1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bosch BMC150 three-axis magnetic field sensor driver 4 * 5 * Copyright (c) 2015, Intel Corporation. 6 * 7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com: 8 * 9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved 10 */ 11 12 #include <linux/module.h> 13 #include <linux/i2c.h> 14 #include <linux/interrupt.h> 15 #include <linux/delay.h> 16 #include <linux/slab.h> 17 #include <linux/acpi.h> 18 #include <linux/pm.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/iio/iio.h> 21 #include <linux/iio/sysfs.h> 22 #include <linux/iio/buffer.h> 23 #include <linux/iio/events.h> 24 #include <linux/iio/trigger.h> 25 #include <linux/iio/trigger_consumer.h> 26 #include <linux/iio/triggered_buffer.h> 27 #include <linux/regmap.h> 28 #include <linux/regulator/consumer.h> 29 30 #include "bmc150_magn.h" 31 32 #define BMC150_MAGN_DRV_NAME "bmc150_magn" 33 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event" 34 35 #define BMC150_MAGN_REG_CHIP_ID 0x40 36 #define BMC150_MAGN_CHIP_ID_VAL 0x32 37 38 #define BMC150_MAGN_REG_X_L 0x42 39 #define BMC150_MAGN_REG_X_M 0x43 40 #define BMC150_MAGN_REG_Y_L 0x44 41 #define BMC150_MAGN_REG_Y_M 0x45 42 #define BMC150_MAGN_SHIFT_XY_L 3 43 #define BMC150_MAGN_REG_Z_L 0x46 44 #define BMC150_MAGN_REG_Z_M 0x47 45 #define BMC150_MAGN_SHIFT_Z_L 1 46 #define BMC150_MAGN_REG_RHALL_L 0x48 47 #define BMC150_MAGN_REG_RHALL_M 0x49 48 #define BMC150_MAGN_SHIFT_RHALL_L 2 49 50 #define BMC150_MAGN_REG_INT_STATUS 0x4A 51 52 #define BMC150_MAGN_REG_POWER 0x4B 53 #define BMC150_MAGN_MASK_POWER_CTL BIT(0) 54 55 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C 56 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1) 57 #define BMC150_MAGN_SHIFT_OPMODE 1 58 #define BMC150_MAGN_MODE_NORMAL 0x00 59 #define BMC150_MAGN_MODE_FORCED 0x01 60 #define BMC150_MAGN_MODE_SLEEP 0x03 61 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3) 62 #define BMC150_MAGN_SHIFT_ODR 3 63 64 #define BMC150_MAGN_REG_INT 0x4D 65 66 #define BMC150_MAGN_REG_INT_DRDY 0x4E 67 #define BMC150_MAGN_MASK_DRDY_EN BIT(7) 68 #define BMC150_MAGN_SHIFT_DRDY_EN 7 69 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6) 70 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5) 71 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4) 72 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3) 73 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2) 74 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1) 75 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0) 76 77 #define BMC150_MAGN_REG_LOW_THRESH 0x4F 78 #define BMC150_MAGN_REG_HIGH_THRESH 0x50 79 #define BMC150_MAGN_REG_REP_XY 0x51 80 #define BMC150_MAGN_REG_REP_Z 0x52 81 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0) 82 83 #define BMC150_MAGN_REG_TRIM_START 0x5D 84 #define BMC150_MAGN_REG_TRIM_END 0x71 85 86 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096 87 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384 88 89 /* Time from SUSPEND to SLEEP */ 90 #define BMC150_MAGN_START_UP_TIME_MS 3 91 92 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000 93 94 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1) 95 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1) 96 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2) 97 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1) 98 99 enum bmc150_magn_axis { 100 AXIS_X, 101 AXIS_Y, 102 AXIS_Z, 103 RHALL, 104 AXIS_XYZ_MAX = RHALL, 105 AXIS_XYZR_MAX, 106 }; 107 108 enum bmc150_magn_power_modes { 109 BMC150_MAGN_POWER_MODE_SUSPEND, 110 BMC150_MAGN_POWER_MODE_SLEEP, 111 BMC150_MAGN_POWER_MODE_NORMAL, 112 }; 113 114 struct bmc150_magn_trim_regs { 115 s8 x1; 116 s8 y1; 117 __le16 reserved1; 118 u8 reserved2; 119 __le16 z4; 120 s8 x2; 121 s8 y2; 122 __le16 reserved3; 123 __le16 z2; 124 __le16 z1; 125 __le16 xyz1; 126 __le16 z3; 127 s8 xy2; 128 u8 xy1; 129 } __packed; 130 131 struct bmc150_magn_data { 132 struct device *dev; 133 /* 134 * 1. Protect this structure. 