1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A sensor driver for the magnetometer AK8975.
4  *
5  * Magnetic compass sensor driver for monitoring magnetic flux information.
6  *
7  * Copyright (c) 2010, NVIDIA Corporation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/err.h>
16 #include <linux/mutex.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/acpi.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <linux/iio/iio.h>
25 #include <linux/iio/sysfs.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/trigger.h>
28 #include <linux/iio/trigger_consumer.h>
29 #include <linux/iio/triggered_buffer.h>
30 
31 /*
32  * Register definitions, as well as various shifts and masks to get at the
33  * individual fields of the registers.
34  */
35 #define AK8975_REG_WIA			0x00
36 #define AK8975_DEVICE_ID		0x48
37 
38 #define AK8975_REG_INFO			0x01
39 
40 #define AK8975_REG_ST1			0x02
41 #define AK8975_REG_ST1_DRDY_SHIFT	0
42 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
43 
44 #define AK8975_REG_HXL			0x03
45 #define AK8975_REG_HXH			0x04
46 #define AK8975_REG_HYL			0x05
47 #define AK8975_REG_HYH			0x06
48 #define AK8975_REG_HZL			0x07
49 #define AK8975_REG_HZH			0x08
50 #define AK8975_REG_ST2			0x09
51 #define AK8975_REG_ST2_DERR_SHIFT	2
52 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
53 
54 #define AK8975_REG_ST2_HOFL_SHIFT	3
55 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
56 
57 #define AK8975_REG_CNTL			0x0A
58 #define AK8975_REG_CNTL_MODE_SHIFT	0
59 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
60 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
61 #define AK8975_REG_CNTL_MODE_ONCE	0x01
62 #define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
63 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
64 
65 #define AK8975_REG_RSVC			0x0B
66 #define AK8975_REG_ASTC			0x0C
67 #define AK8975_REG_TS1			0x0D
68 #define AK8975_REG_TS2			0x0E
69 #define AK8975_REG_I2CDIS		0x0F
70 #define AK8975_REG_ASAX			0x10
71 #define AK8975_REG_ASAY			0x11
72 #define AK8975_REG_ASAZ			0x12
73 
74 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
75 
76 /*
77  * AK09912 Register definitions
78  */
79 #define AK09912_REG_WIA1		0x00
80 #define AK09912_REG_WIA2		0x01
81 #define AK09912_DEVICE_ID		0x04
82 #define AK09911_DEVICE_ID		0x05
83 
84 #define AK09911_REG_INFO1		0x02
85 #define AK09911_REG_INFO2		0x03
86 
87 #define AK09912_REG_ST1			0x10
88 
89 #define AK09912_REG_ST1_DRDY_SHIFT	0
90 #define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
91 
92 #define AK09912_REG_HXL			0x11
93 #define AK09912_REG_HXH			0x12
94 #define AK09912_REG_HYL			0x13
95 #define AK09912_REG_HYH			0x14
96 #define AK09912_REG_HZL			0x15
97 #define AK09912_REG_HZH			0x16
98 #define AK09912_REG_TMPS		0x17
99 
100 #define AK09912_REG_ST2			0x18
101 #define AK09912_REG_ST2_HOFL_SHIFT	3
102 #define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
103 
104 #define AK09912_REG_CNTL1		0x30
105 
106 #define AK09912_REG_CNTL2		0x31
107 #define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
108 #define AK09912_REG_CNTL_MODE_ONCE	0x01
109 #define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
110 #define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
111 #define AK09912_REG_CNTL2_MODE_SHIFT	0
112 #define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
113 
114 #define AK09912_REG_CNTL3		0x32
115 
116 #define AK09912_REG_TS1			0x33
117 #define AK09912_REG_TS2			0x34
118 #define AK09912_REG_TS3			0x35
119 #define AK09912_REG_I2CDIS		0x36
120 #define AK09912_REG_TS4			0x37
121 
122 #define AK09912_REG_ASAX		0x60
123 #define AK09912_REG_ASAY		0x61
124 #define AK09912_REG_ASAZ		0x62
125 
126 #define AK09912_MAX_REGS		AK09912_REG_ASAZ
127 
128 /*
129  * Miscellaneous values.
130  */
131 #define AK8975_MAX_CONVERSION_TIMEOUT	500
132 #define AK8975_CONVERSION_DONE_POLL_TIME 10
133 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
134 
135 /*
136  * Precalculate scale factor (in Gauss units) for each axis and
137  * store in the device data.
138  *
139  * This scale factor is axis-dependent, and is derived from 3 calibration
140  * factors ASA(x), ASA(y), and ASA(z).
