1 /*
2  * A sensor driver for the magnetometer AK8975.
3  *
4  * Magnetic compass sensor driver for monitoring magnetic flux information.
5  *
6  * Copyright (c) 2010, NVIDIA Corporation.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin Street, Fifth Floor, Boston, MA	02110-1301, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/err.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/bitops.h>
32 #include <linux/gpio.h>
33 #include <linux/of_gpio.h>
34 #include <linux/acpi.h>
35 
36 #include <linux/iio/iio.h>
37 #include <linux/iio/sysfs.h>
38 /*
39  * Register definitions, as well as various shifts and masks to get at the
40  * individual fields of the registers.
41  */
42 #define AK8975_REG_WIA			0x00
43 #define AK8975_DEVICE_ID		0x48
44 
45 #define AK8975_REG_INFO			0x01
46 
47 #define AK8975_REG_ST1			0x02
48 #define AK8975_REG_ST1_DRDY_SHIFT	0
49 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
50 
51 #define AK8975_REG_HXL			0x03
52 #define AK8975_REG_HXH			0x04
53 #define AK8975_REG_HYL			0x05
54 #define AK8975_REG_HYH			0x06
55 #define AK8975_REG_HZL			0x07
56 #define AK8975_REG_HZH			0x08
57 #define AK8975_REG_ST2			0x09
58 #define AK8975_REG_ST2_DERR_SHIFT	2
59 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
60 
61 #define AK8975_REG_ST2_HOFL_SHIFT	3
62 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
63 
64 #define AK8975_REG_CNTL			0x0A
65 #define AK8975_REG_CNTL_MODE_SHIFT	0
66 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
67 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
68 #define AK8975_REG_CNTL_MODE_ONCE	0x01
69 #define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
70 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
71 
72 #define AK8975_REG_RSVC			0x0B
73 #define AK8975_REG_ASTC			0x0C
74 #define AK8975_REG_TS1			0x0D
75 #define AK8975_REG_TS2			0x0E
76 #define AK8975_REG_I2CDIS		0x0F
77 #define AK8975_REG_ASAX			0x10
78 #define AK8975_REG_ASAY			0x11
79 #define AK8975_REG_ASAZ			0x12
80 
81 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
82 
83 /*
84  * AK09912 Register definitions
85  */
86 #define AK09912_REG_WIA1		0x00
87 #define AK09912_REG_WIA2		0x01
88 #define AK09912_DEVICE_ID		0x04
89 #define AK09911_DEVICE_ID		0x05
90 
91 #define AK09911_REG_INFO1		0x02
92 #define AK09911_REG_INFO2		0x03
93 
94 #define AK09912_REG_ST1			0x10
95 
96 #define AK09912_REG_ST1_DRDY_SHIFT	0
97 #define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
98 
99 #define AK09912_REG_HXL			0x11
100 #define AK09912_REG_HXH			0x12
101 #define AK09912_REG_HYL			0x13
102 #define AK09912_REG_HYH			0x14
103 #define AK09912_REG_HZL			0x15
104 #define AK09912_REG_HZH			0x16
105 #define AK09912_REG_TMPS		0x17
106 
107 #define AK09912_REG_ST2			0x18
108 #define AK09912_REG_ST2_HOFL_SHIFT	3
109 #define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
110 
111 #define AK09912_REG_CNTL1		0x30
112 
113 #define AK09912_REG_CNTL2		0x31
114 #define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
115 #define AK09912_REG_CNTL_MODE_ONCE	0x01
116 #define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
117 #define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
118 #define AK09912_REG_CNTL2_MODE_SHIFT	0
119 #define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
120 
121 #define AK09912_REG_CNTL3		0x32
122 
123 #define AK09912_REG_TS1			0x33
124 #define AK09912_REG_TS2			0x34
125 #define AK09912_REG_TS3			0x35
126 #define AK09912_REG_I2CDIS		0x36
127 #define AK09912_REG_TS4			0x37
128 
129 #define AK09912_REG_ASAX		0x60
130 #define AK09912_REG_ASAY		0x61
131 #define AK09912_REG_ASAZ		0x62
132 
133 #define AK09912_MAX_REGS		AK09912_REG_ASAZ
134 
135 /*
136  * Miscellaneous values.
