio_dev *indio_dev = dev_get_drvdata(dev); 959 struct bmc150_magn_data *data = iio_priv(indio_dev); 960 961 iio_device_unregister(indio_dev); 962 963 pm_runtime_disable(dev); 964 pm_runtime_set_suspended(dev); 965 pm_runtime_put_noidle(dev); 966 967 iio_triggered_buffer_cleanup(indio_dev); 968 969 if (data->irq > 0) 970 free_irq(data->irq, data->dready_trig); 971 972 if (data->dready_trig) 973 iio_trigger_unregister(data->dready_trig); 974 975 mutex_lock(&data->mutex); 976 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 977 mutex_unlock(&data->mutex); 978 979 return 0; 980 } 981 EXPORT_SYMBOL(bmc150_magn_remove); 982 983 #ifdef CONFIG_PM 984 static int bmc150_magn_runtime_suspend(struct device *dev) 985 { 986 struct iio_dev *indio_dev = dev_get_drvdata(dev); 987 struct bmc150_magn_data *data = iio_priv(indio_dev); 988 int ret; 989 990 mutex_lock(&data->mutex); 991 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 992 true); 993 mutex_unlock(&data->mutex); 994 if (ret < 0) { 995 dev_err(dev, "powering off device failed\n"); 996 return ret; 997 } 998 return 0; 999 } 1000 1001 /* 1002 * Should be called with data->mutex held. 1003 */ 1004 static int bmc150_magn_runtime_resume(struct device *dev) 1005 { 1006 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1007 struct bmc150_magn_data *data = iio_priv(indio_dev); 1008 1009 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1010 true); 1011 } 1012 #endif 1013 1014 #ifdef CONFIG_PM_SLEEP 1015 static int bmc150_magn_suspend(struct device *dev) 1016 { 1017 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1018 struct bmc150_magn_data *data = iio_priv(indio_dev); 1019 int ret; 1020 1021 mutex_lock(&data->mutex); 1022 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1023 true); 1024 mutex_unlock(&data->mutex); 1025 1026 return ret; 1027 } 1028 1029 static int bmc150_magn_resume(struct device *dev) 1030 { 1031 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1032 struct bmc150_magn_data *data = iio_priv(indio_dev); 1033 int ret; 1034 1035 mutex_lock(&data->mutex); 1036 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1037 true); 1038 mutex_unlock(&data->mutex); 1039 1040 return ret; 1041 } 1042 #endif 1043 1044 const struct dev_pm_ops bmc150_magn_pm_ops = { 1045 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume) 1046 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend, 1047 bmc150_magn_runtime_resume, NULL) 1048 }; 1049 EXPORT_SYMBOL(bmc150_magn_pm_ops); 1050 1051 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>"); 1052 MODULE_LICENSE("GPL v2"); 1053 MODULE_DESCRIPTION("BMC150 magnetometer core driver"); 1054