141  *
142  * These ASA values are read from the sensor device at start of day, and
143  * cached in the device context struct.
144  *
145  * Adjusting the flux value with the sensitivity adjustment value should be
146  * done via the following formula:
147  *
148  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
149  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
150  * is the resultant adjusted value.
151  *
152  * We reduce the formula to:
153  *
154  * Hadj = H * (ASA + 128) / 256
155  *
156  * H is in the range of -4096 to 4095.  The magnetometer has a range of
157  * +-1229uT.  To go from the raw value to uT is:
158  *
159  * HuT = H * 1229/4096, or roughly, 3/10.
160  *
161  * Since 1uT = 0.01 gauss, our final scale factor becomes:
162  *
163  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
164  * Hadj = H * ((ASA + 128) * 0.003) / 256
165  *
166  * Since ASA doesn't change, we cache the resultant scale factor into the
167  * device context in ak8975_setup().
168  *
169  * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
170  * multiply the stored scale value by 1e6.
171  */
172 static long ak8975_raw_to_gauss(u16 data)
173 {
174 	return (((long)data + 128) * 3000) / 256;
175 }
176 
177 /*
178  * For AK8963 and AK09911, same calculation, but the device is less sensitive:
179  *
180  * H is in the range of +-8190.  The magnetometer has a range of
181  * +-4912uT.  To go from the raw value to uT is:
182  *
183  * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
184  */
185 
186 static long ak8963_09911_raw_to_gauss(u16 data)
187 {
188 	return (((long)data + 128) * 6000) / 256;
189 }
190 
191 /*
192  * For AK09912, same calculation, except the device is more sensitive:
193  *
194  * H is in the range of -32752 to 32752.  The magnetometer has a range of
195  * +-4912uT.  To go from the raw value to uT is:
196  *
197  * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
198  */
199 static long ak09912_raw_to_gauss(u16 data)
200 {
201 	return (((long)data + 128) * 1500) / 256;
202 }
203 
204 /* Compatible Asahi Kasei Compass parts */
205 enum asahi_compass_chipset {
206 	AKXXXX		= 0,
207 	AK8975,
208 	AK8963,
209 	AK09911,
210 	AK09912,
211 };
212 
213 enum ak_ctrl_reg_addr {
214 	ST1,
215 	ST2,
216 	CNTL,
217 	ASA_BASE,
218 	MAX_REGS,
219 	REGS_END,
220 };
221 
222 enum ak_ctrl_reg_mask {
223 	ST1_DRDY,
224 	ST2_HOFL,
225 	ST2_DERR,
226 	CNTL_MODE,
227 	MASK_END,
228 };
229 
230 enum ak_ctrl_mode {
231 	POWER_DOWN,
232 	MODE_ONCE,
233 	SELF_TEST,
234 	FUSE_ROM,
235 	MODE_END,
236 };
237 
238 struct ak_def {
239 	enum asahi_compass_chipset type;
240 	long (*raw_to_gauss)(u16 data);
241 	u16 range;
242 	u8 ctrl_regs[REGS_END];
243 	u8 ctrl_masks[MASK_END];
244 	u8 ctrl_modes[MODE_END];
245 	u8 data_regs[3];
246 };
247 
248 static const struct ak_def ak_def_array[] = {
249 	{
250 		.type = AK8975,
251 		.raw_to_gauss = ak8975_raw_to_gauss,
252 		.range = 4096,
253 		.ctrl_regs = {
254 			AK8975_REG_ST1,
255 			AK8975_REG_ST2,
256 			AK8975_REG_CNTL,
257 			AK8975_REG_ASAX,
258 			AK8975_MAX_REGS},
259 		.ctrl_masks = {
260 			AK8975_REG_ST1_DRDY_MASK,
261 			AK8975_REG_ST2_HOFL_MASK,
262 			AK8975_REG_ST2_DERR_MASK,
263 			AK8975_REG_CNTL_MODE_MASK},
264 		.ctrl_modes = {
265 			AK8975_REG_CNTL_MODE_POWER_DOWN,
266 			AK8975_REG_CNTL_MODE_ONCE,
267 			AK8975_REG_CNTL_MODE_SELF_TEST,