137  */
138 #define AK8975_MAX_CONVERSION_TIMEOUT	500
139 #define AK8975_CONVERSION_DONE_POLL_TIME 10
140 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
141 
142 /*
143  * Precalculate scale factor (in Gauss units) for each axis and
144  * store in the device data.
145  *
146  * This scale factor is axis-dependent, and is derived from 3 calibration
147  * factors ASA(x), ASA(y), and ASA(z).
148  *
149  * These ASA values are read from the sensor device at start of day, and
150  * cached in the device context struct.
151  *
152  * Adjusting the flux value with the sensitivity adjustment value should be
153  * done via the following formula:
154  *
155  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
156  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
157  * is the resultant adjusted value.
158  *
159  * We reduce the formula to:
160  *
161  * Hadj = H * (ASA + 128) / 256
162  *
163  * H is in the range of -4096 to 4095.  The magnetometer has a range of
164  * +-1229uT.  To go from the raw value to uT is:
165  *
166  * HuT = H * 1229/4096, or roughly, 3/10.
167  *
168  * Since 1uT = 0.01 gauss, our final scale factor becomes:
169  *
170  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
171  * Hadj = H * ((ASA + 128) * 0.003) / 256
172  *
173  * Since ASA doesn't change, we cache the resultant scale factor into the
174  * device context in ak8975_setup().
175  *
176  * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
177  * multiply the stored scale value by 1e6.
178  */
179 static long ak8975_raw_to_gauss(u16 data)
180 {
181 	return (((long)data + 128) * 3000) / 256;
182 }
183 
184 /*
185  * For AK8963 and AK09911, same calculation, but the device is less sensitive:
186  *
187  * H is in the range of +-8190.  The magnetometer has a range of
188  * +-4912uT.  To go from the raw value to uT is:
189  *
190  * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
191  */
192 
193 static long ak8963_09911_raw_to_gauss(u16 data)
194 {
195 	return (((long)data + 128) * 6000) / 256;
196 }
197 
198 /*
199  * For AK09912, same calculation, except the device is more sensitive:
200  *
201  * H is in the range of -32752 to 32752.  The magnetometer has a range of
202  * +-4912uT.  To go from the raw value to uT is:
203  *
204  * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
205  */
206 static long ak09912_raw_to_gauss(u16 data)
207 {
208 	return (((long)data + 128) * 1500) / 256;
209 }
210 
211 /* Compatible Asahi Kasei Compass parts */
212 enum asahi_compass_chipset {
213 	AK8975,
214 	AK8963,
215 	AK09911,
216 	AK09912,
217 	AK_MAX_TYPE
218 };
219 
220 enum ak_ctrl_reg_addr {
221 	ST1,
222 	ST2,
223 	CNTL,
224 	ASA_BASE,
225 	MAX_REGS,
226 	REGS_END,
227 };
228 
229 enum ak_ctrl_reg_mask {
230 	ST1_DRDY,
231 	ST2_HOFL,
232 	ST2_DERR,
233 	CNTL_MODE,
234 	MASK_END,
235 };
236 
237 enum ak_ctrl_mode {
238 	POWER_DOWN,
239 	MODE_ONCE,
240 	SELF_TEST,
241 	FUSE_ROM,
242 	MODE_END,
243 };
244 
245 struct ak_def {
