1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Bosch BMC150 three-axis magnetic field sensor driver 4 * 5 * Copyright (c) 2015, Intel Corporation. 6 * 7 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com: 8 * 9 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved 10 */ 11 12 #include <linux/module.h> 13 #include <linux/i2c.h> 14 #include <linux/interrupt.h> 15 #include <linux/delay.h> 16 #include <linux/slab.h> 17 #include <linux/acpi.h> 18 #include <linux/pm.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/iio/iio.h> 21 #include <linux/iio/sysfs.h> 22 #include <linux/iio/buffer.h> 23 #include <linux/iio/events.h> 24 #include <linux/iio/trigger.h> 25 #include <linux/iio/trigger_consumer.h> 26 #include <linux/iio/triggered_buffer.h> 27 #include <linux/regmap.h> 28 29 #include "bmc150_magn.h" 30 31 #define BMC150_MAGN_DRV_NAME "bmc150_magn" 32 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event" 33 34 #define BMC150_MAGN_REG_CHIP_ID 0x40 35 #define BMC150_MAGN_CHIP_ID_VAL 0x32 36 37 #define BMC150_MAGN_REG_X_L 0x42 38 #define BMC150_MAGN_REG_X_M 0x43 39 #define BMC150_MAGN_REG_Y_L 0x44 40 #define BMC150_MAGN_REG_Y_M 0x45 41 #define BMC150_MAGN_SHIFT_XY_L 3 42 #define BMC150_MAGN_REG_Z_L 0x46 43 #define BMC150_MAGN_REG_Z_M 0x47 44 #define BMC150_MAGN_SHIFT_Z_L 1 45 #define BMC150_MAGN_REG_RHALL_L 0x48 46 #define BMC150_MAGN_REG_RHALL_M 0x49 47 #define BMC150_MAGN_SHIFT_RHALL_L 2 48 49 #define BMC150_MAGN_REG_INT_STATUS 0x4A 50 51 #define BMC150_MAGN_REG_POWER 0x4B 52 #define BMC150_MAGN_MASK_POWER_CTL BIT(0) 53 54 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C 55 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1) 56 #define BMC150_MAGN_SHIFT_OPMODE 1 57 #define BMC150_MAGN_MODE_NORMAL 0x00 58 #define BMC150_MAGN_MODE_FORCED 0x01 59 #define BMC150_MAGN_MODE_SLEEP 0x03 60 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3) 61 #define BMC150_MAGN_SHIFT_ODR 3 62 63 #define BMC150_MAGN_REG_INT 0x4D 64 65 #define BMC150_MAGN_REG_INT_DRDY 0x4E 66 #define BMC150_MAGN_MASK_DRDY_EN BIT(7) 67 #define BMC150_MAGN_SHIFT_DRDY_EN 7 68 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6) 69 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5) 70 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4) 71 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3) 72 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2) 73 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1) 74 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0) 75 76 #define BMC150_MAGN_REG_LOW_THRESH 0x4F 77 #define BMC150_MAGN_REG_HIGH_THRESH 0x50 78 #define BMC150_MAGN_REG_REP_XY 0x51 79 #define BMC150_MAGN_REG_REP_Z 0x52 80 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0) 81 82 #define BMC150_MAGN_REG_TRIM_START 0x5D 83 #define BMC150_MAGN_REG_TRIM_END 0x71 84 85 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096 86 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384 87 88 /* Time from SUSPEND to SLEEP */ 89 #define BMC150_MAGN_START_UP_TIME_MS 3 90 91 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000 92 93 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1) 94 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1) 95 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2) 96 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1) 97 98 enum bmc150_magn_axis { 99 AXIS_X, 100 AXIS_Y, 101 AXIS_Z, 102 RHALL, 103 AXIS_XYZ_MAX = RHALL, 104 AXIS_XYZR_MAX, 105 }; 106 107 enum bmc150_magn_power_modes { 108 BMC150_MAGN_POWER_MODE_SUSPEND, 109 BMC150_MAGN_POWER_MODE_SLEEP, 110 BMC150_MAGN_POWER_MODE_NORMAL, 111 }; 112 113 struct bmc150_magn_trim_regs { 114 s8 x1; 115 s8 y1; 116 __le16 reserved1; 117 u8 reserved2; 118 __le16 z4; 119 s8 x2; 120 s8 y2; 121 __le16 reserved3; 122 __le16 z2; 123 __le16 z1; 124 __le16 xyz1; 125 __le16 z3; 126 s8 xy2; 127 u8 xy1; 128 } __packed; 129 130 struct bmc150_magn_data { 131 struct device *dev; 132 /* 133 * 1. Protect this structure. 