135 * 2. Serialize sequences that power on/off the device and access HW. 136 */ 137 struct mutex mutex; 138 struct regmap *regmap; 139 struct regulator_bulk_data regulators[2]; 140 struct iio_mount_matrix orientation; 141 /* Ensure timestamp is naturally aligned */ 142 struct { 143 s32 chans[3]; 144 s64 timestamp __aligned(8); 145 } scan; 146 struct iio_trigger *dready_trig; 147 bool dready_trigger_on; 148 int max_odr; 149 int irq; 150 }; 151 152 static const struct { 153 int freq; 154 u8 reg_val; 155 } bmc150_magn_samp_freq_table[] = { {2, 0x01}, 156 {6, 0x02}, 157 {8, 0x03}, 158 {10, 0x00}, 159 {15, 0x04}, 160 {20, 0x05}, 161 {25, 0x06}, 162 {30, 0x07} }; 163 164 enum bmc150_magn_presets { 165 LOW_POWER_PRESET, 166 REGULAR_PRESET, 167 ENHANCED_REGULAR_PRESET, 168 HIGH_ACCURACY_PRESET 169 }; 170 171 static const struct bmc150_magn_preset { 172 u8 rep_xy; 173 u8 rep_z; 174 u8 odr; 175 } bmc150_magn_presets_table[] = { 176 [LOW_POWER_PRESET] = {3, 3, 10}, 177 [REGULAR_PRESET] = {9, 15, 10}, 178 [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, 179 [HIGH_ACCURACY_PRESET] = {47, 83, 20}, 180 }; 181 182 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET 183 184 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg) 185 { 186 switch (reg) { 187 case BMC150_MAGN_REG_POWER: 188 case BMC150_MAGN_REG_OPMODE_ODR: 189 case BMC150_MAGN_REG_INT: 190 case BMC150_MAGN_REG_INT_DRDY: 191 case BMC150_MAGN_REG_LOW_THRESH: 192 case BMC150_MAGN_REG_HIGH_THRESH: 193 case BMC150_MAGN_REG_REP_XY: 194 case BMC150_MAGN_REG_REP_Z: 195 return true; 196 default: 197 return false; 198 } 199 } 200 201 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg) 202 { 203 switch (reg) { 204 case BMC150_MAGN_REG_X_L: 205 case BMC150_MAGN_REG_X_M: 206 case BMC150_MAGN_REG_Y_L: 207 case BMC150_MAGN_REG_Y_M: 208 case BMC150_MAGN_REG_Z_L: 209 case BMC150_MAGN_REG_Z_M: 210 case BMC150_MAGN_REG_RHALL_L: 211 case BMC150_MAGN_REG_RHALL_M: 212 case BMC150_MAGN_REG_INT_STATUS: 213 return true; 214 default: 215 return false; 216 } 217 } 218 219 const struct regmap_config bmc150_magn_regmap_config = { 220 .reg_bits = 8, 221 .val_bits = 8, 222 223 .max_register = BMC150_MAGN_REG_TRIM_END, 224 .cache_type = REGCACHE_RBTREE, 225 226 .writeable_reg = bmc150_magn_is_writeable_reg, 227 .volatile_reg = bmc150_magn_is_volatile_reg, 228 }; 229 EXPORT_SYMBOL(bmc150_magn_regmap_config); 230 231 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data, 232 enum bmc150_magn_power_modes mode, 233 bool state) 234 { 235 int ret; 236 237 switch (mode) { 238 case BMC150_MAGN_POWER_MODE_SUSPEND: 239 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER, 240 BMC150_MAGN_MASK_POWER_CTL, !state); 241 if (ret < 0) 242 return ret; 243 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000); 244 return 0; 245 case BMC150_MAGN_POWER_MODE_SLEEP: 246 return regmap_update_bits(data->regmap, 247 BMC150_MAGN_REG_OPMODE_ODR, 248 BMC150_MAGN_MASK_OPMODE, 249 BMC150_MAGN_MODE_SLEEP << 250 BMC150_MAGN_SHIFT_OPMODE); 251 case BMC150_MAGN_POWER_MODE_NORMAL: 252 return regmap_update_bits(data->regmap, 253 BMC150_MAGN_REG_OPMODE_ODR, 254 BMC150_MAGN_MASK_OPMODE, 255 BMC150_MAGN_MODE_NORMAL << 256 BMC150_MAGN_SHIFT_OPMODE); 257 } 258 259 return -EINVAL; 260 } 261 262 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on) 263 { 264 #ifdef