246 	enum asahi_compass_chipset type;
247 	long (*raw_to_gauss)(u16 data);
248 	u16 range;
249 	u8 ctrl_regs[REGS_END];
250 	u8 ctrl_masks[MASK_END];
251 	u8 ctrl_modes[MODE_END];
252 	u8 data_regs[3];
253 };
254 
255 static struct ak_def ak_def_array[AK_MAX_TYPE] = {
256 	{
257 		.type = AK8975,
258 		.raw_to_gauss = ak8975_raw_to_gauss,
259 		.range = 4096,
260 		.ctrl_regs = {
261 			AK8975_REG_ST1,
262 			AK8975_REG_ST2,
263 			AK8975_REG_CNTL,
264 			AK8975_REG_ASAX,
265 			AK8975_MAX_REGS},
266 		.ctrl_masks = {
267 			AK8975_REG_ST1_DRDY_MASK,
268 			AK8975_REG_ST2_HOFL_MASK,
269 			AK8975_REG_ST2_DERR_MASK,
270 			AK8975_REG_CNTL_MODE_MASK},
271 		.ctrl_modes = {
272 			AK8975_REG_CNTL_MODE_POWER_DOWN,
273 			AK8975_REG_CNTL_MODE_ONCE,
274 			AK8975_REG_CNTL_MODE_SELF_TEST,
275 			AK8975_REG_CNTL_MODE_FUSE_ROM},
276 		.data_regs = {
277 			AK8975_REG_HXL,
278 			AK8975_REG_HYL,
279 			AK8975_REG_HZL},
280 	},
281 	{
282 		.type = AK8963,
283 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
284 		.range = 8190,
285 		.ctrl_regs = {
286 			AK8975_REG_ST1,
287 			AK8975_REG_ST2,
288 			AK8975_REG_CNTL,
289 			AK8975_REG_ASAX,
290 			AK8975_MAX_REGS},
291 		.ctrl_masks = {
292 			AK8975_REG_ST1_DRDY_MASK,
293 			AK8975_REG_ST2_HOFL_MASK,
294 			0,
295 			AK8975_REG_CNTL_MODE_MASK},
296 		.ctrl_modes = {
297 			AK8975_REG_CNTL_MODE_POWER_DOWN,
298 			AK8975_REG_CNTL_MODE_ONCE,
299 			AK8975_REG_CNTL_MODE_SELF_TEST,
300 			AK8975_REG_CNTL_MODE_FUSE_ROM},
301 		.data_regs = {
302 			AK8975_REG_HXL,
303 			AK8975_REG_HYL,
304 			AK8975_REG_HZL},
305 	},
306 	{
307 		.type = AK09911,
308 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
309 		.range = 8192,
310 		.ctrl_regs = {
311 			AK09912_REG_ST1,
312 			AK09912_REG_ST2,
313 			AK09912_REG_CNTL2,
314 			AK09912_REG_ASAX,
315 			AK09912_MAX_REGS},
316 		.ctrl_masks = {
317 			AK09912_REG_ST1_DRDY_MASK,
318 			AK09912_REG_ST2_HOFL_MASK,
319 			0,
320 			AK09912_REG_CNTL2_MODE_MASK},
321 		.ctrl_modes = {
322 			AK09912_REG_CNTL_MODE_POWER_DOWN,
323 			AK09912_REG_CNTL_MODE_ONCE,
324 			AK09912_REG_CNTL_MODE_SELF_TEST,
325 			AK09912_REG_CNTL_MODE_FUSE_ROM},
326 		.data_regs = {
327 			AK09912_REG_HXL,
328 			AK09912_REG_HYL,
329 			AK09912_REG_HZL},
330 	},
331 	{
332 		.type = AK09912,
333 		.raw_to_gauss = ak09912_raw_to_gauss,
334 		.range = 32752,
335 		.ctrl_regs = {
336 			AK09912_REG_ST1,
337 			AK09912_REG_ST2,
338 			AK09912_REG_CNTL2,
339 			AK09912_REG_ASAX,
340 			AK09912_MAX_REGS},
341 		.ctrl_masks = {
342 			AK09912_REG_ST1_DRDY_MASK,
343 			AK09912_REG_ST2_HOFL_MASK,
344 			0,
345 			AK09912_REG_CNTL2_MODE_MASK},
346 		.ctrl_modes = {
347 			AK09912_REG_CNTL_MODE_POWER_DOWN,
348 			AK09912_REG_CNTL_MODE_ONCE,
349 			AK09912_REG_CNTL_MODE_SELF_TEST,
350 			AK09912_REG_CNTL_MODE_FUSE_ROM},
351 		.data_regs = {
352 			AK09912_REG_HXL,
353 			AK09912_REG_HYL,
354 			AK09912_REG_HZL},
355 	}
356 };
357 
358 /*
359  * Per-instance context data for the device.