134 * 2. Serialize sequences that power on/off the device and access HW. 135 */ 136 struct mutex mutex; 137 struct regmap *regmap; 138 struct iio_mount_matrix orientation; 139 /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */ 140 s32 buffer[6]; 141 struct iio_trigger *dready_trig; 142 bool dready_trigger_on; 143 int max_odr; 144 int irq; 145 }; 146 147 static const struct { 148 int freq; 149 u8 reg_val; 150 } bmc150_magn_samp_freq_table[] = { {2, 0x01}, 151 {6, 0x02}, 152 {8, 0x03}, 153 {10, 0x00}, 154 {15, 0x04}, 155 {20, 0x05}, 156 {25, 0x06}, 157 {30, 0x07} }; 158 159 enum bmc150_magn_presets { 160 LOW_POWER_PRESET, 161 REGULAR_PRESET, 162 ENHANCED_REGULAR_PRESET, 163 HIGH_ACCURACY_PRESET 164 }; 165 166 static const struct bmc150_magn_preset { 167 u8 rep_xy; 168 u8 rep_z; 169 u8 odr; 170 } bmc150_magn_presets_table[] = { 171 [LOW_POWER_PRESET] = {3, 3, 10}, 172 [REGULAR_PRESET] = {9, 15, 10}, 173 [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, 174 [HIGH_ACCURACY_PRESET] = {47, 83, 20}, 175 }; 176 177 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET 178 179 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg) 180 { 181 switch (reg) { 182 case BMC150_MAGN_REG_POWER: 183 case BMC150_MAGN_REG_OPMODE_ODR: 184 case BMC150_MAGN_REG_INT: 185 case BMC150_MAGN_REG_INT_DRDY: 186 case BMC150_MAGN_REG_LOW_THRESH: 187 case BMC150_MAGN_REG_HIGH_THRESH: 188 case BMC150_MAGN_REG_REP_XY: 189 case BMC150_MAGN_REG_REP_Z: 190 return true; 191 default: 192 return false; 193 } 194 } 195 196 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg) 197 { 198 switch (reg) { 199 case BMC150_MAGN_REG_X_L: 200 case BMC150_MAGN_REG_X_M: 201 case BMC150_MAGN_REG_Y_L: 202 case BMC150_MAGN_REG_Y_M: 203 case BMC150_MAGN_REG_Z_L: 204 case BMC150_MAGN_REG_Z_M: 205 case BMC150_MAGN_REG_RHALL_L: 206 case BMC150_MAGN_REG_RHALL_M: 207 case BMC150_MAGN_REG_INT_STATUS: 208 return true; 209 default: 210 return false; 211 } 212 } 213 214 const struct regmap_config bmc150_magn_regmap_config = { 215 .reg_bits = 8, 216 .val_bits = 8, 217 218 .max_register = BMC150_MAGN_REG_TRIM_END, 219 .cache_type = REGCACHE_RBTREE, 220 221 .writeable_reg = bmc150_magn_is_writeable_reg, 222 .volatile_reg = bmc150_magn_is_volatile_reg, 223 }; 224 EXPORT_SYMBOL(bmc150_magn_regmap_config); 225 226 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data, 227 enum bmc150_magn_power_modes mode, 228 bool state) 229 { 230 int ret; 231 232 switch (mode) { 233 case BMC150_MAGN_POWER_MODE_SUSPEND: 234 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER, 235 BMC150_MAGN_MASK_POWER_CTL, !state); 236 if (ret < 0) 237 return ret; 238 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000); 239 return 0; 240 case BMC150_MAGN_POWER_MODE_SLEEP: 241 return regmap_update_bits(data->regmap, 242 BMC150_MAGN_REG_OPMODE_ODR, 243 BMC150_MAGN_MASK_OPMODE, 244 BMC150_MAGN_MODE_SLEEP << 245 BMC150_MAGN_SHIFT_OPMODE); 246 case BMC150_MAGN_POWER_MODE_NORMAL: 247 return regmap_update_bits(data->regmap, 248 BMC150_MAGN_REG_OPMODE_ODR, 249 BMC150_MAGN_MASK_OPMODE, 250 BMC150_MAGN_MODE_NORMAL << 251 BMC150_MAGN_SHIFT_OPMODE); 252 } 253 254 return -EINVAL; 