CONFIG_PM 265 int ret; 266 267 if (on) { 268 ret = pm_runtime_resume_and_get(data->dev); 269 } else { 270 pm_runtime_mark_last_busy(data->dev); 271 ret = pm_runtime_put_autosuspend(data->dev); 272 } 273 274 if (ret < 0) { 275 dev_err(data->dev, 276 "failed to change power state to %d\n", on); 277 return ret; 278 } 279 #endif 280 281 return 0; 282 } 283 284 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val) 285 { 286 int ret, reg_val; 287 u8 i, odr_val; 288 289 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val); 290 if (ret < 0) 291 return ret; 292 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; 293 294 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) 295 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { 296 *val = bmc150_magn_samp_freq_table[i].freq; 297 return 0; 298 } 299 300 return -EINVAL; 301 } 302 303 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val) 304 { 305 int ret; 306 u8 i; 307 308 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 309 if (bmc150_magn_samp_freq_table[i].freq == val) { 310 ret = regmap_update_bits(data->regmap, 311 BMC150_MAGN_REG_OPMODE_ODR, 312 BMC150_MAGN_MASK_ODR, 313 bmc150_magn_samp_freq_table[i]. 314 reg_val << 315 BMC150_MAGN_SHIFT_ODR); 316 if (ret < 0) 317 return ret; 318 return 0; 319 } 320 } 321 322 return -EINVAL; 323 } 324 325 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy, 326 int rep_z, int odr) 327 { 328 int ret, reg_val, max_odr; 329 330 if (rep_xy <= 0) { 331 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 332 ®_val); 333 if (ret < 0) 334 return ret; 335 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val); 336 } 337 if (rep_z <= 0) { 338 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 339 ®_val); 340 if (ret < 0) 341 return ret; 342 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val); 343 } 344 if (odr <= 0) { 345 ret = bmc150_magn_get_odr(data, &odr); 346 if (ret < 0) 347 return ret; 348 } 349 /* the maximum selectable read-out frequency from datasheet */ 350 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); 351 if (odr > max_odr) { 352 dev_err(data->dev, 353 "Can't set oversampling with sampling freq %d\n", 354 odr); 355 return -EINVAL; 356 } 357 data->max_odr = max_odr; 358 359 return 0; 360 } 361 362 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x, 363 u16 rhall) 364 { 365 s16 val; 366 u16 xyz1 = le16_to_cpu(tregs->xyz1); 367 368 if (x == BMC150_MAGN_XY_OVERFLOW_VAL) 369 return S32_MIN; 370 371 if (!rhall) 372 rhall = xyz1; 373 374 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 375 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) * 376 ((s32)val)) >> 7)) + (((s32)val) * 377 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 378 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) + 379 (((s16)tregs->x1) << 3); 380 381 return (s32)val; 382 } 383 384 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y, 385 u16 rhall) 386 { 387 s16 val; 388 u16 xyz1 = le16_to_cpu(tregs->xyz1); 389 390 if (y == BMC150_MAGN_XY_OVERFLOW_VAL) 391 return S32_MIN; 392 393 if (!rhall) 394 rhall = xyz1; 395 396 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 397 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) * 398 ((s32)val)) >> 7)) + (((s32)val) * 399 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 400 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) + 401 (((s16)tregs->y1) << 3); 402 403 return (s32)val; 404 } 405 406 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z, 407 u16 rhall) 408 { 409 s32 val; 410 u16 xyz1 = le16_to_cpu(tregs->xyz1); 411 u16 z1 = le16_to_cpu(tregs->z1); 412 s16 z2 = le16_to_cpu(tregs->z2); 413 s16 z3 = le16_to_cpu(tregs->z3); 