268 			AK8975_REG_CNTL_MODE_FUSE_ROM},
269 		.data_regs = {
270 			AK8975_REG_HXL,
271 			AK8975_REG_HYL,
272 			AK8975_REG_HZL},
273 	},
274 	{
275 		.type = AK8963,
276 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
277 		.range = 8190,
278 		.ctrl_regs = {
279 			AK8975_REG_ST1,
280 			AK8975_REG_ST2,
281 			AK8975_REG_CNTL,
282 			AK8975_REG_ASAX,
283 			AK8975_MAX_REGS},
284 		.ctrl_masks = {
285 			AK8975_REG_ST1_DRDY_MASK,
286 			AK8975_REG_ST2_HOFL_MASK,
287 			0,
288 			AK8975_REG_CNTL_MODE_MASK},
289 		.ctrl_modes = {
290 			AK8975_REG_CNTL_MODE_POWER_DOWN,
291 			AK8975_REG_CNTL_MODE_ONCE,
292 			AK8975_REG_CNTL_MODE_SELF_TEST,
293 			AK8975_REG_CNTL_MODE_FUSE_ROM},
294 		.data_regs = {
295 			AK8975_REG_HXL,
296 			AK8975_REG_HYL,
297 			AK8975_REG_HZL},
298 	},
299 	{
300 		.type = AK09911,
301 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
302 		.range = 8192,
303 		.ctrl_regs = {
304 			AK09912_REG_ST1,
305 			AK09912_REG_ST2,
306 			AK09912_REG_CNTL2,
307 			AK09912_REG_ASAX,
308 			AK09912_MAX_REGS},
309 		.ctrl_masks = {
310 			AK09912_REG_ST1_DRDY_MASK,
311 			AK09912_REG_ST2_HOFL_MASK,
312 			0,
313 			AK09912_REG_CNTL2_MODE_MASK},
314 		.ctrl_modes = {
315 			AK09912_REG_CNTL_MODE_POWER_DOWN,
316 			AK09912_REG_CNTL_MODE_ONCE,
317 			AK09912_REG_CNTL_MODE_SELF_TEST,
318 			AK09912_REG_CNTL_MODE_FUSE_ROM},
319 		.data_regs = {
320 			AK09912_REG_HXL,
321 			AK09912_REG_HYL,
322 			AK09912_REG_HZL},
323 	},
324 	{
325 		.type = AK09912,
326 		.raw_to_gauss = ak09912_raw_to_gauss,
327 		.range = 32752,
328 		.ctrl_regs = {
329 			AK09912_REG_ST1,
330 			AK09912_REG_ST2,
331 			AK09912_REG_CNTL2,
332 			AK09912_REG_ASAX,
333 			AK09912_MAX_REGS},
334 		.ctrl_masks = {
335 			AK09912_REG_ST1_DRDY_MASK,
336 			AK09912_REG_ST2_HOFL_MASK,
337 			0,
338 			AK09912_REG_CNTL2_MODE_MASK},
339 		.ctrl_modes = {
340 			AK09912_REG_CNTL_MODE_POWER_DOWN,
341 			AK09912_REG_CNTL_MODE_ONCE,
342 			AK09912_REG_CNTL_MODE_SELF_TEST,
343 			AK09912_REG_CNTL_MODE_FUSE_ROM},
344 		.data_regs = {
345 			AK09912_REG_HXL,
346 			AK09912_REG_HYL,
347 			AK09912_REG_HZL},
348 	}
349 };
350 
351 /*
352  * Per-instance context data for the device.
353  */
354 struct ak8975_data {
355 	struct i2c_client	*client;
356 	const struct ak_def	*def;
357 	struct mutex		lock;
358 	u8			asa[3];
359 	long			raw_to_gauss[3];
360 	struct gpio_desc	*eoc_gpiod;
361 	struct gpio_desc	*reset_gpiod;
362 	int			eoc_irq;
363 	wait_queue_head_t	data_ready_queue;
364 	unsigned long		flags;
365 	u8			cntl_cache;
366 	struct iio_mount_matrix orientation;
367 	struct regulator	*vdd;
368 	struct regulator	*vid;
369 };
370 
371 /* Enable attached power regulator if any. */
372 static int ak8975_power_on(const struct ak8975_data *data)
373 {
374 	int ret;
375 
376 	ret = regulator_enable(data->vdd);
377 	if (ret) {
378 		dev_warn(&data->client->dev,
379 			 "Failed to enable specified Vdd supply\n");
380 		return ret;
381 	}
382 	ret = regulator_enable(data->vid);
383 	if (ret) {
384 		dev_warn(&data->client->dev,
385 			 "Failed to enable specified Vid supply\n");
386 		return ret;
387 	}
388 
389 	gpiod_set_value_cansleep(data->reset_gpiod, 0);
390 
391 	/*
392 	 * According to the datasheet the power supply rise time is 200us
393 	 * and the minimum wait time before mode setting is 100us, in
394 	 * total 300us. Add some margin and say minimum 500us here.