255 } 256 257 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on) 258 { 259 #ifdef CONFIG_PM 260 int ret; 261 262 if (on) { 263 ret = pm_runtime_get_sync(data->dev); 264 } else { 265 pm_runtime_mark_last_busy(data->dev); 266 ret = pm_runtime_put_autosuspend(data->dev); 267 } 268 269 if (ret < 0) { 270 dev_err(data->dev, 271 "failed to change power state to %d\n", on); 272 if (on) 273 pm_runtime_put_noidle(data->dev); 274 275 return ret; 276 } 277 #endif 278 279 return 0; 280 } 281 282 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val) 283 { 284 int ret, reg_val; 285 u8 i, odr_val; 286 287 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val); 288 if (ret < 0) 289 return ret; 290 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; 291 292 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) 293 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { 294 *val = bmc150_magn_samp_freq_table[i].freq; 295 return 0; 296 } 297 298 return -EINVAL; 299 } 300 301 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val) 302 { 303 int ret; 304 u8 i; 305 306 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 307 if (bmc150_magn_samp_freq_table[i].freq == val) { 308 ret = regmap_update_bits(data->regmap, 309 BMC150_MAGN_REG_OPMODE_ODR, 310 BMC150_MAGN_MASK_ODR, 311 bmc150_magn_samp_freq_table[i]. 312 reg_val << 313 BMC150_MAGN_SHIFT_ODR); 314 if (ret < 0) 315 return ret; 316 return 0; 317 } 318 } 319 320 return -EINVAL; 321 } 322 323 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy, 324 int rep_z, int odr) 325 { 326 int ret, reg_val, max_odr; 327 328 if (rep_xy <= 0) { 329 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 330 ®_val); 331 if (ret < 0) 332 return ret; 333 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val); 334 } 335 if (rep_z <= 0) { 336 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 337 ®_val); 338 if (ret < 0) 339 return ret; 340 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val); 341 } 342 if (odr <= 0) { 343 ret = bmc150_magn_get_odr(data, &odr); 344 if (ret < 0) 345 return ret; 346 } 347 /* the maximum selectable read-out frequency from datasheet */ 348 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); 349 if (odr > max_odr) { 350 dev_err(data->dev, 351 "Can't set oversampling with sampling freq %d\n", 352 odr); 353 return -EINVAL; 354 } 355 data->max_odr = max_odr; 356 357 return 0; 358 } 359 360 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x, 361 u16 rhall) 362 { 363 s16 val; 364 u16 xyz1 = le16_to_cpu(tregs->xyz1); 365 366 if (x == BMC150_MAGN_XY_OVERFLOW_VAL) 367 return S32_MIN; 368 369 if (!rhall) 370 rhall = xyz1; 371 372 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 373 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) * 374 ((s32)val)) >> 7)) + (((s32)val) * 375 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 376 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) + 377 (((s16)tregs->x1) << 3); 378 379 return (s32)val; 380 } 381 382 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y, 383 u16 rhall) 384 { 385 s16 val; 386 u16 xyz1 = le16_to_cpu(tregs->xyz1); 387 388 if (y == BMC150_MAGN_XY_OVERFLOW_VAL) 389 return S32_MIN; 390 391 if (!rhall) 392 rhall = xyz1; 393 394 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 395 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) * 396 ((s32)val)) >> 7)) + (((s32)val) * 397 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 398 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) + 399 (((s16)tregs->y1) << 3); 400 401 return (s32)val; 402 } 403 404 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z, 405 u16 rhall) 406 { 407 s32 val; 408 u16 xyz1 = le16_to_cpu(tregs->xyz1); 409 u16 z1 = le16_to_cpu(tregs->z1); 410 s16 z2 = le16_to_cpu(tregs->z2); 411 s16 z3 = le16_to_cpu(tregs->z3); 412 s16 z4 = le16_to_cpu(tregs->z4); 413 414 if (z == BMC150_MAGN_Z_OVERFLOW_VAL) 415 return S32_MIN; 416 417 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) - 418 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) * 419 ((((s16)rhall) << 1))) + (1 << 15)) >> 16)))); 420 421 return val; 422 } 423 424 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer) 425 { 426 int ret; 427 __le16 values[AXIS_XYZR_MAX]; 428 s16 raw_x, raw_y, raw_z; 429 u16 rhall; 430 struct bmc150_magn_trim_regs tregs; 431 432 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L, 433 values, sizeof(values)); 434 if (ret < 0) 435 return ret; 436 437 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; 438 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; 439 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; 440 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; 441 442 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START, 443 &tregs, sizeof(tregs)); 444 if (ret < 0) 445 return ret; 446 447 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall); 448 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall); 449 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall); 450 451 return 0; 452 } 453 454 static int bmc150_magn_read_raw(struct iio_dev *indio_dev, 455 struct iio_chan_spec const *chan, 456 int *val, int *val2, long mask) 457 { 458 struct bmc150_magn_data *data = iio_priv(indio_dev); 459 int ret, tmp; 460 s32 values[AXIS_XYZ_MAX]; 461 462 switch (mask) { 463 case IIO_CHAN_INFO_RAW: 464 if (iio_buffer_enabled(indio_dev)) 465 return -EBUSY; 466 mutex_lock(&data->mutex); 467 468 ret = bmc150_magn_set_power_state(data, true); 469 if (ret < 0) { 470 mutex_unlock(&data->mutex); 471 return ret; 472 } 473 474 ret = bmc150_magn_read_xyz(data, values); 475 if (ret < 0) { 476 bmc150_magn_set_power_state(data, false); 477 mutex_unlock(&data->mutex); 478 return ret; 479 } 480 *val = values[chan->scan_index]; 481 482 ret = bmc150_magn_set_power_state(data, false); 483 if (ret < 0) { 484 mutex_unlock(&data->mutex); 485 return ret; 486 } 487 488 mutex_unlock(&data->mutex); 489 return IIO_VAL_INT; 490 case IIO_CHAN_INFO_SCALE: 491 /* 492 * The API/driver performs an off-chip temperature 493 * compensation and outputs x/y/z magnetic field data in 494 * 16 LSB/uT to the upper application layer. 495 */ 496 *val = 0; 497 *val2 = 625; 498 return IIO_VAL_INT_PLUS_MICRO; 499 case IIO_CHAN_INFO_SAMP_FREQ: 500 ret = bmc150_magn_get_odr(data, val); 501 if (ret < 0) 502 return ret; 503 return IIO_VAL_INT; 504 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 505 switch (chan->channel2) { 506 case IIO_MOD_X: 507 case IIO_MOD_Y: 508 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 509 &tmp); 510 if (ret < 0) 511 return ret; 512 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp); 513 return IIO_VAL_INT; 514 case IIO_MOD_Z: 515 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 516 &tmp); 517 if (ret < 0) 518 return ret; 519 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp); 520 return IIO_VAL_INT; 521 default: 522 return -EINVAL; 523 } 524 default: 525 return -EINVAL; 526 } 527 } 528 529 static int bmc150_magn_write_raw(struct iio_dev *indio_dev, 530 struct iio_chan_spec const *chan, 531 int val, int val2, long mask) 532 { 533 struct