414 s16 z4 = le16_to_cpu(tregs->z4); 415 416 if (z == BMC150_MAGN_Z_OVERFLOW_VAL) 417 return S32_MIN; 418 419 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) - 420 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) * 421 ((((s16)rhall) << 1))) + (1 << 15)) >> 16)))); 422 423 return val; 424 } 425 426 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer) 427 { 428 int ret; 429 __le16 values[AXIS_XYZR_MAX]; 430 s16 raw_x, raw_y, raw_z; 431 u16 rhall; 432 struct bmc150_magn_trim_regs tregs; 433 434 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L, 435 values, sizeof(values)); 436 if (ret < 0) 437 return ret; 438 439 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; 440 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; 441 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; 442 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; 443 444 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START, 445 &tregs, sizeof(tregs)); 446 if (ret < 0) 447 return ret; 448 449 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall); 450 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall); 451 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall); 452 453 return 0; 454 } 455 456 static int bmc150_magn_read_raw(struct iio_dev *indio_dev, 457 struct iio_chan_spec const *chan, 458 int *val, int *val2, long mask) 459 { 460 struct bmc150_magn_data *data = iio_priv(indio_dev); 461 int ret, tmp; 462 s32 values[AXIS_XYZ_MAX]; 463 464 switch (mask) { 465 case IIO_CHAN_INFO_RAW: 466 if (iio_buffer_enabled(indio_dev)) 467 return -EBUSY; 468 mutex_lock(&data->mutex); 469 470 ret = bmc150_magn_set_power_state(data, true); 471 if (ret < 0) { 472 mutex_unlock(&data->mutex); 473 return ret; 474 } 475 476 ret = bmc150_magn_read_xyz(data, values); 477 if (ret < 0) { 478 bmc150_magn_set_power_state(data, false); 479 mutex_unlock(&data->mutex); 480 return ret; 481 } 482 *val = values[chan->scan_index]; 483 484 ret = bmc150_magn_set_power_state(data, false); 485 if (ret < 0) { 486 mutex_unlock(&data->mutex); 487 return ret; 488 } 489 490 mutex_unlock(&data->mutex); 491 return IIO_VAL_INT; 492 case IIO_CHAN_INFO_SCALE: 493 /* 494 * The API/driver performs an off-chip temperature 495 * compensation and outputs x/y/z magnetic field data in 496 * 16 LSB/uT to the upper application layer. 497 */ 498 *val = 0; 499 *val2 = 625; 500 return IIO_VAL_INT_PLUS_MICRO; 501 case IIO_CHAN_INFO_SAMP_FREQ: 502 ret = bmc150_magn_get_odr(data, val); 503 if (ret < 0) 504 return ret; 505 return IIO_VAL_INT; 506 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 507 switch (chan->channel2) { 508 case IIO_MOD_X: 509 case IIO_MOD_Y: 510 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 511 &tmp); 512 if (ret < 0) 513 return ret; 514 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp); 515 return IIO_VAL_INT; 516 case IIO_MOD_Z: 517 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 518 &tmp); 519 if (ret < 0) 520 return ret; 521 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp); 522 return IIO_VAL_INT; 523 default: 524 return -EINVAL; 525 } 526 default: 527 return -EINVAL; 528 } 529 } 530 531 static int bmc150_magn_write_raw(struct iio_dev *indio_dev, 532 struct iio_chan_spec const *chan, 533 int val, int val2, long mask) 534 { 535 struct bmc150_magn_data *data = iio_priv(indio_dev); 536 int ret; 537 538 switch (mask) { 539 case IIO_CHAN_INFO_SAMP_FREQ: 540 if (val > data->max_odr) 541 return -EINVAL; 542 mutex_lock(&data->mutex); 543 ret = bmc150_magn_set_odr(data, val); 544 mutex_unlock(&data->mutex); 545 return ret; 546 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 547 switch (chan->channel2) { 548 case IIO_MOD_X: 549 case IIO_MOD_Y: 550 if (val < 1 || val > 511) 551 return -EINVAL; 552 mutex_lock(&data->mutex); 553 ret = bmc150_magn_set_max_odr(data, val, 0, 0); 554 if (ret < 0) { 555 mutex_unlock(&data->mutex); 556 return ret; 557 } 558 ret = regmap_update_bits(data->regmap, 559 BMC150_MAGN_REG_REP_XY, 560 BMC150_MAGN_REG_REP_DATAMASK, 561 BMC150_MAGN_REPXY_TO_REGVAL 562 (val)); 563 mutex_unlock(&data->mutex); 564 return ret; 565 case IIO_MOD_Z: 566 if (val < 1 || val > 256) 567 return -EINVAL; 568 mutex_lock(&data->mutex); 569 ret = bmc150_magn_set_max_odr(data, 0, val, 0); 570 if (ret < 0) { 571 mutex_unlock(&data->mutex); 572 return ret; 573 } 574 ret = regmap_update_bits(data->regmap, 575 BMC150_MAGN_REG_REP_Z, 576 BMC150_MAGN_REG_REP_DATAMASK, 577 BMC150_MAGN_REPZ_TO_REGVAL 578 (val)); 579 mutex_unlock(&data->mutex); 580 return ret; 581 default: 582 return -EINVAL; 583 } 584 default: 585 return -EINVAL; 586 } 587 } 588 589 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev, 590 struct device_attribute *attr, 591 char *buf) 592 { 593 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 594 struct bmc150_magn_data *data = iio_priv(indio_dev); 595 size_t len = 0; 596 u8 i; 597 598 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 599 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr) 600 break; 601 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", 602 bmc150_magn_samp_freq_table[i].freq); 603 } 604 /* replace last space with a newline */ 605 buf[len - 1] = '\n'; 606 607 return len; 608 } 609 610 static const struct iio_mount_matrix * 611 bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev, 612 const struct iio_chan_spec *chan) 613 { 614 struct bmc150_magn_data *data = iio_priv(indio_dev); 615 616 return &data->orientation; 617 } 618 619 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = { 620 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix), 621 { } 622 }; 623 624 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail); 625 626 static struct attribute *bmc150_magn_attributes[] = { 627 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 628 NULL, 629 }; 630 631 static const struct attribute_group bmc150_magn_attrs_group = { 632 .attrs = bmc150_magn_attributes, 633 }; 634 635 #define BMC150_MAGN_CHANNEL(_axis) { \ 636 .type = IIO_MAGN, \ 637 .modified = 1, \ 638 .channel2 = IIO_MOD_##_axis, \ 639 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 640 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 641 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ 642 BIT(IIO_CHAN_INFO_SCALE), \ 643 .scan_index = AXIS_##_axis, \ 644 .scan_type = { \ 645 .sign = 's', \ 646 .realbits = 32, \ 647 .storagebits = 32, \ 648 .endianness = IIO_LE \ 649 }, \ 650 .ext_info = bmc150_magn_ext_info, \ 651 } 652 653 static const struct iio_chan_spec bmc150_magn_channels[] = { 654 BMC150_MAGN_CHANNEL(X), 655 BMC150_MAGN_CHANNEL(Y), 656 BMC150_MAGN_CHANNEL(Z), 657 IIO_CHAN_SOFT_TIMESTAMP(3), 658 }; 659 660 static const struct iio_info bmc150_magn_info = { 661 .attrs = &bmc150_magn_attrs_group, 662 .read_raw = bmc150_magn_read_raw, 663 .write_raw = bmc150_magn_write_raw, 664 }; 665 666 static const unsigned long bmc150_magn_scan_masks[] = { 667 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 668 0}; 669 670 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p) 671 { 672 struct iio_poll_func *pf = p; 673 struct iio_dev *indio_dev = pf->indio_dev; 674 struct bmc150_magn_data *data = iio_priv(indio_dev); 675 int ret; 676 677 mutex_lock(&data->mutex); 678 ret = bmc150_magn_read_xyz(data, data->scan.chans); 679 if (ret < 0) 680 goto err; 681 682 