395 	 */
396 	usleep_range(500, 1000);
397 	return 0;
398 }
399 
400 /* Disable attached power regulator if any. */
401 static void ak8975_power_off(const struct ak8975_data *data)
402 {
403 	gpiod_set_value_cansleep(data->reset_gpiod, 1);
404 
405 	regulator_disable(data->vid);
406 	regulator_disable(data->vdd);
407 }
408 
409 /*
410  * Return 0 if the i2c device is the one we expect.
411  * return a negative error number otherwise
412  */
413 static int ak8975_who_i_am(struct i2c_client *client,
414 			   enum asahi_compass_chipset type)
415 {
416 	u8 wia_val[2];
417 	int ret;
418 
419 	/*
420 	 * Signature for each device:
421 	 * Device   |  WIA1      |  WIA2
422 	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
423 	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
424 	 * AK8975   |  DEVICE_ID |  NA
425 	 * AK8963   |  DEVICE_ID |  NA
426 	 */
427 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
428 			client, AK09912_REG_WIA1, 2, wia_val);
429 	if (ret < 0) {
430 		dev_err(&client->dev, "Error reading WIA\n");
431 		return ret;
432 	}
433 
434 	if (wia_val[0] != AK8975_DEVICE_ID)
435 		return -ENODEV;
436 
437 	switch (type) {
438 	case AK8975:
439 	case AK8963:
440 		return 0;
441 	case AK09911:
442 		if (wia_val[1] == AK09911_DEVICE_ID)
443 			return 0;
444 		break;
445 	case AK09912:
446 		if (wia_val[1] == AK09912_DEVICE_ID)
447 			return 0;
448 		break;
449 	default:
450 		dev_err(&client->dev, "Type %d unknown\n", type);
451 	}
452 	return -ENODEV;
453 }
454 
455 /*
456  * Helper function to write to CNTL register.
457  */
458 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
459 {
460 	u8 regval;
461 	int ret;
462 
463 	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
464 		 data->def->ctrl_modes[mode];
465 	ret = i2c_smbus_write_byte_data(data->client,
466 					data->def->ctrl_regs[CNTL], regval);
467 	if (ret < 0) {
468 		return ret;
469 	}
470 	data->cntl_cache = regval;
471 	/* After mode change wait atleast 100us */
472 	usleep_range(100, 500);
473 
474 	return 0;
475 }
476 
477 /*
478  * Handle data ready irq
479  */
480 static irqreturn_t ak8975_irq_handler(int irq, void *data)
481 {
482 	struct ak8975_data *ak8975 = data;
483 
484 	set_bit(0, &ak8975->flags);
485 	wake_up(&ak8975->data_ready_queue);
486 
487 	return IRQ_HANDLED;
488 }
489 
490 /*
491  * Install data ready interrupt handler
492  */
493 static int ak8975_setup_irq(struct ak8975_data *data)
494 {
495 	struct i2c_client *client = data->client;
496 	int rc;
497 	int irq;
498 
499 	init_waitqueue_head(&data->data_ready_queue);
500 	clear_bit(0, &data->flags);
501 	if (client->irq)
502 		irq = client->irq;
503 	else
504 		irq = gpiod_to_irq(data->eoc_gpiod);
505 
506 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
507 			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
508 			      dev_name(&client->dev), data);
509 	if (rc < 0) {
510 		dev_err(&client->dev, "irq %d request failed: %d\n", irq, rc);
511 		return rc;
512 	}
513 
514 	data->eoc_irq = irq;
515 
516 	return rc;
517 }
518 
519 
520 /*
521  * Perform some start-of-day setup, including reading the asa calibration
522  * values and caching them.