bmc150_magn_data *data = iio_priv(indio_dev); 534 int ret; 535 536 switch (mask) { 537 case IIO_CHAN_INFO_SAMP_FREQ: 538 if (val > data->max_odr) 539 return -EINVAL; 540 mutex_lock(&data->mutex); 541 ret = bmc150_magn_set_odr(data, val); 542 mutex_unlock(&data->mutex); 543 return ret; 544 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 545 switch (chan->channel2) { 546 case IIO_MOD_X: 547 case IIO_MOD_Y: 548 if (val < 1 || val > 511) 549 return -EINVAL; 550 mutex_lock(&data->mutex); 551 ret = bmc150_magn_set_max_odr(data, val, 0, 0); 552 if (ret < 0) { 553 mutex_unlock(&data->mutex); 554 return ret; 555 } 556 ret = regmap_update_bits(data->regmap, 557 BMC150_MAGN_REG_REP_XY, 558 BMC150_MAGN_REG_REP_DATAMASK, 559 BMC150_MAGN_REPXY_TO_REGVAL 560 (val)); 561 mutex_unlock(&data->mutex); 562 return ret; 563 case IIO_MOD_Z: 564 if (val < 1 || val > 256) 565 return -EINVAL; 566 mutex_lock(&data->mutex); 567 ret = bmc150_magn_set_max_odr(data, 0, val, 0); 568 if (ret < 0) { 569 mutex_unlock(&data->mutex); 570 return ret; 571 } 572 ret = regmap_update_bits(data->regmap, 573 BMC150_MAGN_REG_REP_Z, 574 BMC150_MAGN_REG_REP_DATAMASK, 575 BMC150_MAGN_REPZ_TO_REGVAL 576 (val)); 577 mutex_unlock(&data->mutex); 578 return ret; 579 default: 580 return -EINVAL; 581 } 582 default: 583 return -EINVAL; 584 } 585 } 586 587 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev, 588 struct device_attribute *attr, 589 char *buf) 590 { 591 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 592 struct bmc150_magn_data *data = iio_priv(indio_dev); 593 size_t len = 0; 594 u8 i; 595 596 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 597 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr) 598 break; 599 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", 600 bmc150_magn_samp_freq_table[i].freq); 601 } 602 /* replace last space with a newline */ 603 buf[len - 1] = '\n'; 604 605 return len; 606 } 607 608 static const struct iio_mount_matrix * 609 bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev, 610 const struct iio_chan_spec *chan) 611 { 612 struct bmc150_magn_data *data = iio_priv(indio_dev); 613 614 return &data->orientation; 615 } 616 617 static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = { 618 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix), 619 { } 620 }; 621 622 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail); 623 624 static struct attribute *bmc150_magn_attributes[] = { 625 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 626 NULL, 627 }; 628 629 static const struct attribute_group bmc150_magn_attrs_group = { 630 .attrs = bmc150_magn_attributes, 631 }; 632 633 #define BMC150_MAGN_CHANNEL(_axis) { \ 634 .type = IIO_MAGN, \ 635 .modified = 1, \ 636 .channel2 = IIO_MOD_##_axis, \ 637 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 638 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 639 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ 640 BIT(IIO_CHAN_INFO_SCALE), \ 641 .scan_index = AXIS_##_axis, \ 642 .scan_type = { \ 643 .sign = 's', \ 644 .realbits = 32, \ 645 .storagebits = 32, \ 646 .endianness = IIO_LE \ 647 }, \ 648 .ext_info = bmc150_magn_ext_info, \ 649 } 650 651 static const struct iio_chan_spec bmc150_magn_channels[] = { 652 BMC150_MAGN_CHANNEL(X), 653 BMC150_MAGN_CHANNEL(Y), 654 BMC150_MAGN_CHANNEL(Z), 655 IIO_CHAN_SOFT_TIMESTAMP(3), 656 }; 657 658 static const struct iio_info bmc150_magn_info = { 659 .attrs = &bmc150_magn_attrs_group, 660 .read_raw = bmc150_magn_read_raw, 661 .write_raw = bmc150_magn_write_raw, 662 }; 663 664 static