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, 683 pf->timestamp); 684 685 err: 686 mutex_unlock(&data->mutex); 687 iio_trigger_notify_done(indio_dev->trig); 688 689 return IRQ_HANDLED; 690 } 691 692 static int bmc150_magn_init(struct bmc150_magn_data *data) 693 { 694 int ret, chip_id; 695 struct bmc150_magn_preset preset; 696 697 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators), 698 data->regulators); 699 if (ret < 0) { 700 dev_err(data->dev, "Failed to enable regulators: %d\n", ret); 701 return ret; 702 } 703 /* 704 * 3ms power-on time according to datasheet, let's better 705 * be safe than sorry and set this delay to 5ms. 706 */ 707 msleep(5); 708 709 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, 710 false); 711 if (ret < 0) { 712 dev_err(data->dev, 713 "Failed to bring up device from suspend mode\n"); 714 goto err_regulator_disable; 715 } 716 717 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id); 718 if (ret < 0) { 719 dev_err(data->dev, "Failed reading chip id\n"); 720 goto err_poweroff; 721 } 722 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) { 723 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id); 724 ret = -ENODEV; 725 goto err_poweroff; 726 } 727 dev_dbg(data->dev, "Chip id %x\n", chip_id); 728 729 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET]; 730 ret = bmc150_magn_set_odr(data, preset.odr); 731 if (ret < 0) { 732 dev_err(data->dev, "Failed to set ODR to %d\n", 733 preset.odr); 734 goto err_poweroff; 735 } 736 737 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY, 738 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy)); 739 if (ret < 0) { 740 dev_err(data->dev, "Failed to set REP XY to %d\n", 741 preset.rep_xy); 742 goto err_poweroff; 743 } 744 745 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z, 746 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)); 747 if (ret < 0) { 748 dev_err(data->dev, "Failed to set REP Z to %d\n", 749 preset.rep_z); 750 goto err_poweroff; 751 } 752 753 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z, 754 preset.odr); 755 if (ret < 0) 756 goto err_poweroff; 757 758 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 759 true); 760 if (ret < 0) { 761 dev_err(data->dev, "Failed to power on device\n"); 762 goto err_poweroff; 763 } 764 765 return 0; 766 767 err_poweroff: 768 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 769 err_regulator_disable: 770 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); 771 return ret; 772 } 773 774 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data) 775 { 776 int tmp; 777 778 /* 779 * Data Ready (DRDY) is always cleared after 780 * readout of data registers ends. 781 */ 782 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp); 783 } 784 785 static void bmc150_magn_trig_reen(struct iio_trigger *trig) 786 { 787 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 788 struct bmc150_magn_data *data = iio_priv(indio_dev); 789 int ret; 790 791 if (!data->dready_trigger_on) 792 return; 793 794 mutex_lock(&data->mutex); 795 ret = bmc150_magn_reset_intr(data); 796 mutex_unlock(&data->mutex); 797 if (ret) 798 dev_err(data->dev, "Failed to reset interrupt\n"); 799 } 800 801 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig, 802 bool state) 803 { 804 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 805 struct bmc150_magn_data *data = iio_priv(indio_dev); 806 int ret = 0; 807 808 mutex_lock(&data->mutex); 809 if (state == data->dready_trigger_on) 810 goto err_unlock; 811 812 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY, 813 BMC150_MAGN_MASK_DRDY_EN, 814 state << BMC150_MAGN_SHIFT_DRDY_EN); 815 if (ret < 0) 816 goto err_unlock; 