523  */
524 static int ak8975_setup(struct i2c_client *client)
525 {
526 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
527 	struct ak8975_data *data = iio_priv(indio_dev);
528 	int ret;
529 
530 	/* Write the fused rom access mode. */
531 	ret = ak8975_set_mode(data, FUSE_ROM);
532 	if (ret < 0) {
533 		dev_err(&client->dev, "Error in setting fuse access mode\n");
534 		return ret;
535 	}
536 
537 	/* Get asa data and store in the device data. */
538 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
539 			client, data->def->ctrl_regs[ASA_BASE],
540 			3, data->asa);
541 	if (ret < 0) {
542 		dev_err(&client->dev, "Not able to read asa data\n");
543 		return ret;
544 	}
545 
546 	/* After reading fuse ROM data set power-down mode */
547 	ret = ak8975_set_mode(data, POWER_DOWN);
548 	if (ret < 0) {
549 		dev_err(&client->dev, "Error in setting power-down mode\n");
550 		return ret;
551 	}
552 
553 	if (data->eoc_gpiod || client->irq > 0) {
554 		ret = ak8975_setup_irq(data);
555 		if (ret < 0) {
556 			dev_err(&client->dev,
557 				"Error setting data ready interrupt\n");
558 			return ret;
559 		}
560 	}
561 
562 	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
563 	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
564 	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
565 
566 	return 0;
567 }
568 
569 static int wait_conversion_complete_gpio(struct ak8975_data *data)
570 {
571 	struct i2c_client *client = data->client;
572 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
573 	int ret;
574 
575 	/* Wait for the conversion to complete. */
576 	while (timeout_ms) {
577 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
578 		if (gpiod_get_value(data->eoc_gpiod))
579 			break;
580 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
581 	}
582 	if (!timeout_ms) {
583 		dev_err(&client->dev, "Conversion timeout happened\n");
584 		return -EINVAL;
585 	}
586 
587 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
588 	if (ret < 0)
589 		dev_err(&client->dev, "Error in reading ST1\n");
590 
591 	return ret;
592 }
593 
594 static int wait_conversion_complete_polled(struct ak8975_data *data)
595 {
596 	struct i2c_client *client = data->client;
597 	u8 read_status;
598 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
599 	int ret;
600 
601 	/* Wait for the conversion to complete. */
602 	while (timeout_ms) {
603 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
604 		ret = i2c_smbus_read_byte_data(client,
605 					       data->def->ctrl_regs[ST1]);
606 		if (ret < 0) {
607 			dev_err(&client->dev, "Error in reading ST1\n");
608 			return ret;
609 		}
610 		read_status = ret;
611 		if (read_status)
612 			break;
613 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
614 	}
615 	if (!timeout_ms) {
616 		dev_err(&client->dev, "Conversion timeout happened\n");
617 		return -EINVAL;
618 	}
619 
620 	return read_status;
621 }
622 
623 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
624 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
625 {
626 	int ret;
627 
628 	ret = wait_event_timeout(data->data_ready_queue,
629 				 test_bit(0, &data->flags),
630 				 AK8975_DATA_READY_TIMEOUT);
631 	clear_bit(0, &data->flags);
632 
633 	return ret > 0 ? 0 : -ETIME;
634 }
635 
636 static int ak8975_start_read_axis(struct ak8975_data *data,
637 				  const struct i2c_client *client)
638 {
639 	/* Set up the device for taking a sample. */
640 	int ret = ak8975_set_mode(data, MODE_ONCE);
641 
642 	if (ret < 0) {
643 		dev_err(&client->dev, "Error in setting operating mode\n");
644 		return ret;
645 	}
646 
647 	/* Wait for the conversion to complete. */
648 	if (data->eoc_irq)
649 		ret = wait_conversion_complete_interrupt(data);
650 	else if (data->eoc_gpiod)
651 		ret = wait_conversion_complete_gpio(data);
652 	else
653 		ret = wait_conversion_complete_polled(data);
654 	if (ret < 0)
655 		return ret;
656 
657 	/* This will be executed only for non-interrupt based waiting case */
658 	if (ret & data->def->ctrl_masks[ST1_DRDY]) {
659 		ret = i2c_smbus_read_byte_data(client,
660 					       data->def->ctrl_regs[ST2]);
661 		if (ret < 0) {
662 			dev_err(&client->dev, "Error in reading ST2\n");
663 			return ret;
664 		}
665 		if (ret & (data->def->ctrl_masks[ST2_DERR] |
666 			   data->def->ctrl_masks[ST2_HOFL])) {
667 			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
668 			return -EINVAL;
669 		}
670 	}
671 
672 	return 0;
673 }
674 
675 /* Retrieve raw flux value for one of the x, y, or z axis.  */
676 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
677 {
678 	struct ak8975_data *data = iio_priv(indio_dev);
679 	const struct i2c_client *client = data->client;
680 	const struct ak_def *def = data->def;
681 	__le16 rval;
682 	u16 buff;
683 	int ret;
684 
685 	pm_runtime_get_sync(&data->client->dev);