360  */
361 struct ak8975_data {
362 	struct i2c_client	*client;
363 	struct ak_def		*def;
364 	struct attribute_group	attrs;
365 	struct mutex		lock;
366 	u8			asa[3];
367 	long			raw_to_gauss[3];
368 	int			eoc_gpio;
369 	int			eoc_irq;
370 	wait_queue_head_t	data_ready_queue;
371 	unsigned long		flags;
372 	u8			cntl_cache;
373 };
374 
375 /*
376  * Return 0 if the i2c device is the one we expect.
377  * return a negative error number otherwise
378  */
379 static int ak8975_who_i_am(struct i2c_client *client,
380 			   enum asahi_compass_chipset type)
381 {
382 	u8 wia_val[2];
383 	int ret;
384 
385 	/*
386 	 * Signature for each device:
387 	 * Device   |  WIA1      |  WIA2
388 	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
389 	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
390 	 * AK8975   |  DEVICE_ID |  NA
391 	 * AK8963   |  DEVICE_ID |  NA
392 	 */
393 	ret = i2c_smbus_read_i2c_block_data(client, AK09912_REG_WIA1,
394 					    2, wia_val);
395 	if (ret < 0) {
396 		dev_err(&client->dev, "Error reading WIA\n");
397 		return ret;
398 	}
399 
400 	if (wia_val[0] != AK8975_DEVICE_ID)
401 		return -ENODEV;
402 
403 	switch (type) {
404 	case AK8975:
405 	case AK8963:
406 		return 0;
407 	case AK09911:
408 		if (wia_val[1] == AK09911_DEVICE_ID)
409 			return 0;
410 		break;
411 	case AK09912:
412 		if (wia_val[1] == AK09912_DEVICE_ID)
413 			return 0;
414 		break;
415 	default:
416 		dev_err(&client->dev, "Type %d unknown\n", type);
417 	}
418 	return -ENODEV;
419 }
420 
421 /*
422  * Helper function to write to CNTL register.
423  */
424 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
425 {
426 	u8 regval;
427 	int ret;
428 
429 	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
430 		 data->def->ctrl_modes[mode];
431 	ret = i2c_smbus_write_byte_data(data->client,
432 					data->def->ctrl_regs[CNTL], regval);
433 	if (ret < 0) {
434 		return ret;
435 	}
436 	data->cntl_cache = regval;
437 	/* After mode change wait atleast 100us */
438 	usleep_range(100, 500);
439 
440 	return 0;
441 }
442 
443 /*
444  * Handle data ready irq
445  */
446 static irqreturn_t ak8975_irq_handler(int irq, void *data)
447 {
448 	struct ak8975_data *ak8975 = data;
449 
450 	set_bit(0, &ak8975->flags);
451 	wake_up(&ak8975->data_ready_queue);
452 
453 	return IRQ_HANDLED;
454 }
455 
456 /*
457  * Install data ready interrupt handler
458  */
459 static int ak8975_setup_irq(struct ak8975_data *data)
460 {
461 	struct i2c_client *client = data->client;
462 	int rc;
463 	int irq;
464 
465 	if (client->irq)
466 		irq = client->irq;
467 	else
468 		irq = gpio_to_irq(data->eoc_gpio);
469 
470 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
471 			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
472 			      dev_name(&client->dev), data);
473 	if (rc < 0) {
474 		dev_err(&client->dev,
475 			"irq %d request failed, (gpio %d): %d\n",
476 			irq, data->eoc_gpio, rc);
477 		return rc;
478 	}
479 
480 	init_waitqueue_head(&data->data_ready_queue);
481 	clear_bit(0, &data->flags);
482 	data->eoc_irq = irq;
483 
484 	return rc;
485 }
486 
487 
488 /*
489  * Perform some start-of-day setup, including reading the asa calibration
490  * values and caching them.