817 818 data->dready_trigger_on = state; 819 820 if (state) { 821 ret = bmc150_magn_reset_intr(data); 822 if (ret < 0) 823 goto err_unlock; 824 } 825 mutex_unlock(&data->mutex); 826 827 return 0; 828 829 err_unlock: 830 mutex_unlock(&data->mutex); 831 return ret; 832 } 833 834 static const struct iio_trigger_ops bmc150_magn_trigger_ops = { 835 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state, 836 .reenable = bmc150_magn_trig_reen, 837 }; 838 839 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev) 840 { 841 struct bmc150_magn_data *data = iio_priv(indio_dev); 842 843 return bmc150_magn_set_power_state(data, true); 844 } 845 846 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev) 847 { 848 struct bmc150_magn_data *data = iio_priv(indio_dev); 849 850 return bmc150_magn_set_power_state(data, false); 851 } 852 853 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = { 854 .preenable = bmc150_magn_buffer_preenable, 855 .postdisable = bmc150_magn_buffer_postdisable, 856 }; 857 858 static const char *bmc150_magn_match_acpi_device(struct device *dev) 859 { 860 const struct acpi_device_id *id; 861 862 id = acpi_match_device(dev->driver->acpi_match_table, dev); 863 if (!id) 864 return NULL; 865 866 return dev_name(dev); 867 } 868 869 int bmc150_magn_probe(struct device *dev, struct regmap *regmap, 870 int irq, const char *name) 871 { 872 struct bmc150_magn_data *data; 873 struct iio_dev *indio_dev; 874 int ret; 875 876 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 877 if (!indio_dev) 878 return -ENOMEM; 879 880 data = iio_priv(indio_dev); 881 dev_set_drvdata(dev, indio_dev); 882 data->regmap = regmap; 883 data->irq = irq; 884 data->dev = dev; 885 886 data->regulators[0].supply = "vdd"; 887 data->regulators[1].supply = "vddio"; 888 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators), 889 data->regulators); 890 if (ret) 891 return dev_err_probe(dev, ret, "failed to get regulators\n"); 892 893 ret = iio_read_mount_matrix(dev, &data->orientation); 894 if (ret) 895 return ret; 896 897 if (!name && ACPI_HANDLE(dev)) 898 name = bmc150_magn_match_acpi_device(dev); 899 900 mutex_init(&data->mutex); 901 902 ret = bmc150_magn_init(data); 903 if (ret < 0) 904 return ret; 905 906 indio_dev->channels = bmc150_magn_channels; 907 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels); 908 indio_dev->available_scan_masks = bmc150_magn_scan_masks; 909 indio_dev->name = name; 910 indio_dev->modes = INDIO_DIRECT_MODE; 911 indio_dev->info = &bmc150_magn_info; 912 913 if (irq > 0) { 914 data->dready_trig = devm_iio_trigger_alloc(dev, 915 "%s-dev%d", 916 indio_dev->name, 917 iio_device_id(indio_dev)); 918 if (!data->dready_trig) { 919 ret = -ENOMEM; 920 dev_err(dev, "iio trigger alloc failed\n"); 921 goto err_poweroff; 922 } 923 924 data->dready_trig->ops = &bmc150_magn_trigger_ops; 925 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 926 ret = iio_trigger_register(data->dready_trig); 927 if (ret) { 928 dev_err(dev, "iio trigger register failed\n"); 929 goto err_poweroff; 930 } 931 932 ret = request_threaded_irq(irq, 933 iio_trigger_generic_data_rdy_poll, 934 NULL, 935 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 936 BMC150_MAGN_IRQ_NAME, 937 data->dready_trig); 938 if (ret < 0) { 939 dev_err(dev, "request irq %d failed\n", irq); 940 goto err_trigger_unregister; 941 } 942 } 943 944 ret = iio_triggered_buffer_setup(indio_dev, 945 iio_pollfunc_store_time, 946 bmc150_magn_trigger_handler, 947 &bmc150_magn_buffer_setup_ops); 948 if (ret < 0) { 949 dev_err(dev, "iio triggered buffer setup failed\n"); 950 goto err_free_irq; 951 } 952 953 ret = pm_runtime_set_active(dev); 954 if (ret) 955 