686 
687 	mutex_lock(&data->lock);
688 
689 	ret = ak8975_start_read_axis(data, client);
690 	if (ret)
691 		goto exit;
692 
693 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
694 			client, def->data_regs[index],
695 			sizeof(rval), (u8*)&rval);
696 	if (ret < 0)
697 		goto exit;
698 
699 	mutex_unlock(&data->lock);
700 
701 	pm_runtime_mark_last_busy(&data->client->dev);
702 	pm_runtime_put_autosuspend(&data->client->dev);
703 
704 	/* Swap bytes and convert to valid range. */
705 	buff = le16_to_cpu(rval);
706 	*val = clamp_t(s16, buff, -def->range, def->range);
707 	return IIO_VAL_INT;
708 
709 exit:
710 	mutex_unlock(&data->lock);
711 	dev_err(&client->dev, "Error in reading axis\n");
712 	return ret;
713 }
714 
715 static int ak8975_read_raw(struct iio_dev *indio_dev,
716 			   struct iio_chan_spec const *chan,
717 			   int *val, int *val2,
718 			   long mask)
719 {
720 	struct ak8975_data *data = iio_priv(indio_dev);
721 
722 	switch (mask) {
723 	case IIO_CHAN_INFO_RAW:
724 		return ak8975_read_axis(indio_dev, chan->address, val);
725 	case IIO_CHAN_INFO_SCALE:
726 		*val = 0;
727 		*val2 = data->raw_to_gauss[chan->address];
728 		return IIO_VAL_INT_PLUS_MICRO;
729 	}
730 	return -EINVAL;
731 }
732 
733 static const struct iio_mount_matrix *
734 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
735 			const struct iio_chan_spec *chan)
736 {
737 	struct ak8975_data *data = iio_priv(indio_dev);
738 
739 	return &data->orientation;
740 }
741 
742 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
743 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
744 	{ }
745 };
746 
747 #define AK8975_CHANNEL(axis, index)					\
748 	{								\
749 		.type = IIO_MAGN,					\
750 		.modified = 1,						\
751 		.channel2 = IIO_MOD_##axis,				\
752 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
753 			     BIT(IIO_CHAN_INFO_SCALE),			\
754 		.address = index,					\
755 		.scan_index = index,					\
756 		.scan_type = {						\
757 			.sign = 's',					\
758 			.realbits = 16,					\
759 			.storagebits = 16,				\
760 			.endianness = IIO_CPU				\
761 		},							\
762 		.ext_info = ak8975_ext_info,				\
763 	}
764 
765 static const struct iio_chan_spec ak8975_channels[] = {
766 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
767 	IIO_CHAN_SOFT_TIMESTAMP(3),
768 };
769 
770 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
771 
772 static const struct iio_info ak8975_info = {
773 	.read_raw = &ak8975_read_raw,
774 };
775 
776 #ifdef CONFIG_ACPI
777 static const struct acpi_device_id ak_acpi_match[] = {
778 	{"AK8975", AK8975},
779 	{"AK8963", AK8963},
780 	{"INVN6500", AK8963},
781 	{"AK009911", AK09911},
782 	{"AK09911", AK09911},
783 	{"AKM9911", AK09911},
784 	{"AK09912", AK09912},
785 	{ }
786 };
787 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
788 #endif
789 
790 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
791 {
792 	struct ak8975_data *data = iio_priv(indio_dev);
793 	const struct i2c_client *client = data->client;
794 	const struct ak_def *def = data->def;
795 	int ret;
796 	s16 buff[8]; /* 3 x 16 bits axis values + 1 aligned 64 bits timestamp */
797 	__le16 fval[3];
798 
799 	mutex_lock(&data->lock);
800 
801 	ret = ak8975_start_read_axis(data, client);
802 	if (ret)
803 		goto unlock;
804 
805 	/*
806 	 * For each axis, read the flux value from the appropriate register
807 	 * (the register is specified in the iio device attributes).
808 	 */
809 	ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
810 							def->data_regs[0],
811 							3 * sizeof(fval[0]),
812 							(u8 *)fval);
813 	if (ret < 0)
814 		goto unlock;
815 
816 	mutex_unlock(&data->lock);
817 
818 	/* Clamp to valid range. */
819 	buff[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
820 	buff[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
821 	buff[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
822 
823 	iio_push_to_buffers_with_timestamp(indio_dev, buff,
824 					   iio_get_time_ns(indio_dev));
825 	return;
826 
827 unlock:
828 	mutex_unlock(&data->lock);
829 	dev_err(&client->dev, "Error in reading axes block\n");
830 }
831 
832 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
833 {
834 	const struct iio_poll_func *pf = p;
835 	struct iio_dev *indio_dev = pf->indio_dev;
836 
837 	ak8975_fill_buffer(indio_dev);
838 	iio_trigger_notify_done(indio_dev->trig);
839 	return IRQ_HANDLED;
840 }
841 
842 static int ak8975_probe(struct i2c_client *client,
843 			const struct i2c_device_id *id)
844 {
845 	struct ak8975_data *data;
846 	struct iio_dev *indio_dev;
847 	struct gpio_desc *eoc_gpiod;
848 	struct gpio_desc *reset_gpiod;
849 	const void *match;
850 	unsigned int i;
851 	int err;
852 	enum asahi_compass_chipset chipset;
853 	const char *name = NULL;
854 
855 	/*
856 	 * Grab and set up the supplied GPIO.