const unsigned long bmc150_magn_scan_masks[] = { 665 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 666 0}; 667 668 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p) 669 { 670 struct iio_poll_func *pf = p; 671 struct iio_dev *indio_dev = pf->indio_dev; 672 struct bmc150_magn_data *data = iio_priv(indio_dev); 673 int ret; 674 675 mutex_lock(&data->mutex); 676 ret = bmc150_magn_read_xyz(data, data->buffer); 677 if (ret < 0) 678 goto err; 679 680 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 681 pf->timestamp); 682 683 err: 684 mutex_unlock(&data->mutex); 685 iio_trigger_notify_done(indio_dev->trig); 686 687 return IRQ_HANDLED; 688 } 689 690 static int bmc150_magn_init(struct bmc150_magn_data *data) 691 { 692 int ret, chip_id; 693 struct bmc150_magn_preset preset; 694 695 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, 696 false); 697 if (ret < 0) { 698 dev_err(data->dev, 699 "Failed to bring up device from suspend mode\n"); 700 return ret; 701 } 702 703 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id); 704 if (ret < 0) { 705 dev_err(data->dev, "Failed reading chip id\n"); 706 goto err_poweroff; 707 } 708 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) { 709 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id); 710 ret = -ENODEV; 711 goto err_poweroff; 712 } 713 dev_dbg(data->dev, "Chip id %x\n", chip_id); 714 715 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET]; 716 ret = bmc150_magn_set_odr(data, preset.odr); 717 if (ret < 0) { 718 dev_err(data->dev, "Failed to set ODR to %d\n", 719 preset.odr); 720 goto err_poweroff; 721 } 722 723 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY, 724 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy)); 725 if (ret < 0) { 726 dev_err(data->dev, "Failed to set REP XY to %d\n", 727 preset.rep_xy); 728 goto err_poweroff; 729 } 730 731 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z, 732 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)); 733 if (ret < 0) { 734 dev_err(data->dev, "Failed to set REP Z to %d\n", 735 preset.rep_z); 736 goto err_poweroff; 737 } 738 739 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z, 740 preset.odr); 741 if (ret < 0) 742 goto err_poweroff; 743 744 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 745 true); 746 if (ret < 0) { 747 dev_err(data->dev, "Failed to power on device\n"); 748 goto err_poweroff; 749 } 750 751 return 0; 752 753 err_poweroff: 754 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 755 return ret; 756 } 757 758 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data) 759 { 760 int tmp; 761 762 /* 763 * Data Ready (DRDY) is always cleared after 764 * readout of data registers ends. 765 */ 766 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp); 767 } 768 769 static void bmc150_magn_trig_reen(struct iio_trigger *trig) 770 { 771 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 772 struct bmc150_magn_data *data = iio_priv(indio_dev); 773 int ret; 774 775 if (!data->dready_trigger_on) 776 return; 777 778 mutex_lock(&data->mutex); 779 ret = bmc150_magn_reset_intr(data); 780 mutex_unlock(&data->mutex); 781 if (ret) 782 dev_err(data->dev, "Failed to reset interrupt\n"); 783 } 784 785 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig, 786 bool state) 787 { 788 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 789 struct bmc150_magn_data *data = iio_priv(indio_dev); 790 int ret = 0; 791 792 mutex_lock(&data->mutex); 793 if (state == data->dready_trigger_on) 794 goto err_unlock; 795 796 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY, 