491  */
492 static int ak8975_setup(struct i2c_client *client)
493 {
494 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
495 	struct ak8975_data *data = iio_priv(indio_dev);
496 	int ret;
497 
498 	/* Write the fused rom access mode. */
499 	ret = ak8975_set_mode(data, FUSE_ROM);
500 	if (ret < 0) {
501 		dev_err(&client->dev, "Error in setting fuse access mode\n");
502 		return ret;
503 	}
504 
505 	/* Get asa data and store in the device data. */
506 	ret = i2c_smbus_read_i2c_block_data(client,
507 					    data->def->ctrl_regs[ASA_BASE],
508 					    3, data->asa);
509 	if (ret < 0) {
510 		dev_err(&client->dev, "Not able to read asa data\n");
511 		return ret;
512 	}
513 
514 	/* After reading fuse ROM data set power-down mode */
515 	ret = ak8975_set_mode(data, POWER_DOWN);
516 	if (ret < 0) {
517 		dev_err(&client->dev, "Error in setting power-down mode\n");
518 		return ret;
519 	}
520 
521 	if (data->eoc_gpio > 0 || client->irq > 0) {
522 		ret = ak8975_setup_irq(data);
523 		if (ret < 0) {
524 			dev_err(&client->dev,
525 				"Error setting data ready interrupt\n");
526 			return ret;
527 		}
528 	}
529 
530 	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
531 	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
532 	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
533 
534 	return 0;
535 }
536 
537 static int wait_conversion_complete_gpio(struct ak8975_data *data)
538 {
539 	struct i2c_client *client = data->client;
540 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
541 	int ret;
542 
543 	/* Wait for the conversion to complete. */
544 	while (timeout_ms) {
545 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
546 		if (gpio_get_value(data->eoc_gpio))
547 			break;
548 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
549 	}
550 	if (!timeout_ms) {
551 		dev_err(&client->dev, "Conversion timeout happened\n");
552 		return -EINVAL;
553 	}
554 
555 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
556 	if (ret < 0)
557 		dev_err(&client->dev, "Error in reading ST1\n");
558 
559 	return ret;
560 }
561 
562 static int wait_conversion_complete_polled(struct ak8975_data *data)
563 {
564 	struct i2c_client *client = data->client;
565 	u8 read_status;
566 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
567 	int ret;
568 
569 	/* Wait for the conversion to complete. */
570 	while (timeout_ms) {
571 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
572 		ret = i2c_smbus_read_byte_data(client,
573 					       data->def->ctrl_regs[ST1]);
574 		if (ret < 0) {
575 			dev_err(&client->dev, "Error in reading ST1\n");
576 			return ret;
577 		}
578 		read_status = ret;
579 		if (read_status)
580 			break;
581 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
582 	}
583 	if (!timeout_ms) {
584 		dev_err(&client->dev, "Conversion timeout happened\n");
585 		return -EINVAL;
586 	}
587 
588 	return read_status;
589 }
590 
591 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
592 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
593 {
594 	int ret;
595 
596 	ret = wait_event_timeout(data->data_ready_queue,
597 				 test_bit(0, &data->flags),
598 				 AK8975_DATA_READY_TIMEOUT);
599 	clear_bit(0, &data->flags);
600 
601 	return ret > 0 ? 0 : -ETIME;
602 }
603 
604 /*
605  * Emits the raw flux value for the x, y, or z axis.