857 	 * We may not have a GPIO based IRQ to scan, that is fine, we will
858 	 * poll if so.
859 	 */
860 	eoc_gpiod = devm_gpiod_get_optional(&client->dev, NULL, GPIOD_IN);
861 	if (IS_ERR(eoc_gpiod))
862 		return PTR_ERR(eoc_gpiod);
863 	if (eoc_gpiod)
864 		gpiod_set_consumer_name(eoc_gpiod, "ak_8975");
865 
866 	/*
867 	 * According to AK09911 datasheet, if reset GPIO is provided then
868 	 * deassert reset on ak8975_power_on() and assert reset on
869 	 * ak8975_power_off().
870 	 */
871 	reset_gpiod = devm_gpiod_get_optional(&client->dev,
872 					      "reset", GPIOD_OUT_HIGH);
873 	if (IS_ERR(reset_gpiod))
874 		return PTR_ERR(reset_gpiod);
875 
876 	/* Register with IIO */
877 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
878 	if (indio_dev == NULL)
879 		return -ENOMEM;
880 
881 	data = iio_priv(indio_dev);
882 	i2c_set_clientdata(client, indio_dev);
883 
884 	data->client = client;
885 	data->eoc_gpiod = eoc_gpiod;
886 	data->reset_gpiod = reset_gpiod;
887 	data->eoc_irq = 0;
888 
889 	err = iio_read_mount_matrix(&client->dev, "mount-matrix", &data->orientation);
890 	if (err)
891 		return err;
892 
893 	/* id will be NULL when enumerated via ACPI */
894 	match = device_get_match_data(&client->dev);
895 	if (match) {
896 		chipset = (enum asahi_compass_chipset)(match);
897 		name = dev_name(&client->dev);
898 	} else if (id) {
899 		chipset = (enum asahi_compass_chipset)(id->driver_data);
900 		name = id->name;
901 	} else
902 		return -ENOSYS;
903 
904 	for (i = 0; i < ARRAY_SIZE(ak_def_array); i++)
905 		if (ak_def_array[i].type == chipset)
906 			break;
907 
908 	if (i == ARRAY_SIZE(ak_def_array)) {
909 		dev_err(&client->dev, "AKM device type unsupported: %d\n",
910 			chipset);
911 		return -ENODEV;
912 	}
913 
914 	data->def = &ak_def_array[i];
915 
916 	/* Fetch the regulators */
917 	data->vdd = devm_regulator_get(&client->dev, "vdd");
918 	if (IS_ERR(data->vdd))
919 		return PTR_ERR(data->vdd);
920 	data->vid = devm_regulator_get(&client->dev, "vid");
921 	if (IS_ERR(data->vid))
922 		return PTR_ERR(data->vid);
923 
924 	err = ak8975_power_on(data);
925 	if (err)
926 		return err;
927 
928 	err = ak8975_who_i_am(client, data->def->type);
929 	if (err < 0) {
930 		dev_err(&client->dev, "Unexpected device\n");
931 		goto power_off;
932 	}
933 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
934 
935 	/* Perform some basic start-of-day setup of the device. */
936 	err = ak8975_setup(client);
937 	if (err < 0) {
938 		dev_err(&client->dev, "%s initialization fails\n", name);
939 		goto power_off;
940 	}
941 
942 	mutex_init(&data->lock);
943 	indio_dev->channels = ak8975_channels;
944 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
945 	indio_dev->info = &ak8975_info;
946 	indio_dev->available_scan_masks = ak8975_scan_masks;
947 	indio_dev->modes = INDIO_DIRECT_MODE;
948 	indio_dev->name = name;
949 
950 	err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
951 					 NULL);
952 	if (err) {
953 		dev_err(&client->dev, "triggered buffer setup failed\n");
954 		goto power_off;
955 	}
956 
957 	err = iio_device_register(indio_dev);
958 	if (err) {
959 		dev_err(&client->dev, "device register failed\n");
960 		goto cleanup_buffer;
961 	}
962 
963 	/* Enable runtime PM */
964 	pm_runtime_get_noresume(&client->dev);
965 	pm_runtime_set_active(&client->dev);
966 	pm_runtime_enable(&client->dev);
967 	/*
968 	 * The device comes online in 500us, so add two orders of magnitude
969 	 * of delay before autosuspending: 50 ms.