797 BMC150_MAGN_MASK_DRDY_EN, 798 state << BMC150_MAGN_SHIFT_DRDY_EN); 799 if (ret < 0) 800 goto err_unlock; 801 802 data->dready_trigger_on = state; 803 804 if (state) { 805 ret = bmc150_magn_reset_intr(data); 806 if (ret < 0) 807 goto err_unlock; 808 } 809 mutex_unlock(&data->mutex); 810 811 return 0; 812 813 err_unlock: 814 mutex_unlock(&data->mutex); 815 return ret; 816 } 817 818 static const struct iio_trigger_ops bmc150_magn_trigger_ops = { 819 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state, 820 .reenable = bmc150_magn_trig_reen, 821 }; 822 823 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev) 824 { 825 struct bmc150_magn_data *data = iio_priv(indio_dev); 826 827 return bmc150_magn_set_power_state(data, true); 828 } 829 830 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev) 831 { 832 struct bmc150_magn_data *data = iio_priv(indio_dev); 833 834 return bmc150_magn_set_power_state(data, false); 835 } 836 837 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = { 838 .preenable = bmc150_magn_buffer_preenable, 839 .postdisable = bmc150_magn_buffer_postdisable, 840 }; 841 842 static const char *bmc150_magn_match_acpi_device(struct device *dev) 843 { 844 const struct acpi_device_id *id; 845 846 id = acpi_match_device(dev->driver->acpi_match_table, dev); 847 if (!id) 848 return NULL; 849 850 return dev_name(dev); 851 } 852 853 int bmc150_magn_probe(struct device *dev, struct regmap *regmap, 854 int irq, const char *name) 855 { 856 struct bmc150_magn_data *data; 857 struct iio_dev *indio_dev; 858 int ret; 859 860 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 861 if (!indio_dev) 862 return -ENOMEM; 863 864 data = iio_priv(indio_dev); 865 dev_set_drvdata(dev, indio_dev); 866 data->regmap = regmap; 867 data->irq = irq; 868 data->dev = dev; 869 870 ret = iio_read_mount_matrix(dev, "mount-matrix", 871 &data->orientation); 872 if (ret) 873 return ret; 874 875 if (!name && ACPI_HANDLE(dev)) 876 name = bmc150_magn_match_acpi_device(dev); 877 878 mutex_init(&data->mutex); 879 880 ret = bmc150_magn_init(data); 881 if (ret < 0) 882 return ret; 883 884 indio_dev->channels = bmc150_magn_channels; 885 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels); 886 indio_dev->available_scan_masks = bmc150_magn_scan_masks; 887 indio_dev->name = name; 888 indio_dev->modes = INDIO_DIRECT_MODE; 889 indio_dev->info = &bmc150_magn_info; 890 891 if (irq > 0) { 892 data->dready_trig = devm_iio_trigger_alloc(dev, 893 "%s-dev%d", 894 indio_dev->name, 895 indio_dev->id); 896 if (!data->dready_trig) { 897 ret = -ENOMEM; 898 dev_err(dev, "iio trigger alloc failed\n"); 899 goto err_poweroff; 900 } 901 902 data->dready_trig->dev.parent = dev; 903 data->dready_trig->ops = &bmc150_magn_trigger_ops; 904 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 905 ret = iio_trigger_register(data->dready_trig); 906 if (ret) { 907 dev_err(dev, "iio trigger register failed\n"); 908 goto err_poweroff; 909 } 910 911 ret = request_threaded_irq(irq, 912 iio_trigger_generic_data_rdy_poll, 913 NULL, 914 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 915 BMC150_MAGN_IRQ_NAME, 916 data->dready_trig); 917 if (ret < 0) { 918 dev_err(dev, "request irq %d failed\n", irq); 919 goto err_trigger_unregister; 920 } 921 } 922 923 ret = iio_triggered_buffer_setup(indio_dev, 924 iio_pollfunc_store_time, 925 bmc150_magn_trigger_handler, 926 &bmc150_magn_buffer_setup_ops); 927 if (ret < 0) { 928 dev_err(dev, "iio triggered buffer setup failed\n"); 929 goto err_free_irq; 930 } 931 932 ret = pm_runtime_set_active(dev); 933 if (ret) 934 goto err_buffer_cleanup; 935 936 pm_runtime_enable(dev); 937 pm_runtime_set_autosuspend_delay(dev, 938 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS); 939 pm_runtime_use_autosuspend(dev); 940 941 ret = iio_device_register(indio_dev); 942 if (ret < 0) { 943 dev_err(dev, "unable to register iio device\n"); 944 goto err_buffer_cleanup; 945 } 946 947 dev_dbg(dev, "Registered device %s\n", name); 948 return 0; 949 950 err_buffer_cleanup: 951 iio_triggered_buffer_cleanup(indio_dev); 952 err_free_irq: 953 if (irq > 0) 954 free_irq(irq, data->dready_trig); 955 err_trigger_unregister: 956 if (data->dready_trig) 957 iio_trigger_unregister(data->dready_trig); 958 err_poweroff: 959 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 960 return ret; 961 } 962 EXPORT_SYMBOL(bmc150_magn_probe); 963 964 int bmc150_magn_remove(struct device *dev) 965 { 966 struct iio_dev *indio_dev = dev_get_drvdata(dev); 967 struct bmc150_magn_data *data = iio_priv(indio_dev); 968 969 iio_device_unregister(indio_dev); 970 971 pm_runtime_disable(dev); 972 pm_runtime_set_suspended(dev); 973 pm_runtime_put_noidle(dev); 974 975 iio_triggered_buffer_cleanup(indio_dev); 976 977 if (data->irq > 0) 978 free_irq(data->irq, data->dready_trig); 979 980 if (data->dready_trig) 981 iio_trigger_unregister(data->dready_trig); 982 983 mutex_lock(&data->mutex); 984 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 985 mutex_unlock(&data->mutex); 986 987 return 0; 988 } 989 EXPORT_SYMBOL(bmc150_magn_remove); 990 991 #ifdef CONFIG_PM 992 static int bmc150_magn_runtime_suspend(struct device *dev) 993 { 994 struct iio_dev *indio_dev = dev_get_drvdata(dev); 995 struct bmc150_magn_data *data = iio_priv(indio_dev); 996 int ret; 997 998 mutex_lock(&data->mutex); 999 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1000 true); 1001 mutex_unlock(&data->mutex); 1002 if (ret < 0) { 1003 dev_err(dev, "powering off device failed\n"); 1004 return ret; 1005 } 1006 return 0; 1007 } 1008 1009 /* 1010 * Should be called with data->mutex held. 1011 */ 1012 static int bmc150_magn_runtime_resume(struct device *dev) 1013 { 1014 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1015 struct bmc150_magn_data *data = iio_priv(indio_dev); 1016 1017 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1018 true); 1019 } 1020 #endif 1021 1022 #ifdef CONFIG_PM_SLEEP 1023 static int bmc150_magn_suspend(struct device *dev) 1024 { 1025 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1026 struct bmc150_magn_data *data = iio_priv(indio_dev); 1027 int ret; 1028 1029 mutex_lock(&data->mutex); 1030 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1031 true); 1032 mutex_unlock(&data->mutex); 1033 1034 return ret; 1035 } 1036 1037 static int bmc150_magn_resume(struct device *dev) 1038 { 1039 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1040 struct bmc150_magn_data *data = iio_priv(indio_dev); 1041 int ret; 1042 1043 mutex_lock(&data->mutex); 1044 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1045 true); 1046 mutex_unlock(&data->mutex); 1047 1048 return ret; 1049 } 1050 #endif 1051 1052 const struct dev_pm_ops bmc150_magn_pm_ops = { 1053 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume) 1054 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend, 1055 bmc150_magn_runtime_resume, NULL) 1056 }; 1057 EXPORT_SYMBOL(bmc150_magn_pm_ops); 1058 1059 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>"); 1060 MODULE_LICENSE("GPL v2"); 1061 MODULE_DESCRIPTION("BMC150 magnetometer core driver"); 1062