goto err_buffer_cleanup; 956 957 pm_runtime_enable(dev); 958 pm_runtime_set_autosuspend_delay(dev, 959 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS); 960 pm_runtime_use_autosuspend(dev); 961 962 ret = iio_device_register(indio_dev); 963 if (ret < 0) { 964 dev_err(dev, "unable to register iio device\n"); 965 goto err_pm_cleanup; 966 } 967 968 dev_dbg(dev, "Registered device %s\n", name); 969 return 0; 970 971 err_pm_cleanup: 972 pm_runtime_dont_use_autosuspend(dev); 973 pm_runtime_disable(dev); 974 err_buffer_cleanup: 975 iio_triggered_buffer_cleanup(indio_dev); 976 err_free_irq: 977 if (irq > 0) 978 free_irq(irq, data->dready_trig); 979 err_trigger_unregister: 980 if (data->dready_trig) 981 iio_trigger_unregister(data->dready_trig); 982 err_poweroff: 983 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 984 return ret; 985 } 986 EXPORT_SYMBOL(bmc150_magn_probe); 987 988 int bmc150_magn_remove(struct device *dev) 989 { 990 struct iio_dev *indio_dev = dev_get_drvdata(dev); 991 struct bmc150_magn_data *data = iio_priv(indio_dev); 992 993 iio_device_unregister(indio_dev); 994 995 pm_runtime_disable(dev); 996 pm_runtime_set_suspended(dev); 997 998 iio_triggered_buffer_cleanup(indio_dev); 999 1000 if (data->irq > 0) 1001 free_irq(data->irq, data->dready_trig); 1002 1003 if (data->dready_trig) 1004 iio_trigger_unregister(data->dready_trig); 1005 1006 mutex_lock(&data->mutex); 1007 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 1008 mutex_unlock(&data->mutex); 1009 1010 regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators); 1011 return 0; 1012 } 1013 EXPORT_SYMBOL(bmc150_magn_remove); 1014 1015 #ifdef CONFIG_PM 1016 static int bmc150_magn_runtime_suspend(struct device *dev) 1017 { 1018 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1019 struct bmc150_magn_data *data = iio_priv(indio_dev); 1020 int ret; 1021 1022 mutex_lock(&data->mutex); 1023 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1024 true); 1025 mutex_unlock(&data->mutex); 1026 if (ret < 0) { 1027 dev_err(dev, "powering off device failed\n"); 1028 return ret; 1029 } 1030 return 0; 1031 } 1032 1033 /* 1034 * Should be called with data->mutex held. 1035 */ 1036 static int bmc150_magn_runtime_resume(struct device *dev) 1037 { 1038 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1039 struct bmc150_magn_data *data = iio_priv(indio_dev); 1040 1041 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1042 true); 1043 } 1044 #endif 1045 1046 #ifdef CONFIG_PM_SLEEP 1047 static int bmc150_magn_suspend(struct device *dev) 1048 { 1049 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1050 struct bmc150_magn_data *data = iio_priv(indio_dev); 1051 int ret; 1052 1053 mutex_lock(&data->mutex); 1054 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1055 true); 1056 mutex_unlock(&data->mutex); 1057 1058 return ret; 1059 } 1060 1061 static int bmc150_magn_resume(struct device *dev) 1062 { 1063 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1064 struct bmc150_magn_data *data = iio_priv(indio_dev); 1065 int ret; 1066 1067 mutex_lock(&data->mutex); 1068 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1069 true); 1070 mutex_unlock(&data->mutex); 1071 1072 return ret; 1073 } 1074 #endif 1075 1076 const struct dev_pm_ops bmc150_magn_pm_ops = { 1077 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume) 1078 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend, 1079 bmc150_magn_runtime_resume, NULL) 1080 }; 1081 EXPORT_SYMBOL(bmc150_magn_pm_ops); 1082 1083 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>"); 1084 MODULE_LICENSE("GPL v2"); 1085 MODULE_DESCRIPTION("BMC150 magnetometer core driver"); 1086