970 	 */
971 	pm_runtime_set_autosuspend_delay(&client->dev, 50);
972 	pm_runtime_use_autosuspend(&client->dev);
973 	pm_runtime_put(&client->dev);
974 
975 	return 0;
976 
977 cleanup_buffer:
978 	iio_triggered_buffer_cleanup(indio_dev);
979 power_off:
980 	ak8975_power_off(data);
981 	return err;
982 }
983 
984 static int ak8975_remove(struct i2c_client *client)
985 {
986 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
987 	struct ak8975_data *data = iio_priv(indio_dev);
988 
989 	pm_runtime_get_sync(&client->dev);
990 	pm_runtime_put_noidle(&client->dev);
991 	pm_runtime_disable(&client->dev);
992 	iio_device_unregister(indio_dev);
993 	iio_triggered_buffer_cleanup(indio_dev);
994 	ak8975_set_mode(data, POWER_DOWN);
995 	ak8975_power_off(data);
996 
997 	return 0;
998 }
999 
1000 #ifdef CONFIG_PM
1001 static int ak8975_runtime_suspend(struct device *dev)
1002 {
1003 	struct i2c_client *client = to_i2c_client(dev);
1004 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1005 	struct ak8975_data *data = iio_priv(indio_dev);
1006 	int ret;
1007 
1008 	/* Set the device in power down if it wasn't already */
1009 	ret = ak8975_set_mode(data, POWER_DOWN);
1010 	if (ret < 0) {
1011 		dev_err(&client->dev, "Error in setting power-down mode\n");
1012 		return ret;
1013 	}
1014 	/* Next cut the regulators */
1015 	ak8975_power_off(data);
1016 
1017 	return 0;
1018 }
1019 
1020 static int ak8975_runtime_resume(struct device *dev)
1021 {
1022 	struct i2c_client *client = to_i2c_client(dev);
1023 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1024 	struct ak8975_data *data = iio_priv(indio_dev);
1025 	int ret;
1026 
1027 	/* Take up the regulators */
1028 	ak8975_power_on(data);
1029 	/*
1030 	 * We come up in powered down mode, the reading routines will
1031 	 * put us in the mode to read values later.
1032 	 */
1033 	ret = ak8975_set_mode(data, POWER_DOWN);
1034 	if (ret < 0) {
1035 		dev_err(&client->dev, "Error in setting power-down mode\n");
1036 		return ret;
1037 	}
1038 
1039 	return 0;
1040 }
1041 #endif /* CONFIG_PM */
1042 
1043 static const struct dev_pm_ops ak8975_dev_pm_ops = {
1044 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1045 				pm_runtime_force_resume)
1046 	SET_RUNTIME_PM_OPS(ak8975_runtime_suspend,
1047 			   ak8975_runtime_resume, NULL)
1048 };
1049 
1050 static const struct i2c_device_id ak8975_id[] = {
1051 	{"ak8975", AK8975},
1052 	{"ak8963", AK8963},
1053 	{"AK8963", AK8963},
1054 	{"ak09911", AK09911},
1055 	{"ak09912", AK09912},
1056 	{}
1057 };
1058 
1059 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1060 
1061 static const struct of_device_id ak8975_of_match[] = {
1062 	{ .compatible = "asahi-kasei,ak8975", },
1063 	{ .compatible = "ak8975", },
1064 	{ .compatible = "asahi-kasei,ak8963", },
1065 	{ .compatible = "ak8963", },
1066 	{ .compatible = "asahi-kasei,ak09911", },
1067 	{ .compatible = "ak09911", },
1068 	{ .compatible = "asahi-kasei,ak09912", },
1069 	{ .compatible = "ak09912", },
1070 	{}
1071 };
1072 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1073 
1074 static struct i2c_driver ak8975_driver = {
1075 	.driver = {
1076 		.name	= "ak8975",
1077 		.pm = &ak8975_dev_pm_ops,
1078 		.of_match_table = of_match_ptr(ak8975_of_match),
1079 		.acpi_match_table = ACPI_PTR(ak_acpi_match),
1080 	},
1081 	.probe		= ak8975_probe,
1082 	.remove		= ak8975_remove,
1083 	.id_table	= ak8975_id,
1084 };
1085 module_i2c_driver(ak8975_driver);
1086 
1087 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1088 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1089 MODULE_LICENSE("GPL");
1090