606  */
607 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
608 {
609 	struct ak8975_data *data = iio_priv(indio_dev);
610 	struct i2c_client *client = data->client;
611 	int ret;
612 
613 	mutex_lock(&data->lock);
614 
615 	/* Set up the device for taking a sample. */
616 	ret = ak8975_set_mode(data, MODE_ONCE);
617 	if (ret < 0) {
618 		dev_err(&client->dev, "Error in setting operating mode\n");
619 		goto exit;
620 	}
621 
622 	/* Wait for the conversion to complete. */
623 	if (data->eoc_irq)
624 		ret = wait_conversion_complete_interrupt(data);
625 	else if (gpio_is_valid(data->eoc_gpio))
626 		ret = wait_conversion_complete_gpio(data);
627 	else
628 		ret = wait_conversion_complete_polled(data);
629 	if (ret < 0)
630 		goto exit;
631 
632 	/* This will be executed only for non-interrupt based waiting case */
633 	if (ret & data->def->ctrl_masks[ST1_DRDY]) {
634 		ret = i2c_smbus_read_byte_data(client,
635 					       data->def->ctrl_regs[ST2]);
636 		if (ret < 0) {
637 			dev_err(&client->dev, "Error in reading ST2\n");
638 			goto exit;
639 		}
640 		if (ret & (data->def->ctrl_masks[ST2_DERR] |
641 			   data->def->ctrl_masks[ST2_HOFL])) {
642 			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
643 			ret = -EINVAL;
644 			goto exit;
645 		}
646 	}
647 
648 	/* Read the flux value from the appropriate register
649 	   (the register is specified in the iio device attributes). */
650 	ret = i2c_smbus_read_word_data(client, data->def->data_regs[index]);
651 	if (ret < 0) {
652 		dev_err(&client->dev, "Read axis data fails\n");
653 		goto exit;
654 	}
655 
656 	mutex_unlock(&data->lock);
657 
658 	/* Clamp to valid range. */
659 	*val = clamp_t(s16, ret, -data->def->range, data->def->range);
660 	return IIO_VAL_INT;
661 
662 exit:
663 	mutex_unlock(&data->lock);
664 	return ret;
665 }
666 
667 static int ak8975_read_raw(struct iio_dev *indio_dev,
668 			   struct iio_chan_spec const *chan,
669 			   int *val, int *val2,
670 			   long mask)
671 {
672 	struct ak8975_data *data = iio_priv(indio_dev);
673 
674 	switch (mask) {
675 	case IIO_CHAN_INFO_RAW:
676 		return ak8975_read_axis(indio_dev, chan->address, val);
677 	case IIO_CHAN_INFO_SCALE:
678 		*val = 0;
679 		*val2 = data->raw_to_gauss[chan->address];
680 		return IIO_VAL_INT_PLUS_MICRO;
681 	}
682 	return -EINVAL;
683 }
684 
685 #define AK8975_CHANNEL(axis, index)					\
686 	{								\
687 		.type = IIO_MAGN,					\
688 		.modified = 1,						\
689 		.channel2 = IIO_MOD_##axis,				\
690 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
691 			     BIT(IIO_CHAN_INFO_SCALE),			\
692 		.address = index,					\
693 	}
694 
695 static const struct iio_chan_spec ak8975_channels[] = {
696 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
697 };
698 
699 static const struct iio_info ak8975_info = {
700 	.read_raw = &ak8975_read_raw,
701 	.driver_module = THIS_MODULE,
702 };
703 
704 static const struct acpi_device_id ak_acpi_match[] = {
705 	{"AK8975", AK8975},
706 	{"AK8963", AK8963},
707 	{"INVN6500", AK8963},
708 	{"AK09911", AK09911},
709 	{"AK09912", AK09912},
710 	{ },
711 };
712 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
713 
714 static const char *ak8975_match_acpi_device(struct device *dev,
715 					    enum asahi_compass_chipset *chipset)
716 {
717 	const struct acpi_device_id *id;
718 
719 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
720 	if (!id)
721 		return NULL;
722 	*chipset = (int)id->driver_data;
723 
724 	return dev_name(dev);
725 }
726 
727 static int ak8975_probe(struct i2c_client *client,
728 			const struct i2c_device_id *id)
729 {
730 	struct ak8975_data *data;
731 	struct iio_dev *indio_dev;
732 	int eoc_gpio;
733 	int err;
734 	const char *name = NULL;
735 	enum asahi_compass_chipset chipset;
736 
737 	/* Grab and set up the supplied GPIO. */
738 	if (client->dev.platform_data)
739 		eoc_gpio = *(int *)(client->dev.platform_data);
740 	else if (client->dev.of_node)
741 		eoc_gpio = of_get_gpio(client->dev.of_node, 0);
742 	else
743 		eoc_gpio = -1;
744 
745 	if (eoc_gpio == -EPROBE_DEFER)
746 		return -EPROBE_DEFER;
747 
748 	/* We may not have a GPIO based IRQ to scan, that is fine, we will
749 	   poll if so */
750 	if (gpio_is_valid(eoc_gpio)) {
751 		err = devm_gpio_request_one(&client->dev, eoc_gpio,
752 							GPIOF_IN, "ak_8975");
753 		if (err < 0) {
754 			dev_err(&client->dev,
755 				"failed to request GPIO %d, error %d\n",
756 							eoc_gpio, err);
757 			return err;
758 		}
759 	}
760 
761 	/* Register with IIO */
762 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
763 	if (indio_dev == NULL)
764 		return -ENOMEM;
765 
766 	data = iio_priv(indio_dev);
767 	i2c_set_clientdata(client, indio_dev);
768 
769 	data->client = client;
770 	data->eoc_gpio = eoc_gpio;
771 	data->eoc_irq = 0;
772 
773 	/* id will be NULL when enumerated via ACPI */
774 	if (id) {
775 		chipset = (enum asahi_compass_chipset)(id->driver_data);
776 		name = id->name;
777 	} else if (ACPI_HANDLE(&client->dev))
778 		name = ak8975_match_acpi_device(&client->dev, &chipset);
779 	else
780 		return -ENOSYS;
781 
782 	if (chipset >= AK_MAX_TYPE) {
783 		dev_err(&client->dev, "AKM device type unsupported: %d\n",
784 			chipset);
785 		return -ENODEV;
786 	}
787 
788 	data->def = &ak_def_array[chipset];
789 	err = ak8975_who_i_am(client, data->def->type);
790 	if (err < 0) {
791 		dev_err(&client->dev, "Unexpected device\n");
792 		return err;
793 	}
794 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
795 
796 	/* Perform some basic start-of-day setup of the device. */
797 	err = ak8975_setup(client);
798 	if (err < 0) {
799 		dev_err(&client->dev, "%s initialization fails\n", name);
800 		return err;
801 	}
802 
803 	mutex_init(&data->lock);
804 	indio_dev->dev.parent = &client->dev;
805 	indio_dev->channels = ak8975_channels;
806 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
807 	indio_dev->info = &ak8975_info;
808 	indio_dev->modes = INDIO_DIRECT_MODE;
809 	indio_dev->name = name;
810 	return devm_iio_device_register(&client->dev, indio_dev);
811 }
812 
813 static const struct i2c_device_id ak8975_id[] = {
814 	{"ak8975", AK8975},
815 	{"ak8963", AK8963},
816 	{"AK8963", AK8963},
817 	{"ak09911", AK09911},
818 	{"ak09912", AK09912},
819 	{}
820 };
821 
822 MODULE_DEVICE_TABLE(i2c, ak8975_id);
823 
824 static const struct of_device_id ak8975_of_match[] = {
825 	{ .compatible = "asahi-kasei,ak8975", },
826 	{ .compatible = "ak8975", },
827 	{ .compatible = "asahi-kasei,ak8963", },
828 	{ .compatible = "ak8963", },
829 	{ .compatible = "asahi-kasei,ak09911", },
830 	{ .compatible = "ak09911", },
831 	{ .compatible = "asahi-kasei,ak09912", },
832 	{ .compatible = "ak09912", },
833 	{}
834 };
835 MODULE_DEVICE_TABLE(of, ak8975_of_match);
836 
837 static struct i2c_driver ak8975_driver = {
838 	.driver = {
839 		.name	= "ak8975",
840 		.of_match_table = of_match_ptr(ak8975_of_match),
841 		.acpi_match_table = ACPI_PTR(ak_acpi_match),
842 	},
843 	.probe		= ak8975_probe,
844 	.id_table	= ak8975_id,
845 };
846 module_i2c_driver(ak8975_driver);
847 
848 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
849 MODULE_DESCRIPTION("AK8975 magnetometer driver");
850 MODULE_LICENSE("GPL");
851